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Abstract 

 

Labeling the map is one of the most important parts of the cartographic process that requires huge 

time and energy. It is proven that the automation of the map labeling is a NP-hard problem. There 

have been many research studies that tried to solve it such as rule-based methods, metaheuristics, 

integer programming. However, the results achieved so far are not satisfactory and requires much 

manual processing. In fact, many cartographic rules are hard to quantify or formulate as objective 

function or to include as a constraint. The purpose of this master thesis was to find a new way for 

text placement and introduce a method based on keypoint detection using deep learning. For this 

goal, a workflow is designed and consists of rasterization of the manually labelled data, followed 

by data augmentation and shaping. Then, based on the experiments, the architecture and the 

parameters of the Stacked Hourglass Networks are determined based on the evaluated 

performance. The best-found architectures achieved an accuracy of 60.7%. Furthermore, with the 

use of an attention mechanism, the model can achieve an accuracy of 63.1%. 
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1. Introduction 

Maps convey spatial geographic information to a reader, and they are considered among the most 

information-dense graphical artifacts designed by humans. In the history of mapping, science art 

has always been interconnected. To create unique map aesthetics containing geospatial 

information, cartographers employ a set of design criteria that integrate human creativity and 

experience.  

 

Maps are an important medium of communication and very crucial for navigation and decision-

making. Thus, they should be clear and legible. The effectiveness and functionality of a map 

depend hugely on the way it is annotated, and high-quality label placement is a key element in 

cartographic representation (Imhof 1972; Bertin 1983; Robinson and others 1995). Manual map 

labelling is a tedious and time-consuming task. Consequently, the new wave in research is to 

elaborate new techniques for semi-automatic or fully automatic solutions for the tasks required in 

the production of the maps and, particularly, the labelling task. So, technologies have been 

developing to blur the line between humans and machines (Kang, 2020).   

 

The map labeling problem includes four questions: 1) issues concerning toponyms (e.g., exonyms 

vs. endonyms, multilingual labelling), 2) toponym selection (quantity and type), the choice of 

labels to display and their classification, 3) typeface handling (e.g., font, layout, font size), and 4) 

geometric placement of labels (Rylov & Reimer,2014). In the automation of labelling, researchers 

focused on the geometric placement assuming that the first three issues are solved and require only 

parameterization. Thus, for the geometric issue, three major labelling types are identified: area 

labelling (e.g., buildings, lakes, parks), line labelling (e.g., roads, rivers, boundaries), and point 

labelling (e.g., bus stop, mountain peaks). The rules and the optimal placement of labels for each 

of these types are different (Christensen & Stuart,1992). Consequently, it is challenging to quantify 

their rules through a unique measure. The general requirements that the labels should follow are 

to not overlap with each other and to have a clear association with the objects or the features 

labeled (Chamra, 2017), but the specific rules are various and depend on the nature of the map, its 

objective and the specification given by the user. To have a clear idea about the rules, some of 

them will be explained in the second section. since it is one of the most time-consuming and 

difficult tasks. 
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To label the maps properly and easily, many methods have been proposed to automate the 

application of the specified rules. The map described in this thesis is a general-reference map and 

this thesis will discuss how to implement accurate label geometries in automated methods to have 

a good connection between text labels and icons. For this aim, a deep learning approach based on 

stacked hourglass networks is proposed as a solution. 

 

1.1. Background 

Map labeling is an essential task in the field of cartography and geographic information systems. 

The labeling task aims to place text or graphic labels on maps while avoiding overlaps, improving 

map visualization, and respecting predefined rules. These labels must be assigned to the 

corresponding map features (Chamra, 2017) and should be readable, legible, and aesthetically 

magnificent. The problem of map labeling is known to be NP-hard and finding optimal positions 

of all map labels, even for the simplest maps, is highly computationally expensive. In addition, 

manual map labeling could consume up to 50% of the total map production time (Morrison, 1980).  

To reduce this workload and ensure high-quality maps, several studies have been conducted in the 

last three decenies on automatic map labeling (Wolff and Strijk, 2009, Oeltze-Jafra et al., 2014).   

Most of the elaborated techniques have adopted rule-based algorithms. This kind of method 

requires careful formulation of certain rules and criteria and should also design specific objective 

functions. The constrained objective functions are then optimized using metaheuristics such as 

mathematical programming, genetic algorithms, particle optimization, tabu search, and many 

others. The output of these methods is candidate positions indicating the possible best positions of 

the labels. These methods are essentially based on the quantification of handcrafted rules found in 

the cartographic literature and thus are limited in expressing the characteristics of label placement 

for different features and shapes. Thus, the results are generally not sufficient and require further 

manual post-processing and fine-tuning.  

Hence, recent research contributions aim to automate this process and get rid of heavy rule 

formulation. In this context, we propose to follow a novel track by using a deep learning technique 

to tackle the automatic label placement on maps. The motivation of this choice is to digest the 

complex and implicit characteristics of label placement which cannot be captured using static 

rules. In addition, deep learning does not require the human design of rules and features. The 
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ultimate goal is to provide a fully automatic solution as machine learning achieved a high level of 

accuracy and automation in other fields. Around this time some basic logic for labeling points, 

line, and are a feature introduced at the tree-step level including selection, layout, and final 

placement. 

 

Most studies regarding the Label placement topic are about point-feature and line-feature. But 

Krumpe and Mendel (2020) presented a near-real-time method to automatically label areas with 

curved labels. They chose the input area as a boundary polygon and computed the labeling for 

large data sets with their algorithm in just a few seconds. 

 

Kang (2020) examines two important topics in cartography that use machine learning in 

cartography style transfer and map generalization. A large-scaled tiled map using GIS vector data 

was the focus. Training generative adversarial networks (GAN), deep neural networks, and 

convolutional neural networks were used to transfer cartographic knowledge across multiple 

scales, including stylistic elements and generalization rules. Some studies in this direction are the 

exploration of deep learning for mountain road generalization using the U-Net network (Courtial 

et al., 2020).  

 

There is only one study that used machine learning to solve this problem. Li et al., (2020) tackled 

the automatic label placement of area-feature based on the key-points detection model by 

developing deep learning. They proposed a stacked hourglass network to produce a heatmap of the 

position candidate before selecting the best position for the area label. 

1.2. Research Aim 

Generally, two main types of maps exist. A general-reference map that is intended to tell you where 

the actual functionality such as the location of mountains, lakes, and buildings is located. 

Topographic maps are a common type of general-reference map. The other type is thematic maps 

which emphasize one or more attributes and the patterns of the two-dimensional plane that convey 

that data (Cederholm, 2020). We are interested in the first type.  Our interest in this project is to 

use machine learning, particularly deep learning, to solve the task of map labelling which we will 

formulate as a keypoint detection in images. This is motivated by success in many application 

domains. As stated above machine learning is not extensively explored for this issue and it is used 
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in cartography mainly for map generalization and style transfer (Touya et al. 2019; Feng, 

Thiemann and Sester 2019; Courtial et al. 2020).  

 

1.3. Research Questions 

In the scope of this study, two research questions has been formulated: 

I. What are the pre-processing steps required for the application of deep learning for feature 

labelling? 

II.Using the keypoint detection models, what is the model architecture which helps to achieve 

the best performance?  

