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Abstract

In this thesis we consider multiplicative integrals and derivatives

on the sets R+, S = eC
(the logarithmic Riemann surface) and C⇤

=

C \ {0}. Additive structures on R and C are related to their multi-

plicative counterparts on R+ and S by defining exponential transition

functors Texp and Texp. We use a lift-projection method to transition

multiplicative structures on S to their counterparts on C⇤
. The pro-

cess introduces potentially multivalued behaviour, which is the case

for multiplicative integrals on C⇤
-valued functions.

Some mixed problems, involving both additive and multiplicative

structures, are also discussed. E.g. we consider the mixed di↵erential

equation y0 = y⇤, whose solution involves the Lambert W function.

We extend the inequality of arithmetic and geometric means (AM-

GM inequality) to the setting of non-negative random variables. The

matrix AM-GM inequality (Theorem 10.9 in [6]) is also extended,

and tweaked to an integral version which leads to a generalization of

Hölder’s inequality.
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Populärvetenskaplig sammanfattning

Vad är ett medelvärde? Om vi har tv̊a tal a och b, skulle nog de flesta
säga att deras medelvärde är A = a+b

2 , vilket vi kallar deras aritmetiska
medelvärde. Men om a, b � 0 s̊a har vi ocks̊a ett annat rimligt medelvärde,
nämligen det geometriska G =

p
ab. Redan i antikens Grekland kände man

till AM-GM olikheten som säger att A � G med likhet om och endast om
a = b, och deras först̊aelse byggde p̊a geometriska argument som i Figur 1
och 2. Dessutom gäller AM-GM olikheten för fler variabler en tv̊a, dvs om

Figure 1: I grönt är det aritmetiska medelvärdet eftersom det är radien i
cirkeln, och a+ b är diametern. Det geometriska medelärdet G är i bl̊att och
i nästa figur förklarar vi varför det är det geoemtriska medelvärdet. Notera
även att A = G i figuren om och endast om a = b.

x1, . . . , xn � 0 s̊a definierar vi det aritmetiska medelvärdet A = x1+x2+...+xn

n

och det geoemtriska medelvärdet G = n
p
x1x2 · · · xn. Återigen gäller att

A � G med likhet om och endast om x1 = . . . = xn. Samtidigt kan man
även beräkna medelvärdet av ett kontinuum genom att använda integraler,
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Figure 2: Vi använder likformighet för att visa att G faktiskt är det ge-
ometriska medelvärdet. Beviset bygger p̊a att proportionen mellan a och G

är densamma som den mellan G och b, fr̊an vilket är följer att G =
p
ab.

exempelvis om man ska beräkna tyngdpunkten av ett objekt. Fr̊agan är d̊a
om det finns ett motsvarande geometriskt medelvärde för kontinuumet, och
i s̊a fall om AM-GM olikheten fortfarande gäller?

Det visar sig att svaret är ja p̊a b̊ada ovanst̊aende fr̊agor, och för att
definiera det geometriska medelvärdet s̊a använder vi oss av logaritmen och
exponentialfunktionen. Detta p̊a grund av att de kopplar ihop addition och
multiplikation genom formlerna lnxy = ln x + ln y och e

x+y = e
x
e
y. Ex-

empelvis kan vi överföra det aritmetiska medelvärdet av a och b till det
geometriska genomm att använda processen med logaritmer och exponen-
tialfunktionen s̊a som följer;

1. Först ersätter vi a och b med ln a och ln b s̊a att multiplikation ersätts
med addition.

2. Vi beräknar sedan deras medelvärde som blir ln a+ln b
2 .

3. Slutligen s̊a applicerar vi exponentialfunktionen för att återigen f̊a n̊agot
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multipllikativt, och vi erh̊aller e
ln a+ln b

2 =
p
ab.

Processen med logaritmen och exponentialfunktion, applicerat p̊a ett ar-
itmetiskt medelvärde gav oss s̊aledes ett geometriskt medelvärde, och vi
applicerar samma teknik p̊a kontinuum-aritmetiska medelvärden för att f̊a
motsvarande geoemtriska medelvärden. Dessutom applicerar vi även tekniken
med logaritmen och exponentialfunktionen p̊a derivator och integraler för att
erh̊alla multiplivativa motsvarigheter.

Figure 3: I bl̊att ser vi en lin-ln plot of funktionen f , där x-axeln har linjär
skala och y-axeln har logaritmisk skala. Lutningen (grön) i en punkt är d̊a
logaritmen av den multiplikativa derivatan f

⇤(x).

Notera dock att vi hittils har begränsat oss enbart till funktioner som
antar positiva värden, eftersom logaritmen enbart är definierad för positiva
tal. Dock finns en komplex motsvarighet av logaritmen som även fungerar
p̊a negativa värden, men den är flervärd. Det beror p̊a att e2⇡in = 1 för varje
heltal n, vilket kan tolkas som att vi snurrar runt i enhetscirkeln och där
varje varv motsvarar vinkeln 2⇡. Vi använder den flervärda komplexa loga-
ritmen och den komplexa exponentialfunktionen för att definiera komplexa
multiplikativa integraler som ocks̊a visar sig bli flervärda.
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Figure 4: Arean under f i en lin-ln plot är logaritmen av produktintegralen

Pb
a f(x)

dx (rött).

Figure 5: När vi snurrar runt p̊a enhetscirkeln s̊a återkommer vi till 1 efter
varje varv.
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1 Introduction

Arithmetic and geometric mean inequality

The arithmetic mean – geometric mean inequality (AM-GM) was already
known by the ancient Greeks. In its simplest form it states that a+b

2 �
p
ab

for non-negative numbers a and b, were equality holds if and only if a = b.
This version has a very simple proof, yielding to the non-negativity of squares

0  (
p
a�

p
b)2 = a+ b� 2

p
ab,

from which the inequality follows. The equality condition follows from solving
the equation x

2 = 0 () x = 0 for x =
p
a �

p
b. This version of

the AM-GM inequality involves the arithmetic and geometric means of two
variables a and b, and the inequality is often seen in its extended version
involving the arithmetic and geometric means of finitely many variables.
Given x1, x2, . . . , xn � 0, we define the arithmetic mean as

A =
1

n

nX

n=1

x2 =
x1 + x2 + . . .+ xn

n

and the geometric mean as

G =

 
nY

k=1

xk

!1/n

= n
p
x1x2 · · · xn.

The non-negativity of the variables is only required in the definition of the ge-
ometric mean, but in the AM-GM inequality both means need to be defined.
Then the AM-GM inequality states that

A � G, (1)

with equaltiy if and only if x1 = x2 = · · · = xn. The proof here is not quite
as simple as the two-variable case, and relies on Jensen’s inequality which
is an indispensable tool for proving inequalities involving means and will be
discussed more thoroughly later. However, the key part of the proof involves
rewriting the geometric mean as

G = exp

✓
ln x1 + ln x2 + . . .+ ln xn

n

◆
(2)

for x1, . . . , xn > 0 and then using the (strict) concavity of the logarithm
and Jensen’s inequality to show that lnA � lnG, with the strict concavity
yielding the desired equality condition. If some xi = 0, then G = 0 and
A � 0 with equaltiy if and only if 8xj = 0.
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Continuous AM-GM

With the discrete arithmetic and geometric means defined, one natural ques-
tion to consider is whether it is possible to define continuous analogs, and
whether the AM-GM inequality will still hold? To do so, lets first consider
a continuous non-negative function x : [0, T ] ! [0,1) over which we would
like to define these means. The arithmetic mean is given by

A =
1

T

Z T

0

x(t)dt,

and again x is not required to be a non-negative function, but will be so in the
definition of the geometric mean. As we can see, upon going from the discrete
arithmetic mean to the continuous one we replace the sum by an integral. The
question then becomes what to correspondingly replace the multiplication
with in the geometric mean? It would represent a continuous version of
multiplication, or alternatively a multiplicative version of the integral and
we shall represent it with the symbol P. In Table 1 we see the analogies

additive multiplicative
discrete

P Q

continuous
R P

Table 1: Analogies between
P

,
Q
,
R
and P in terms of discrete/continuous

and additive/multiplicative. In particular P can either be considered a con-
tinuous analogue of

Q
or a multiplicative analogue of

R
.

between
P

,
Q
,
R

and P, and how P either can be viewed as a continuous
version of multiplication or a multiplicative version of the integral.

Continuous products

The first approach, where P is considered a continuous version of
Q
, the

transition from discrete to continuous corresponds to that from
P

to
R
. This

means we could either take a Riemann or Lebesgue approach in going fromQ
to P. In the Riemann approach, one would consider Riemann productsQn

i=1 f (xi)
�xi and limits [4]. Doing this suggests a suitable notation for

Riemann multiplicative integrals, namely

b

R
a

f(x) dx. (3)
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Similarly, one could get a measure theoretic multiplicative integral by mir-
roring the development of measure theory, with chosen notation

R f
dµ (4)

for the multiplicative integral.

Connecting additive and multiplicative structures

However, other than replacing sums by products, we have yet to specify
precisely what ”mirrors” means? Doing so will require specification of the
transition from additive to multiplicative, which can be used to directly tran-
sition from

R
to P. Recalling (2), we have already seen an example of such

a transition and it suggests how to translate linearity. Addition x + y is
replaced by

exp (lnx+ ln y) = xy (5)

multiplication, and scaling ax is replaced by

exp (a ln x) = x
a (6)

exponentiation. Doing this allows us to transition the vector space R over
itself to the multiplicative vector space R+ over R.

Multiplicative integrals

Inspired by (5) and (6) we may define the multiplicative integral as

R f
dµ := exp

✓Z
ln f dµ

◆
. (7)

The idea is that the logarithm transforms a multiplicative linear combination
f
↵
g
� into a linear combination of the logarithms ln

�
f
↵
g
�
�
= ↵ ln f + � ln g.

Then by linearity of the integral we get a linear combination of the logarith-
mic integrals

Z
ln
�
f
↵
g
�
�
dµ = ↵

Z
ln f dµ+ �

Z
ln g dµ. (8)

The exponentiation works in reverse, transforming a linear combination ↵u+
�v to a multiplicative linear combination e

↵u+�v = e
↵u
e
�v = (eu)↵ (ev)�.

Using this for u =
R
ln f dµ and v =

R
ln g dµ when taking exponents of
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both sides in (8) yields e
R
ln(f↵g�) dµ =

�
e

R
ln f dµ

�↵ �
e

R
ln g dµ

��
. Using (7), this

shows that the multiplicative integral is indeed multiplicative

R
�
f
↵
g
�
� dµ

=
⇣
R f

dµ
⌘↵ ⇣

R g
dµ
⌘�

. (9)

The idea in (7) can be extended to other linear transformations such as
integral transforms, to yield a multiplicative counterpart. The transition
map from a linear transformation to its multiplicative counterpart will be
denoted Texp and turns out to be a functor, which will be elaborated in the
next section.

