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Abstract

In this master thesis nanowires have been simulated to study the
effect of spatial imperfections in the nanowires. This spatial imper-
fection took the form of potential fluctuations in the conduction band
across the wire. To achieve this, scripts were written in MATLAB
to simulate the nanodevices by applying the non-equilibrium Green’s
function (NEGF) method. To verify the simulations, multiple quantum
phenomena were reproduced in simulations. To reduce the data-size
of the simulation results, a compression algorithm based on the Quite
OK Image Format (QOI) was also developed.

The simulations were able to qualitatively reproduce quantum tun-
neling and quantum point conductance. The simulations showed that
increasing the amplitude of the applied potential noise to the nanowire
had a bigger impact on the conductance of a nanowire than the cor-
relation length of the noise. The noise had a smaller impact on the
quantum hall effect than the transmission. Finally the compression
algorithm was able to reduce the data size of the results with a worst
case scenario of 84.9% and best case scenario reaching 97.8% while
having minimal effect on the result.
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1 Introduction

The transistor is the cornerstone of information technology today and was
first developed in 1947. It acts as an electrical amplifier with three ter-
minals: the source, drain and gate. The current between the source and
the drain is proportional to the bias applied to the gate and an applied
signal to the gate will induce an amplified signal between the source and
the drain[1]. Since the discovery of the transistor, its performance has been
improved every year by scaling the the transistor down, reducing the chan-
nel length distance between the source and the drain[2]. Decreasing the
channel length has allowed transistors to work at higher frequencies while
also consuming less power and increasing the density of integrated devices.
Higher frequency electronics allows for better performance in computation
and many other applications. This improvement of the transistor has been
exponential as dimensions have shrunk but in later years the frequency im-
provements have stagnated as channel lengths of less than 20 nm have been
reached. Recent development has therefor focused on material optimization
and more radical changes are through geometrical structure changes. The
finFET transistor allowed the development of transistors to reach a feature
size of 7 nm with the drawback that they exhibit a large leakage current.
Nanowires are of great interest as they allow gate-all-around geometry which
have better theoretical scalability than the classical planar geometry and fin-
FET while also reducing leakage currents[3, 4]. The goal of this master thesis
was to study how potential variations and imperfections in nanowires effect
their behaviour. This was carried out through computational simulations
that use the non-Equilibrium Green’s function (NEGF) method.

The NEGF method was developed in the 1960’s and is a method of
treating quantum transport in nanodevices. Due to the small dimensions
of modern devices quantum effects are becoming prominent and needs to
be taken into account to accurately predict the behaviour of devices of this
scale. Some emerging devices that rely on quantum physics, like the reso-
nant tunneling diodes that use a double barrier to achieve negative differen-
tial resistance require the use of quantum mechanics to predict the devices
behaviour. The code for the simulations was written in MATLAB. To ver-
ify the functionality of the simulations, classical quantum phenomena that
have been observed experimentally during the 20th century was replicated
through simulations.

Section 2 includes a short qualitative description of some quantum phe-
nomena and history. The following section 3 explains the basics of the NEGF
method. This is followed by section 4 which gives a short summery of the
script that was written. Finally, results and analysis is in section 5 with
reflections of the thesis in section 6.
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2 Quantum Physics

To verify the functionality of the simulation, experimental results in quan-
tum physics from the past century are going to be replicated through sim-
ulations. This following section will give a short description of the history
behind quantum physics and the phenomena that are going to be replicated.

2.1 History

At the end of the 19th century classical physics was facing a problem regard-
ing the radiation of a black box. Experiments had shown that the emitted
spectrum of a black body increases with shorter wavelengths until reach-
ing a peak dependent on temperature before falling off. The problem was
that classical physics could not predict this emission spectrum, instead the
emission would increase with the frequency of the light towards infinity. It
was in 1901 that the physicist Max Planck was able to solve this problem
by introducing a constrain that the emitted light could only have quantised
energy levels according to E = nhf , where h is the Planck constant, n is
an integer and f is the frequency of the emitted light. At the time this
quantization was unexpected as light was only considered to be a wave and
should be able to carry any energy in a continuous spectrum.
A few years later in 1905, Albert Einstein proposed the idea of the photon
to explain the photoelectric effect where light was able to eject electrons
off a metal plate. Photons would be small packets of energy that would
act as particles where the energy of the photon was E = hf . This was in
contrast to the wave-like behaviour that light had displayed until that point
and was the first case of the wave-particle duality property that light has.
Later Louis de Broglie proposed in 1924 that this wave-particle duality was
a property of all particles which was related to their momentum according
to λ = h/p. This was observed in experiments in the following years which
gave Loise the nobel prize in physics 1929. The Austrian-Irish physicist Er-
win Schrödinger would then in 1925 set the groundwork to all of quantum
physics when he proposed the Schrödinger wave equation for particles.