To answer the second question, experiments will be performed using a stacked hourglass network 

and will focus on the ResNets and convolutional layers efficiency and the improvement that the 

attention mechanism can present.  

 

1.4. Delimitations 

The thesis has focused on map labelling and precisely learning the positions where to place labels, 

called keypoints. So, all other map requirements such as icon placements, text settings such as font 

or size, etc. have been excluded. The ultimate objective is to learn the locations that will serve as 

candidate positions for labels and that will be used for further processing and text fitting. In 

addition, this thesis emphasizes a type of deep keypoints detection model called stacked hourglass 

networks.  

 

1.5. Outline 

In the second section, we will provide the theoretical background of the project by formulating the 

map labelling problem, and the set of techniques for solving it with a focus on machine learning 

and keypoint detection method. Then in the third section, we will explain the methodology 

followed in the project and give details of the implementation. Finally, in the last section, we will 

present the experiments and show the obtained results.  
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2. Theoretical background 

 

In this section, we present the context and the theoretical basis for our work. First, we elucidate 

the problem of map labelling. Then, we categorize the techniques invented to automate this process 

and we review the most significant of them. Afterward, we focus on the use of machine learning 

for this task, and we dive into the proposed deep learning method presenting the theoretical 

computation performed for the training of the deep learning model and its components.   

 

2.1. Cartography and label placement 

Feature annotation in general is an important, yet complex task in the domain of spatial data 

presentation and visualization.  Particularly, the information displayed on maps competes for the 

limited space and their placement requires cartographic rules and space management expertise.  

Manual label placement is a time-consuming process and highly laborious task. With the 

emergence of computers, cartographers start to think about the possible practical methods to 

automate the process of positioning labels and thus cope with the problem of space management 

on maps.  

 

Automation of label placement started with the work of Imhof and its guidelines and has evolved 

significantly since the 1970s (Kern & Brewer, 2008) yielding numerous and various research 

endeavors. Around that time, some basic logic for labelling points, line, and are a feature 

introduced at the tree-step level including selection, layout, and final placement.  

 

2.1.1 Formulation of the rules 

Cartographic rules aim to produce high-quality maps by both fulfilling the quality functions and 

satisfying the users. The general properties of the map should be summarized as followed: 

• Legibility: a label must not overlap another label. 

• Association: The relationship between the label and its referent object should be clear and 

easy to interpret, hence avoid placing labels too close to other objects.  
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• Map readability: Labels should not overlap other significant features of the map 

background. If it is necessary to place on top of map objects, they should not cover 

important features of those objects.  

• Aesthetics: The labeling should not reduce the aesthetic map, but it should improve it. 

The label placement problem is considered by many researchers as a problem of combinatorial 

optimization. Therefore, the proposed solutions are based on mathematical optimization 

algorithms and thus define two components: a discrete search space and an objective function 

stating the properties and rules explained above. The search space consists of candidate label 

positions of which the objective quality function tries to measure the goodness with respect to 

some predefined criteria. The objective function returns as output a numerical score that indicates 

the quality of labeling. 

That is to say, the quality function tries to formulate and imitate the process, employed by a 

cartographer, for finding a trade-off between various informal and competing requirements for 

good label combinations. 

 

2.1.2 Types of labelling 

Some rules are universal and should be respected by all kinds of features. For example, the labels 

should be associated with their objects while avoiding overlap with other labels or point features. 

However, each feature has its own requirements and involves its own challenges. An extensive 

and comprehensive list of cartographic rules for all label types is detailed by Imhof 1975; Wood 

2000; van Dijk 2002; Rylov and Reimer 2015. In the following, we only mention the most 

important in a compact way.  

 

➢ Point features  

• The label should be placed closely around the corresponding point feature to avoid 

ambiguity in the relationships between features and their names. 

• Placement of the label on the right of the point is preferred over on the left of the point, 

and a position above the point is prioritized.   

• Labels should be placed horizontally as it is more convenient for the users’ visual habits. 



7 
 

• Labels should be placed entirely on the water surface or entirely on the land and in the case 

of coastal settlements, names should be written on the water surface. 

• Type arrangement should reflect the classification, importance, and hierarchy of objects. 

• A label should align on the same side of the point when the point and a line are placed too 

close (Freeman, 2005).  

• A polygon boundary should not split a label and its point referent when the point is located 

within an area feature.  

 

➢ Line features  

• A label is placed along with the object and adapts to the object’s curviness (Chirié, 2000; 

Freeman, 2005). However, straight parts are preferable for the sake of readability. For big 

curvatures, a label could be placed parallel to the tangent line of the feature. 

• For long lines, text can be repeated.  

 

➢ Area features  

• A label is ideally placed completely within the polygon feature they represent, unless there 

is not enough space inside the area feature, then text can be wrapped into several lines or 

if necessary allow the cross of the polygon boundary. The alternative is to place the text 

label outside the feature with a leader line or numbering the feature with a legend (Freeman, 

2005).   

• Horizontal text placement is preferred for better legibility. Vertical and angled placement 

are alternatives under space limitations (Freeman, 2005).  

• A label should not overlap with other labels or point features. Practically, this is hard to 

comply with, then the overlap is allowed if it does not impact the map readability. 

• A text should be labeled more than one time if the area feature has several disconnected 

parts.  
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2.1.3. Map labelling techniques 

As mentioned before, since 1970 works of Imhof for map labelling has been progressed 

significantly. In the next steps, different techniques for map lebelling have been presented. It 

started with rule-based algorithms then followed by slider-Based algorithms around the 1990s 

using particularly genetic algorithms, finally recent methods have been focused on force-direction 

to prevent some conflict of labels and prevent them from not having an interfering together. 

 

➢ Rule-Based Label Placement Automation: 

Between 1984 and 1987, an automatic name placement system was developed in Fortran, called 

AUTOMAP which progressively labels map items. Besides, some rule-based expert systems have 

been developed and were able to automatically place labels on maps, graphs, or diagrams. (Yoeli 

1972; Hirsch 1982; Ahn and Freeman 1984). Afterward, researchers managed to formalize and 

classify most requirements of good label placement and developed a general function that 

numerically measures the quality of label placement. However, the label placement problem has 

been proven to be NP-hard. This is demonstrated in the case of point labeling by Kato and Imai 

(1988) and Marks and Shieber (1991).  

 

Yoeli (1972) used a depth-first search approach for point labelling and Hirsch (1982) applied a 

discrete gradient descent method. Those techniques do not achieve high performance, but they 

were just an initial step in developing more performant labelling algorithms. In 1986 and 1990 

Zoraster used a variant of 0-1 integer programming to reduce the PFLP problem. At the same time, 

other researchers were using exhaustive search algorithms (Ahn and Freeman 1984; Freeman and 

Ahn 1987; Jones 1989; Cook and Jones 1990; Doerschler and Freeman 1992).  

First, all possible placements for each map object are identified. The annotations of polygon 

features, point features, and line features are then ordered in order depending on the identification 

of conflicts. However, the method is limited in its flexibility since it lacks retracing, which restricts 

its performance on dense maps. (Wei L, 2020) 

➢ Simulated Annealing 

The simulated annealing has been used for the map labeling placement by Christensen, Marks, and 

Shieber (1994, 1995), Edmondson et al. (1996), and Zoraster (1997). The approach uses an 
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iterative or recursive strategy to achieve locally optimum label placement, but it does not allow for 

momentarily inferior label placement to obtain a superior global answer. The National Institute of 

Standards and Technology (NIST) defines simulated annealing as "a strategy for finding the best 

remedy to an optimization issue by attempting random variants of the present answer." 