AM-GM inequality for non-negative random variables

With multiplicative integrals defined, we may return to the mission of defin-
ing the geometric mean G of the continuous function x : [0, T ] ! [0,1). If
x is 0 on a set of non-zero measure then G := 0 and otherwise

G :=

 
T

R
0

x(t) dµ
!1/T

. (10)

In fact, with the measure theoretic treatment one may define the arithmetic
and geometric means by considering probability measures and expectation.
The arithmetic mean of a random variable X is simply is expectation EX
and will be denoted as AX when extra emphasis on the arithmetic nature is
needed. The geometric mean is defined on non-negative random variable X

in line with the previous development. If P (X = 0) 6= 0 then the geometric
mean is GX := 0 and otherwise it is defined as

GX = e
E lnX

. (11)

In fact we will prove with Jensen’s inequality that

AX � GX (12)

for X non-negative random variable, with equality in (12) if and only if X is
a point random variable, meaning it is constant almost surely. This version
of AM-GM would generalize the discrete and continuous versions as well as
the weighted version

Pn
i=1 pixi �

Qn
i=1 x

pi
i where pi is a discrete probability.

Extending the allowed range in multiplicative integrals

For multiplicative integrals, the need of positive functions can be motivated
by use of the logarithm and its application to the function. With some mod-
ifications, non-negative functions have also been considered. One question
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then is how to extend the machinery of multiplicative integration to wider
classes of functions? The allowed range of f in (7) is R+ = e

R which gives
ln f a range of R which is well suited for integration. Also the modification
where f is non-negative and consequently ln f takes values in [�1,1) gives
meaningful integration. Typically, the “next” extension to real-valued inte-
gration often considered is that of complex-valued integration, which in our
setting would mean that “log f” should be complex valued. The restriction
on f is then that its values are in the logarithmic Riemann surface hereby de-
noted by S. The idea is that on S the logarithm is a bijection onto C, and on
C-valued function there is a notion of integration and this would extend to a
corresponding multiplicative integration for S-valued functions. Here S = eC

is an infinite spiral version of the punctured complex plane C⇤ = C \ {0},
where the argument is no longer 2⇡-periodic but instead behaves like an
element of R. For extra clarity, the logarithm on S and its inverse, the ex-
ponential function, will here be given distinctive notation log : S ! C and
exp : C ! S. With this notation, we may now define the multiplicative
integral of f : X ! S by

Rf dµ = exp

✓Z
log f dµ

◆
(13)

where µ a measure on X.

Projections and lifts

Since the logarithmic Riemann surface S is related to C⇤, we want to use
(13) to define a multiplicative integral for C⇤-valued functions. This requires
us to first examine the relationship between S and C⇤ further. There is a
natural projection P : S ! C⇤, where the argument is taken modulo 2⇡.
The converse of this projection will lift z 2 C⇤ to all the points projecting
onto it Lz = {w 2 S | Pw = z}. So far both P and L have been defined
on points, but to be used in the desired setting they need to be extended
for functions. Function projection behaves nicely when defined pointwise
since it will preserve continuity. However, for function lifts we will have to
restrict ourselves to continuous lifts of continuous functions on generalized
strips (spaces of the form Rm ⇥ [0, 1]n for m,n 2 N). With function lifts
and projections defined, we may then move on to define multiplicative curve
integrals for continuous C⇤-valued functions. This will be done by first lifting
them to be S-valued, then mutliplicatively integrate followed by a projection.
The lift will be multivalued parameterized by Z, and will typically stay so
even after the multiplicative integration and projection. This explains the
multivalued nature of complex multiplicative integrals. [2, 1]
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When considering a probability measure and a continuous C⇤-valued ran-
dom variable, the, multiplicative integral (then called geometric expectation)
will not be multivalued. By characterising continuous lifts, this will be a con-
sequence of the formula e

2⇡in = 1, which will collapse all possible geometric
expectations.

Related inequalities

Going back to considering non-negative random variables and their arith-
metic and geometric means, we may study similar mean inequalities to the
AM-GM inequality in their probabilistic setting. In particular, we will ex-
tend the matrix form of the AM-GM inequality (Theorem 10.9 in [6]) to its
probabilistic setting using an analogous proof. Upon inspection of the proof,
it will be extended to an inequality involving integration with respect to a
�-finite measure and geometric means, and the order with which those opera-
tions are carried out. From this, Hölder’s inequality will follow as a corollary
and may in fact be extended to a version involving multiplicative integrals
and norms instead of the standard version with products and norms.
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2 Multiplicative function spaces

In this section, we aim to investigate the connection between additive and
multiplicative structures of importance to the forthcoming topics. Initially,
we shall consider the additive group (R,+) and the multiplicative group
(R+, ·), which are related through the exponential and logarithmic functions.
However, due to the additional structure of R, we may consider it as a real
vector space over the field R. This leads to the introduction of the corre-
sponding notion for R+, which will be considered a real multiplicative vector
space over the field R. The introduced concept of a multiplicative vector
space is algebraically still a vector space but written with a multiplicative
notation inherited from the underlying Abelian group. The vector spaces
considered will be real-valued function spaces and R+-valued function spaces
in the multiplicative case. The exponential and logarithmic functions, ex-
tended to function spaces, will again be the link between the additive and
multiplicative settings. Finally, the link between the linear and multiplica-
tive transformations will be defined and will be of interest later as it allows us
to translate integral transformations into their multiplicative counterparts.

Proposition 1. exp : (R,+) ! (R+, ·) is a group isomorhism with inverse

ln.

Proof. Since exp : R ! R+ is a bijection we only need to verify that it is
a homomorphism. The identity element is preserved since e

0 = 1 and the
group operation is preserved since e

x+y = e
x
e
y for every x, y 2 R.

Remark 2. We write R+ = e
R to emphasize the isomorphism in Proposition

1.

To extend Proposition 1 for vector spaces we shall first specify the mean-
ing of a multiplicative vector space, which algebraically is a just vector space
written with a multiplicative notation.

Definition 3 (Multiplicative vector space). Let (M, ·, 1) be a multiplicative
abelian group and F a field, equipped with a function M ⇥ F 3 (u,↵) 7!
u
↵ 2 M . Then M is said to be a multiplicative vector space over F provided

the following conditions are satisfied

1. (u↵)� = u
↵�

2. u
1F = u

3. (uv)↵ = u
↵
v
↵

4. u
↵+� = u

↵
u
�

14



for every u, v 2 M and ↵, � 2 F and where 1F 2 F is the identity of the
field.

Remark 4. We shall also call multiplicative vector spaces *vector spaces.

The following claim is evident from the conditions in Definition 3, and is
the multiplicative counterpart to the statement that R is a vector space over
itself.

Proposition 5. R+ is a multiplicative vector space over R.

We also consider vector isomorphisms which are bijective vector homo-
morphisms, defined below. These are algebraically linear transformations
between two vector spaces over the same field, however notation is not nec-
essarily written in additive notation.

Definition 6 (Vector homomorphism and isomorphism). Let (V,+) and
(W, ⇤) be vector spaces over F , and let ' : V ! W . Then ' is a vector
homomorphism if the following conditions are satisfied

1. '(u+ v) = '(u) ⇤ '(v)

2. '(↵v) = ('(v))↵

for every u, v 2 V and ↵ 2 F . Additionally, if ' is a bijection then we call it
a vector isomorphism.

Remark 7. Note that the particular notation used is not necessary, but we
implemented an additive notation for V and modified multiplicative notation
for W . If both V and W employ an additive notation, then we call ' a
linear transformation, and if both are multiplicative then ' is considered
a multiplicative or *linear transformation. This will be written down for
operators in Definition 14 and Remark 15.

Remark 8. The two conditions may be replaced by the joint condition that

'(↵u+ �v) =
�
'(u)

�↵ ⇤
�
'(v)

��

is always satisfied.

Thus we may generalize Proposition 1 to a vector isomorphism.

Proposition 9. The exponential map R 3 x 7! e
x 2 R+ is a vector isomor-

phism.

Proof. The statement follows from Proposition 1 and the property e
↵x =

(ex)↵ for x,↵ 2 R.
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Next we consider the function spaces RX and RX
+ . From linear algebra we

now that RX is a vector space over R when addition and scaling are defined
pointwise, and the multiplicative counterpart is analogous and stated below.

Proposition 10. Given f, g 2 RX
+ and ↵ 2 R, define multiplication fg 2 RX

+

and exponentiation f
↵ 2 RX

+ pointwise by

1. (fg)(x) = f(x)g(x)

2. (f↵)(x) = (f(x))↵

for any x 2 X. Then RX
+ is a *vector space over R.

Proof. The proposition is verified by checking the conditions for *vector
spaces in Definition 3 since we already know from group theory that (RX

+ , ·) is
an Abelian group under pointwise multiplication. The properties hold point-
wise anywhere since R+ is a *vector space, and therefore they will hold for
RX
+ as well.

Next we would like to extend the exponential (and logarithmic) function
to transition between the function spaces RX and RX

+ .

Definition 11. We define the exponential map on function spaces exp :
RX ! RX

+ pointwise by (exp f)(x) = e
f(x) for every f 2 RX and x 2 X. We

also use notation e
f = exp f , where f 2 RX .

Remark 12. The logarithm ln : RX
+ ! RX is defined analogously by (ln f)(x) =

ln(f(x)) for every f 2 RX
+ and x 2 X, and it is the inverse of the exponential.

Proposition 9 may no be extended to function spaces.

Proposition 13. The exponential map exp : RX ! RX
+ is a vector isomor-

phism.

Proof. We already know that exp is a bijection and only need to prove that
e
f+g = e

f
e
g and e

↵f =
�
e
f
�↵

for every f, g 2 RX and ↵ 2 R. The first
equation is proved by the chain of equalities

e
f+g(x) = e

(f+g)(x) = e
f(x)+g(x) = e

f(x)
e
g(x) = e

f (x) · eg(x) =
�
e
f
e
g
�
(x),

which hold for every x 2 X. Similarly, the second statement is proved by

e
↵f (x) = e

(↵f)(x) = e
↵·f(x) =

�
e
f(x)

�↵
=
�
e
f (x)

�↵
=
�
e
f
�↵

(x),

which holds for any x 2 X.
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With the relationships between the additive RX and multiplicative RX
+

vector spaces examined, we now turn to their vector homomorphism opera-
tors (linear operators for RX and multiplicative for RX

+ ) and the relationship
between them.