ih̄
∂

∂t
Ψ(r, t) = − h̄2

2m
∆2Ψ(r, t) + V (r)Ψ(r, t)

Where Ψ is the wave function and h̄ = h/2π. The physical interpretation
of the wave function of a particle is still not well established but |Ψ(r, t)|2
gives the probability to find a particle at position r at time t. This wave
behaviour leads to a series of unexpected behavior for particles that is more
well known in wave physics such as audio and optics. For example, a particle
that is bound in a small region form standing waves, where the probability
of finding a particle is lower at the nodes of the wave function and higher at
the antinodes. This means that there are positions in the bounded region
where the particle has a 0% chance to be found.
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2.2 Quantum Phenomena

One famous phenomena in quantum physics is quantum tunneling. This
occurs when a particle collides with a barrier that is to great for the particle
to cross. The wave function however has a non-zero transmission into the
barrier and will have a non-zero value past the barrier. This means that
there is a chance for the particle to appear on the other side of the barrier
even though it should not have enough energy to cross it according to clas-
sical physics. Quantum tunneling is one of the problems with scaling down
transistors today as leakage current are growing large and the difference be-
tween the ON and OFF-states are not distinguishable enough. Quantum
tunnelling also plays a fundamental part in flash memory. There electrons
are trapped in a memory cell by tunneling over a barrier.

Quantum tunneling is similar to normal optics where part of an incident
wave will transmit through a material while part of the incident wave is
reflected. Anti-reflective coating is used in optics to improve the transmis-
sion close to 100% for the right wavelengths by the use of multiple coats
of different materials. This creates a series of reflections and transmissions
which causes constructive interference for the transmitted wave and destruc-
tive interference for the reflected wave if the wavelength matches the coat
thicknesses. The same idea can be applied in quantum physics where a
particle can have a higher transmission through two barriers compared to a
single barrier for certain energies. In electronics this would mean that the
resistance of two resistors in series would be lower than the resistance of a
single resistor. One emerging application of resonant tunneling are compact
oscillators in the tera-hertz range for high speed wireless communication[5].

When an electron travels through a device it will collide with other
particles exchanging energy and losing momentum. However if the device
that electron passes through is small enough there will be practically no
collisions and the electron will only lose energy when being transferred from
the contact to the channel. The electron is then in the ballistic regime and
will experience a conductance of

G0 =
e2

πh̄
,

known as the quantum conductance. In 1988 it was discovered experimen-
tally that as the width of a 2D ballistic device increased[6], the conductance
would take on values of G = G0 · n as seen in figure 1. An explanation to
this is that as the width of the device increases, more standing waves can be
created in the device along the width, allowing more channels that carries
current to form. The same behavior is observed as the voltage across the
device increases as this reduces the wavelength of the wave function.
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Figure 1: The conductance of the device plateaus at regular voltage levels.
The applied gate voltage restricted the movement for charges in the channel
effectively adjusting it’s width. Figure taken from [6].

When a current flows through a metal strip and a strong magnetic field is
applied over the strip, a voltage difference will appear across the width of the
strip perpendicular to the current flow. This is known as the hall effect and
is due to how magnetic fields create a force on charges perpendicular to their
direction of momentum. The hall resistance (Rxy) is defined as Rxy = VH/I
where VH is the hall voltage and I is the current over the channel. Classically
the hall resistance is continuous but in very small two-dimensional systems
at low temperatures this behavior is quantised and changes in steps. It was
shown experimentally in 1980 by the physicist Klaus von Klitzling that this
quantum hall resistance increases in steps according to

Rxy =
h

e2n
. (1)

Where n is an integer dependent on the applied magnetic field. This quan-
tum hall resistance is very accurate in measurements and only deviates in
parts of a million from eq (1). Von Klitzling was awarded the Nobel prize
in physics 1985 for this discovery[7]. Due to the accuracy of the quantum
hall effect, the National Metrology Institutes uses the quantum hall effect
as one method to accurately recreate the SI unit of resistance where the von
Klitzing constant is exactly defined as Rk = h/e2[8].
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3 The NEGF Method

The non-equilibrium Green’s function (NEGF) method was first developed
in the 1960’s by the work of Martin, Schwinger, Kadanoff, Baym, Keldysh
and others building on many-body perturbation theory. It is an efficient
method for computers to solve the Schrödinger equation in discrete space
and can simulate the quantum transport in large systems with thousands
of lattice points. The theory and rigorous derivation based on many-body
perturbation theory is far beyond the scope of this thesis work and would not
be possible to learn in the time span of the work. However simpler reasoning
starting from from the Schrödinger equation gives the same equations as
the original work. The following section 3.1 gives a summery of the NEGF
equations that are used to simulate systems and sections 3.2-3.3 describes
the quantities used in the NEGF method further.

