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Populärvetenskaplig sammanfattning

Elektroencefalografi (EEG) är en metod för att mäta hjärnans aktivitet genom att
placera elektroder i h̊arbotten p̊a en individ. Metoden är noninvasiv, relativt billig
samt enkel att implementera, och är därför populär inom b̊ade forskning och medicin.
EEG kan exempelvis användas för tankestyrning av robotproteser, känsloanalys, samt
diagnostisering av olika sjukdomstillst̊and s̊asom epilepsi.

För att avgöra om det finns ett samband mellan olika omr̊aden i hjärnan vid bear-
betning av information, s̊a som ljud, analyserar forskare ofta relationen mellan tv̊a
elektroder. Om ett s̊adant sammanband existerar borde de tv̊a mätningarna vara fas
kopplade, vilket innebär att det finns en konstant tidsfördröjning under tiden informa-
tion bearbetas. Att identifiera faskopplingar är ett viktigt verktyg i den matematiska
analysen av hjärnsignaler som kräver avancerade algoritmer och metoder. En del
metoder har idag sv̊art att separera sanna samband fr̊an falska, d̊a det finns en risk
att tv̊a elektroder mäter samma signal. Detta kan exempelvis ske om elektroderna är
placerade nära varandra, och kallas för volume conduction.

Den här uppsatsen jämför och utvärderar olika signalbehandlingsmetoder som är
lämpliga vid EEG analyser. Majoriteten av metoderna baseras p̊a fasskillnaden mel-
lan tv̊a hjärnsignaler. Flera av metoderna är även framtagna för att hantera volume
conduction. Samtliga metoder appliceras först p̊a simulerad data, för att säkerställa
deras förmågor, innan de appliceras p̊a tv̊a riktiga EEG mätningar. Samtliga metoder
undersöks i förh̊allande till tv̊a fr̊ageställningar: 1. Hur bra kan metoden avgöra om
en person exponeras för en visuell eller auditiv simulus? 2. Givet att en person f̊ar
höra ett ord i ett av sina öron, hur väl kan metoden urskilja vilket öra?

Sammanfattningsvis är det lättare att besvara fr̊ageställning ett än tv̊a för b̊ade
simulerad och riktig EEG data. Den bästa metoden för att avgöra närvaron av en
stimulus är intressant nog inte baserad p̊a fasskillnaden utan energiskillnaden mellan
tv̊a signaler. Volume conduction metoderna är de bästa p̊a att avgöra vilket öra som
ordet sas i, och klarar även av att identifiera volume conduction. Slutligen, p̊a riktig
EEG data klarar den bästa kombinationen av metoder av att avgöra om en stimulus
är närvarande i 68.7% av fallen, samt avgöra rätt öra i 55.1% av fallen.





Abstract

Electroencephalogram (EEG) measurements are notoriously noisy and non-stationary
and there are several specialized techniques for their analysis and interpretation. In
this thesis, we implement a collection of stationary and non-stationary methods in-
cluding coherence, Phase Locking Value (PLV), Phase Lag Index (PLI), and their
imaginary counterparts. In particular, we use the Singular Spectrum Decomposition
(SSD) algorithm to decompose each recording into interpretable components before
computing a variation of the PLV. All methods are evaluated on simulated EEG data
in relation to two research questions; one, how well do they manage to detect whether
a subject is presented with a stimulus, and two, given that an auditory stimulus is
present in one of the subject’s two ears, how well can they determine the side. To
measure performance, we train three classification algorithms on features extracted
from the above-mentioned methods. We find that the imaginary coherence and imag-
inary PLV are the best predictors for answering research question two by estimating
the sign of the phase di↵erence, whereas the SSD algorithm yields the most important
feature for stimulus detection. Lastly, we apply our methods to two sets of real EEG
data where it is confirmed that imaginary coherence counteracts volume conduction.
In addition, all classification algorithms perform more or less the same but the best
one manages to predict the presence of an auditory stimulus with 68.7% accuracy,
and the side that the stimulus originated in with 55.1% accuracy.
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1 Introduction

Understanding the intricacies of the brain has many applications ranging from di-
agnostics and clinical evaluation to foundational neuroscience and brain-computer
interfaces. The first non-invasive method of measuring the brain’s activity was pio-
neered by Angelo Mosso in the late 1800s [30]. Nowadays, the electroencephalogram
(EEG) is one of the most popular non-invasive methods of measuring brain activity
due to its simplicity, relatively low cost, and high temporal resolution [13, 21, 29].

When neurons in the brain are activated, a local current is generated which the
EEG measures via electrodes placed on the scalp of a subject [1]. The constant firing
of neurons results in an oscillating signal, consisting of several components known as
brain waves. These brain waves are divided into five di↵erent groups based on the
frequency range of their oscillations and the type of activity, with which they are
associated. Table 1 shows a summary of these five groups.

Table 1: Characteristics of the di↵erent types of brain waves, from [1, p. 21].

Name Frequency Activity
Gamma > 35 Hz Concentration
Beta 12� 35 Hz Anxiety, active, external attention, relaxed
Alpha 8� 12 Hz Very relaxed, passive attention
Theta 4� 8 Hz Deep relaxed, inward focused
Delta 0.5� 5 Hz Sleep

Recent research has revealed that alpha waves are not only associated with a re-
laxed state but are actually involved in more cognitive tasks as well. Waves around
10 Hz seem to occur in conjunction with other brain regions and function as an ini-
tializer across brain regions [3, p. 227].

As brain currents are inherently time-dependent, we can view brain waves as sig-
nals and use signal-processing methods to analyze and interpret EEG measurements.
A signal is said to be stationary if the properties of the signal, such as its frequency
or mean, are time-invariant and non-stationary otherwise. Many methods used in
EEG analysis are built on the assumption of stationarity which in reality is rarely
the case, as can be seen in Figure 1 where the mean of the EEG measurement clearly
varies over time. Using a stationary method on non-stationary data can certainly
yield interesting results but the results may not be valid. This is due to the fact that
violating the assumptions of a statistical method can influence the accuracy and reli-
ability of the results [17]. In order to justify the validity of EEG analysis, developing
more user-friendly non-stationary methods is therefore crucial.

Spectral coherence is a stationary method that is frequently used within neuroscience
to determine if two brain regions are interacting when for example processing sound
[32]. An alternative method to spectral coherence is the phase locking value approach,
which is better suited to neural activity since it does not require any assumptions on
the data [23]. This method is the most popular non-stationary, phase-based method
in EEG analysis but it has its own drawbacks [7].
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Figure 1: An example of a two-second long EEG signal.

Aim of thesis

The aim of this thesis is to determine suitable and reliable methods for EEG analy-
sis. A total of eleven signal processing methods will be evaluated, nine out of which
are non-stationary. The two stationary methods are variations on spectral coherence
while the remaining nine are based on phase-coupling. Furthermore, a total of 18 fea-
tures will be extracted from the methods and used in three classification algorithms.

All methods are evaluated against two research questions: One, how well do the
methods manage to determine if a person is presented with a stimulus. Two, for an
auditory stimulus, how well can the methods determine from which side the stimulus
originated. In order to achieve the intended aim of the thesis we first describe the
di↵erent methods in Section 2 before evaluating them on a simulated data set in Sec-
tion 3. Finally, we apply the methods to two real EEG data sets in Section 4 to see
how well the methods perform.
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2 Theory

2.1 Stationary Signal Processing

Digital signal processing is a relatively new field which became popular in 1965 when
the Fast Fourier Transform (FFT)-algorithm made it possible to e�ciently compute
the Discrete Fourier Transform (DFT) on computers [10]. Given an input signal x(t)
and n data points, we define the DFT as

x̃(f) =
n�1X

t=0

x(t)e�i2⇡ft, (2.1)

which enables us to analyze a signal in the frequency domain. This tends to be done by
computing the (Power) Spectral Density (PSD), also referred to as an auto spectrum,
which is the DFT of the covariance function. The auto spectrum shows the distri-
bution of di↵erent frequencies and is most commonly estimated by the periodogram
[22, pp. 83, 238], computed as

�xx(f) =
1

n
|x̃(f)|2, (2.2)

i.e., the normalized square of the DFT.