Definition 14 (Linear operator). Let V be a vector space over the field F ,
and let A : V ! V . Then A is said to be a linear operotor on V provided
that

1. A(↵v) = ↵(Av)

2. A(u+ v) = Au+Av

for every u, v 2 V and ↵ 2 F .

Remark 15 (Multiplicative operator). Written in multiplicative notation, the
two conditions in Definition 14 are

1. A (v↵) = (Av)↵

2. A(uv) = Au · Av

In the following definition, we will consider the set of all linear operators
on a vector space.

Definition 16 (End(V )). Given the vector space V , we define End(V ) :=
{A : V ! V |A linear operator} .

Remark 17. The endomorphism terminology originates from category the-
ory [7] where one may consider the set of all morphisms of an object. In
the category VectF the objects are vector spaces over the field F , and the
morphisms are linear transformations between two such vector spaces. Thus
an endomorphism is a linear transformation from a vector space to itself, or
equivalently a linear operator on that space.

Example 18 (Endomorphisms of function spaces). End(RX) consists of all
linear operators on RX and End(RX

+ ) consists of all multiplicative operators
on RX

+ .

From category theory we know that the endomorphism set forms a monoid
(set equipped with binary operator satisfying associativity and having an
identity), which in the context of vectors looks as follows.

Proposition 19 (End(V ) is a monoid). Given a vector space V , then End(V )
is a monoid under composition of linear transformations and where I is the

identity. Composition is written as AB or alternatively A � B for A,B 2
End(V ).

17



Furthermore, from linear algebra we also know that the set of linear
transformations forms a vector space when addition and scaling is defined
pointwise. In multiplicative notation we consider multiplication and expo-
nentiation instead of addition and scaling. We will write multiplication as
A·B for A,B 2 End(V ), which we hope the reader will not confuse with ”dot
products” as they will not be used in this context (and if they were an inner
product notation would be utilized instead). We will use the straightforward
notation A↵ for exponentiation.

Proposition 20. Let V be a *vector space over the field F , and equip End(V )
with multiplication A·B and exponentiation A↵

for A,B 2 End(V ) and ↵ 2 F

defined pointwise by

1. (A · B)v = (Av)(Bv)

2. (A↵)v = (Av)↵

for every v 2 V . Then End(V ) is a *vector space over F .

With additive and multiplicative operators defined we now turn to the
topic of transitioning between them.

Definition 21 (Texp). We define the exponential transition map

Texp :

(
End(RX) ! End(RX

+ )

A 7! Aexp

by demanding that
Aexpf = e

A(ln f)
, (14)

for any f 2 RX
+ .

Remark 22. We now show that Texp is well-defined by checking that Aexp 2
End(RX

+ ), or equivalently that Aexp is a multiplicative operator. Since A 2
End(RX) we know that A is a linear operator. We shall check the (joint)
condition for multiplicativity, namely that Aexp

�
f
↵
g
�
�
= (Aexpf)↵(Aexpg)�

for f, g 2 RX
+ and ↵, � 2 R.

Aexp

�
f
↵
g
�
�
= e

A(ln(f↵g�)) = e
A(↵ ln f+� ln g)) = e

↵A(ln f)+�A(ln g)

=
�
e
A(ln f)

�↵ �
e
A(ln g)

��
= (Aexpf)

↵(Aexpg)
�

Thus we have verified that Texp transforms a linear operator into a multi-
plicative one.
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Remark 23 (Implicit notation). We will frequently just write Aexp instead of
TexpA or Texp(A).

Remark 24 (Tln). The inverse of Texp is

Tln :

(
End(RX

+ ) ! End(RX)

A 7! Aln

and satisfies
Alnf = ln

�
Ae

f
�

for every f 2 RX .

The role of Texp and Tln is to transition between additive and multiplica-
tive linear operators, much like how exp and ln transitioned between the cor-
responding vectors. Just like those turned out to be (vector) isomporphisms,
the same holds for the exponential and logarithmic transitions which turn
out to be both vector isomorphisms and monoid isomorphisms.

Proposition 25. Texp is a monoid isomorphism.

Proof. We already know that Texp is a bijection, and must therefore only
show that it is a monoid homomorphism.

1. First we check that the identity is preserved namely that Iexp acts as
an identity in End(RX

+ ). Then, for any f 2 RX
+ , we have by (14) that

Iexpf = e
I(ln f) = e

ln f = f,

which proves that Iexp is the identity RX
+ .

2. Next we check that composition is preserved, meaning that (AB)exp =
AexpBexp should hold for every A,B 2 End(RX

+ ). Again, using (14) for
any f 2 RX

+ we find that

(AB)expf = e
(AB)(ln f) = e

A(B(ln f)) = e
A(ln eB(ln f))

,

and note that we find e
B(ln f) = Bexpf within the expression. We then

get
(AB)expf = e

A(lnBexpf),

on which we may again use (14) with the function Bexpf 2 RX
+ . This

finally gives us that

(AB)expf = Aexp(Bexpf) = (AexpBexp)f,

which proves the desired statement.
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Proposition 26. Texp is a vector isomorphism.

Proof. We only need to show that Texp : End(RX) ! End(RX
+ ) is a vector

homomorphism since it has already been established to be a bijection. The
proof will use (14), Theorem13 and the properties of the operator vector
spaces (both in additive and multiplicative notation).

1. First we show that (A + B)exp = Aexp · Bexp for A,B 2 End(RX).
Consider any f 2 RX

+ , and then

(A+ B)expf = e
(A+B)(ln f) = e

A(ln f)+B(ln f) = e
A(ln f)

e
B(ln f)

= (Aexpf) (Bexpf) = (Aexp · Bexp) f,

which proves the desired statement.

2. What remains to show is that (↵A)exp = A↵
exp for any A 2 RX and

↵ 2 R. For any f 2 RX
+ we have that

(↵A)expf = e
↵A(ln f) =

�
e
A(ln f)

�↵
= (Aexpf)

↵ = A↵
expf,

as desired.

We summarize the major takeaways from the section thus far (Proposi-
tion 13, 25 and 26) in the following theorem, which gives strong structural
preserving properties in the transition between additive multiplicative vector
spaces. Essentially it states that the vector structure of the function spaces
and their linear operators are isomorphically preserved and that composition
of such operators is also isomorphically preserved.

Theorem 27 (Isomorphisms between additive and multiplicative function
spaces and their operators). The exponential map on function spaces exp :
RX ! RX

+ is a vector isomorphism and the exponential transition Texp :
End(RX) ! End(RX

+ ) is a vector and monoid isomorphism. Their inverses

are ln and Tln, respectively.
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2.1 Extensions of Texp
We have thus far taken an algebraic perspective on transitioning from ad-
ditive to multiplicative structures, however we are primarily interested in
the multiplicative integrals and derivatives and as such will need to consider
topological and analytical aspects as well. The following examples serve to
motivate some extensions to the presentation given thus far, so that Texp can
be used in more situations.

Example 28 (Multiplicative Riemann integral operator). Integration is not
defined for every function f : [a, b] ! R. However, a su�cient condition is to
demand that f 2 CR([a, b]) is continuous. In that case the Riemann integral
operator f 7! F defined by

F (x) =

Z x

a

f(t) dt,

for every x 2 [a, b], is indeed an operator on CR([a, b]) since F 2 CR([a, b]) is
also continuous. Thus in this case, the (linear) function space of interest is
CR([a, b]) with its associatied endomorphism space End (CR([a, b])), in which
the Riemann integral operator belongs. The first is a subspace of R[a,b] and
the second one is structurally a subspace of End

�
R[a,b]

�
which will motivate

a minor modification to the definition of Texp. We still define Texp by (14)
but restricted to continuous functions. To find the multiplicative counter-
part of the Riemann integral integral operator, we then apply the modified
Texp to End (CR([a, b])) , the image of which will be End

�
CR+([a, b])

�
. The

multiplicative continuity space CR+([a, b]) is also the image of exp restricted
to CR([a, b]). The multiplicative Riemann integral operator (or Riemann
*integral operator) f 7! F⇤ then satisfies

F⇤(x) = e

R x
a ln f(t) dt =:

xP
a
f(t) dt

for x 2 [a, b]. From[4] we now that the logarithm of Pd
c f(t)

dt = F⇤(d)�F⇤(c)
is the area under the lin-log plot of f restricted to [c, d] ✓ [a, b].

From Example 28 we therefore extend the exponential map and transition
to subspaces of function spaces.

Definition 29 (Subspace exp and Texp). Let V ✓ RX be a subspace and
consider the restriction of the exponential map exp |V : V ! exp(V ) = e

V =:
V⇤, which will still be denoted exp. We extend Definition 21 by letting

Texp :

(
End(V ) ! End(V⇤)

A 7! A⇤
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satisfy
A⇤f = e

A(ln f)
.

for every f 2 V⇤.

Remark 30. The inverses of exp and Texp are denoted ln and Tln, respectively.

Remark 31. Note that the restricted exponential map is a vector isomorphism
by inheritance from its unrestricted counterpart, and by repeating previous
calculations the exponential transition is still both a vector and a monoid
isomorphism.

The extended definition of Texp in Definition 29 may be used on derivative
operators as well, to gain a multiplicative counterpart.

Example 32 (Multiplicative derivative operator). Let U ✓ R be open and
consider the function space RU . While the derivative is a linear transfor-
mation on the (linear) space of di↵erentiable functions in RU , it is only an
operator on the (linear) subspace of infinitely di↵erentiable functions C1

R (U).
The derivative operator D : C1

R (U) ! C
1
R (U) can thus be transformed by

Texp to the multiplicative derivative operator D⇤ : C1
R+

(U) ! C
1
R+

(U). Note
that exp (C1

R (U)) = C
1
R+

(U) consists of infinitely di↵erentiable positive func-
tions. Its action on f 2 C

1
R+

(U) is given by

D⇤f =: f ⇤ = e
(ln f)0 = e

f 0/f
.

From [4] we know that the logarithm of f ⇤(x) finds the slope of f at x 2 U

in the lin-log plot of f : U ! R.

However, we may also be interested in di↵erentiating functions which are
not C1 smooth, and their multiplicative counterparts. To do this we fix some
open subset X of R and define the subspace chain of smoothness classes of
the function space RX , and we will surpress X in the notation for brevity. We
note that we can also let X be a closed interval and then define the derivative
at endpoints to be given by right/left derivatives. Such modifications will not
alter the definition of the chain of spaces. We will also not include R in the
notation, but when there will be need for distinction with the multiplicative
counterparts on R+, these will be indexed.