3.1 The NEGF Equations

The NEGF method works in the discrete space where not every single point
of a continuous system are represented but instead discrete lattice points
separated in space. This is similar to digital electronics where digital systems
measure a continuous voltage and convert it into a set of discrete points
separated in time. If the resolution is high enough the discrete representation
of the continuous system can be sufficient for accurate calculations. This
allows computers to make numerical computations on discrete values instead
of having to solve continuous equations.

The simulated system can be broken up to 3 different components as
seen in figure 2, the channel described by the Hamiltonian (H) and the
interactions with the contacts that are described by the self energies (Σn).

Figure 2: A simple representation of a device. Two contacts are connected
to a channel where the interaction is described by Σn,Σ

in
n . The channel is

described by H and Σ0,Σ
in
0 . Figure taken from [9].
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Both these quantities are represented by matrices and will be further de-
scribed in sections 3.2 and 3.3. H and Σn arises in the Schrödinger equation
when boundary conditions are applied for the system in figure 2,

EΨ = HΨ+ ΣΨ︸︷︷︸
outflow

+ s︸︷︷︸
inflow

. (2)

Where s is the matrix representation of the inflow of charge to the device
from the contacts, Σ is the sum of ΣN from the contacts and Ψ is the
wave equation describing the charges in the system. Σ and s arises from
the Schrödinger equation when the boundary conditions imposed by the
contacts are applied. Rearranging this gives the retarded green’s function
(GR) which describes the relation between s and Ψ,

GR(E) = [EI−H−Σ]−1 , Ψ = GRs (3)

Where I is the identity matrix and E is the energy in the system. For
example if a bias of 1 V is applied to the device, the system will have an
energy of 1 electron volt. The anti-retarded greens function (GA) is defined
as the complex conjugate of GR

GA = [GR]∗.

From GR and GA the spectral function (A) can be calculated as,

A = i[GR −GA]. (4)

The diagonal elements of A corresponds to the local density of states (mul-
tiplied by 2π) for every lattice point that is being simulated.

The self energies Σ relate to the the outflow of charge in the channel
and there is a corresponding quantity which represents the inflow of charge
(Σin). Σin is given by

Σin
n = Γn · f(E) (5)

Γn = i[Σn −Σ∗
n]. (6)

Where f(E) is the Fermi level at the contact. Σin
n represents the inflow of

electrons to the device from channel n. The election density in the channel
is then given by

Gn = ΨΨ∗ = GRs[GRs]∗ = GR ss∗︸︷︷︸
Σin

GA = GRΣinGA. (7)

Where Σin is the sum of all Σin
n . The diagonal elements of Gn corresponds

to the electron density (multiplied by 2π) at different lattice points of the
simulation. The Fermi level in the channel is given by

fm = Gn
mm/Amm (8)
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where Gn
mm is the m’th diagonal element of Gn.

Finally the conductance at contact n per unit energy is given by

În =
q

h
Trace[Σin

n A− ΓnG
n] (9)

T =Trace[Σin
n A− ΓnG

n] (10)

and T is the transmittance of an incoming wave to the channel.
These equations represent the ideal case where there is no phonon interac-
tions in the channel and the electrons will only interact with the channel
itself. In realistic scenarios the electron continuously interacts with other
electrons flowing through the channel and experiences a rapidly changing
potential in the channel. This causes the electrons to lose the phase and at
higher temperatures phonon interaction will also lead to a loss of momentum
of the electrons. This scattering phase relaxation can be represented by a
self energy, in this work referenced as Σ0, which is given by

Σ0 = D×GR (11)

Σin
0 = D×Gn (12)

In these equations the × symbol denotes element wise multiplication. De-
pending on how the matrix D is constructed, different types of scattering
can be simulated. An element Dij in the D matrix represents the correlation
between the random potential at point i to point j. There are two special
cases that are of interest, the first is

Dij = D0. (13)

This means that all elements in D are equal to D0. This uniform matrix
will only introduce phase relaxation in the channel and no momentum loss.
This phase relaxation will cause quantum phenomena like resonance in the
channel to be less pronounced. The other case is when both momentum
relaxation and phase relaxation is present which occurs when

D = D0 · I (14)

where I is the identity matrix.
Since Σ0 is dependent on GR and GR is dependent on Σ0 according to Eq.
(3), Σ0 has to be solved iteratively where an initial guess of Σ0 is used to
calculate a new value for Σ0 according to Eq. (11). The same reasoning
applies to Σin

0 where Gn depends on Σin
0 and vice versa.