 

Wagner et al. (2001) proposed a label placement strategy that was unaffected by feature type, label 

size, or shape. Their method used a set of criteria to label as many features as feasible while 

lowering candidate-label sets for those that remained; it then decreased the number of candidates 

to one per feature. A comparison of their rules-based method with five other approaches utilizing 

datasets up to 3000 points revealed that it was like simulated annealing in terms of label placement 

quantity, but significantly quicker, indicating that it may be used for fast Internet labeling. (kern& 

brewer, 2008) 

 

➢ Slider-Based Label Placement Algorithms: 

This approach is designed around 1990 and focuses on the requirement of limiting point feature 

label positions to a few fixed locations, allowing continuously sliding labels. The algorithms aimed 

to optimize the number of points receiving non-overlapping labels. An improved slider algorithm 

was provided by Kameda and Imai (2003) that separated labels as much as possible within a 

continuous labeling space for each point or line feature to avoid packing labels so closely that they 

were difficult to read. With the goal of increasing the number of labels placed, they discovered 

that continuous labeling spaces allowed for more labels to be placed. In heavily featured areas 

where there is no labeling space for a given point, the authors used an extra method for labels with 

leader lines. (kern& brewer, 2008). 

 

➢ Force-Directed Label Placement Algorithms 

These algorithms were designed for maximizing the number of labels placed in 2003. The method 

gained a perfect distribution of the labels in the current space. 

Despite these efforts in automating the map labeling, the automation level in production is still low 

and encounters many challenges in big scales maps and high-density areas. One of the reasons 

behind this low automation is the lack of adequate methods to solve the labeling challenges and 

the difficulty of precisely formulating some required rules. In this context, machine learning can 
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help improve the automation process as it can learn implicit features in the human-labeled data 

and does not need an explicit statement of the requirements.  

 

➢ Genetic Label Placement Algorithms 

The problem of map labeling is also being tackled via genetic algorithms. The genetic algorithm 

(GA) functions as an iterative technique on a fixed size population or pool of possible solutions. 

The proposed solutions provide an encoding of the issue into a form comparable to biological 

systems' chromosomes. These techniques beat existing labeling algorithms, including simulated 

annealing. In a comparison study, after that a set of design rules has been proposed, the authors 

compared the performance of simple genetic algorithms and other types of labeling algorithms like 

simulated annealing, finding that GA scale-up behavior matched that predicted by theoretical 

models (kern& brewer, 2008). 

 

2.2. Machine learning in cartography 

Artificial intelligence (AI) is a branch of science that develops a set of techniques that simulates 

human intelligence and aims to create intelligent agents able to act and perform tasks 

autonomously and rationally. In recent decencies, AI knew a quick development, and its 

techniques were being applied in different disciplines to solve various real issues. Particularly, 

machine learning which is an area of AI has succeeded and outperformed classical techniques in 

many tasks such as image recognition (Ohri et al. 2015), image classification (Zhao and Du 2016), 

and robot technology (Levine et al. 2018). Particularly, vision-based techniques have received 

increasing attention and are used in a wide range of applications as they are more accurate, flexible, 

and adaptable to complex and diverse tasks than conventional techniques. 

 

In the wave of this evolution, expert systems played important roles in many fields that require 

rule-based decisions, because they could provide inference based on pre-stored expert knowledge, 

release workload and improve work efficiency. In addition, considerable AI algorithms are also 

utilized in cartography-related fields, such as deep learning, evolutionary algorithm, and Bayesian 

network. In fact, classical machine learning techniques require substantial efforts in feature 

engineering and achieve generally lower performance for the large datasets than the deep learning 
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techniques and particularly with the introduction of convolutional neural networks (CNN), 

Recurrent Neural networks, and other learning mechanisms. In addition, many research efforts 

have been provided to optimize the network design, increase the performance of learning specific 

tasks, and solve some technical issues such as overfitting, vanishing gradient problems, and under-

specification. This leads to efficient model architectures such as Faster-R-CNN, U-Net, YOLO, 

SSD, FPN, or Inception (Dhilon and Verma 2020). 

 

Researchers used a random forest classifier to allow the extraction of urban landmarks (Lin et al., 

2019). Identification of road networks was also performed by multiple deep learning models (Fu 

et al., 2016; He et al., 2018). Kang (2020) examines two important topics in cartography that 

integrate AI in map style transfer and map generalization. A large-scale tiled map using GIS vector 

data was the focus. Training generative adversarial networks (GAN), deep neural networks, and 

convolutional neural networks were used to transfer cartographic knowledge across multiple 

scales, including stylistic elements and generalization rules. 

 

Regarding the specific issue of map labelling, some metaheuristics classified as AI techniques are 

used. As an example, genetic algorithms served in the change of map placement. It was based on 

selecting and combining building blocks and considered competent (Kern& Brewer, 2008). 

Krumpe and Mendel (2020) presented a near-real-time method to automatically label areas with 

curved labels. It is a method that examines the search space more comprehensively and efficiently. 

It is done by computing the polygon's skeleton. The skeleton is trimmed to eliminate edges that 

are near the border polygon. Then a set of candidate pathways was identified from the trimmed 

skeleton to be the graph's longest distinct subpaths. The label support lines are computed, and the 

label placements are assessed based on these candidates. Li et al. (2020) focused on automatic 

label placement of area-feature based on a key-point detection model by developing deep learning 

for the first time. They suggested a stacked hourglass network and producing a heatmap to suggest 

the best position for the area label.  

 

2.2.1. Key-points detection models   

Keypoint detection models aim to both detect objects and localize their keypoints. The keypoints 

are the interest points that are highlighted in the training data and they are positions or spatial 
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locations in the multi-dimensional image which reflect what is interesting. The model should learn 

these keypoints regardless of the image variance or transformations by rotation, shrinkage, 

translation, distortion, etc. In our case, the key points are the positions of the labels which have 

specific characteristics regarding the map’s features and objects. So, the vector data, which we 

have access to, will be converted and rasterized to images. In addition, for the training data, the 

centroids of the manual labels which present the keypoints will be extracted and used as inputs to 

the model. Briefly, a key-point detection model concurrently detects and localizes certain key 

points from an image. Then, from many points that the model has found as possible key points the 

best one should be chosen which has the most accuracy in comparison to other points. So, key-

point techniques help to find the candidate positions of labels, which in past was a time-consuming 

and challenging process. The keypoint detection model that we have chosen to use is the stacked 

hourglass network.  

 

2.2.2. Stacked hourglasses networks 

Stacked hourglass networks (Newell et al., 2017) are a key-point detection model based on deep 

learning which is originally proposed for human pose estimation. It is a special type of Fully 

Convolutional Network. Since the encoder-decoder structure makes it look like an hourglass, the 

name is “hourglass networks”. 

 

The original architecture is composed of multiple hourglass modules stacked on top of each other 

and the output of one is input to the next. Each hourglass module is made up of encoder and 

decoder parts. The encoder performs a downsampling operation ensured by a combination of 

different residual blocks, convolution, and max-pooling layers. These layers are designed to lower 

the resolution of the input image and capture various features. In the second part, upsampling and 

a combination of features at all scales are performed. 