2.1.1 Spectral Coherence

Spectral coherence is used to detect correlations between two signals, for example,
two areas of the brain in neuroscience [23]. Let x(t) and y(t) be two stationary signals
with zero-mean, and x̃(f) and ỹ(f) be their respective Fourier transform. We can
rewrite Equation (2.2) to get their combined cross-spectrum as

�xy(f) =
1

n
x̃(f)ỹ(f), (2.3)

where ỹ(f) is the complex conjugate of ỹ(f) [24]. Equation (2.3) can be decomposed
as

�xy(f) = Axy(f)e
i✓xy(f), (2.4)

where Axy is the amplitude spectrum and ✓xy is the phase spectrum. The complex
coherence spectrum is then defined as,

�xy(f) =
�xy(f)p

�xx(f)�yy(f)
. (2.5)

The coherence spectrum, also known as the magnitude coherence spectrum or coher-
ence [8], is simply the magnitude of �xy(f),

Cxy(f) = |�xy(f)| =
|�xy(f)|p

�xx(f)�yy(f)
, 0  Cxy(f)  1. (2.6)
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Algorithm 1 Coherence spectrum

1. For each window k repeat the following steps.

(a) Compute the FFT of both x and y multiplied with the kth window.

(b) Compute and store the individual auto spectrum of x̃ and ỹ.

(c) Compute and store the cross-spectrum between this x̃ and ỹ.

2. Sum the K cross-spectrums and auto spectrums,
PK

k=1 �xy(f)(k),PK
k=1 �xx(f)(k) and

PK
k=1 �yy(f)(k).

3. Compute the coherence spectrum Cxy(f) according to Equation (2.6).

It is possible to use Cxy(f) as a metric of how strong the linear dependency is be-
tween x(t) and y(t), where a value close to 1 indicates a strong dependency. There
are some variations in the literature on whether coherence is defined as in Equation
(2.6) or whether it should be the squared magnitude [15, 24]. Both definitions are
widely used, bounded, and can be used as a statistical tool for measuring correlation
or dependency. This thesis uses the convention of Equation (2.6).

A drawback with the periodogram, and thus Cxy(f), is its large bias and variance,
leading to bad spectral density estimations. The modified periodogram therefore in-
cludes a window function w when computing the DFT of the signal, which reduces the
bias compared to the normal periodogram [8]. There are di↵erent kinds of windows
but the most common one is the Hanning window, which is smooth [22, p. 248]. Fur-
thermore, Cxy(f) has a constant value of one when computed using the periodogram
or the modified periodogram, which does not yield any meaningful results.

A variance reduction can be achieved by segmenting the data into K overlapping
segments and then averaging their respective auto spectrum in order to receive a new
averaged estimate, d�xx(f). The Welch method combines these two approaches [37]
and can be written as

d�xx(f) =
1

K

KX

k=1

1

n

�����

n�1X

t=0

x(t)wk(t)e
�i2⇡ft

�����

2

, (2.7)

where x(t) is the signal and wk(t) is the time-shifted window function. Computing
Cxy(f) based on the Welch method does not yield a constant value of one for all fre-
quencies due to its averaging properties [22, p. 256]. It is common to have overlapping
segments with a 50% overlap. Such overlap has shown significant improvements in
terms of both bias and variance reductions [9]. Increasing the overlap also increases
the computational costs since we need to perform more FFTs. However, the cost as-
sociated with 50% overlaps is deemed reasonable in relation to the bias and variance
improvements [8]. In addition, this method does not cause Cxy(f) to always equal
one. The approach to estimating the coherence spectrum is detailed Algorithm 1.
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2.1.2 Imaginary Coherence

Coherence measures the frequency distribution and correlation between two signals.
The method is however not always trustworthy, as false connectivity may arise, re-
sulting in wrongful conclusions. This can occur in EEG analysis if electrodes measure
the same underlying source and it is interpreted as true connectivity between two
brain regions. The problem is known as volume conduction and tends to occur when
electrodes are placed close to each other [33].

In 2004, imaginary coherence was introduced in [24] as a possible solution and is
defined as the imaginary part of the complex coherence,

iCxy(f) = Im {�xy(f)} =
Im{�xy(f)}p
�xx(f)�yy(f)

. (2.8)

The reasoning for this method goes as follows: When volume conduction occurs, we
only have one true source that two electrodes end up measuring. A signal cannot
be time-lagged to itself and we should therefore not expect any time lag in such a
scenario. Moreover, no time lag means that the relative phase is either 0 or ±⇡, de-
pending on the sign of the electric potential and the electrodes. Hence, the coherence
Cxy(f) spectrum is in such a case real-valued, which in turn implies that its imaginary
component cannot detect signals from common-sources [24, 38].

While imaginary coherence can resolve the problem of false connectivity, it cannot
measure the strength of correlations as well as coherence [33]. Additionally, imaginary
coherence may also fail to recognize connectivity when time-lags are very small or van-
ishing, but it is believed to be a justified risk due to its insensitivity to same source
measurements [24]. Combining the two forms of coherence may therefore yield a bet-
ter understanding of the connectivity between two signals x(t) and y(t) since Cxy(f)
indicates the strength of their coupling whereas iCxy(f) determines if the connectivity
resembles true brain interaction.

2.2 Non-stationary Signal Processing

As previously mentioned, coherence methods assume stationarity which is rarely the
case for EEG signals. They are known to be noisy and non-stationary but the sta-
tionarity assumption is frequently applied in neuroscience studies which can lead to
unreliable estimates [23]. We therefore introduce another non-stationary approach
that instead looks at the phase correlation between two signals and does not make
any assumptions about the data. This approach was motivated by previous research,
which showed that di↵erent areas of the brain enter a time period of phase-locking
when interacting with a particular stimulus [20]. In other words, the idea is to inves-
tigate whether there is a change in the amount of phase synchronization in the brain
during the time that a stimulus is present.

2.2.1 Phase Locking value

The Phase Locking Value (PLV) was the first phase-based method introduced in [20]
in 1999 and can be computed across trials and/or over time. It is most commonly
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Algorithm 2 Phase Locking Value
Compute the following for all N trials simultaneously.

1. Apply a band-pass filter to both signals to get x̃ and ỹ and let the filter be
centered between ±2 Hz of the desired frequency.

2. Compute the respective Hilbert transforms of both filtered signals,

x̂ = x̃+ i · Hilbert(x̃), ŷ = ỹ + i · Hilbert(ỹ).

3. Compute the phases of both Hilbert transforms to get ✓x and ✓y.

4. Compute the PLV as in Equation (2.9).

computed across trials since two brain areas are believed to have underlying connec-
tivity if they, for a given time period, show a consistent phase di↵erence [20]. We
compute PLV across trials as

PLVx,y(t) =
1

N

�����

NX

n=1

e�i(✓x(t,n)�✓y(t,n))

����� , 0  PLVx,y(t)  1, (2.9)

where we haveN trials and ✓x(t, n) is the phase of the signal x at time t for the nth trial.
This results in PLV as a function of time, which can be useful in for example epilepsy
studies but not in machine learning applications. It is however possible to compute
PLV across time which yields N di↵erent scalar PLVs. Before the computations in
Equation (2.9) are carried out, we need to design and apply a narrow band-pass filter
since any form of meaningful results is only possible when we have well-defined oscil-
lations [18]. The oscillations must also be within the frequency range of interest, and
filtering is thus often considered the greatest challenge with this method [23]. The
whole process is summarized in Algorithm 2.