3.2 Hamiltonian

The Hamiltonian is a central part in describing a quantum system used in
the time independent Schrödinger equation,

EΨ(r) = HΨ(r) (15)
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where H is the Hamiltonian operator which corresponds to the potential
and kinetic energy of the system in real space representation,

H = − h̄2

2m
∇2 + U(r). (16)

This is sufficient to solve simple systems analytically and can be used to
solve the wave function for electrons in potential wells or describe quantum
tunneling. These approaches are continuous however and not practical for
numerical calculations with computers. For numerical operations the system
is divided up into lattice points transforming the continuous space of the
system into a discrete one. The wave function is then represented as a vector
where every vector component equates to the value of the wave function at
a defined lattice point. The Hamiltonian changes to a matrix where the
elements correspond to how strongly the lattice points interact with the
wave function over the entire system.
To show how the Hamiltonian in matrix form is constructed, consider the
following simple case of a uniform one-dimensional wire with infinite length
as illustrated in figure 3.

Figure 3: A one dimensional wire with lattice points separated by the dis-
tance a. The interaction between lattice points is described by t and the
interaction between the lattice point and the wave equation is described by
ϵ.

At every lattice point along the wire the energy contribution to the
wave function at that point is ϵ while the neighboring lattice point has an
interaction with magnitude t to the wave function. The resulting equation
for every point is then

EΨn = tΨn−1 + ϵΨn + tΨn+1. (17)

Assuming that the wire is homogeneous and infinite or with periodic bound-
ary condition, a solution to (17) is of the form

Ψn = Ψ0e
ikna (18)

gives the E(k) relation
E = ϵ+ 2t cos ka. (19)
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Figure 4: Comparing E(k) relation of Eq. (19) and Eq. (20).

Approaching the same wire with the Schrödinger equation gives

EΨ = − h̄2

2m

d2

dx2
Ψ+ EcΨ

where Ec is the conduction band level of the material. Assuming the same
solution as in Eq. (18) gives the E(k) relation

E = Ec +
h̄2k2

2m
. (20)

Taylor expanding Eq. (19) and comparing with the solution in Eq. (20)
gives the values

ϵ = Ec − 2t and t = − h̄2

2ma2
. (21)

The solutions of the two methods differ, but for smaller values of E the
result is similar as seen in figure 4. The discrete approach can give a good
approximation of a quantum system by using appropriate values for the
Hamiltonian, however the energies have to remain relatively low. The val-
ues for ϵ and t does not have to be derived by theoretical means but can
instead be derived by studying smaller samples to then be used to simulate
more complex systems. The expressions in Eq. (21) also indicates that t is
related to how strongly the lattice are bonded to each other since it depends
on the distance between lattice while ϵ is related to the conduction band
level.
Constructing the Hamiltonian is done using the relation in Eq. (17). As-
suming the same wire as earlier but now with a limited length of 3 lattice
points, the system can be described as

E

 Ψ1

Ψ2

Ψ3

 =

 ϵ t 0
t ϵ t
0 t ϵ

 Ψ1

Ψ2

Ψ3

 , H =

 ϵ t 0
t ϵ t
0 t ϵ

 . (22)
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Thus the matrix version of the Hamiltonian has been constructed. Since
ϵ is related to the conduction band level at each point, it is easy to insert
a barrier in the material by changing the value of ϵ related to the barriers
position.

This is only a simple one-dimensional case but the construction for
higher dimensional problems can be done in a similar manner. For a two-
dimensional rectangular system of length M and width N, every column of
N units can be represented as a unit cell as illustrated in figure 5. Every
unit cell can then be described as a NxN matrix (α) which would correlate
to the ϵ value in Eq. (22). In figure 5 the values of t has separate values
in the x and y direction but this does not need to be the case. In the one-
dimensional case the t values describe the interaction between the lattice
points in the system, so for the two-dimensional case a NxN matrix (β)
will describe the interaction between columns. In figure 5, β has the value
tx along the diagonal and the rest of the elements being 0.

Figure 5: A two dimensional wire where the columns are represented by a
unit cell marked by the dotted box. The wire has a width of 3 lattice points
and length of 9 lattice points, so the resulting Hamiltonian will be of the
size 27x27.

The Hamiltonian for the two-dimensional system is constructed similar
to the one-dimensional case in Eq. (22) but replacing the values ϵ and t
with the matrices α and β. Note that every single lattice point contributes
with one diagonal element to the Hamiltonian as these diagonal elements all
are the ϵ values of the lattice point. This means that a device with M by N
lattice points will have an Hamiltonian that is a square matrix with a side
of M ·N elements. It is possible to construct Hamiltonian for more complex
systems which are not rectangular as in the examples mentioned. As long as
the relation between the lattice points and the wave equation is established
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at every point, a Hamiltonian can be constructed that fulfills this relation
in matrix form. For the scenario depicted in figure 5 and described in this
section, the resulting Hamiltonian would have the following form,

EΨ =

H︷ ︸︸ ︷
α β
β α β

β α β
. . .