 

The upsampling is achieved by a kind of interpolation using the nearest neighbour and increases 

successively the image resolution. The combination of features is obtained using a shortcut 

connection which passes features of all resolutions from the encoder to the decoder to perform an 

elementwise addition and thus flows and keeps the information of the adjacent resolutions. The 
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network structure ensures the learning of contextual and multiscale information as it captures high-

level features at an early stage and specific features in later stages through a repeated top-down to 

bottom-up process (Li Y, et al., 2020). It also has a strong ability to digest the spatial features and 

preserves the spatial location of features. 

 

Instead of constructing a huge encoder and decoder network, the rationale behind stacking 

numerous HG (Hourglass) modules is that each HG module will provide a comprehensive heatmap 

for keypoint and also decrease the computation cost. As a result, the latter HG module can learn 

from the prior HG module's combined forecasts (li, 2020). Figure 1 shows the stacked hourglass 

process and its structure. 

 

Figure 1, The proposed Stacked Hourglass network. Which contains different layer and residual modules 

between them  

In figure 1, A is residual modules, B is Maxpooling layers, and C and D are convolutional 

networks. As explained, stacked hourglass networks include convolutional neural networks, 

residual networks, pooling layers, and some other auxiliary subnetworks. As these networks in 
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addition to the encoder-decoder mechanism need explanation, we will give details about them in 

the next paragraphs.  

2.2.3. CNN (Convolutional Neural Networks) 

Convolutional Neural Networks are the main part of the stacked hourglass network which learns 

the spatial features of the image and constructs the feature maps and help to decrease the size of 

the inputs. This is made by applying a kernel that is moving windows that traverses across the 

input data, performs a dot product with a sub-region of the input data, and outputs a matrix of dot 

products. In the end, CNN uses multiple filters in each layer. The layers are used to break down 

and rebuild inputs. They take an input (in our case image) and deconstruct the picture into a feature 

matrix to extract features from it. The feature matrix is then combined with prior layers that have 

a stronger spatial comprehension than the feature matrix in other words they have a better sense of 

where objects are in the image than the feature matrix. 

 

 We can learn a lot about the input, particularly what objects are in the image and where they are 

located, by integrating the feature matrix with early layers in the network that have better spatial 

knowledge (Ferdinand, 2020). The entire network works as a sophisticated non-linear function that 

converts inputs into goal variables. 

 

CNNs differ from multi-perceptron networks in that they have specific layers and composing 

elements dedicated to specific functions, such as computing convolution, down-sampling, and up-

sampling operations. In the following, we explain the four basic types of layers used in CNNs: 

convolutional layer, non-linear function layer, and spatial pooling layer. 

 

CNNs are built around the convolutional layer. It's a collection of basic filters with programmable 

settings. The layer convolves the input X of size W1× H1× C1 with the filter bank by sliding stride 

S and padding the border with P units. This process produces an output volume Y with the 

dimensions W2×H2×C2. The output at spatial point (i, j) is calculated using this equation: 

𝑌𝑖𝑗 = W×𝑁𝑖𝑗+b 
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(W, b) are the layer's programmable parameters (weights and bias), 𝑁𝑖𝑗 is the matching receptive 

field (or a window enclosing 𝑋𝑖𝑗), and W× N is the dot product of W and N. 

𝑊2 = (𝑊1 - F + 2P)/S + 1, 𝐻2 = (𝐻1 - F + 2P)/S + 1 

This formula is the spatial dimensions of the convolutional layer output, where F is the size of the 

receptive field and matches the spatial size of the filters. filters can be varied in size however most 

CNN systems use filters with F-dimensional square masks. 

 

 

a) Convolutional layer                              b) transposed convolutional layer 

Figure 2 The convolutional layer's basic components are illustrated. Transposed convolutional layer (b) and 

convolutional layer (a). modified from (Ferdinand, 2020). 

 

Filters of size F×F×𝐶1 can be regarded as neurons in the output volume Y. Each neuron 

instinctively searches the input volume X for a given pattern. The programable weights and bias 

for all neurons in a channel of Y are divided because the same pattern across all spatial positions 

in the input volume is needed. This is known as parameter sharing, and the output volume Y is 

made up of the values acquired when 𝐶2  filters are applied to the input volume X. 

The parameter sharing also decreases the number of convolutional layer weights to 𝐶2×F×F×𝐶1, 

which is significantly less. 
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2.2.3.1. Transposed Convolutional Layer 

Often known as the deconvolution layer, this layer is frequently used in CNN for up-sampling 

operations. The up-sampled input is convolutionally processed with a filter bank with size F. The 

inverse operation of convolution is called transposed convolution. Filter settings can be configured 

to learn or to follow regular bilinear interpolation. 

2.2.3.2. The layer of Non-Linear Functions  

A non-linear function layer, also known as an activation function, is frequently used after the 

convolution layer. This layer serves the same purpose as a fully connected layer in classic neural 

networks. The Sigmoid function, the Tanh function, the rectified linear unit (ReLU) function, and 

the leaky ReLU function are all common activation functions. The ReLU function ƒ(x)=max (0, 

x) is the most often employed in deep-learning research among these functions. 

 

2.2.3.3. The layer of Spatial Pooling 

The input volume is spatially reduced using the spatial pooling layer. To do a simple spatial 

analysis, a little filter (average size: 2×2 or 3×3) is pushed through the volume. The max, mean, 

and sum functions are all common pooling functions. It should be noted that the convolutional 

layer can also be used to replace the pooling layer. However, this technique does not always result 

in improved performance and would need additional memory and training effort (lee et al., 2016). 

The max function is the most often utilized pooling function in the literature. 

 

CNN has excelled in various contests involving computer vision and image processing. Image 

Classification and Segmentation, Object Detection, Video Processing, Natural Language 

Processing, and Speech Recognition are just a few of CNN's fascinating application areas. CNNs 

are one of the most effective learning algorithms for comprehending picture content, with 

outstanding results in image segmentation, classification, detection, and retrieval applications. 

CNNs  include 3 layers which are the Convolutional layer, pooling layer, and fully connected layer. 

(Khan et al.,2020). The convolutional layer automatically learns map features that correspond best 

to a specific object leading to higher classification accuracy. 
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Figure 3 Convolutional neural networks’ structure modified from (Rajani, 2017).it contains many layers to 

detect that the image is a fish 

 

One of the important parts of CNNs is subsampling which is a method that is used because of two 

main reasons. First, it uses more filters, and using more filters, the better result we have. Since it 

increases the parameters, so it affects the result better. Second, using subsampling increases the 

field of view which means that we will look more globally. Figure 4 shows the subsampling 

methods in the LeNet model which was the first convolutional neural network introduced by 

LeCun (2015). 

 

Figure 4 subsampling process in LeNet model modified from LeCun 2015 which explains all the process 

of models to concludes what is has written in the text 
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2.2.4. Encoder-Decoder Network 

Encoder-Decoder Network allows input to be manipulated by extracting features and attempting 

to recreate them. It is a network that accepts a feature map/vector/tensor as input and outputs it as 

a feature map/vector/tensor. The information, or features, that represents the input is stored in these 

feature vectors. The decoder is a network that accepts the low dimensional feature tensor from the 

encoder after reducing the input to its minimum resolution. It is typically the same network 

topology as the encoder but in the opposite direction. 