A higher PLV indicates a stronger phase synchronization, but it can not be used
as a direct measurement of the correlation between signals as coherence can. For
instance, say that we measure the PLV between the channel pair (i, j) and (k, l) dur-
ing the time that the stimulus is present and obtain PLVi,j = 0.7 and PLVk,l = 0.8.
These results do not necessarily mean that channels k and l have a greater significant
phase synchronization during the time period of interest. It could be that these two
channels simply have a continuously strong synchronization due to volume conduction
which is not a↵ected by the stimulus. It is therefore common to perform a hypothesis
test to see if there is a significant change in PLV during the time that the stimulus
is present, compared to before. Depending on the purpose of the analysis, some tests
may be more suitable than others. The original paper suggested the Raleigh test [20]
whereas other papers use the z-test [18]. However, PLV on its own is still a good
indicator of how the oscillations in the brain are relating to one another, but it is
hard to determine what results should be deemed significant.
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2.2.2 Imaginary PLV

The risks associated with volume conduction are also relevant when estimating PLV.
The logic applied to imaginary coherence in Section 2.1.2 to remove zero-lag e↵ects
from normal coherence, can also be applied to PLV [26]. This line of reasoning
is justified by the strong similarities between PLV and coherence, and a thorough
explanation can be found in [7]. The imaginary PLV is therefore

iPLVx,y(t) =
1

N
Im

(
NX

n=1

e�i(✓x(t,n)�✓y(t,n))

)
. (2.10)

The iPLV is not normalized which can become problematic in cases of volume con-
duction [7]. The corrected imaginary PLV (ciPLV) is therefore introduced as an
alternative to iPLV,

ciPLVx,y(t) =

1
N Im

nPN
n=1 e

�i(✓x(t,n)�✓y(t,n))
o

r
1�

⇣
1
NRe

nPN
n=1 e

�i(✓x(t,n)�✓y(t,n))
o⌘2 . (2.11)

Additionally, ciPLV has been shown to outperform iPLV in simulations where volume
conduction or source leakage is present [7], indicating that ciPLV is a good metric for
EEG analysis.

2.2.3 Phase-Amplitude PLV

As previously described, PLV can be computed between two brain areas in order to
determine if they show any interaction based on their coupling strength. There is
however instances of brain cross-frequency coupling where the same brain region ex-
periences interactions between di↵erent brain waves, for example, theta and gamma
[35]. In order to assess and evaluate these forms of coupling, another form of the PLV
is needed, which instead looks at a single signal x(t) filtered at two di↵erent frequency
bands. The signal is first filtered with a narrow low-frequency band and then again
with a wider high-frequency band, since, the amplitude of the wider filtered signal
should oscillate at the narrow filtered signal’s frequency if cross-frequency coupling
exists [18].

We refer to this metric as PLVamp, and write it formally as

PLVamp =
1

T

�����

TX

t=1

e�i(✓low(t)�✓high(t))

����� , (2.12)

where T is the total number of time points. In contrast to PLV, PLVamp is computed
over time and the ✓s are estimated di↵erently. The phase from the higher frequency
is obtained by computing the amplitude of the analytic signal and then performing a
second Hilbert transform after which the phase ✓high is extracted. The phase extracted
from the low-frequency range, ✓low, is computed in the same manner as described in
Algorithm 2 [18]. The full procedure is detailed in Algorithm 3.
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Algorithm 3 Amplitude focused Phase Locking Value

1. Apply a narrow low-frequency band-pass filter to signal, x to get x̂low. Let the
filter be of width 2 Hz and centered at the desired frequency.

2. Compute the Hilbert transform of x̂low and extract the phase as ✓low.

3. Apply a wide high-frequency band-pass filter to signal x, to get x̂high. Let the
filter be approximately 20 Hz wide and in the gamma range.

4. Compute the Hilbert transform of x̂high and extract the phase as ✓high.

5. Compute the PLVamp metric as described in Equation (2.12).

2.2.4 Singular Spectrum Decomposition

As previously mentioned in Section 2.2.1, the greatest challenge of the PLV algo-
rithm is to successfully filter and decompose the signal into well-defined components,
in order to obtain any meaningful results from the PLV algorithm. An alternative
approach to filtering the signal before computing the PLV is to use the Singular Spec-
trum Decomposition (SSD) algorithm to “automatically” decompose the signal [23].
The SSD algorithm is a relatively new algorithm used to decompose noisy and non-
stationary time series and was originally proposed by Bonizzi et al. in 2014 [5]. This
thesis is not going to describe the algorithm in detail but a thorough explanation can
be found in the original paper [5].

The algorithm is a further development of the Singular Spectrum Analysis (SSA)
algorithm and is an adaptive decomposition method. SSA is in turn a principle com-
ponent analysis (PCA) based method, which means that it looks for directions in data
sets with large variances [25], and can be divided into four main steps. Let us first
create a so-called trajectory matrix, which is a matrix with constant cross-diagonals,
of the original signal x(t) by embedding it into a vector space of dimension M , where
1 < M < N and N is the length of x(t). The embedding procedure generates
K = N �M + 1 lagged vectors of the form

xi = (x(i), . . . , x(i+M � 1))T , where i = 1, . . . , N �M + 1,

which make up the (M ⇥ K)-dimensional matrix X. Secondly, we apply Singular
Value Decomposition (SVD) to the trajectory matrix and thereafter group the prin-
ciple components based on specific components, such as trend and oscillations, etc.,
of the original signal. Finally, the SSA algorithm reconstructs the components of the
original signal.

The main critique of SSA is that the embedding dimension M and the principal
components used for reconstruction must be chosen manually, which is di�cult since
we do not have any prior knowledge of the data. Both these aspects have however
been automated in the SSD algorithm by instead extracting each component until
a certain threshold is reached. The embedding dimension M is re-defined at each
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Algorithm 4 Singular Spectrum Decomposition
Repeat the following procedure until NMSE  th, yielding K components. Let j be
the iteration number and let v1 be the original signal.

1. Compute the PSD of the residual time series vj(t) and determine which fre-
quency produces the greatest peak.

2. Define the embedding dimension, Mj = b1.2 Fs
fmax

c and generate the trajectory

matrix X. Note! If j = 1 and the normalized frequency fmax

Fs
< 0.001, then a

sizable trend is deemed to be detected and M is instead set to M = bN
3 c.

3. Compute the SVD of X.

4. Identify which subset Ij of components from the decomposition should be used
to reconstruct the jth component gj(t).

• The frequency band used to identify good principle components is defined
as [fmax� �f ; fmax+ �f ], where �f is the half-width of fmax and unknown.
Estimating �f is done by optimization but does in short make use of three
Gaussian functions which help to describe the properties of the jth PSD.
They account for the dominant peak, the second dominant peak as well as
the average of the two.

5. Reconstruct the component series by diagonally averaging XIj along the cross-
diagonals, yielding gj(t). Note! If a sizable trend has been detected, the
reconstruction only makes use of the first left and right eigenvectors before the
diagonal averaging.

6. If no trend has been detected, repeat steps 2� 5 once in order to improve gj(t)
and avoid the risk of v(j+1)(t) having more energy than v(j)(t).