Definition 33 (Smoothness chain spaces). Define the chain of smoothness
spaces C

0 � C
1 � C

2 � . . . � C
n � C

n+1 � . . . � C
1 by letting C

0
R =

C(X,R) denote the continuous functions, C1
R = {f | f 0 exists and f

0 2 C
0
R}

and C
n+1
R = {f 2 C

1 | f 0 2 C
n}. Finally we let C1 =

T1
n=1 C

n.
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Remark 34. Note that all these spaces are indeed linear subspaces of the
function space, and the derivative D : C1 ! C

0 restricted to a subspace in
the chain is a linear transformation to the previous space. This can be verified
with standard formulas of scaling and addition with respect to derivatives.

The reason for considering such a chain of smoothness spaces is that this
does not only allow us to transfer the definition of the derivative to the
multiplicative setting, but also composition properties as well as smoothness
information. This will ultimately result in a greater level of recycling of the
additive theory of derivatives to its multiplicative counterpart.

While we could define Texp on the smoothness chain, and this would be
an invertible composition chain isomorphism, the following proposition and
remark suggests that we should consider categories instead for a more general
treatment, which will also allow us to transfer other interesting analysis topics
to their multiplicative counterparts.

Proposition 35. The composition chain C
0 � C

1 � . . . � C
n � . . . forms

a subcategory CR(X) of VectR, the category of vector spaces over R.

Proof. The objects in C are Cn for every n 2 N and the morphisms are linear
transformations A : Cn ! C

m. Composition of such A and B : Cp ! C
n is

the linear transformation AB : Cp ! C
m and satisfies associativity.

Remark 36. Since the derivative operator (and its restrictions) D : Cn+1 !
C

n are linear then any restriction of D is a morphism in D . We also note that
the iterated derivative Dk : Ck ! C

0 and its restrictions are also morphisms.

It is therefore natural to consider the category whose objects are all sub-
spaces of RX and whose morphisms are all linear transformations between
these subspaces. This category, written FR(X), thus is a subcatgory of
VectR. Defining Texp on this category would include all examples given thus
far by considering subcategories. However, we have restricted ourselves to
function spaces with fixed input, which may not be suitable for some integral
transforms or for non-square matrices. Therefore we shall allow any domain
in the function spaces, and the corresponding construction will be iterated
in the multiplicative case.

Definition 37. We define the categories FR and FR+ as follows.

(FR) Let FR be the category whose objects are subspaces V ✓ RS of function
spaces for any set S. The morphisms are inherited from the supcategory
VectR and are linear transformations between objects.
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(FR+) Similarly, we define the category FR+ whose objects are subspaces of
R+-valued function spaces, with morphisms inherited from VectR and
given by multiplicative transformations.

Remark 38. Note that FR and FR+ are full subcategories of VectR.

We may now define the functor Texp : FR ! FR+ , which will include
both the exponential map and transition. This will be an extension of previ-
ous definitions, and the functorial statement will contain Theorem 27, which
is the special case for a one-object full subcategory of FR. The functorial
treatment of Texp will not only translate operators such as derivatives and
integrals to their multiplicative counterpart, but additionally since the com-
positional structure is preserved statements such as the fundamental theorem
of calculus will also be naturally transferred to the multiplicative setting. We
will also define the inverse functor Tln : FR+ ! FR of Texp, which translates
from a multiplicative structure to the additive counterpart.

Definition 39. We define Texp : FR ! FR+ and Tln : FR+ ! FR as follows.

(Texp) 1. For objects, we let Texp : V 7! V⇤ = e
V .

2. For morphisms, we let Texp : A 7! A⇤ be defined by

A⇤f = e
A(ln f)

for every f 2 V⇤.

(Tln) 1. For objects, we let Tln : V 7! V† := lnV .

2. For morphisms, we let Tln : A 7! A† be defined by

A†f = ln
�
Ae

f
�

for every f 2 V†.

Theorem 40. Texp is a functor with inverse functor Tln.

Proof. First we show that Texp is a functor by verifying that identities and
composition are preserved. The identity I of any object V in FR maps to
its counterpart identity since I⇤f = e

I(ln f) = e
ln f = f for any f 2 V⇤.

Furthermore, composition is preserved since for any linear transformations
A : V 0 ! W and B : V ! V

0 acting between R-valued linear function spaces
V , V 0 and W , we have that

(AB)⇤f = e
(AB)(ln f) = e

A(ln eB(ln f)) = e
A(lnB⇤f) = A⇤B⇤f
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for every f 2 V⇤. Consequently, we have (AB)⇤ = A⇤B⇤ and it concludes the
proof that Texp is a functor. By analogous calculations, we may also deduce
that Tln is a functor.

What remains to show is that Texp and Tln are inverses, which means that
we need to show that TlnTexp and TexpTln are the identity functors on FR

and FR+ respectively. We will show the first statement and note that the
second one follows from analogous calculations. For objects we have that
TlnTexp : V 7! V⇤ 7! (V⇤)†, where (V⇤)† = ln

�
e
V
�
= V . Furthermore, for

morphisms we have that TlnTexp : A 7! A⇤ 7! (A⇤)†where

(A⇤)† f = ln
�
A⇤e

f
�
= ln

⇣
e
A(ln ef)

⌘
= ln

�
e
Af
�
= Af

for every f 2 V . Therefore TlnTexp : FR ! FR acts as an idenity on both
objects and morphisms, which concludes the proof that it is an identity
functor

Example 41 (Multiplicative integral). Let (X,A , µ) be a measure space and
consider the space of integrable functions L1 (X,µ,R). We also consider the
real numbers viewed as a trivial function space over itself R{1} ⇠= R . Then
the integral is an operator L1 (X,µ,R) ! R given by f 7!

R
f dµ. Upon

transformation by Texp, the space of integrable functions transforms into its
multiplicative counterpart, which in this case is the space of positively valued
integrable functions L1 (X,µ,R+). Furthermore, the multiplicative integral
operator L1 (X,µ,R+) ! R+ with f 7! P f

dµ satisfies

P f
dµ = e

R
ln f dµ

,

and we call it the multiplicative integral (or *integral ) of f .

Example 42 (Multiplicative matrix algebra). Consider the finite dimen-
sional function spaces R{1,...,n} ⇠= Rn for n 2 N, in which case linear transfor-
mations A : Rn ! Rn are given by matrix multiplication with m⇥n matrices
A. The multiplicative counterpart A⇤ : Rn

+ ! Rm
+ acts on x 2 Rm

+ such that
y = A⇤x 2 Rm

+ , and its entries are given by

yi =
nY

j=1

x
aij
j .

Note that since (AB)⇤ = A⇤B⇤, composition is still respresented by the ma-
trix AB calculated through ordinary matrix multiplication of the matrix
representations A and B.
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Remark 43 (Multiplicative integral transforms). While the two previous ex-
amples could most likely be generalized to the discussion of integral trans-
forms and their multiplicative counterparts, this will be omitted due to the
technical nature of the topic.
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3 Complex multiplicative spaces

In this section we will consider complex multiplicative function spaces and
their relation to their additive counterparts. After defining the canoni-
cal 1-dimensional *vector space S over C, the development will essentially
be a streamlined translation of the topics discussed in the preceding sec-
tion. Most important will be the introduction of the invertible functor
Texp : FC ! FS and its categories, which will correspond to their real
counterparts Texp : FR ! FR+ . We then turn to the topic of relating S to
the (group) multiplicative structure C⇤ = C \ {0} , which provides a link to
the complex numbers. This will be achieved by introducing projections P
and lifts L between S and C⇤, and extending them to continuous functions.
Then a lift-projection scheme for transferring multiplicative transformations
to the C⇤-setting will be considered, which will potentially introduce multi-
valued behaviour.

We begin by providing a geometric definition of S, in which it will be
considered a helicoid in 3-space.

Definition 44 (S). We define exp : C ! C⇤ ⇥ R by z 7! (ez,=z), and let
S := exp(C) be the image.

Remark 45. Onwards we shall consider exp : C ! S a bijection.

Remark 46. In real coordinates the exponential bijection takes the form x+
iy 7! (ex+iy

, y) and S can therefore be considered a surface (helicoid) in 3-
space. The inverse, log : S ! C, acts by (w, y) 7! ln

�
w
eiy

�
+ iy for (w, y) 2

S ⇢ C⇤ ⇥ R.

We shall let S become a 1-dimensional multiplicative vector space over C
by transforming the additive structure of C with exp, which will also ensure
that exp is a vector isomorphism.

Definition 47 (Multiplication and exponentiation on S). Given z,w 2 S
and ↵ 2 C, define multiplication by

zw := exp(log z + logw)

and exponentiation by
z↵ := exp(↵ log z).

Remark 48. If we let e := exp(1), then ez = exp(z log e) = exp(z) for every
z 2 C. We shall more frequently use the notation z 7! ez for the exponential
function.

Proposition 49. S is a 1 dimensional *vector space over C.
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Remark 50. In real coordinates S is a 2-dimensional *vector space over R.
An example of a basis is given by the *vectors e = (e, 0) and ei = (ei, 1).
Therefore S is a direct *sum (multiplication) of their respective spans eR

and eiR. Since eR behaves identical to R+ we shall use them interchangeably.
The direct multiplication decomposition is thus given by S = R+ · eiR when
considered as *vector spaces over R.

We extend the exponential and logarithmic functions to act on function
spaces, and their subspaces.

Definition 51. Define exp : CX ! SX and log : SX ! CX on function
spaces by composition namely ef (x) = ef(x) and (log g)(x) = log(g(x)) for
every x 2 X and f 2 CX and g 2 SX . For subspaces V ⇢ CX and W ⇢ SX

we let restrictions exp |V and log |W induce images V⇤ = eV and W† = logW
respectively.

Remark 52. Note that notation is abused by recycling exp and log for their
function space counterparts, and again abused when the restriction are given
the same notation.

Proposition 53. exp and log are vector isomorphisms and each others

inverses.

We shall now define the categories FC and FS, as well as the functors
Texp and Tlog between them.

Definition 54 (FC). We let the objects of FC be (linear) subspaces V ✓ CS

for any set S, and its morphisms be any linear transformation between two
such spaces.

Definition 55 (FS). We let the objects of FS be (multiplicative) subspaces
V ✓ SS for any set S, and its morphisms be any *linear transformation
between two such spaces.

Remark 56. Both FC and FS are full subcategories of VectC generated by
their objects.

Definition 57 (Texp). We define Texp : FC ! FS to act by

1. V 7! V⇤ for every object V

2. A 7! A⇤ satisfying A⇤f = eA(log f) for every f in the domain of any
induced morphism A⇤.

Definition 58 (Tlog). We define Tlog : FS ! FC to act by
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1. W 7! W† for every object W

2. A 7! A† satisfying A†g = log (Ae
g) for every g in the domain of any

morphism A†.