 

In general, the hourglass module is an encoder and decoder, in which we first downsample the 

features, and then collect the features to retrieve the information and form the predicted heatmap 

in the output. Each encoder layer will have a connection to its decoder counterpart, and we can 

stack as many layers as we want. In the implementation, we usually make some iterations and let 

this hourglass unit repeat itself (Li, 2020).  

 

2.2.5. Residual networks 

These networks introduce skip connections or shortcuts which are used to jump over some layers. 

Thus, the output of early layers can be fed as input to the next non-adjacent layers. 

Typical ResNet models are implemented with double- or triple-layer skips that contain 

nonlinearities (ReLU) and batch normalization. The big advantage of using such a network is the 

avoidance of common neural networks which is the vanishing and exploding gradient. In addition, 

Ferdinand (2020) also mentioned that the ResNets slow the convergence of the network's gradient 

in backpropagation, allowing for deeper networks. The practical benefice is also to merge spatial 

and feature data. A new sort of residual net that is used in our projects is the bottleneck that is 

efficient and computationally cheaper.  

 

2.2.6. Spatial Bottlenecks ResNets 

The input feature map X in a convolutional layer is a 𝑊1×𝐻1×𝐷1 cube, with 𝑊1,𝐻1and 𝐷1 

specifying the width, height, and depth (also known as the channels number). At the same 

condition, the output feature map is a cube Z that includes 𝑊2 ×𝐻2× 𝐷2 entries. 𝐷2  are 
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convolutional kernels for each of S×S×𝐷1 cube and they are used to parameterize the convolution 

Z = f (X). 𝑊2𝐻2𝐷1𝐷2𝑆2is the number of floating-point operations. The kernel size (𝑆2), the number 

of connections in the channel domain (𝐷1𝐷2), and the resolution of the output feature map (𝑊2𝐻2) 

are the three parameters. The basic concept behind lowering 𝑊2𝐻2 is to decrease the spatial 

resolution of the feature map first, and then save it to the appropriate size. 

 

Different scenario to think about the spatial bottleneck is to imagine that the intermediate layer 𝑌′ 

has the same spatial resolution as X and Z, but only a subset of spatial positions on 𝑌′  are sampled, 

so convolution has calculated all coordinates (w,h) satisfying (w,h) ≡ (a, b) (mod K). Some 

neurons in the output feature map might share some of the calculations due to the spatial 

bottleneck. This method decreases the computational cost of expanding the receptive field of 

neurons. (Peng et al., 2018) 

 

the channel bottleneck that has been used in this research exists as a 1×1 convolution for decreasing 

the channels number to 1/C, followed by a regular 3×3 convolution on the channel reduced layer, 

and finally, another 1×1 convolution to save the number of channels as it needed. 

When there is no channel bottleneck, the residual block has two normal 3×3 convolutional layers. 

𝑟𝑅𝐵3×3
 stands for residual block 3×3. The simple scenario is to change each of them with a spatial 

bottleneck module. (Peng et al., 2018) 

 

Figure 5 Improvement of a residual block with (left figure) or without (right figure) a channel bottleneck 

into a spatial bottleneck module. Modified from (Peng et al., 2018) 
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2.2.7. Attention mechanism  

At this step, the attention mechanism has been incorporated into the stacked hourglass networks. 

The attention mechanism can focus on the important parts of the image while finding differences 

in it. (Xiaoxia L. 2021). The attention mechanism was introduced by Bahdanau et al. (2014), In 

natural language processing, the attention mechanism outperformed the neural machine translation 

system (NLP) which relied on encoder-decoder RNNs/LSTMs before Bahdanau et al developed 

the first Attention model. This approach, or adaptations of it, was later applied in various 

applications such as computer vision, voice processing, and so on. 

 

Bahdanau’s attention mechanism includes three steps which are alignment scores, the weight, and 

the context vector: (Cristina, 2021) 

 

• The alignment model uses the encoded hidden state 𝒉𝒊 and the previous decoder output 𝒔𝒕−𝟏 to 

calculate the scores 𝒆𝒕,𝒊  which defines the input sequence to match the current output at position 

t. The alignment model is represented by the function a (.) That can be used in the following 

neural network. 

𝒆𝒕,𝒊  =a(𝒔𝒕−𝟏, 𝒉𝒊) 

 

• Weights: Weights 𝒂𝒕,𝒊   are calculated by using the softmax operation to the previously calculated 

alignment score. 

𝒂𝒕,𝒊   =Softmax (𝒆𝒕,𝒊) 

• Context vector: A unique context vector 𝒄𝒕 is fed to the decoder at each time step. This is 

calculated by the hidden weighted sum of all encoders T. 

𝒄𝒕    =∑ 𝒂𝒕,𝒊 𝒉𝒊
𝑇
𝑖=1  

Cristina(2021). 

https://arxiv.org/abs/1409.0473
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2.2.7.1. The General Attention Mechanism 

The general attention mechanism includes three main components, which are queries, Q, 

the keys, K, and the values, V. in comparison to Bahdanau’s mechanism, the keys and values are 

the same vector. That can be calculated as below: 

𝒆𝒒,𝒌𝒊
  = q. 𝒌𝒊 

Which the query vector (q=𝒔𝒕−𝟏) used to calculate a score value. Then the scores pass through a 

Softmax operation and compute the weights:  

𝒂𝒒,𝒌𝒊
=Softmax (𝒆q,𝒌𝒊

) 

In the end, the attention is calculated by a weighted sum of the value vector and 𝑽𝒌𝒊
: 

attention(q, K, V)   =∑ 𝒂𝒒,𝒌𝒊
 𝑽𝒌𝒊𝑖                               Cristina (2021). 
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3. Method and Implementation 

3.1. Methodology  

The methodology followed in this study is Design Science Research (DSR). It is a relatively new 

method to create a new world. This kind of research includes three steps which are investigation, 

induction, and deduction of the issue, context, and activities, as well as hypothesis generation; the 

second step is design and testing of solutions; and the third one is hypothesis verification, research 

validation, and generalization to different applications (Pello,2018). In this study, we found the 

insights and then tried to design a solution based on the findings. We wanted to design a solution 

to find the best place for map text. to that, we understood the problems and based on that defined 

objective and restrictions. Finally proposed stacked hourglass techniques. 

 

3.2. Data processing 

In this step it has defined how input has obtained and then how it was used and changed its format. 

The algorithms have been proposed by detailed to define all the processes in the models. 

 

3.2.1. Data collection 

A large number of data is required so that the model can learn from them by identifying certain 

relations and common features related to the objects. The used data are from the London city map 

provided by T-Kartor and it is a vector data. These maps are produced in an ESRI ArcGIS 

environment with substantial manual label editing both in the ArcGIS environment and in the 

publishing editing tool Adobe Illustrator. 

 

3.2.2. Rasterization 

The first step is to obtain suitable data for the input of deep learning models. For this purpose, the 

vector format of the area features is converted into RGB images. There are all the 4390 images in 

.Jpg format which is (512x512) pixels. As can be seen in Error! Reference source not found., 

the input image includes street lines, building areas, green spaces, etc. 
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In figure7, image (a) which was made from the dataset in a different color that define different 

land uses to have a better identification of different features in the maps. 