7. Obtain the new residual time series as vj+1(t) = vj(t)� gj(t)

8. Compute the NMSE for this iteration,

NMSE(j) =

PN
n=1 v

(j+1)(n)2
PN

n=1 x(n)
2

.

and check if it is greater than th.

iteration and the principle components are selected based on their frequencies being
in a defined frequency band. SSD also constructs the trajectory matrix di↵erently.
In the new approach, we change the dimension of X to (M ⇥N), and define each xi

as

xi = (x(i), . . . , x(N), x(1), . . . , x(i� 1)), where i = 1, . . . ,M.

The new formulation of the trajectory matrix creates additional benefits in regards to
decreasing the energy of the residuals by enhancing the signals’ oscillatory content [5].
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The algorithm is repeated until the normalized mean square error (NMSE) between
the jth component residual and the original signal is less than a given threshold, th,
yielding K components. The default value of th is 0.01 (1%) but can be changed
manually. An outline of SSD can be found in Algorithm 4.

2.2.5 Phase Lag Index

Another method used when dealing with volume conduction is the Phase Lag Index
(PLI) which has strong similarities to both iPLV and iCxy(f). There are two equivalent
definitions for PLI, one resembling PLV and one coherence. PLI is bounded between
0 and 1, where a value of 0 indicates no phase coupling between the signals. The
original definition of PLI from [33] is

PLI = |E [sgn (�✓t)]| , 0  PLI  1, (2.13)

where �✓t is the phase di↵erence between two signals. This resembles PLV due to
them both being based on phases. However, PLI is a function of both the variance
and mean of �✓t whereas PLV is a function of the mean [2]. Previous work also
indicates that PLI might identify stronger synchronizations between channels more
accurately than iPLV due to a stronger robustness to volume conduction [33]. It is
nonetheless beneficial to include both since they are functions of di↵erent parameters.

The other definition of PLI, with similarities to imaginary coherence, from [36] is
written as

PLI = |E [sgn (Im {�xy(f)})]| , (2.14)

where �xy(f) is the cross-spectrum defined in Equation (2.3). PLI is solely based on
the imaginary component of �xy(f), whereas iCxy(f) is normalized by the amplitude
of the signal and thus includes some real components as well [36]. This distinct dif-
ference indicates that PLI might be a more suitable metric in terms of dealing with
volume conduction but it is however encouraged to include both when possible.

It is also possible to obtain the signed PLI (sPLI) by not taking the absolute value in
either Equation (2.13) or (2.14) [33, 36]. This may be useful in analyses where we are
interested in the order that two signals appear. Meanwhile, other applications may
find it desirable to determine if the PLI obtained is significantly greater than zero.
This can be done by introducing a surrogate data set which resembles the original
data, but lacks any correlation between channels, and then comparing the two with
a z-test [33].

One limitation of the PLI is that a small disturbance can turn phase lags into false
leads, causing a discontinuity that a↵ects the sensitivity of the measurement [36].
This is addressed by introducing the weighted PLI (wPLI) which in addition to PLI
is weighted by the imaginary component of the cross-spectrum [26]. We therefore
define the wPLI as

wPLI =
|E [Im {�xy(f)}]|
E [|Im{�xy(f)}|]

=
|E [|Im {�xy(f)}| sgn (Im{�xy(f)})]|

E [|Im{�xy(f)}|]
. (2.15)
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The wPLI is less a↵ected by uncorrelated noise sources than PLI and is also able to
detect phase-based synchronization changes with a higher accuracy [36].

2.3 Machine Learning

Machine learning (ML) is becoming an increasingly popular branch of mathemat-
ics and computer science. There are many facets to ML, one of which is statistical
learning where we want to create a model which can predict future values, so called
outcomes, based on unseen data. A model is only able to predict outcomes based on
the same underlying distribution as the data it was trained on. The general procedure
when designing a model is to split the data into a training and test set, then to train
the model on the training set before evaluating how well it manages to predict the
outcomes of the test set.

There are many di↵erent kinds of models and depending on the problem and the
data set at hand, some may be more suitable than others. Regression models are
for example used on continuous data sets whereas classification models are used on
categorical data sets. A model is said to be obtained through supervised learning if
we have labeled the targets during training and unsupervised learning if not. This
thesis is only focusing on binary supervised classification models.

Each model consists of di↵erent parameters, where some are fixed and set by the
programmer whereas others are optimized during training. Optimizing these parame-
ters is actually what is meant by “training” a model. The fixed parameters are called
hyperparameters and can greatly impact the optimization procedure, and thus the
performance of the model. Choosing suitable hyperparameters is therefore important
and this is discussed in Section 2.3.4.

Designing a model that performs well on the training set is relatively easy, whereas
it can be significantly harder to create a model that generalizes to unseen data. If
a model performs significantly better on the training data compared to the test set,
we say that the model is overfitted. This can for example happen if we have too
many parameters, or train the model to account for every outlier. There are various
strategies available to avoid overfitting and they are commonly referred to as regular-
ization [14, p. 224]. Avoiding overfitting is crucial since an overfitted model is unable
to predict outcomes on unseen data.

2.3.1 Logistic Regression

The simplest model used for binary classification problems is the Logistic Regression
model and it is based on the probability that an outcome either belongs to class 1 or
0,

p(X) = Pr(Y = 1|X) = 1� Pr(Y = 0|X).

The probability p(X) is written as

p(X) =
e�0+�1X

1 + e�0+�1X
, (2.16)
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where �0 and �1 are the parameters we wish to optimize. We can rewrite Equation
(2.16), to make it linear in X as

log

✓
p(X)

1� p(X)

◆
= �0 + �1X, (2.17)

where the left hand side is referred to as the log-odds [19, p. 132]. The Maximum
Likelihood Estimation (MLE) method is used to estimate the parameters by finding
values �0 and �1 that maximize the probability of making the correct classifications.
This is obtained by maximizing the log-likelihood function,

l(�) =
NX

i=1

⇥
yi log p(xi; �) + (1� yi) log(1� p(xi; �)

⇤
(2.18)

=
NX

i=1

⇥
yi�xi � log(1 + e�xi)

⇤
,

with � = �0, �1 [16, p. 120]. Note that these equations are valid for binary classifica-
tion, and in cases where Y takes on more than two values multiple logistic regression
is needed.

2.3.2 Random Forest

The Random Forest (RF) model is one of the most commonly used classification
algorithms today [11]. A RF model consists of B decision trees where each tree is
obtained through boosting. This means that each tree is trained on a subset of the
original training data, Z, and the final outcome, for classification, is the most popular
class among these trees [6]. Finding the outcome in this manner is referred to as the
majority vote and it helps to reduce the variance of the final model which is desirable
[19, p. 316].

As can be seen in Figure 2, each tree consists of several binary splits where each

Figure 2: An illustration of a random forest with three trees and three splits.
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Algorithm 5 Random Forest

1. Create B number of trees by repeating the following steps.

(a) Draw bootstrap sample to create a new data set Z of length N .

(b) Grow a tree on the data set Z by repeating the following steps for each
terminal node until either the minimum node size, t, or the maximum
number of splits S is reached.

i. Randomly select
p
N features to use when considering the split of this

node.

ii. Pick the best feature and split the node into two new nodes.

2. Predict the class by taking the majority vote of the B trees.

split represents two cases of one feature. For example, say that we have the feature
age, then a possible distinction could be whether or not age is greater than 50. Deter-
mining which feature to use and what the distinction should be is done by minimizing
a loss function, the most common of which is the Gini Index. Each split considers
m randomly selected features which help to decorrelate the trees and yield a more
reliable final model [19, p. 319]. A common choice is to have m =

p
N where N is

the total number of features [16, p. 592].

It is possible to create a forest without predefining a lot of hyperparameters, apart
from the number of trees B, but it is advisable to include some. Deciding on a maxi-
mum number of splits S, or a minimum node size t, can for example help to regularize
the model. A general description of the RF model is available in Algorithm 5.