Remark 59. Note that Texp : FC ! FS is indeed well defined since V⇤ is
a *vector space and A⇤ is a *linear transformation. Similarly, Tlog is also
well-defined and is furthermore the inverse of Texp.

The complex counterpart of Theorem40 is stated below, and since the
proof is identical it will be omitted.

Theorem 60. Texp is an invertible functor with inverse Tlog.

Example 61 (Multiplicative derivative). Given some open subset U ⇢ C the
derivative is an operator on the space on the space of holomorphic functions
on U , namely D : H(U) ! H(U). By applying Texp we get the multiplicative
counterpart D⇤ : H⇤(U) ! H⇤(U) where H⇤(U) =

�
ef | f 2 H(U)

 
and

where
D⇤f = f ⇤ = e(log f)

0
.

Example 62 (Multiplicative Riemann integral operator). The Riemann in-
tegral operator for C-valued functions is an operator on C(R,C) given by
f 7! F where F (x) =

R x

0 f(t) dt for every x 2 R. Its multiplicative counter-
part acts by f 7! F⇤ where

F⇤(x) =
xP
0
f(t) dt = e

R x
0 log f dt

is the Riemann *integral operator. It acts on the space eC(R,C) of functions
of the form ef , where f 2 C(R,C). When considering the topology of S
(defined in the next subsection), which is locally given by the topology of C⇤,
the continuity of exp then yields that eC(R,C) = C(R,S). This is the space
of continuous functions from R to S.

Example 63 (Fundamental theorem of calculus on space of entire functions).
On the space of entire functions H the derivative D and integral operator J :
H ! H are operators where Jf(z) =

R z

0 f(⇣) d⇣. We have the fundamental
theorem of calculus on the space of entire functions given by DJ = I and
JDf(z) = f(z) � f(0) for every f 2 H and z 2 C. The multiplicative
counterparts D⇤, J⇤ : H⇤ ! H⇤ satisfy D⇤J⇤ = I⇤ = I and J⇤D⇤f(z) =
elog f(z)�log f(0) = f(z)

f(0) for every f 2 H⇤ and z 2 C. Note that the condition
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on f is equivalent to log f 2 H being an entire function, and H⇤ is the space
of *entire functions. Furthermore the *integral satisfies

J⇤f(z) =
z

R
0

f(⇣) d⇣ = e
R z
0 log f(⇣) d⇣

,

which is well-defined like J since integration is path-independent for entire
functions. In more explicit notation, the fundamental theorem of *calculus
for *entire functions may be written as

 
z

R
0

f(⇣) d⇣
!⇤

= f(z) (15)

z

R
0

f ⇤(⇣) d⇣ =
f(z)

f(0)
(16)

for any f 2 H⇤ and z 2 C.

Example 64 (Multiplicative integral). Recall Example 41 on multiplica-
tive integrals for real-valued integrable functions. This time, however, we
consider S-valued functions f = eg where g = log f 2 L1 (X,µ,C) =
L1 (X,µ,R) � L1 (X,µ, iR) is integrable. The integral g 7!

R
g dµ 2 C then

has the multiplicative counterpart

f 7! Pf dµ = e
R
log f dµ 2 S.

3.1 Lifts and Projections

With some investigations of S undertaken we next consider how it relates to
the punctured complex plane C⇤, which is a group multiplicative structure.
To do so ,we will consider the projection P : S ! C⇤, defined below, which
preserves important structure. Not only will P be a group homomorphism,
but also a covering which will lead us to consider topological properties as
well.

Definition 65 (P). Let the projection P : S ! C⇤ be defined by Pz = e
log z

Remark 66. The projection satisfies Pez = e
z for every z 2 C.

Remark 67. Restricted to the set S✓ := {ez 2 S | ✓ < =z < ✓ + 2⇡}, the pro-
jection P✓ : S✓ ! C✓ is a bijection to the slit complex plane C✓ = C\ei✓R. This
can be seen by using a locally defined logarithm log : C✓ ! R + i(✓, ✓ + 2⇡)
on the slit plane, which yields the formula P�1

✓ z = elog z.
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Figure 6: A portion of S displayed where each colour represents some re-
striction S2⇡n, each of which is bijectively associated with C0. Later, when
discussing the topology of S we can also consider them homeomorphic to each
other. Produced with https://www.geogebra.org/m/btAc29yQ#material/
NYkYnjez and modified.

Remark 68. Note that S is also often considered as the logarithmic Riemann
surface, however we will not use that fact. The name stems from the fact
that the logarithm can be defined on S.

Proposition 69. P is a group homomorphism.

Proof. We verify the required group homomorphism properties.

1. P(zw) = P(elog z+logw) = e
log z+logw = e

log z
e
logw for every z.w 2 S.

2. P1 = e
log 1 = e

0 = 1

31



Definition 70 (Lift). For z 2 C⇤ define its lift Lz to be all points in S
projecting onto it, namely Lz = {w 2 S | Pw = z}.

Remark 71. In the context of algebraic topology, the lift of z would be called
the fiber of z.

Example 72 (L1). To find the lift of 1, we consider any ez 2 S for z 2 C
and let it project onto 1. This yields the equation e

z = 1 which is solved by
z = 2⇡in for any n 2 Z. Consequently L1 = {e2⇡in | n 2 Z}, which is group
isomorphic to the additive group Z.

The elements in L1 are of particular importance and will be given their
own notation.

Definition 73. For any n 2 Z we let 1n = e2⇡in, and we define [1] := {1n |
n 2 Z}.

Proposition 74 (Characterization of Lz). Given z 2 C⇤
, then there exists

a lift point z 2 S such that Pz = z, and Lz = z[1]= { z1n | n 2 Z}.

Proof. By writing z = re
i✓ in polar form we see that z = rei✓ is a lift point.

Furthermore, any w 2 Lz can be characterized by P
�
w
z

�
= 1 since the

projection is a group homomorphism. The characterization is equivalent to
w
z 2 [1] () w 2 z[1] . It follows that Lz = z[1] as desired.

We shall use the topology of C⇤ to construct the topology of S and then
explain why S covers C⇤. We start by considering a basis of disks for the
topology of C⇤ which will help us in our construction.

Lemma 75. For every z = re
i✓ 2 C⇤

, consider its collection of open balls

Bz = {B�(z) | 0 < � < r} centered at z and of radii such that 0 is not con-

tained. Then the union B =
S

z2C⇤ Bz forms a basis for the topology of

C⇤
.

Definition 76 (Topology of S). We equip S with the topology generated

by
S

z2S

n
B̃�(z) | 0 < � < r

o
, where B̃�(z) := P�1

✓�⇡ (B�(z)) for every z =

rei✓ 2 S and z = Pz.

Remark 77. We note that B̃�(z) is well-defined since the restricted projection
P✓�⇡ has an associated inverse P�1

✓�⇡ : C✓�⇡ ! S✓�⇡ in whose domain C✓�⇡ �
B�(z) is fully contained.

Proposition 78. P : S ! C⇤
is a covering.
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Proof. We first note that P : S ! C⇤ is a continuous map. Furthermore, for
any z = re

i✓ 2 C⇤ and 0 < � < r, we have that

P�1(B�(z) =
a

w2Lz

B̃�(w) =
a

n2Z

B̃�(z1n) =:
a

n2Z

B�(z, n),

where z is a lift point of z, and P|B�(z,n) : B�(z, n) ! B�(z) is a homeomor-
phism for every n 2 Z which verifies that P : S ! C⇤ is a covering.

Remark 79. Note that in the notation B�(z, n) for B̃�(w) we assume that
some fixed reference point lift z is given. For example, for z = 1 we shall
consider the canonical reference point 1 = 10.

The covering is important since it relates to the concept of function lifts
and projections, which we will need later when transitioning between func-
tions f 2 C(X,C⇤) to and their lifts f 2 C(X,S). This will then allow us to
translate operators as well, but as we shall see they will gain a multi-valued
nature. We begin be defining function projections pointwise, not assum-
ing any topological structure on X, but afterwards X 6= ; will always be
considered a topological space.

Definition 80 (Function Projection). Define, by abuse of notation, the func-
tion projection P : SX ! C⇤X by (Pf)(x) = P(f(x)) for every f 2 SX and
x 2 X. We shall also use the same notation P for any restriction.

Remark 81. Note that P preserves continuity, so that we have a restriction
P : C(X,S) ! (X,C⇤) which will be the function projection (and its restric-
tions) which we are most interested in.

Remark 82. By considering componentwise multiplication in the function
spaces SX and C⇤X , we note that P : SX ! C⇤X is a group homomorphism
sine P : S ! C⇤ is so too.

Definition 83 (Function Lift). Given f 2 C(X,C⇤) then f 2 C(X,S) is a
function lift of f if Pf = f .

Example 84. If f = e
g 2 C(X,C⇤) for g 2 C(X,C) then a function lift is

given by f = eg 2 C(X,S) since Peg(x) = e
g(x) for every x 2 X.

We are interested in spaces X from Definition 83 for which function lifts
are guaranteed to exist. Such spaces will be called lift-spaces, and they are
defined below.

Definition 85 (Lift-space). We call X a lift-space, if for any f 2 C(X,C⇤)
there exists a function lift f 2 C(X,S) such that Pf = f .
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Example 86. The identity function on C⇤ does not have a continuous lift
since a branch cut will be introduced. Therefore C⇤ is not a lift-space.

In the following definition , we consider the class of all function lifts of a
function.

Definition 87 (Lift-class). Let X be a lift-space and f 2 C(X,C⇤). Then
the lift-class of f is defined as Lf := {g 2 C(X,S) | Pg = f} .

Remark 88. We will also call Lf the lift of f , and any g 2 Lf a lift of f .

We may characterize Lf similarly to the point lifts by considering the
constant functions defined by 1 : x 7! 1 and 1n : x 7! 1n = e2⇡in for every
x 2 X (again with abuse of notation). If we also let [1] = {1n | n 2 Z}, then
we have the following characterization of the lift.

Theorem 89 (Characterization of Lf). If X is a connected lift-space, then

for any f 2 C(X,C⇤) we have that Lf = f [1] where f is a function lift of f .

Proof. We start by proving the statement for the special case f = 1, where
we verify that L1 = [1], and then we consider the general case.