 

 

Figure 6 An example of the rasterized image which will be the input of the model © Copyright Transport for 
London 

 

 
a. Non labeled raster image                     b. Labeled image 

 
Figure 7.A sample image from the dataset. The red bounding boxes show the road labels, yellow for 

landmarks, and blue for green areas. © Copyright Transport for London 

 
After using the algorithms and finding some peak points, the points that have the higher score 

would choose as the best one. So, in image(b) the best positions to write the labels define by red 

colors for roads and yellow for landmarks and blue for the green space. 
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3.2.3. Building of key-points detection model based on stacked hourglass 

networks 

Each image includes some coordinates data (X, Y) which are saved in an excel file under .csv 

format. It is a table with 4390 rows and several columns. Each row contains coordinates of the 

feature labels which are the centroids of the label boxes (streets, buildings, and so on). As each 

image contains a different number of features, the rows include a different number of coordinates. 

Thus, there are some missing values in the excel file. 

Table1: The coordinates of 5 keypoints from the first 6 images 

Image 

name 

Coordinates 

𝑥1 𝑦1 𝑥2 𝑦2 𝑥3 𝑦3 𝑥4 𝑦4 𝑥5 𝑦5 

R60C60 135.1198 199.401 510.0968 369.8386 97.24301 101.0345 129.1652 422.0725 343.6596 0.830955 

R61C60 396.7967 233.6029 4.686376 365.0821 409.5015 241.2717 257.9426 90.82879 222.0015 59.27165 

R62C60 96.04328 373.6577 180.5553 263.8122 146.3695 49.27697 159.3328 156.1273 476.0289 477.2341 

R63C60 149.0015 65.27165 381.3638 187.6849 131.1114 153.0642 63.516 277.1782 265.2003 127.1294 

R64C60 129.7338 11.14579 358.3644 307.5612 108.2034 492.6643 300.6952 379.0912 155.2531 365.5782 

R65C60 167.867 430.3015 250.6007 415.8025 88.29675 464.2381 105.0015 387.2717 29.2311 79.6996 

 

As shown in figure 8, the background of the image has been removed to better focus on the goal 

features. The algorithm is tried to prevent any overlaps between the background and other 

significant features. And the centroid of labels which were defined manually has shown by green 

color. 

 
Figure 8.Background features are removed and only the boundary boxes of the manual labels are displayed 

with their centroids. Label centroids are the green dots. 
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3.2.4. Selection of the inputs to feed to the model by trying different cases.  

The stack-hourglass code includes different parts. The major parts contain 3 codes which are 

param.py, data.py, and Train.py part.  

 

• TensorFlow 

In this study, we have used TensorFlow for the implementation of the deep learning models. 

TensorFlow is a comprehensive open-source machine learning platform, that contains a 

comprehensive and flexible ecosystem of tools, libraries, and community resources that allows 

researchers to push the latest in machine learning technology and developers to easily build and 

deploy machine learning-powered applications (Unruh, 2017). 

 

• Pandas 

Pandas is used for data manipulation and analysis. It includes data structures and methods for 

manipulating numerical tables and time series. It is a Python library that provides quick, versatile, 

and expressive data structures for working with "relational" or "labeled" data. It is based on two 

keyPython libraries which are matplotlib for data visualization and NumPy for mathematical 

operations. Before pandas, most operation has done with python and 

R.(https://pandas.pydata.org/2022) 

 

3.2.5. Model Parameters 

• key-points 

20 key points have been chosen for each image which means we have 20 numbers (10 for X, and 

10 for Y) for each image.  

 

• Image size 

As mentioned before the size of the images is 512 by 512 pixels. 

 

• Train Parameters 

The Batch size determines the number of samples that will be distributed over the network. In this 

model, images have been compared two by two. Using Batch size help to use less memory because 

https://opensource.com/article/17/11/intro-tensorflow
https://mode.com/python-tutorial/libraries/matplotlib
https://mode.com/python-tutorial/libraries/numpy
https://pandas.pydata.org/
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fewer sample would be used. While the Epoch is a hyperparameter that shows how many times 

the training algorithms will work. And as explained before the batch size is also a hyperparameter 

but it defines sample numbers that are used for learning algorithms. 

 

3.2.6. Data Augmentation 

Data augmentation is carried out to mitigate the overfitting and aims to increase the size of the 

dataset by performing some transformations on the dataset.  Three operations are applied to the 

images: adding random lighting noise, random flipping, and expansion. The lighting condition of 

the images is varied by adding Gaussian noise to the image (Gandhi. 2021). This helps CNN not 

learn the irrelevant pattern and thus boosting the overall performance.  

 

3.3. Model building 

The experiment is performed using a stacked hourglass with a different number of stacks (2, 4, 

and 8). Each stack, i.e., single hourglass module, is composed of a bottom-up submodule on the 

left followed by a top-down submodule on the right as shown in Figure 9. On the encoder part, 

convolutional and max-pooling layers are used to process features down to a very low resolution. 

Each time max pooling is used, the network splits up and applies more convolutions at the original 

pre-pooled resolution. After achieving the lowest dimension space, the right half of the stack which 

is a decoder begins the top-down sequence of upsampling and fusion of features across scales 

through skip connections by elementwise addition. The output is then a higher resolution feature 

map.  

 

The input is passed into a 7×7 convolution combined with stride 2, Batch Normalization, and ReLu 

layer. The first convolution layer is different as it has a kernel of size 7×7 in contrast to the others 

with only 3×3 or 1×1 kernels. It has been shown that applying multiple small filters instead of a 

larger one can improve the overall performance of the hourglass. Thus, we are using 3×3 filters 

instead of 5×5 or 7×7 kernels. In addition, applying convolution of a 1×1 filter to reduce the 

resolution improves its performance.  

 

The input is passed into a 7×7 convolution combined with stride 2, Batch Normalization, and ReLu 

layer. The first convolution layer is different as it has a kernel of size 7×7 in contrast to the others 
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with only 3×3 or 1×1 kernels. It has been shown that applying multiple small filters instead of a 

larger one can improve the overall performance of the hourglass. Thus, we are using 3×3 filters 

instead of 5×5 or 7×7 kernels. In addition, applying convolution of a 1×1 filter to reduce the 

resolution improves its performance.  

 

Figure 9.The proposed hourglass-shaped network architecture. it explains the thesis algorithms 

and the relations between different layers 

 

Each stack is a type of convolutional encoder-decoder network which breaks down the image 

inputs to extract the essential features and then tries to reconstruct them faithfully. The feature 

matrix has low spatial understanding, meaning it does not really know the location of objects in 

the image. In fact, the extraction of the object’s features requires the discard of all pixels which 

are not features of the object and this breaks down to remove all the background pixels and thus 

losing knowledge of the object’s context. However, fusing these feature matrices with earlier 

layers that have higher dimension and spatial understanding help to both learn rich and precise 

object characteristics and their location and context. This is efficiently achieved by ResNets which 

combine the spatial with the feature information. So, we have used Bottlenecks including 3 

convolution layers: one 1×1 convolution, one 3×3 convolution, and one 1×1 convolution. 