One advantage of the RF model is that it provides an easy overview of the importance
of di↵erent features. The feature with the largest decrease in its loss function after a
split is considered to be the most important [19, p. 319]. The importance of features
is often viewed graphically in a so-called feature importance plot.

2.3.3 Artificial Neural Network

Artificial neural networks (ANN) are in general more advanced than the models pre-
viously presented, and tend to be applied to larger data sets due to their complexity.
This model, or network rather, can be thought of as a spider web with an input layer,
an output layer, and H hidden layers, where H is a hyperparameter, and increasing it
yields a more complex model. These kinds of networks are inspired by the structure
of the human brain where the nodes, denoted by the circles in Figure 3, correspond
to neurons, hence the name neural networks.
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Figure 3: An illustration of an ANN with N inputs, one output, and one hidden layer
with P nodes.

The output of an ANN with one hidden layer is given by

y = '

 
PX

i=1

xiwi + w0

!
, (2.19)

where ' is the activation function for the hidden layer, wi are the weights for each
node i and P is the number of nodes in the hidden layer. Simpler networks often use
the hyperbolic tangent, '(a) = tanh(a) as its activation function whereas deeper net-
works tend to use the rectifier function, '(a) = max(0, a). It is however common to
have the same activation function for all hidden layers. An illustration of the network
described in Equation (2.19) is shown in Figure 3 where the input layer consists of N
features obtained from the data set and P nodes in the hidden layer.

Training an ANN means optimizing the weights w to minimize the loss function E be-
tween the true values and our outputs, until convergence. Two of the most common
optimization algorithms used are Stochastic Gradient Decent (SGD) and Adaptive
Moment Estimator (ADAM), where ADAM is a further development of SGD [14,
pp. 290–291]. The idea in both is to update the weights based on a random subset of
the data, called a minibatch of size M . In SGD we update the weights wk as

�wk =
1

M

MX

m=1

�wmk and �wnk = �⌘
@En

@wk
, (2.20)

where ⌘ is the learning rate and En the loss function for each feature. We will for
simplicity reasons refer to @En

@wk
as gk in the following.

One potential drawback of SGD is that it can have a hard time minimizing the
loss function if it gets stuck in a plateau. This problem is addressed by ADAM which
instead makes use of two running averages of previous gradients when updating each
weight,

mk(t+ 1) = �1mk(t) + (1� �1)gk(t),

vk(t+ 1) = �2vk(t) + (1� �2) (gk(t))
2 ,
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Algorithm 6 Artificial Neural Network

1. Define all necessary hyperparameters.

i. SGD: ⌘ and P .

ii. ADAM: ⌘, P, �1, �2 and ✏.

2. Initialize variables to be updated.

i. SGD: The weights w0.

ii. ADAM: The weights w0, the running averages m0 and v0 and the initial
gradient gk(t).

3. Repeat the following until w converges.

(a) Draw a minibatch of M randomly chosen data points from the training
set.

(b) Compute the unique estimates for this minibatch

i. SGD: Compute the gradient gk(t).

ii. ADAM: Compute the gradient gk(t) and the moving averages mk(t),
vk(t).

(c) Update the weights w

i. SGD: According to Equation (2.20).

ii. ADAM: According to Equation (2.21).

where mk(t) is known as a momentum term. The weights are then updated according
to

wk(t+ 1) = wk(t)� ⌘
m̂k(t+ 1)p
v̂k(t+ 1) + ✏

, (2.21)

where m̂k(t+1) = mk(t+1)
1��t

1
and v̂k(t+1) = vk(t+1)

1��t
2
. This method thus introduces three

new hyperparameters where �1 and �2 are exponential decay rates of the averages
and ✏ is a small number such that we do not divide by zero.

2.3.4 Validation

Validating a model refers to measuring its performance on unseen data and comparing
this to the performance on training data is how we detect overfitting. In Section 2.3.5
below, we discuss di↵erent metrics to evaluate models and their performance. These
metrics are then used to find the ideal value of hyperparameters, and thus improve
the model performance and reduce overfitting.

It is not possible to evaluate the model on the test set and then re-train it since
this yields a biased model. Therefore, we construct a validation set by splitting the
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training set, which we then use to tune the hyperparameters. Once we are satisfied
with the validation performance, we choose the best parameters and use those to train
a final model based on both the training and validation sets before evaluating it on
the test set. This whole process is called model selection. Including a validation set
also has the additional benefit of lowering the risk of overfitting a model.

One common reason for overfitting is that we do not have enough data points to train
the model on, especially after including a validation set. The K-fold cross-validation
method helps to solve this by training and validating the model on di↵erent sections
of the data and thus “generating” more data. The final training error is then the
averaged training error of the di↵erent sections, see [16, pp. 242–249] for more details
on this method. It is also advisable to use this method when tuning hyperparameters
on a smaller data set.

2.3.5 Evaluation metrics

There are several kinds of evaluation metrics available when validating a model and
depending on the purpose some might be more suitable than others. Having a metric
that favors certain outcomes over others can for example be useful when designing
a model to detect diseases since it often is better to over-diagnose than to under-
diagnose.

In binary classification, the two outcomes are often referred to as “positive” and
“negative”, and four possible situations can arise upon classification. The model can
correctly deduce the outcome and we then call it a True Negative (TN) or a True
Positive (TP). If the outcome is wrongfully classified we either call it a False Negative
(FN) or False Positive (FP). Accuracy is one of the most commonly used validation
metrics and measures the proportion of predictions that were correctly classified. It
is computed as

Accuracy =
TP + TN

TP + TN + FP + FN
.

We can also compute the Sensitivity and Specificity from the the same quantities as,

Sensitivity =
TP

TP + FN
, Specificity =

TN

TN + FP
.

Sensitivity is the proportion of positive predictions correctly classified as Positive
whereas sensitivity is the proportion of negatives correctly classified as negative.
Outside of medical applications, these metrics are often referred to by other names,
namely, Type I for specificity and Type II or recall for sensitivity [19, p. 149].

The Receiver Operating Characteristic (ROC) curve is used to visualize the trade-
o↵ between sensitivity and specificity. The area under the ROC curve is commonly
referred to as the Area Under the Curve (AUC ) and helps us to measure how close
we are to an ideal ROC curve. An ideal model always correctly classifies its outcomes
and we thus want both sensitivity and specificity to equal 1, yielding AUC = 1. The
opposite case would be a purely random model which is equally likely to give a false
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positive as a true positive, corresponding to AUC = 0.5.

The F1-score gives a more balanced overview of the model performance in cases of
imbalanced classes and is defined as

F1 = 2 ·

TP

TP + FP| {z }
precision

· TP

TP + FN| {z }
recall

TP

TP + FP| {z }
precision

+
TP

TP + FN| {z }
recall

. (2.22)

It is the harmonic mean between recall and precision, where precision is the pro-
portion of true positives among all those classified as positives [34]. Including this
metric can be beneficial since it can help determine if the model favors one of the two
outcomes. A value close to 1 indicates a good model with even predictions whereas a
value closer to 0 indicates an unsuccessful model.

