
Appendix A: Setting up a simulation

The first step of setting up a simulation is making a sample that is going to be simulated. A sample
consists of a channel with contacts attached. The Sample.m class is used to simplify the construction
of a device. Creating a sample is done by invoking Sample(wid,len,eps,t,a). The initial width and
length of the channel has to be specified along with the value of ϵ for the lattice points and the
interaction τ . The separation distance between lattice points a can be ignored in the constructor and
then it will be set by default to 1 nm.

To simplify the construction of more elaborate channels containing barriers or other features, the
append function can simplify construction. Sample.append(M,side) appends the matrix M to the
the desired side of the channel with the default side being right. The size of M needs to match the
side it is being attached to. The directions in the context of this code is what is seen when looking at
the sample from above or printing out the channel units in the MATLAB command window or when
using MATLABs feature imagesc with the directions up, down, left or right. An example of a channel
of width 3 and length 7 with a barrier in the middle is seen in figure 1 with the directions included in
the figure.

Figure 1: A simple 3 by 7 sample.

The following snippet of code creates a sample with a channel width of 5 lattice points and length of
6 lattice points. The append feature is then used to create a double barrier across the channel with a
spacing of 6 lattice points, summing up to a total length of 20 lattice points.

load(’physical_constants .mat ’);

Ec = 0.4* eV;

a = 10E-10;

effective_mass = 0.2;

t0 = h_bar ^2/(2* electron_mass*effective_mass* a^2);

t =-t0;

eps = Ec - 4*t;

sample = Sample(5,6,eps ,t,a); %Width = 5, length = 6.

sample.append(ones(sample.width ,1)*eps *1.1); %Width = 5, length = 7.

sample.append(ones(sample.width ,6)*eps); %Width = 5, length = 13.

sample.append(ones(sample.width ,1)*eps *1.1); %Width = 5, length = 14.

sample.append(ones(sample.width ,6)*eps); %Width = 5, length = 20.

After the channel has been implemented, the contacts have to be attached. This is done by using
Sample.addContact(M,tau,pos). M is the size of the contacts unit cell with the amplitude of the
contacts ϵ value, tau describes the interaction between lattice points and pos is the upper position where
the contact interacts with the channel. The face direction of the contact also has to be specified, with 1
being the default value facing right, a value of -1 means that the contact is facing left. A contact being
attached to the right of the channel needs to be facing left into the channel. Every contact is described
by it’s own class Contact.m which the Sample.m class creates in Sample.addContact() with a
default Fermi level of 1. These contacts are then stored in the samples cell property Sample.contacts,

1



accessed by calling sample.contacts{conNmbr}. The following code snippet adds 2 contacts to the
channel made earlier and setting the Fermi levels of the contacts along with the face.

sample.addContact(ones(sample.width ,1)*eps ,t,[1 ,1]);

sample.addContact(ones(sample.width ,1)*eps ,t,[1, sample.length ]);

sample.contacts{end}.fermi = 0; %The last contact added to the sample. (Contact 2)

sample.contacts{end}.face = -1;

The final addition to the sample is setting the value of the scattering matrix D which is by default
set to 0. If D is going to have any other value than 0 it needs to be of the same dimension as the
Hamiltonian constructed for the channel. This Hamiltonian will have a side of M which is the amount
of lattice points in the channel. The value of M is saved as a property in the Sample.m class. If noise
is desired in the channel this can be added by using the function Sample.applyNoise(amp,corLength)
where amp is the standard deviation of the noise relative to the max value in sample.units.

sample.D = 0;

%sample.D = ones(sample.M)*eps*eV*1E-5; %Phase relaxation.

%sample.D = eye(sample.M,1)*eps*eV*1E-8; %Phase + momentum relaxation.

%sample.applyNoise (0.03 ,2); %3% noise , corrLength 10 lattice points.

After a sample has been constructed a range of energy values needs to be defined. If desired a mag-
netic field can also be applied. Before performing the computations to find the self energies Σ and
scattering matrices Σ0 the parameters have to be set for the simulations. This is done by constructing
a NEGF param.m object which is a simple class to carry data to the simulation functions. Con-
structing a NEGF param object is done by invoking NEGF param(sample,E,B,compress) where
the sample and E has to be specified. B is 0 by default and compress is false by default. The
NEGF param object contains multiple other properties for the simulations that can be changed to
adjust the precision of the simulations. The compress property is a boolean that decides if the result
from the NEGF simulations should be compressed by the lossy compression algorithm before being re-
turned. This slightly increases run-time but scales much better than the NEGF calculations for bigger
samples so the added run-time is negligible for larger samples.

E = linspace(Ec ,Ec + 3*t0 , 200);

B = 0;

NEGF_param = NEGF_param(sample ,E,B);

NEGF_param.print = true;

NEGF_param.errorMarg = 1E-10;

The final line of code in the snippet changes the allowed error margin for the converging algorithms to
calculate Σ and Σ0. Once this has been done it’s time to start the calculations to find Σ and, if D ̸= 0,
Σ0. This is done by calling the function NEGF.m or NEGF map.m. If E or B in NEGF param
are vectors with multiple values then NEGF map needs to be used, if NEGF is used instead, only
the first values in E and B will be used. NEGF will return a NEGF result which contains the resists
from the calculations. NEGF map returns a structure instead with all the NEGF results stored
in a cell array named NEGF result. The cell array is a 2D array with the varying E values along the
columns and B along the rows. NEGF map needs to be used in this example since the earlier snippet
of code defined E as a range of values between Ec and Ec + 3 · t0.

res_struct = NEGF_map(NEGF_param);

Once simulations have been completed it is time to analyse the results, for this the functions
NEGF result remap(NEGF result,data) andNEGF transmission(NEGF result) simplify the anal-
ysis. NEGF result remap returns a 2D map of desired type of data, default ’electrons’, at every lat-
tice point for the specified NEGF result. For further information on what different types of data can
be extracted in a map look at the documentation of NEGF result remap. NEGF transmission(NEGF result,con)
calculates the transmission as a single value for that NEGF result at contact con. The following snippet
of code extracts the transmission curve for the simulation prepared above.

T = zeros(1,length(res_struct.E));

for i = 1: length(res_struct.E)

T(i) = NEGF_transmission(res_struct.NEGF_result{i}); %Contact 1 by default.

end

figure (1)

plot(E/eV,T,’LineWidth ’ ,1.5)

axis([E(1)/eV, E(end)/eV , 0, max(T)*1.1]);

xlabel ("E [eV]"); ylabel (" Transmission ");

2



title(" Transmission in 2D wire with double barrier ")

grid

set(gca , ’FontWeight ’, ’bold ’)

This results in the plot found in figure 2. Since Sample.applyNoise() is a A simple animation is also
able to show how electron density varies in the sample as E changes by using NEGF result remap().

figure (2)

for i = 1: length(res_struct.E)

imagesc(NEGF_result_remap(res_struct.NEGF_result{i}))

title("E = " + res_struct.E(i)/eV + "eV")

pause (0.05)

end

A single value can also be shown if the for-loop in the previous snippet is ignored and a single value
for E is chosen.

Figure 2: Transmission curve for 2D wire in simulations set up from snippet.

3