Ψ︷ ︸︸ ︷

Ψ11

Ψ12
...

Ψ21

Ψ22
...


(23)

Once a magnetic field is present over the channel, an additional phase factor
will be introduced to the coupling between lattice points. Coupling to the
right as described by Eq. (17) will gain a positive phase change while cou-
pling to the left will have a negative phase change. Same applies to ”above”
and ”under” in the 2-dimensional case.

tx(r) = te±iϕx(r), ϕx(r) =
qAx(r)a

h̄
(24)

ty(r) = te±iϕy(r), ϕy(r) =
qAy(r)a

h̄
(25)

Where q is the charge of the particle and A is the magnetic vector potential
at the lattice point. A is not unique for a field B, but must follow the
relation

∇×A = B. (26)

3.3 Contact Self Energies

In section 3.2 systems have only been described in isolation. The Hamil-
tonian describes the channel of the device that will be simulated but to
simulate a connected system there needs to be contacts attached to the de-
vice. These contacts supply an inflow and outflow of charge and imposes
boundary conditions which add terms to Eq. (15),

Eψ = Hψ + Σψ︸︷︷︸
outflow

+ s︸︷︷︸
inflow

. (27)

In this equation a source term s has been added as well as the self energies
Σ which represents the outflow and inflow of electrons. Rearranging this
gives the retarded green function as mentioned in section 3.1.

GR = [EI−H−Σ]−1 , ψ = GRs (28)

Once GR has been solved, most of the desired characteristics of the system
can be derived simply through the equations described in section 3.1. The
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Hamiltonian was described in the previous section 3.2 but the self energies
from the contacts also have to be solved before calculating GR. The self
energy of a contact is given by1

Σm = τmĝmτ
∗
m (29)

ĝm = [(E + iη)I−Hm]−1. (30)

Where Hm is the Hamiltonian describing the contact and τm is describing
how strong the interaction between the contact and the channel is. η is
chosen to be a small value. Since the contacts tend to be very large and
Hm is of the size MxM , where M is the total amount of lattice points in
the contact, the resulting matrix ĝm in Eq. (30) is enormous. Calculating
ĝm is not practical and another recursive method is used instead to find
the surface greens function (gm) for a contact. This method assumes the
contact to be infinite and homogeneous. gm is effectively the smaller part
of ĝm that interacts with the channel. The recursive method uses unit cells
as in 3.2 to reduce higher dimensional problems to one dimension, the setup
can be visualized in figure 6.

Figure 6: The contact represented as a one dimensional system where the
columns of the contacts are described by α interacting with the next column
described by β.

Starting with the first column of the contact and repeatedly using Eq.
(30) gives,

gN
m = [(E + iη)I−α− β∗gN−1

m β]−1

Which then converges towards the solution. Since the contacts to the chan-
nel are very large this gives when N → ∞,

gm = [(E + iη)I−α− β∗gmβ]
−1. (31)

So finally the self energy is given by using the final result from Eq. (31) in
Eq. (29).

The dephasing effects are also implemented as a virtual contact that in-
teracts with the entire channel of the device. This virtual contact is denoted
by the self energies Σ0 and Σin

0 which are calculated iteratively as explained
at the end of section 3.1.

1The full derivation for the self energies in systems with multiple dimensions is rather
lengthy and is found at [10].
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4 The Code

The scripts for applying the NEGF equation was developed over the course
of 7 months. Analysis of a sample is carried out in 3 steps. The first step is to
construct a sample that is going to be simulated and specify energy values.
The next step is to perform the computation to solve GR and Σ0. This is
done by constructing H as described in section 3.2. The self energies for the
contact are computed next by methods described in section 3.3. Once this is
done GR and Σ0 are solved with Eqs. (3) and (11) from section 3.1. Final
step is to extract the data from the result with equations summarized in
section 3.1. The first step, setting up the sample specifying the parameters
for the simulations are done by using the following objects:

• Sample.m which is an object that represents the sample containing
information about the lattice points in the channel and contacts at-
tached. The Sample class has the functions append to let the user
append a matrix to the channel; applyNoise to add a noise level to
the lattice points channel to replicate the effect of imperfections. This
noise has a Gaussian height distribution with a specified correlation
length; addContact to add a Contact.m to a desired location in the
channel. The contacts Fermi level also has to be specified if the elec-
tron density och current levels are to be extracted.