1. Since P1n = 1 we have that [1] ✓ L1. Too prove the reverse inclusion
we consider any g 2 L1. Then Pg(x) = 1 for every x 2 X, so that
g(x) 2 [1] holds everywhere. Suppose for contradiction that g is not
constant so that g(x) = 1m and g(y) = 1n for some x, y 2 X and for
m 6= n. We consider the disjoint open balls B̃1/2(1m) and B̃1/2(1n) from

Definition 76. Then, their preimages Uk = g�1
⇣
B̃1/2(1k)

⌘
are disjoint

and empty for k = m,n. Furthermore, since Um 3 x and Un 3 y are
also non-empty we have a contradiction to the connectedness of X.
This means the assumption that g was non-constant was faulty. As
such g is constant, and since we know its range is included in the set
of points [1] it follows that g 2 [1]. This shows the reverse inclusion
and we may conclude that L1 = [1] as desired.

2. Given some lift f 2 Lf , we shall use that P is group homomorphisms
(Remark 82) and a chain a equivalences to prove the characterization
Lf = f [1]. We have that

g 2 Lf () Pg = f = Pf () Pg

Pf
=

f

f
= 1

() P
✓
g

f

◆
= 1 () g

f
2 [1] () g 2 f [1],

from which the characterization Lf = f [1] follows.
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From algebraic topology we have a lifting property that we will use in-
ductively to construct desirable lift-spaces such as C. It is formulated for the
covering P : S ! C⇤ below, and the proof is omitted as it can be found as
Proposition 1.30 in [5].

Lemma 90. Let f : Y ⇥ [0, 1] ! C⇤
be continuous and let f0 : Y ⇥ {0} ! S

be a lift of f |Y⇥{0}. Then there exists a unique lift f : Y ⇥ [0, 1] ! C⇤
of f

such that f |Y⇥{0} = f0.

Remark 91. Another way to formulate the lemma is by stating that if Y is
a lift-space then so is Y ⇥ [0, 1].

We shall use Lemma 90 recursively in conjunction with a gluing process
to show that Rm ⇥ [0, 1]n is a lift -space, which will include C a special case.

Theorem 92. For every m,n 2 N, we have that Rm ⇥ [0, 1]n is a lift -space.

Proof. We will use joint induction on the statement

Rm ⇥ [0, 1]n is a lift-space (Pm.n)

over m,n 2 N.

(P0,0) This statement is trivial since it corresponds to the existence of the
lift of a point.

(Pm,n =) Pm,n+1) Let Y = Rm ⇥ [0, 1]n be a lift-space by the induction
assumption, and consider any f 2 C(Y ⇥ [0, 1],C⇤). Since Y is a lift-
space there exists a lift f0 : Y ! S of the section f0 : Y ! C⇤. Then by
Lemma 90 there exists a unique lift f : Y ⇥ [0, 1] ! S of f satisfying
f(y, 0) = f0(y) for every y 2 Y . We may therefore conclude that
Y ⇥ [0, 1] = Rm ⇥ [0, 1]n+1 is a lift-space, which finishes this induction
step.

(Pm,n+1 =) Pm+1,n) With Y given as before we want to show that if Y ⇥
[0, 1] is a lift-space, then so is Y ⇥ R. To do this we consider any
(continuous) f : Y ⇥R ! C⇤, for which we would like to construct a lift.
This will be accomplished by constructing lifts fk : Y ⇥ Ik ! S of the
restrictions fk = f |Y⇥Ik where Ik = [k, k + 1], and by gluing these lifts
together at the endpoints during the construction process using Lemma
90. Before providing further details of the gluing process we first note
that Ik may be identified with [0, 1] by translation, and consequently we
may also use the induction assumption and Lemma 90 for Y ⇥ Ik. We
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start by fixing a lift f0 using the existence in the induction assumption.
For k 2 N we then inductively construct fk+1 from fk such that they
agree on their common domain, namely fk+1|Y⇥{k+1} = fk|Y⇥{k+1}.
This may be accomplished using Lemma 90 for fk+1 with respect to the
given lift fk+1,0 = fk|Y⇥{k+1} of the restriction fk+1|Y⇥Ik+1

. Using an
identical process we may therefore equivalently construct fk from fk+1

for negative k, such that they agree at their common domain. With all
the restricted lifts fk defined and agreeing on their common domains
we may then construct the desired lift f of f by f |Y⇥Ik = fk for every
k 2 Z. Note that this yields a well defined, continuous f since all fk are
continuous and agree on their common domains. Since the restrictions
of f project onto the restriction s of f , then we may indeed conclude
that Pf = f . We have therefore showed that Y ⇥ R = Rm+1 ⇥ [0, 1]n

is a lift-space, as we sought out to do in this induction step.

We have thus proved the base case P0,0, the induction step Pm,n =) Pm,n+1,
and by combining the two induction steps, Pm,n =) Pm,n+1 =) Pm,n+1

for m,n 2 N. By induction we therefore have that Pm,n is true for every
m,n 2 N as desired.

As a consequence of the theorem we therefore have that C is a lift-space
(using the standard topology of R2), and by its connectivity we also use the
characterization theorem on the lift.

Corollary 93. For every continuous f : C ! C⇤
there exists a (continuous)

lift f : C ! S and Lf = f [1].

3.2 The lift-projection method

With function lifts and projections defined we now have the necessary tools
to transfer S-valued multiplicative transformations to their C⇤-valued coun-
terparts.

Definition 94 (Lift-projection method). Suppose that A : V ! W is a
multiplicative transformation acting between the subspaces V ✓ C(X,S)
and W ✓ C(Y,S) for (connected) lift-spaces X, Y (such as those in Theorem
92). Then the lift-projection method defines the (potentially) multivalued
transformation

A : f 7! {PAg | g 2 Lf} . (17)

Remark 95. The lift projection method (17) may be decomposed into three
steps according to the ”lift, apply, project” pattern.
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1. Lift: f 7! Lf = f [1] where Pf = f

2. Apply: Lf 7! {Ag | g 2 Lf} = (Af)(A[1])

3. Project: we get {PAg | g 2 Lf} = (PAf)[1]A where [1]A := {PA1n | n 2 Z}

Note that [1]A = A1 is the lift-projection method applied to the constant
function 1, and characterizes whether A is multivalued or not as will be
seen when *derivatives and *integrals are considered. In conclusion, the lift-
projection method defines that (potentially) multivalued transformation

A : f 7! (PAf)[1]A

where f is a lift of f .

Remark 96. We may also apply A on a set of functions F by AF :=
S

f2F Af .

Example 97 (Multiplicative derivative). The multiplicative derivative D⇤ :
H⇤(U) ! H⇤(U) from Example 61 is transformed by the lift-projection
method to act on holomorphic functions f : U ! C⇤ by

f 7! f [1] 7! (f ⇤)(D⇤[1]) = f ⇤ 7! Pf ⇤ := f
⇤
,

which is single-valued. We may calculate f
⇤ = Pf ⇤ = Pe(log f)

0
= e

(log f)
0

using a local logarithmic branch log on which log f = log f . Doing this gives

f
⇤ = e

(log f)
0
= e

(log f)
0
= e

f
0
/f

for the multiplicative derivative.

We are also interested to see how composition works in the lift-projection
method.

Proposition 98. Suppose that A : U ! V and B : V ! W are multiplicative

transformations acting between the subspaces U ✓ C(X,S), V ✓ C(Y,S) and
W ✓ C(Z,S), where X, Y and Z are connected lift-spaces. Furthermore, let

A, B and BA be the lift-projection counterparts of A, B and BA, respectively.

Then

B(Af) = (BA)f [1]B.

for every f 2 U .

Proof. By the lift-projection method we have that Af = (PAf)[1]A for any
f 2 U and where Pf = f . We shall use the lift-projection method with
respect to B on Af .
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1. The lifts of elements in Af are of the form (Af)(A1m)1n for m,n 2 Z.

2. After application by B we get elements of the form (BAf)(BA1m)B1n

for m,n 2 Z.

3. The projection then gives elements of the form (PBAf)(PBA1m)PB1n

for m,n 2 Z, which corresponds to the set (PBAf)[1]BA[1]B.

We therefore have that B(Af) = (PBAf)[1]BA[1]B, and since (BA)f =
(PBAf)[1]BA the desired statement follows.

Remark 99. In the proposition we used the notation BA to denote the lift-
projection analog of BA, and it therefore represents first composing the op-
erators and then applying the lift-projection method. On the other hand,
when we consider B(Af) we apply the lift-projected counterparts of A and
B in succession to f 2 U . We shall use the notation B � A : f 7! B(Af) to
denote when the lift-projection method is performed before the composition.

The statement then simplifies to (B �A)f = (BA)f [1]B for every f 2 U ,
which we may again simplify to

B � A = (BA)[1]B. (18)

Corollary 100. Suppose that we have multiplicative transformations Ak :
Vk ! Vk+1 for every k = 1, . . . , n, where Vk ✓ C(Xk,S) are subspaces and

Xk are connected lift-spaces for every k = 1, . . . , n+1. Let A1, . . . , An be the

lift-projection analogues of A1, . . . ,An with composition An � · · ·�A1, and let

An · · ·A1 be the lift-projection analog of An · · · A1. Then

An � · · · � A1 = (An · · ·A1)
nY

k=2

[1]An···Ak
. (19)

Proof. We shall use induction over n 2 Z+ to prove the statement. For
n = 1, the product in the right hand-side is empty and consequently the
singleton identity {1}, which proves (19) in this case. In the induction step,
we suppose that (19) holds for some fixed n 2 Z+ and want to show that it
holds for n+ 1, i.e. that

An+1 � · · · � A1
?
= (An+1 · · ·A1)

n+1Y

k=2

[1]An+1···Ak
. (20)

We let A = An+1 � · · · � A1 and B = An+1 in (18) so that

B � A = (BAn · · ·A1)
nY

k=2

[1]BAn···Ak
[1]B = (An+1 · · ·A1)

n+1Y

k=2

[1]An+1···Ak
,

which proves (20) as desired.
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Remark 101. Using (19) on f 2 V1, we find that

(An � · · · � A1)f = (An · · ·A1)f
nY

k=2

[1]An···Ak

= (PAn · · · A1f)[1]An···A1

nY

k=2

[1]An···Ak

= (PAn · · · A1f)
nY

k=1

[1]An···Ak
,

where Pf = f . In particular, for f = 1 and letting f = 1, we have that

(An � · · · � A1)1 = (PAn · · · A11)| {z }
1

nY

k=1

[1]An···Ak
=

nY

k=1

[1]An···Ak
, (21)

and consequently we define

[1]An�···�A1 := (An � · · · � A1)1 =
nY

k=1

[1]An···Ak
. (22)

We see that [1]An�···�A1 characterizes the multivalued behaviour with the for-
mula

(An � · · · � A1)f = (PAn · · · A1f)[1]An�···�A1 (23)

for every f 2 V1 and where Pf = f . Note that since [1]A = [1]A, then (23)
generalizes the lift-projection formula Af = (PAf)[1]A.