We lastly mention a metric that is instead based on probability, namely the log-
loss. This metric is sometimes referred to as the cross-entropy loss and is the same
log-likelihood that we defined in Equation (2.18). We will however rewrite it in a
more straightforward manner here and note that a lower Llog value indicates a better
model,

Llog(y, p) = � log Pr(y|p) = � (y log(p) + (1� y) log(1� p)) ,

where y 2 {0, 1} and p = Pr(y = 1).
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3 Method Evaluation

3.1 Simulated data

Evaluating and comparing models is preferably done on simulated data since we then
know what it is we want the models to detect. It is for example easier to evaluate a
model’s ability to detect a certain frequency if we know the frequency beforehand. If
we wish to use our methods on real EEG data later, we need to simulate the signals
such that they resemble true EEG signals. A framework to simulate such signals was
presented in [4], where each signal x(t) is constructed as a linear combination of the
pure signal xs(t) and the noise xn(t),

x(t) =

r
�

�+ 1

xs(t)

kxs(t)k
+

1p
�+ 1

xn(t)

kxn(t)k
, (3.1)

where � is the associated Signal to Noise (SNR) factor. The noise xn(t) is constructed
as a combination of white noise, alpha noise, and 1

f -noise, whereas the pure signal
xs(t) consists of Gaussian envelope transients. SNR describes the relation between
the mass of xn(t) and xs(t). It is most often reported in decibels and a large SNR
value corresponds to small amounts of noise.

We create two di↵erent data sets in order to answer the two research questions. The
first data set is used to determine whether a stimulus, a signal, is present or not, and
is referred to as the SignalDetection set, SigDet. We use Equation (3.1) to generate
8000 trials with � = 0, which we view as the measurements before the stimulus is
introduced, and 4000 ⇥ 2 trials with � > 0 and phase-shifted xs(t)s, which we view
as our measurements with a stimulus. Both xs(t)s are simulated with a frequency of
10 Hz and a sampling frequency of 256 Hz. Furthermore, the signals x1(t) and x2(t)
are phase-coupled with a constant phase di↵erence of ⇡

4 . The phase of x1(t) varies
between �⇡

2 and ⇡
2 , and the phase of x2(t) is consequently between �⇡

4 and 3⇡
4 . All

Figure 4: Two signals from the PhEst data set with SNR = 16 dB with di↵erent phase
o↵sets.
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Figure 5: One signal from the SigDet data set for di↵erent SNRs.

four signals are two seconds long and the pure signal xs(t) is concentrated between
0.5 and 1.5 seconds in x1(t) and x2(t).

The second data set simulates the side scenario from research question two, and
we refer to it as the PhaseEstimation set, PhEst. It is constructed by choosing 4000
phases ✓1 between

�⇡
2 and ⇡

2 and 2000⇥2 associated phases ✓2 = ✓1± ⇡
4 . These phases

are then used to generate two sets of xs(t)s with the same underlying frequency and
sample frequency as in SigDet, which we combine with noise to get 2000⇥ 2 realiza-
tions of (3.1). The phase o↵sets are chosen so that the first 2000 realizations have a
positive phase di↵erence �✓ > 0, and the last 2000 have a negative phase di↵erence
�✓ < 0, which corresponds to the two sides. An illustration of two signals with a
positive phase di↵erence can be found in Figure 4.

Finally, we generate three variations of each data set by changing the SNR factor
in Equation (3.1), in order to determine how robust the methods are to noise. The
di↵erent SNR factors are 10 dB, 13 dB and 16 dB, and a signal from the SigDet data
set is shown in Figure 5 for the di↵erent SNRs. We expect the methods to work
perfectly for 16 dB since the pure signal xs(t) is clearly visible. It is still possible to
see traces of xs(t) for 13 dB and the methods should therefore manage to identify its
characteristics, whereas the methods should struggle in the 10 dB case.

3.2 Stationary methods

3.2.1 Method

The methods in this section assume stationarity and we therefore segment the data
into shorter, overlapping segments. This segmentation gives us shorter signals that
exhibit more stationarity by not varying as much over time. We divide both signals
into 0.5-second segments with a 50% overlap. We then compute the cross-spectrum
and the respective auto spectrum of each segment, using K = 4 Hanning windows,
and all segment spectrums are thereafter individually summed. The final coherence
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Figure 6: The coherence spectrum and imaginary coherence spectrum of one trial
from the SigDet data set, simulated with di↵erent SNRs.

and imaginary coherence are then computed as in Equation (2.6) and (2.8) based on
the summed cross- and auto spectrum.

3.2.2 Evaluation

Applying both methods to the SigDet data set shows that the models are able to
distinguish the presence of the pure signal xs(t) when SNR = 16 dB, see Figure
6. While the methods are able to detect a correlation in the 0 to 20 Hz frequency
band for lower SNR, the performance is significantly degraded. Moreover, the coher-
ence spectrum on the left appears to be more sensitive to noise than the imaginary
coherence spectrum on the right. However, the strength of the correlation is easier
to interpret in the coherence plot and it can thus, as expected, be wise to include both.

Both methods are similarly able to identify a correlation when evaluated on the PhEst
data set for higher SNR. The sign of the phase di↵erence does not significantly a↵ect
the coherence spectrums as can be seen in Figure 7. Note that the energy in the 0

Figure 7: The coherence spectrums of two trials with opposite phase di↵erences and
the same underlying noise at di↵erent SNRs, from PhEst.



3 METHOD EVALUATION 21

Figure 8: The imaginary coherence spectrums of two trials with opposite phase dif-
ferences and the same underlying noise at di↵erent SNRs, from PhEst.

to 20 Hz region increases with SNR, as is to be expected. On the other hand, the
imaginary coherence spectrums of the same trials are able to distinguish between the
sign of the phase di↵erence, see Figure 8. The two trials appear to mirror each other
in the frequency band of interest and this di↵erence is still evident for lower SNRs.
This suggests that the sign of imaginary coherence can be used for answering the
second research question. Nonetheless, the coherence spectrum is more suitable for
determining the strength of correlation since it captures the full energy of the signal.

Both stationary methods can be used in EEG analysis and it is advisable to segment
the data in order to obtain a more stationary behavior. The coherence spectrum is
better at distinguishing the strength of correlation, whereas the imaginary coherence
spectrum can distinguish between the sign of phase di↵erences. We are thus able
to use both methods to answer research question one and the imaginary coherence
spectrum for research question two. There might be more benefits with the imaginary
coherence spectrum but we need a di↵erent data set to evaluate since we have not
included volume conditions in the simulations.

3.3 Non-stationary methods

3.3.1 Method

There is no need to segment the data before evaluating the methods in this section
since we do not assume stationarity. We compute the PLV, iPLV, and ciPLV by
designing a band-pass filter between 8 and 12 Hz and filtering each signal before ex-
tracting the respective phase di↵erence between x1(t) and x2(t) after applying the
Hilbert transform. Now we compute all metrics across both trials and time in order
to assess the methods’ performances. The summations in Equations (2.9), (2.10), and
(2.11) are thus performed twice. Both filters for PLVamp are inspired by [18] and we
set the lower-frequency filter to be between 9 and 11 Hz, and the higher-frequency
filter to be between 50 and 70 Hz.

The SSD algorithm yields an unknown number of components K since the algorithm
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is repeated for as long as NMSE > th. Our PLV computations are however only
based on the component with the most power within the alpha region since we know
that the pure signal xs(t) has a frequency of 10 Hz. In addition, we set a maximum
number of components that the SSD can produce, K = 10, in order to accelerate
the computations. After identifying the component, we compute the PLV, iPLV, and
ciPLV as described above, excluding the filtering process. Finally, we compute the
cross-spectrum of the entire signal and extract its imaginary component in order to
get PLI and wPLI. The PLIs are only computed individually for each trial.

3.3.2 Evaluation

Normal PLV appears to identify phase-coupling during the time period of interest
when computed on the SigDet data set, as can be seen in Figure 9. Without xs(t),
the PLV is e↵ectively constantly zero while with xs(t), there is a clear increase for
all three cases of SNR between 0.5 and 1.5 seconds. As we decrease SNR, we see
a decrease in PLV strength which is reasonable, but the decrease between 13 and
10 dB is rather rapid, suggesting that the method may struggle when more noise is
present. Regardless, all PLV di↵erences are deemed significant with a p-value ⌧ 0.01.