• NEGF param.m which is a data class to fill the parameters for the
NEGF simulation. Here error rates and convergence rates can be
specified for the NEGF simulations. The NEGF param object needs
a Sample and energy range (E) to be constructed. A magnetic range
(B) can also be specified if desired. NEGF param creates a copy of
the Sample and should be constructed just before calling NEGF map.

The next step is to perform the computation to extract the result. This
is done by calling NEGF map or NEGF. The result is then returned as a
NEGF result object:

• NEGF map.m is a function that repeatedly calls NEGF for the entire
range of E and B specified by NEGF param. NEGF.m only com-
putes the simulations for a single value of E and B and NEGF map.m
is more general. NEGF map uses results from completed NEGF sim-
ulations to speed up the process of simulating other values for E and
B. If the system is very large or if the resolution is high, the simula-
tions may take a very long time and the progress can be periodically
saved specified by an interval set in NEGF param. A flowchart for
NEGF map.m and NEGF.m is found in figure 7 at the end of this
section.

• NEGF result.m is the data class that is returned from NEGF. since
NEGF map.m saves a series of results, these are embedded into a
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structure. The result contains data such as the calculated self energies,
Σ0 and Σin

0 . The result also contains the function compress which
does a lossy compression of the data. This is done by first reducing
the resolution of the data from 64-bit to 8-bit by transforming the data
to values between 0 and 255 then converting the data-type. This is
followed by a lossless compression called QOI which is an open source
compression algorithm developed 2021. This compression algorithm
was chosen due to its excellent speed offering 20-50 times the speed
performance compared to a much more popular image compression
format PNG while achieving similar compression rates[11, 12]. The
compression algorithm is also very simple so it was more feasible to
implement in MATLAB code for the project. Performance of this
compression is studied in section 5.5.

Once the results from the simulations have been calculated, analysis are
simplified by the following two functions:

• NEGF transmission.m which takes a NEGF result as input and cal-
culates the transmission by using Eq. (10).

• NEGF result remap.m remaps desired data from a NEGF result to a
2D matrix. Supported data types as of writing this report is ”Elec-
trons” which extracts the electron density in Gn, ”Fermi” which re-
turns the Fermi level for every point in the channel and ”A” which
returns the diagonal values of A which corresponds to the density of
states in the channel.
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Figure 7: Flow chart representing the process of NEGF map.m and NEGF.m
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5 Results and Discussion

In the following section, the results of the simulations and script performance
are summarized. Classical quantum phenomena are replicated in sections
5.1 and 5.2. Simulations of nanowires and the effects of imperfections are
then be studied in sections 5.3 where the transmission is studied and 5.4
where the quantum hall effect is studied. The section finishes off in 5.5 by
analysing performance of the compression algorithm that was made for the
simulation results.

5.1 Quantum Tunneling

Quantum tunneling was simulated by creating a one-dimensional wire fea-
turing two barriers. This one dimensional wire was set up with a length of
42 lattice points and with barriers placed at lattice point 18 and 24. The
effect of momentum and phase relaxation was also applied according to Eq.
(13,14). The conduction band level was set to Ec = 1.12 eV and then the
distance between lattice points was set to a = 2Å. From this the values of ϵ
and t was given from Eq. (21). The result from the simulations is illustrated
in figure 8 and 9.

Figure 8: The transmission as a function of energy for a wire with two
barriers. Γ is defined as ϵ · 1 eV.

In figure 8 the effect of resonance is seen in where the transmission
reaches 1 at certain energy values. When the value of D0 grows the reso-
nance effect become less prominent and the transmission through the two
barriers becomes smaller. Comparing the effect of only phase relaxation to
the effect of both phase and momentum relaxations shows that momentum
and phase relaxation has a greater impact on the behaviour of the device.
The transmission reducing to 0 when E approaches 5 is an error of the sim-
ulation since the simulation is only valid for smaller values of E. This was
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Figure 9: Fermi level across the one-dimensional wire with 2 barrier’s marked
in red. D0 = Γ · 1e− 2.

shown in section 3.2 where figure 4 shows that the simulations are inaccurate
for larger values of E. Figure 9 shows how the momentum relaxation adds
a slope of energy loss across the channel while simply introducing phase
relaxation only reduces the effect of resonance.

It’s worth noting that the simulation time of only phase relaxation is
longer than the simulation of phase and momentum relaxation. On average,
over 30 full run times to calculate the results in figure 8, phase relaxation
took 34.4 seconds to complete simulation while phase and momentum re-
laxation only took 12.7 seconds. When only phase relaxation is added D is
a uniform matrix with the value D0 for every element in the matrix while
phase and momentum relaxation only includes values of D0 along the diag-
onal. When D is diagonal, [GR]−1 is mainly going contain elements close
to the diagonal with a lot of elements being equal to 0, allowing faster algo-
rithms for inverting the matrix.