Basically, after each pooling layer, we add one of the bottleneck layers. (Peng et al., 2018) 

 

To summarize: we have as input of SHG the non-labeled map. Then each stack has an encoder that 

extracts features by breaking down the input into feature tensors. Afterward, the decoding part 



28 
 

combines the feature information and the spatial characteristics to understand properly the input 

image. Convolution layers help to extract features with high quality, max-pooling layer decreases 

the dimension as they bring gradually the resolution down from 512 to 64 and eliminate the 

unnecessary parts of the image that contain redundant or low-quality information. On the other 

hand, the Bottleneck ResNets allow to save the spatial information and use the memory efficiently. 

Finally, two 1×1 convolutions are applied to the output to get the final prediction which is a 

heatmap that shows the locations of keypoints through the probability of occurrence of a keypoint. 

 

3.4. The learned output: Heatmap 

The heatmap is used to depict a keypoint location in an image and saves the location of the data.  

Once the heatmap is obtained in the output, all that is required is to determine the heatmap's peak 

point and utilize it as the keypoint position. In the output of each stack of the network, a heatmap 

is learned and the loss is computed for it. 

In other words, the heatmap displays peaks at each predicted label point of the area feature, with 

pixel-by-pixel detection scores. A feature map with a resolution of 1/4 of the input picture is 

created at the start of the stacked hourglass networks using convolution and pooling layers. The 

heatmap is then created using a network of numerous stacked hourglasses with the same resolution 

as the feature maps. This shows the advantage of stacking numerous hourglasses and how it allows 

for more accurate final predictions as claimed in the theoretical part of this report.  

 

3.5. Training 

We train the network to optimize the mean squared error loss function using RMSprop optimizer 

after comparing it with the Adam optimizer. The learning rate is set to decrease 10-times from 

2.5e-4 every 30 epochs. The batch size is set to 8. The image patches are extracted with size 

512*256 with 20% of augmented data and 5% of overlap. The network is trained from scratch 

until 150 epochs, practically until the loss converges. The training and testing processes are 

performed on a server equipped with Nvidia GeForce Titan X (12 Gb vRAM). So, in this step, the 

model has been compiled and trained, and then it has been fitted. 
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In the previous line, optimizing algorithms ensure the minimization of the loss function and update 

the model weights in the backpropagation process. In the fitting part, the Epoch and batch_size 

have been chosen. 

3.6. Implementation 

Using the attention mechanism helps to concentrate on the target location. It pays attention to the 

most important features and uses them to optimize the stacked hourglasses network for better 

results. It has a sequence-to-sequence model which is called the Encoder-Decoder model. Working 

with long input data is hard, therefore the previous hidden state of the Encoder goes to the next 

Decoder as vector data. For all the output of the decoder, the model has been able to select special 

features to make the output result. That is the reason they called it “Attention Mechanism” (loye, 

2019). The decoder can retake the encoded representation. The process of using the attention 

mechanism in this research is as follows: 

 

3.7. Producing the Encoder class 

First of all, the input data goes through the embedding layer which initializes the batch size and 

encoding units. It encloses __init__ () and call() methods. In the call() method, describe the 

forward propagation that has to happen through the encoder network. 

 

3.8. Optimizer and Loss Functions 

For finding the optimizer and loss function the batch_size, height, width, and n_keypoints has 

considered. The squared error loss function is one of the most often used loss functions in statistics, 

albeit its popularity originates from mathematical convenience more than real loss considerations 

in applications. 

 

 Carl Friedrich Gauss, the inventor of mean squared error, was aware of its arbitrariness and agreed 

with critics who objected on these grounds. The mathematical advantages of mean squared error 

are especially apparent when analyzing the performance of linear regression, as it allows one to 

partition the variation in a dataset into variation explained by the model and variation explained 
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by chance. (Wikipedia) here is the mean squared error equation where 𝜎2is the population variance 

and 𝜇 𝑖𝑠 𝑚𝑒𝑎𝑛. 

𝑀𝑆𝐸(𝑋̿) =
1

𝑛
∑(𝑌𝑖 − 𝑌𝑖̂)

2

𝑛

𝑖=1

 

𝑀𝑆𝐸 = 𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑒𝑟𝑟𝑜𝑟 

n=numbers of data points 

𝑌𝑖= observed values 

𝑌𝑖̂= predicted values 

  

https://en.wikipedia.org/wiki/Sample_variance#Population_variance
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4. Results and findings 

 

4.1. Evaluation 

To evaluate the methods and algorithms the accuracy rate and loss have been considered for this 

aim the ground-truth value (gt) and the predicted value(pred) have been compared. The differences 

between them show the accuracy. If the result is higher than the threshold, it wouldn’t consider. 

So, the lower amount, the better accuracy. 

 

According to the tensorflow.org website tf. constant () function is used to calculate a constant 

tensor from an object which is tensor-like. dtype has chosen as dtype=tf. It is also creating a stack 

from tf. tensors into an r+1 rank tf. tensor. it also used some parameters while evaluating the model 

such as tensor which is a list that includes some objects that are similar in terms of shape and dtype. 

Another parameter is the axis which is the stack’s axis. The last one is the return value which 

returns tf. Tensor. 

 

4.1.1. Learning metric: Loss function 

The loss function used is the Mean Squared Error which is calculated over the predicted and 

ground-truth heatmaps and aims to estimate the distance between them. First, we compute the 

difference between each pixel gray level value in the two images for the first channel, then we 

compute the sum of squared differences for all pixels in that channel. Afterward, this calculation 

is repeated for all the channels. 

 

4.1.2. Evaluation metrics  

4.1.2.1. Percentage of Correct Key-points (PCK) 

PCK is a precision metric that determines if the predicted keypoint and the ground-truth centroids 

are within a distance threshold. The PCK is often set to the object which is included within the 

bounding box or to the image scale. The metric measures the percentage of detections that fall 

within a normalized distance of the ground truth and is calculated as the percentage of detections 

that fall within a normalized distance of the ground truth. It is usually used for the body joint 
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detection and the true detection is determined by a threshold relative to the body part. When the 

normalization reference is the head length, it is noted PCKh. For example, PCKh@0.5 denotes a 

threshold of 50% of the skull bone link and PCK@0.2 means the distance between the expected 

and true joint is less than 0.2 * torso diameter. In addition, PCK can be utilized in both 2D and 3D 

graphics (PCK3D) (Barla, 2022). In our case, the threshold is expressed in terms of the number of 

pixels. We set up a threshold parameter that determines the range of allowed errors. A candidate 

keypoint is considered correct if it falls within 𝛼 pixels away from the ground-truth keypoint.  

This metric is equivalent to the accuracy metric which is used for evaluating classification models. 

It is the fraction of predictions the model gets right. Formally, accuracy has the following 

expression: 

Accuracy = Number of correct predictions / Total number of predictions 

 

4.1.2.2. Percentage of Correctly estimated body Parts (PCP) 

As this metric is initially developed for the evaluation of the human body joint detection, it 

measures the is the percentage of correctly estimated body parts. If the segment endpoints of an 

estimated body part are within a fraction of the length of the ground-truth segment from their 

annotated position, it is considered accurate. The smaller the PCP threshold is, the criterion will 

be harder, and the accuracy will be better (Eichner, 2010). In our case study, the prediction can be 

considered correct or accurate if the predicted keypoints fall inside the boundary box of the ground-truth 

label or a fraction of it. It can be formulated otherwise by considering the predicted keypoint correct if it 

lies inside the feature itself or a fraction of it. However, the first formulation is better than the second which 

does not guarantee the respect of the labelling rules. 