Using SSD instead of filtering yields a stronger and smoother PLV as can be seen
by comparing Figure 9 and 10. We see that for SNR = 16 dB, PLVSSD = 1 during
the time that xs(t) is present, whereas normal PLV has an oscillatory behavior with
a maximum value of approximately 0.7. Similarly to normal PLV, we see a weakened
strength in PLVSSD as SNR decreases, but the maximum value of PLVSSD is still
higher for the same SNR, compared to normal PLV.

There are some limitations with the simulated data set, which a↵ect our evaluations
of PLVamp, iPLV, and ciPLV. There are no high-frequency components in this data
set, which causes no significant results for PLVamp. There is no di↵erence between
xs(t) being included or not and all PLVamps very small and there is no di↵erence. Fur-
thermore, our iPLVs and ciPLVs show great similarity when obtained through both

Figure 9: PLV computed across all SigDet trials, for di↵erent SNRs as well as pure
noise for comparison.
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Figure 10: PLVSSD computed across all SigDet trials, for di↵erent SNRs as well as
pure noise for comparison

filtering and SSD. This is most likely due to the fact that we have not introduced any
volume conduction in our simulated data set, which is what should distinguish the
two according to Section 2.2.2. However, the sign of iPLVSSD and ciPLVSSD is a↵ected
by the sign of the phase di↵erence in the PhEst data set, as can be seen in Figure
11. The di↵erence is in addition clearly visible for the lowest SNR, but iPLVSSD and
ciPLVSSD are then nearly identical. Using the imaginary-based PLV can therefore
help us answer the second research question. This sign di↵erence is also present with
normal iPLV or ciPLV but it is more subtle.

All methods are more sensitive to the sign of the phase di↵erence when we com-
pute them over time instead of trials. We can divide the PhEst data set into three
cases; trials with positive phase di↵erences, negative phase di↵erences, or a combina-
tion of the two, were the first case corresponds to the signals in the SigDet data set.
When the sign of the phase di↵erence �✓ is kept constant for SNR = 13 dB, we see
that all methods, except PLI, manages to distinguish between xs(t) being present or

Figure 11: iPLVSSD and ciPLVSSD computed across all PhEst trials with the same
signed phase di↵erence for di↵erent SNRs.
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Table 2: The mean of all nine methods, and their standard deviations in parenthe-
sis, when computed over time, based on the PhEst data set with SNR = 13 dB. A
statistically significant deviation from noise is denoted by an asterisk (*).

Metric Trials with +�✓ Trials with ��✓ All trials
sPLI -0.107 (0.994)* 0.141 (0.990)* 0.017 (1.00 )*
PLI 0.098 (0.073) 0.100 (0.075) 0.099 (0.074)
wPLI 0.482 (0.252)* 0.494 (0.254)* 0.488 (0.253)*
PLV 0.263 (0.131)* 0.263 (0.134)* 0.263 (0.132)*
iPLV -0.087 (0.184)* 0.090 (0.188)* 0.001 (0.206)
ciPLV -0.089 (0.188)* 0.092 (0.193)* 0.001 (0.211)
PLVSSD 0.263 (0.131)* 0.261 (0.132)* 0.262 (0.131)*
iPLVSSD -0.084 (0.188)* 0.086 (0.188)* 0.002 (0.206)
ciPLVSSD -0.086 (0.192)* 0.088 (0.193)* 0.001 (0.211)

not, as can be seen in Table 2. The sign of the phase di↵erence only influences the
sign of the imaginary-based means, which in turn indicates that they can be used to
answer the second research question. On the other hand, when the sign of �✓ varies,
all imaginary-based methods struggle to detect the stimulus. However, we have an
even number of positive and negative phase di↵erences and it is thus probable that
the values are canceled out in the means.

The only di↵erence between SNR being 13 or 16 dB is the significance of PLI, and the
means for the 16 dB case are thus not shown. In contrast, only the imaginary-based
methods yield significant results when we set SNR to 10 dB and keep the sign of �✓
constant, as can be seen in Table 3. Moreover, only the sPLI manages to distinguish
between noise and stimulus when �✓ varies. Finally, the PLI methods are generally
more sensitive to noise than the PLV methods, but the sPLI can distinguish between
stimulus and noise for all SNR levels as well as the sign of the phase di↵erence when
SNR � 13 dB.

Table 3: The mean of all nine methods, and their standard deviations in parenthe-
sis, when computed over time, based on the PhEst data set with SNR = 10 dB. A
statistically significant deviation from noise is denoted by an asterisk (*).

Metric Trials with +�✓ Trials with ��✓ All trials
sPLI -0.024 (1.00) 0.045 (0.999) 0.011 (1.00)*
PLI 0.097 (0.072) 0.098 (0.074) 0.098 (0.073)
wPLI 0.399 (0.236) 0.408 (0.236) 0.403 (0.236)
PLV 0.247 (0.125) 0.248 (0.125) 0.248 (0.125)
iPLV -0.015 (0.191)* 0.020 (0.196)* 0.002 (0.194)
ciPLV -0.015 (0.195)* 0.020 (0.200)* 0.002 (0.198)
PLVSSD 0.246 (0.124) 0.246 (0.128) 0.246 (0.126)
iPLVSSD -0.013 (0.192)* 0.017 (0.198)* 0.002 (0.195)
ciPLVSSD -0.014 (0.196)* 0.017 (0.201)* 0.002 (0.199)
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The methods evaluated in this section can be used for EEG analysis and all vari-
ations of the PLV can be computed across both time and trials. The methods do
however appear to be more sensitive to noise and the sign of the phase di↵erence
when averaging PLV over time. Identifying whether a stimulus is present is easier
when the sign of the phase di↵erence is consistent, but the methods are able to detect
a correlation in other cases too. Moreover, the imaginary PLVs are able to detect the
sign di↵erence and thus answer the second research question in the a�rmative. In
addition, the PLV methods are more robust to noise than the PLI methods. Finally,
using SSD instead of filtering is not only easy to implement, but it also yields better
results and is therefore preferred.

3.4 Machine Learning

3.4.1 Method

We train all models on both data sets, SigDet and PhEst data sets in order to address
the two research questions. All classifications algorithms discussed in Section 2.3 take
scalar input features and we extract 14 such features. The PLV and PLI computations
are all computed across time but averaging the coherence- and imaginary coherence
spectrum in a similar manner is not ideal. As we saw in Section 3.2, these methods
only generate relevant information in the frequency band of interest and we therefore
sum the power between 8 and 12 Hz, which is inspired by [12]. We also compute the
power of the PSD from the chosen SSD component, in the same interval, and record
its maximum value. Both of these features are done separately for x1(t) and x2(t)
and the absolute value of their di↵erence is then used as the final feature.

We also include features that consider the sign of the imaginary coherence and PLI
in the PhEst models. The sign of the imaginary coherence feature is obtained by
integrating the signed power of iCxy between 8 and 12 Hz. Finally, PLVamp is not
included in either model since we do not have any high-frequency components in our
data.

In order to improve the performance of our models, we evaluate the importance of
di↵erent features. Correlated features can negatively impact the model performance
and we thus check for features with strong correlations. This is especially important
in our case since we include di↵erent variations of the same method, such as PLV
and PLVSSD. The correlated features are then removed separately and we use the
evaluation metrics from Section 2.3.5 to determine which feature removal yields the
best validation performance. Next, we check the importance of di↵erent features to
see if our predictions improve.