5.2 Quantum Point Conductance

To investigate the quantum point conductance, a channel of length 5 and
varying width was simulated. The distance between lattice points was chosen
to 1 nm, Ec was set to 1.12 eV and the effective mass of the electrons was
chosen to be 0.5 me. The width was then varied from 1 lattice point to 60
and the transmittance is plotted in figure 10.
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Figure 10: Conductance of a 2 dimensional wire when increasing the width
of the wire. To the right are the resulting electrons densities extracted
with NEGF result remap.m, yellow indicates a higher concentration. The
two crosses in the transmittance curve correspond to the plotted electron
concentrations to the right.

The conductance can be derived when applying Eqs. (9,10). Using

the differential resistance gives R = dU
dI = dU/dE

dI/dE . dI/dE = q
hT is given

from directly from Eqs. (9,10). dU/dE = 1/q since one joule of energy

corresponds to 1/q eV. This gives R = h
q2T

→ G = q2T
h which is the result

found in 1988 study[6] with a difference of factor 2. This factor difference is
due to spin degeneracy which the model currently does not include.

5.3 Transmission through 2D device with spatially varying
potential

The nanowire that was simulated had a width of 22 lattice points and length
of 40 lattice point with the lattice points spaced 1 nm from each other. The
effective mass of the electron was set to 0.1 me and Ec = 1.12 eV. Increasing
the bias voltage applied over the sample gave similar transmission curve as
observed in section 5.2. The reason to this can be seen in the first image
of the electron density in the same figure. Since the frequency of the wave
increases according to Eq. (20) with E more standing waves can be created
transversal to the current, creating more conduction channels in the device.
When the noise becomes greater the conductance of the device decreases.
When the noise is introduced it becomes harder to form standing waves in
the device. When the amplitude of this noise becomes larger, the restriction
on the formed waves become stronger and the electrons have to take more
convoluted paths as seen in the later images of figure 11. Effectively the
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Figure 11: Multiple simulations of varying noise amplitude. σ is the stan-
dard deviation for the amplitude of the noise in relation to ϵ of the device.
The images to the right are the electron density in the device at E = 1.69
eV as indicated by the red line in the transmission curves. The correlation
length is set to Cl = 4.4.

current stops becoming ballistic as the electrons cannot travel straight across
the channel. Varying the correlation length has a smaller impact as seen in
figure 12. Since the path of the electrons is not as restricted as in figure 11
the loss of transmittance is less prominent.

Figure 12: Multiple simulations of varying correlation length. Al is the
correlation length in lattice points. The images to the right are the electron
density in the device at E = 1.71 eV as indicated by the red line in the
transmission curves. Noise amplitude is set to σ = 0.025

.
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5.4 Quantum hall effect in 2D device with spatially varying
potential

For the quantum hall simulations, the same device as in section 5.3 was used
with the difference of Ec was set to 0 eV. The reason for this was because the
bias was kept low above the conduction band at E = Ec + 0.015 eV. Since
the noise addition to the device is relative to ϵ = Ec+4t0 this noise would be
much greater than the bias if Ec was large. In similar fashion of section 5.3,
the amplitude of the noise has a bigger impact than the correlation length
as seen in figure 13 and 14. Since the quantum hall resistance depends on
both the voltage across the device and the transmission the fluctuation may
increase much more depending on how the voltage is measured. For figures
13 and 14 the average value across the entire length of the channel along the
edges were used.

Figure 13: Multiple simulations of varying noise amplitude. σ is the stan-
dard deviation for the amplitude of the noise in relation to ϵ of the device.
The images to the right are the electron density in the device with σ = 0.1.
The correlation length is set to Cl = 4.4.

Figure 14: Multiple simulations of varying correlation length. Cl is the
correlation length in lattice points.The images to the right are the electron
density in the device with Cl = 2.2. Noise amplitude is set to σ = 0.025.
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Unlike the transmission measurements in section 5.3 the quantum hall
resistance is less effected by the noise in the device and the plateaus re-
main the same values as in the noise-free device. The fluctuations seen in
both figures are probably due to the voltage measurement varying as the
distribution of electrons in the device fluctuate with varying B field. Images
supporting this idea are present in figures 13 and 14 to the right where the
images representing a B-field with low hall resistance features smaller local
regions separated from the walls where electrons accumulate. The noise may
introduce potential wells at these regions where electrons get trapped which
influences the voltage measurement and thus the hall resistance. As in sec-
tion 5.3 the amplitude of the noise has a larger effect on the performance on
the device than the correlation length.