𝑦𝑖
𝑡∗ is the predicted keypoint of the model and 𝑖𝑡ℎ is the centroid coordinates for the data sample 

t. 

          𝑎𝑐𝑐𝑖(r) =
100

𝑁
 ∑ 1(

100 .‖𝑦𝑖
𝑡∗−𝑦𝑖

𝑡‖2

‖𝑦𝑖𝑚𝑎𝑥
𝑡 −𝑦𝑖𝑚𝑖𝑛

𝑡 ‖2
𝑁
𝑡=1 ≪ 𝑟)          (adapted from Sapp &Taskar,2013) 
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4.2. Experiments and Results 

To evaluate the performance of the built model and understand how keypoint detection concept 

will help to obtain accurate label places, we have performed 3 experiments. These experiments 

and their results are detailed as follows:  

 

Experiment 1: We have used the stacked neural network without the attention mechanism and 

tested different parameters: number of stacks, number of blocks, and learning rate. The goal is to 

find the best architecture of the networks and to understand the effects of the most important 

parameters on the network performance.  

 

After a comprehensive comparison, we found out that stacked hourglasses outperform a single 

hourglass when tested with the same number of layers and parameters. Furthermore, applying 

supervision at different stages is more effective, particularly when applied to the two resolutions 

right after upsampling and before the final output.  

 

Table 2. Results of the first experiments 

Number of stacks Number of blocks Accuracy 

 

2 

2 54.8 

4 56.1 

 

4 

2 56.8 

4 58.2 

 

8 

2 58.6 

4 60.7 

 

The number of blocks increases slightly the performance of the model with an increase of 

approximately 1.2% when we use 4 blocks instead of only 2. However, the number of stacks has 

a higher impact as it can improve the accuracy by around 2% when using 4 blocks instead of 2 and 

an increase of around 6% when 8 blocks are used.  
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Concerning the learning rate, we have experimented with different values: 5e-5, 1e-4, 5e-4, and 

1e-3 and we achieved respectively the following maximum accuracies 57.3%, 59.6%, 60.7%, and 

59.3%. Therefore, the learning rate of 5e-4 seems to be more adequate and ensures a good 

convergence of the learning. It is worthy to note that this is tested with the best-found architecture 

of SHGN of 8 stacks and 4 blocks. Choosing the learning rate of 5e-4 can achieve higher accuracy, 

but at the expense of slower learning as the convergence is achieved after 85 epochs in contrast to 

the case were using for example a learning rate of 1e-3 in which the model start to achieve a 

convergence state after only 64 epochs.  

 

Figure 10 Accuracy of SHGN during the training phase. 
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Figure 10 shows the progress of the accuracy during the training of the SHGN with the best 

configuration: 6 stacks, 4 blocks, and a learning rate of 5e-4. It starts to converge after 80 epochs 

and achieves a maximum of 60.72%.   

 
Figure 11.Training and validation loss during the training of SHGN 

 

Experiment 2: Using the best architecture and parameters found in the first experiments, we have 

included the attention mechanism with the hourglass network. Then, we train the entire network 

again. The model achieved an accuracy of 63.1% with an increase of 1.4%. This shows that this 

mechanism can improve the overall performance of the model. Once the model is fully trained, we 

run it on test data. Fig. 12 shows the predictions obtained for one of the raster images using an 

error threshold of 20pixels.  
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Figure 12, Visualization of the prediction obtained by the SHGN for one raster map sample, displaying 

the input image, the ground truth keypoints, and the predicted keypoint positions. 

 

Experiment 3: We tested different margin errors by varying the parameter 𝛼 controlling the 

threshold of correctness. So, we used a smaller value of 10. When we decrease the threshold to 𝛼 

= 10 pixels, approximately 60% of the keypoints disappear from the predicted heatmap. This 

indicates that those predictions are far away from their correct positions, i. e. from the centroids of 

the manual labels.  Figure 13 depicts a prediction of the trained model of a sample image from the 

test set. When we decrease the threshold to 𝛼 = 10 pixels, approximately 60% of the keypoints 

disappear from the predicted heatmap and the accuracy falls down to 42%. This indicates that those 

predictions are far away from their correct positions, i. e. from the centroids of the manual labels.   

 

 
Figure 13.The prediction obtained by the SHGN showing the input image, the ground truth keypoints and 

the predicted keypoint positions, with a threshold 𝛼 = 10. 
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4.3 Discussion 

In this thesis, a deep learning model based on stacked hourglass networks and attention 

mechanisms is implied to tackle text labelling problems. The model is designed to learn how to 

predict the best places for the labelling in the maps. So, the input data has been used then the 

algorithms try to learn the input by iterating over batched data which contains both the map images 

and coordination information. The model is trained for many epochs until they achieve the best 

accuracy or ensures some convergence. To answer the research questions, we tried to find the best 

architecture of the model. We initially led a benchmarking of the literature, thus we used bottleneck 

ResNets instead of regular ResNets. Then, we tried the different numbers of blocks and stacks. It 

yields that the best architecture is to use 8 stacked hourglasses with 4 blocks. In addition, we tuned 

the learning rate, and it turns out that 5e-4 is the best value ensuring a good convergence. 

Afterward, an attention mechanism has been employed to improve the stacked hourglass network. 

 

Limitations and perspective 

This study is subject to some limitations, and further improvements are expected to encounter and 

fill the gap. First, the used approach only determines the positions where the labels should be 

placed and do not deal with the size of the bounding boxes of the labels and the overlapping that 

may occur between them. In addition, fitting the text in their exact positions is considered as a 

postprocessing step. One of the important weak points of this approach is the number of keypoints 

that should be fixed. The model is trained only for a determined number of keypoints. In our 

experiments, we used mainly 20 keypoints for each raster image.   

 

This study opens many doors as perspectives. First, the evaluation of the proposed approach is 

done only using deep learning metrics, namely the metrics used for keypoit detectors, using 

accuracy-related measurement. However, evaluation using quality functions of map labelling is 

more valuable and reflects accurately the performance of the approach.  

 

In addition, the only loss used is the squared mean errors which are general. However, designing 

losses related to cartography is an asset. Actually, the advantage of using deep learning is to learn 

implicit features of the data and get rid of manual processing, function objective definition or rule 

design. However, the use of a simple loss function that includes general requirement of map 
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labelling (for example overlap measurement) will guide the learning and thus help to achieve a 

near-optimal solution. In all cases, the use of deep learning help to avoid quantification and 

formulation of rules and exhaustive optimization.  

 

4.4. Conclusion 

This thesis focused on the following steps: 1) it has used deep learning and machine learning 

algorithms to suggest a novel technique for automating maple belling. And it was the first time 

that the stacked hourglass and attention mechanism has used for this purpose. 

 

2) one of the most important achievements of this proposed technique is to reduce the time in 

comparison to the previous methods. 

 

3) there were three experiments to find the highest accuracy and it figured out that by increasing 

the number of stacked, the accuracy will be more precise. Also, it has been understood that 

attention mechanisms are useful techniques to have a better result in map labelling. Finally, by 

choosing a threshold, it can be so effective on accuracy. 
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