Example 102. Consider iterating the canonical multiplicative integration
from Example 63, where Ak = J⇤ : f 7!

�
z 7! Pz

0 f(⇣)
d⇣
�
, on the constant

function 1. We get the following chain

1 7! {e2⇡imz}m2Z 7! {e2⇡imz+⇡inz2}m,n2Z 7! . . .

under iterated action of J⇤ (and where shorthand notation “f(z)” has been
used instead of “z 7! f(z)”). Note in particular that [1]J⇤ = {z 7! e

2⇡inz |
n 2 Z}, which characterizes the multivalued behaviour of multiplicative in-
tegration. By combining the multiplicative integration with integration on
[0, 1] we then get a connection to the Fourier series. We will not pursue this
topic further, but will look at some other mixed problems in the next section.

Example 103 (Multiplicative expectation). Recall from Example 64 the
definition of the measure theoretic multiplicative integral for S-valued func-
tions. If we let ⌦ be (connected) lift-space such as those in Theorem 92 of the
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form Rm⇥ [0, 1]n and equip it with a probability measure P we may consider
the multiplicative integral (geometric expectation) of a continuous function
(random variable) f : ⌦ ! C⇤. By defining Af = Pf dP it follows that

[1]A =
�
P P1 dP

n | n 2 Z
 

where

P1 dP
n = e

R
log 1n dP = e

R
2⇡in dP = e2⇡in = 1n

so that

[1]A =

8
<

:P1n|{z}
1

| n 2 Z

9
=

; = {1}

is single-valued. The multiplicative expectation of a non-zero continuous
random variable may therefore be defined uniquely, and satisfies

Af = P Pf dP

where Pf = f .
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4 Mixed additive and multiplicative Problems

So far we have mainly focused on linear and multiplicative problems in iso-
lation, but we are also interested in the behaviour of mixed additive and
multiplicative problems.

4.1 y
⇤ = y

0

First we provide a toy example of such a mixed problem namely the mixed
di↵erential equation y

⇤ = y
0 in which the left-hand side is multiplicative with

respect to y and where the right-hand side is linear with respect to y. Since
y
⇤ = e

y0/y the mixed di↵erential equation is equivalent to the di↵erential
equation

y
0 = e

y0/y
,

whose solutions can be found using Maple to be

y(x) = �W (ec�x)

e

1
W(ec�x)

, (24)

where W is the Lambert W function (see [3] for more information) and c 2 R
is a constant. We will explain this result further by also rewriting it to a
simplified form, and in Proposition 108 we will provide the derivation of (24).
We begin by defining the Lambert W function together with some related
functions so that their interdependent relationships can be highlighted.

Definition 104 (M , W , m and w functions). Let M(x) = xe
x and define a

(local) inverse W to be the Lambert W function. We also define the function
m(x) = x+ e

x and its inverse w.

Remark 105. The Lambert W function may also be defined as the inverse of
the complex function M(z) = ze

z, and in this case will have an associated
Riemann surface on which W may be defined. . This is done in [3] which
also mentions that the real case contains two branches of the Lambert W

function, which may be seen in figure 7.

The relationship between M and m is given by

e
m(x) = e

x+ex = e
x
e
ex = M(ex) (25)

or equivalently by
lnM(x) = m(ln x), (26)
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Figure 7: The two real branches of the Lambert W functions. We
will only use the main branch W0 in blue, and will use notation W

for it. Image taken from https://commons.wikimedia.org/wiki/File:
Mplwp_lambert_W_branches.svg

from which we may derive the corresponding relationship between their in-
verses W and w. If we let v = W (eu), we may first solve for u, so that

W (eu) = v () e
u = M(v) () u = lnM(v) = m(ln v)

by (26). Then, we solve for v again, so that

u = m(ln v) () w(u) = ln v () e
w(u) = v,

and it follows that
W (eu) = e

w(u)
. (27)

If we let u = �x+ c in the right-hand-side of (24), we may rewrite it as

�W (eu)

e
1

W (eu)

= � e
w(u)

e
1

ew(u)

= �e
w(u)� 1

ew(u) = �e
w(u)�e�w(u)
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where the exponent satisfies

w(u)� e
�w(u) = �

�
(�w(u)) + e

�w(u)
�
= �m(�w(u))

and consequently (24) may be rewritten as

yc(x) = �e
�m(�w(�x+c))

. (28)

We note that yc(x) = y0(x � c) for every x 2 R and consequently yc is a
translation of the canonical solution y0,

y0(x) = �e
�m(�w(�x))

. (29)

The translation symmetry of the solutions is expected since both the deriva-
tive and *derivative are locally defined the same way everywhere.

Remark 106. As we may see in figure 8 and (29) y0 attains negative values
which might cause the reader some concern as the *derivative was defined for
positively valued functions. However, as others have previously mentioned,
the *derivative may also be defined for purely negatively valued functions.
This can be done by g

⇤ = e
g0/g = e

(�g)0/(�g) = (�g)⇤ for g a negatively valued
function. Another way to see why the same formula holds is by considering
quotient limits

g
⇤(x) = lim

h!0

✓
g(x+ h)

g(x)

◆1/h

analogous to the di↵erence limit for the ordinary derivative, and noting the
the sign cancels in the quotient. We could also view it as a complex valued
function where the angle is constant and hence vanishes in the *derivative.

Remark 107 (Asymptotic approximations of m, w and y0). To understand
the heuristic asymptotics of the canonical solution y0(x) = �e

�m(�w(�x)) we
first consider the asymptotics of m and w. Recall that m(x) = x+ e

x, which
yields the asymptotic approximation1

m(x) ⇡
(
e
x
, x ! 1

x, x ! �1

and since m : R ! R is a strictly increasing bijection we get for the inverse
w the inverse asymptotic approximations, namely

w(x) ⇡
(
ln x, x ! 1
x, x ! �1

1
By a(x) ⇡ b(x), x ! L we mean that limx!L

a(x)
b(x) = 1, where L = ±1.
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Figure 8: The graph of the canonical solution y0 to the di↵erential equation
y
0 = y

⇤. The other solutions are found by horizontal displacement of the
graph.

which can also be seen heuristically in figure 9.
With the asymptotics ofm and w considered we may then find the asymp-

totics of y0. As x ! 1, then �x ! �1, which means that �w(�x) ⇡
�(�x) = x and as such y0 ⇡ �e

�m(x) ⇡ �e
�ex in that case. When x ! �1

then w(�x) ⇡ ln(�x) which tends to infinity so y0 ⇡ �e
�m(� ln(�x)) ⇡

�e
�(� ln(�x)) = �e

ln(�x) = �(�x) = x. Summarizing, we have the asymptotic
approximation

y0(x) ⇡
(
�e

�ex
, x ! 1

x, x ! �1
(30)

for y0.
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Figure 9: The graphs of y = m(x) = x+ e
x (red), y = x (green) and y = e

x

(purple).

With the preliminary discussion undertaken we are now ready to state
and prove the solution of y0 = y

⇤.

Proposition 108 (Solution to y
0 = y

⇤). The smooth real solutions to y
0 = y

⇤

are all negative and given by yc(x) = �e
�m(�w(�x+c))

for x 2 R, where c 2 R
a constant.

Proof. We will show that y
0 = e

y0/yif and only if(24) holds, and note that
the remainder of the derivation to the desired form(28) has already been
presented. This will be accomplished in several steps, where first we separate
the variables, then integrate both sides and finally solve the equation for y
to obtain the solution.

1. To separate the variables we transform y
0 = e

y0/y such that it involves
the M function and we may then transform it by its inverse, the Lam-
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bert W function. We have that

y
0 = e

y0/y () y
0
e
�y0/y = 1

()
✓
�y

0

y

◆
e
�y0/y = �1

y

() M

✓
�y

0

y0

◆
= �1

y

which may be rewritten using the Lambert W function as

�y
0

y
= W

✓
�1

y

◆
() dy

yW

⇣
� 1

y

⌘ = � dx

in separated form.

2. Next we integrate both sides
Z

dy

yW

⇣
� 1

y

⌘ =

Z
� dx

to obtain
1

W

⇣
� 1

y

⌘ � lnW

✓
�1

y

◆
= �x+ c (31)

for an arbitrary constant c 2 R. Indeed, we verify that the left-hand-

side f(y) = 1
W(� 1

y )
� lnW

⇣
� 1

y

⌘
is a primitive by showing that f 0(y) =

1
yW(� 1

y )
. If we let g(y) = W

⇣
� 1

y

⌘
then we have that f(y) = 1

g(y) �
ln g(y) and by the chain rule it follows that

f
0(y) = � g

0(y)

(g(y))2
� g

0(y)

g(y)
= �g

0(y)

g(y)

✓
1

g(y)
+ 1

◆
. (32)

Using the chain rule again on g, we find that g0(y) = 1
y2W

0
⇣
� 1

y

⌘
, and

the derivative of the Lambert W function is W
0(z) = W (z)

z(1+W (z)) (can

be found by implicit di↵erentiation of wew = z, see [3]), and it follows
that

g
0(y) =

1

y2
·

W

⇣
� 1

y

⌘

� 1
y

⇣
1 +W

⇣
� 1

y

⌘⌘ =
g(y)

�y(1 + g(y))
. (33)
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Rewriting (33) as �g0(y)
g(y) = 1

y(1+g(y)) and inserting into (32) we get that

f
0(y) =

1

y(1 + g(y))

✓
1

g(y)
+ 1

◆
=

1

y(1 + g(y))
· 1 + g(y)

g(y)
=

1

yg(y)
.

Then using g(y) = W

⇣
� 1

y

⌘
it follows that f 0(y) = 1

yW(� 1
y )

as desired.

3. Next we solve (31) for y, by first transforming both sides by the expo-
nential function

e

1

W(� 1
y )

W (�1/y)
= e

�x+c
.

Since the left-hand side can be expressed in the form

M

0

@ 1

W

⇣
� 1

y

⌘

1

A =
1

W

⇣
� 1

y

⌘e
1

W(� 1
y ) ,

we get that

M

0

@ 1

W

⇣
� 1

y

⌘

1

A = e
�x+c

.

Next we transform both sides by the Lambert W function so that

1

W

⇣
� 1

y

⌘ = W
�
e
�x+c

�
() 1 = W

✓
�1

y

◆
W

�
e
�x+c

�
, (34)

where we have the symmetric equation 1 = W (u)W (v) for u = �1/y
and v = e

�x=c. Using symmetry and the preceding calculations we
then get that

1

W (u)
e

1
W (u) = v , 1 = W (u)W (v) , 1

W (v)
e

1
W (v) = u, (35)

and since u = �1/y it follows that

y = �1

u
= �W (v)e�

1
W (v) = �W

�
e
�x+c

�
e
� 1

W(e�x+c) . (36)

Since (36) is of the desired form, the proof is therefore complete.