5.5 Compression algorithm

Beside the physical results, there was also effort put into making compression
algorithms to reduce the size of the data of the results. This was done
since the resulting matrices can reach sizes of hundreds of gigabytes once
bigger systems are simulated. Naively using larger and larger data storage
to handle results of these sizes would not work as the systems would scale
up. Therefor a compression algorithm was implemented for the results. This
algorithm has 2 steps, first reducing the resolution of the data from 64-bit
to 8-bit, this is followed by a lossless compression called QOI. To test the
performance and error induced by the lossy compression, a 2D wire with
different length, barriers and applied noise were simulated and then the
result was compressed. 3 different wires with different sizes were simulated
with 1000 simulation points each. Each wire had a width of 20 lattice
points but the length was set to 10,20 and 30 points respectively where the
nanowire with a length of 20 lattice points had a single barrier and the
nanowire with a length of 30 points had a double barrier. This was followed
by calculating the transmission with the compressed data and comparing
the result with non-compressed data. The error in transmission calculated
from the compressed data was less then 0.06 for all simulations and with
an average error of less than 4.2E-5. This was achieved while reducing the
necessary storage by 84% in the worst case and often over 90% as seen in
figure 15.
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Figure 15: Performance of the compression method tested on 3000 simula-
tion results of different 2D nanowires.

The compression and decompression needed to calculate the transmission
however caused slowdown to the simulations, with compression the results
and then analysing the data increasing total calculation time by 66% in the
worst case and 35.4% on average. This does not sound great, however, the
simulations were rather simple ones with small values for D which means
that the results were fast to extract. The simulations will take more time
to compute in more complicated scenarios where external electrostatics are
applied and the simulations have to account for the poisson equation while
the compression and decompression time would remain the same, thus im-
proving the relative performance greatly.
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6 Reflections

There’s a lot to take away from this thesis work and it has shown how ver-
satile the NEGF method is and simulations like this could assist as a great
tool to help understand nanodevices and the impact quantum mechanics has
on them. The results in sections 5.1, 5.2 and 5.4 shows that the simulations
are able to recreate quantum phenomena accurately. A great benefit to
simulating systems like this compared to analytically studying them is that
more complex results can be extracted easily such as the electron density
in the devices which helps giving an understanding to the inner workings
of these devices. The simulations has shown that the potential fluctuation
introduced into the device will reduce the transmittance and I propose that
this is due to the electrons not functioning in the ballistic regime anymore
which would result in a lower transmittance. The simulations also shows
that the quantum hall effect is very resilient to applied noise and the hall
resistance plateaus would remain consistent even when σ = 0.1 in figure
13. A lot of the fluctuations in Rxy seems to be due to how the voltage
was extracted from the simulation examples and real measurement would
likely not exhibit fluctuations this aggressive. Moreover, the simulations in
sections 5.3 and 5.4 had no scattering present since including this in simu-
lations would be to computationally heavy.

With the work finishing there’s many things that I wish I could im-
prove or study further. There’s still great expandability of the code and
performance improvements to be made. The first is applying the Poisson
equation for electrostatics which has to be considered if external voltages
are applied. In the case of a transistor where external voltage is applied
through a gate, the applied voltage will affect the NEGF equations. The
result of the NEGF equations will then in turn effect the Poisson equations
and finding a solution that fulfill both equations has to be done iteratively.
This will increase computation requirements greatly and as it stands the
current scripts need to be improved before this can be done. Performing the
simulations in section 5.3 took 6 minutes for the plots in figures 11 and 12
each, and performing the simulations for figures 13 and 14 took 16 minutes
and 25 minutes respectively. These systems were still fairly small and simu-
lating larger systems that would then have to be done iteratively could take
upwards hours or days. Since the side of H grows by the number of lattice
points (n) and the inversion of a matrix is of O(n3), a larger system will
require much more computation to simulate. One potential way to improve
simulation times would be through GPU acceleration. There’s also faster
methods of finding the diagonal elements of Gn and G which uses block wise
inversion [13, 14] which was considered to be implemented for the scripts
but due to lack of time it was never realised. Except for performance im-
provements it would be interesting to simulate real systems and compare
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the results to measurements on real samples of nanowires. This would be
done in 2 steps, first measuring a small sample which a model will replicate.
Through the results from the measurement on a nanowire parameters in the
model could be adjusted until the simulated results fit the real world data.
The second step would then be to tweak this model and use the extracted
parameters to simulate another sample to the compare and validate the sim-
ulations. In this thesis only qualitative simulations were done do study the
general behaviour of nanowires but if real devices can be simulated of great
accuracy this would open up possibilities to assist in the growth and study
of nanowires.
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