Remark 109 (Complex y
0 = y

⇤). Note that the complex counterpart of (24)
holds locally by repeating the calcuations in Proposition 108.
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4.2 Arithmetic and Geometric means

In this section we generalize the inequality of arithmetic and geometric means
(AM-GM) to hold for any non-negative random variables, and then consider
a generalization of the matrix AM-GM for such random variables. We begin
by defining the arithmetic and geometric means.

Definition 110 (Arithmetic and geometric means). Let X : (⌦,A , P ) !
[0,1) be a non-negative random variable. Then, we define its arithmetic
mean by AX := EX, and its geometric mean GX as follows. If X = Y almost
surely (written X ' Y , meaning P (X = Y ) = 1) and Y : (⌦,A , P ) ! R+ is
a positive random variable then

GX := PY
dP
. (37)

Otherwise, if no such Y exists, then P (X = 0) > 0 and we define GX := 0
in this case.

Remark 111. We may rewrite (37) as GX = PY
dP = e

R
lnY dP = e

E lnY
.

Remark 112. We could also have included the special case in the general
definition by extending the logarithm to act on 0 as well by ln 0 := �1
and conversely for its inverse – the exponential function. This would require
integration of [�1,1) valued functions, which is covered in measure theory.
Note that the two definitions coincide, but we favored the direct method since
it will be more amenable to Jensen’s inequality (which will not need to be
modified to include singularities, although it could).

Since we will use Jensen’s inequality to prove the AM-GM inequality for
non-negative random variables, we will now state it without proof as those
abound in the literature.

Lemma 113 (Jensen’s inequality). Let X : ⌦ ! I be a random variable and

' : I ! R be a concave function, where I is an interval. Then

'
�
EX

�
� E

�
'(X)

�
. (38)

If ' is strictly concave then equality holds if and only if X is constant almost

surely.

Theorem 114 (AM-GM inequality). Let X � 0 be a non-negative random

variable. Then

AX � GX (39)

with equality if and only if X is constant almost everywhere.
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Proof. We begin to prove the statement if X ' Y > 0 by considering Y .
Note that since AX = AY and GY = GY in this case, the AM-GM inequality
would also holds for X. Let '(x) = ln x, which is a strictly concave function
R+ ! R since '

0(x) = � 1
x2 < 0 for every x 2 R+. Therefore it follows by

Jensen’s inequality that

ln
�
EY

�
� E

�
ln(Y )

�
() AY � GY = e

E lnY (40)

with equality if and only if Y is constant almost surely (and consequently X

too).
Suppose now that P (X = 0) > 0 so that GX = 0. Since X � 0 we

know from measure theory that AX � 0 with equality if and only if X ' 0.
Therefore, in this case AX � 0 = GX with equality if and only if X ' 0
is almost surely 0. We have thus proved the AM-GM inequality for the two
cases which concludes the proof.

Next we extend the matrix form of the AM-GM inequality (Theorem10.9
in [6]) to a probabilistic setting with an analogous proof.

Theorem 115 (AG � GA). Let (X ,FX , PX) and (Y ,FY , PY ) be probability

spaces (with the identity random variables
2
X and Y ), and let f : X ⇥ Y !

[0,1) be integrable. Define the functions

⇢
A(y) = Af(X, y)
G(x) = Gf(x, Y )

(41)

and let ⇢
AG = GA(Y )
GA = AG(X)

(42)

so that the inequality states

AG � GA. (43)

If PY (A(Y ) = 0) = 0 then equality holds in (43)if and only if there exists a

function a : Y ! [0,1) such that f(x, y) = a(y) for almost every x 2 X and

y 2 Y, and in the trivial case when PY (A(Y ) = 0) > 0 where AG = 0 = GA.

Proof. Suppose first that A(y) > 0 for every y 2 Y . Then by the AM-GM
inequality with respect to Y it follows that
Z

f(x, y)

A(y)
dPY (y) = A

✓
f(x, Y )

A(Y )

◆
� G

✓
f(x, Y )

A(Y )

◆
=

Gf(x, Y )

GA(Y )
=

G(x)

AG

(44)

2X : X ! X is the identity random variable of the probability space (X ,FX , PX) when

X(x) = x for every x 2 X
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or equivalently that

AG

Z
f(x, y)

A(y)
dPY (y) � G(x) (45)

for every x 2 X . By integrating (45) with respect to x and using linearity of
the integral (so scalar AG can be moved outside) and Tonelli’s theorem we
get that

AG

ZZ
f(x, y)

A(y)
dPY (y) dPX(x) �

Z
G(x) dPX(x)

,

AG

ZZ
f(x, y)

A(y)
dPX(x) dPY (y) � GA.

(46)

we simplify the double integral in the left-hand side to get that

ZZ
f(x, y)

A(y)
dPX(x) dPY (y) =

Z
1

A(y)

✓Z
f(x, y) dPX(x)

◆
dPY (y)

=

Z
1

A(y)
A(y) dPY (y) =

Z
1 dPY = 1

(47)

since PY is a probability, and it follows that AG � GA in this case.
Note that by the AM-GM inequality equality in (45) holds if and only if
y 7! f(x,y)

A(y) is constant almost surely with respect y, and if the equality in

(45) should extend to an equality in (46) we also need equality in (45) for
almost every x. Therefore we have in this case that AG = GAif and only if
(x, y) 7! f(x,y)

A(y) = c is constant for almost every x and y which means that

f(x, y) = cA(y) =: a(y) almost everywhere.
Now we consider the case where A is not necessarily a strictly positive

function, and consider its null set N = {A(Y ) = 0} = A
�1({0}) where the

previous case was when N = ;. First we consider the case where PY (N) = 0
whereN is almost surely empty, in which case we replace f(x,y)

A(y) by 0 for y 2 N .

Then by replacing Y by Ỹ = Y \N in previous calculations those conclusions
hold and since their di↵erence has zero measure the integrals overỸ may be
replaced by integrals over Y and the conclusions of the theorem holds in this
case too.

Finally we consider the case where PY (N) = PY (A(Y ) =)) > 0, where by
definition of the geometric mean we have that AG = GA(Y ) = 0. Further-
more, since

R
f(x, y) dPX = A(y) = 0 for for every y 2 N , Tonelli’s theorem
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yields that
ZZ

X⇥N

f dPX ⇥ PY =

Z

X

Z

N

f(x, y) dPX(x) dPY (y) =

Z

N

A(y) dPY (y) = 0

(48)
so that f = 0 almost everywhere on X ⇥ N . Then for almost every x 2 X ,
then the restricted section fx : N ! [0,1) with fx(y) = f(x, y) for y 2 N

satisfies fx ' 0 and consequently G(x) = 0 for those x. Since G(x) = 0 for
almost every x, we have that GA = 0 = AG which concludes the proof of the
last case.

Remark 116. We find the value of c by integrating f(x,y)
A(y) = c with respect to

x so that 1 = A(y)
A(y) =

R ⇣f(x,y)
A(y)

⌘
dPX =

R
c dPX = cPX(X ) = c · 1 = c, which

means A ' a. This is unique to the probabilistic setting of X .

Note that we only use the probabilistic assumption of X and Y in the
proof of Theorem115 when applying the AM-GM inequality with respect to
y in (44), in (47) when calculating

R
1 dPY = 1 and in the use of Tonelli’s

theorem where only �-finiteness of the measures is required. Consequently by
iterating the proof of Theorem115 we may instead assume that X is equipped
with a �-finite measure µ. We state it below without proof, adopting the
measure theoretic notation for X and omit the equality conditions for brevity.

Theorem 117. Let (X ,A , µ) be a �-finite measure space and (Y ,F , P ) be

a probability space with the identity random variable Y , and let f : X ⇥Y !
[0,1) be integrable. Then

G
✓Z

f(x, y) dµ(x)

◆
�
Z

Gf(x, y) dµ(x). (49)

Theorem 118 (Generalized Hölder’s inequality). Let (X ,A , µ) and (Y ,B, ⌫)
be a �-finite measure spaces and (⌦,F , P ) be a probability space. Further-

more, suppose that the random variable Y : ⌦ ! Y has distribution func-

tion FY with a corresponding non-negative density fY = dFY
d⌫ > 0, and let

p(y) = 1
fY (y) . Then given a class of functions {gy : X ! [0,1)}y2Y such that

f : X ⇥ Y ! [0,1) given by f(x, y) = gy(x)p(y) is integrable, we have that

R kgyk d⌫(y)
p(y) �

���R g
d⌫(y)
y

���
1

(50)

Remark 119. Note that if fY > 0 does not hold everywhere then we may
restrict ourselves to the subspace of Y where it holds, namely its support.
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Proof. We expand both sides in (49);

G
✓Z

f(x, y) dµ(x)

◆
= R

✓Z
gy(x)

p(y) dµ(x)

◆ dFY (y)

= R
✓Z

g
p(y)
y dµ

◆fY (y) d⌫(y)

= R
✓Z

g
p(y)
y dµ

◆ 1
p(y) d⌫(y)

= R kgyk d⌫(y)
p(y)

for the left-hand-side and similarly
Z

Gf(x, y) dµ(x) =
Z

R gy(x)
p(y) dFY (y) dµ(x) =

Z

R g
d⌫(y)
y dµ =

���R g
d⌫(y)
y

���

for the right-hand-side.

Corollary 120 (Discrete Hölder’s inequality). If Y = K is a discrete space

with counting measure and pk = p(k) for k 2 K, then

Y

k2K

kgkkpk �

�����
Y

k2K

gk

�����
1

under the assumptions of Theorem118.

Remark 121 (Hölder’s inequality). If K = {0, 1} , p0 = p, p1 = q, g = g0 and
h = g1 we get Hölder’s inequality kgkpkhkq � kghk1.

Corollary 122 (Continuous Hölder’s inequality). If Y = I is an interval

with Lebesgue measure, we get the continuous Hölder inequality

R kgyk dy
p(y) �

���R g
dy
y

���
1

under the conditions of Theorem118.

Example 123 (Exponential and Gaussian Hölder inequalities). If Y is an
exponential random variable in the Continuous Hölder inequality we get the
exponential Hölder inequality

1

R
0

kgyk dy
ey �

�����

1

R
0

g
dy
y

�����
1
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and if Y is a Gaussian random variable we get the Gaussian Hölder inequality

1

R
�1

kgyk dyp
2⇡ey2

�

�����

1

R
�1

g
dy
y

�����
1

.
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