Once we are satisfied with the number of features we begin to tune the hyperpa-
rameters for the RF and ANN models by making use of a 5-fold cross-validation. We
tune three hyperparameters for the RF model: the number of trees B, the number of
features considered for each split m, and the maximum number of splits S, whereas
we tune four hyperparameters for the ANN model: The number of hidden layers H,
the choice of activation function ', the choice of optimization algorithm Opt and the
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Figure 12: ROC curves for the PhEst based models for di↵erent SNR.

regularization strength r. The best combination of hyperparameters is then used to
train the final models which are evaluated on the test set.

3.4.2 Evaluation

The final hyperparameters of all models are shown in Table 4 for SNR = 10 and 13
dB. There are strong similarities between both data sets and the two SNR levels 10
and 13 dB. The main di↵erence is the depth of the RF models, where both PhEst
based models contain more splits than the models based on SigDet set. However, the
second research question is expected to be more complex and it is therefore reasonable
that it requires more elaborate models. The values of the hyperparameters for the
SNR = 16 dB models are similar and are therefore omitted.

All SigDet based models perform well on both the validation and test sets. The
validation metrics on the test set for SNR = 10 and 13 dB are shown in Table 5
where we for example see that the accuracy is greater than 95.9% for all models and
both SNR. The RF model appears to be the best model for both SNR cases, and this
model has a 100% accuracy when SNR = 13 dB. The corresponding ROC curves are
shown in Figure 18 in the appendix and are nearly perfect. The feature importance

Table 4: The final choice of hyperparameters for the sets of models when SNR equals
both 10 and 13 dB and N is the total number of features.

Data set Hyperparameter N
B m S H ' Opt r

SNR = 10 dB
PhEst 5 2 64 5 relu ADAM 10�5 8
SigDet 5 2 8 5 tanh ADAM 10�3 7

SNR = 13 dB
PhEst 5 4 128 5 relu ADAM 10�5 8
SigDet 5 2 16 5 tanh ADAM 10�5 7

| {z } | {z }
RF paramaters ANN paramaters
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Figure 13: Feature importance for both RF models with SNR = 13 dB.

of the RF model for SNR = 13 dB is shown on the left in Figure 13 which tells us
that the SSDPower is the most important feature of the model. The same applies in
the SNR = 10 dB case and removing this feature in both cases worsens the results
drastically. This is reasonable considering that the average SSDPower for pure noise
is 100 times greater than that for SNR = 10 dB. This large di↵erence might be due
to our simulated data being constructed in a way that makes it especially well suited
for the SSD algorithm, but it is regardless not likely to be as pronounced on real data.

The PhEst based models do not perform as well as those based on SigDet, as can
be seen in Table 5. The RF model performs best for SNR = 13 dB with an accu-
racy of 79.5%, and the ANN model performs best for SNR = 10 dB with a 53.8%
accuracy. Furthermore, the ROC curves in Figure 12 show that the RF and ANN
models perform relatively similarly for both SNRs whereas the logistic model has the
worst trade-o↵ between sensitivity and specificity. The imaginary coherence spectrum
and the imaginary PLV methods are as expected the strongest indicators of which
signal is leading, see the right figure in Figure 13. Finally, when SNR = 16 dB all
methods have perfect predictive capabilities which is why we do not discuss it further.

Table 5: The validation metrics of all models on the test set, for SNR = 10 dB and
SNR = 13 dB. The best results are written in bold.

SNR Metric Based on SigDet Based on PhEst
Log RF ANN Log RF ANN

13 dB

Llog 1.30 0.00 0.410 7.47 7.08 7.30
AUC 0.991 1.00 0.998 0.785 0.850 0.871
F1 0.962 1.00 0.988 0.774 0.789 0.773

Accuracy 0.963 1.00 0.989 0.784 0.795 0.789

10 dB

Llog 1.40 0.410 0.648 16.7 17.0 16.0
AUC 0.996 0.994 0.996 0.517 0.521 0.530
F1 0.960 0.988 0.981 0.533 0.498 0.516

Accuracy 0.959 0.988 0.981 0.520 0.509 0.538
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The three classification algorithms presented here are all suitable classifiers for EEG
data. It does however not appear to be any distinct di↵erences between the models
which suggests that the obtained features are suitable for EEG analysis. The ANN
model might be better at handling more complex tasks, but the RF model performs
very well as well whereas the logistic model struggles the most. Furthermore, one
feature is an exceptionally strong indicator of whether a signal xs(t) is present or
not, and we therefore have a very high accuracy rate for SNR = 10 dB. This feature
may however only yield such strong results on simulated data due to the way it re-
constructs the signals. The imaginary-based methods are the greatest at detecting
the sign of the phase di↵erence, but the models do not have a high accuracy when
classifying the di↵erence for lower SNR.
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4 Real EEG Examples

4.1 Visual stimulus

Each EEG recording is 15 seconds long, during five of which, the subject was exposed
to flickering lights of di↵erent frequencies. The subject was sitting in a silent room
with their eyes closed throughout the recording. One recording was made for each
frequency, for a total of 10 recordings, with a sampling frequency of 256 Hz. The lights
were generated through a Grass Photic stimulator Model PS22C and the data was
recorded using a Neuroscan system with a digital amplifier (SYNAMP 5080, Neuro
Scan, Inc.) and 21 electrodes [31].

4.1.1 Methodology

Only the first research question is relevant to this data set, and we therefore divide
the data into three subsets; before, during, and after the flickering lights are present.
Determining if the visual stimulus is present is done by comparing the five seconds
before the lights are flickering with the five seconds that they are. Visual informa-
tion is processed in the occipital lobe at the back of the brain [28, p. 260], and we
therefore choose all combinations of electrode pairs such that electrode 02 or 01 are
always present, see Figure 19 in the appendix for electrode placement. We consider
the measurements where the lights flicker at 12 and 15 Hz since these frequencies are
easier to detect.

The signal processing methods are applied in a similar manner to that described
in Section 3.2.1 and 3.3.1, and no classification algorithms are considered. We seg-
ment the data into 1.5-second segments with a 50% overlap before computing the
coherence- and imaginary coherence spectra. The two recordings of lights flickering
at 12 and 15 Hz are treated separately since the spectra are frequency-based, whereas
the phase-based methods can be computed with respect to electrode pairs from both.
Nonetheless, the filters for the PLV computations di↵er between the two since they
need to be centered around the frequency at which the lights flicker. Similarly, we
choose the SSD component with the largest amount of power in 4 Hz wide frequency
bands centered at 12 and 15 Hz, respectively.

4.1.2 Results

Computing the spectra for both flickering lights of 12 and 15 Hz yields similar results
and we thus only discuss the 15 Hz further. The imaginary coherence spectrum de-
tects volume conduction and it is therefore possible to distinguish true connectivity
from false. This can for instance be seen when computing both coherence spectra
between the electrode pair O1-O2. These electrodes are placed next to each other
and we thus expected them to naturally have a high correlation, which is confirmed
by the coherence spectrum (left) in Figure 14. During the time that the lights flicker,
we see a peak around 15 Hz but it is hardly distinguishable from other frequencies
either before or during the flickering. Furthermore, there are no peaks, nor strong
correlations in the imaginary coherence spectrum (right) in Figure 14 implicating that
the recordings are a↵ected by volume conduction.
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Figure 14: The coherence spectrum and imaginary coherence spectrum between the
electrode pair O2-O1, before and during the lights flicker at 15 Hz.

An additional benefit of identifying volume conduction is that the peak in the imagi-
nary coherence spectrum is easier to find. This can, for example, be seen in Figure 15
where it is easier to detect the frequency of correlation between the electrode pair O2-
F8 in the imaginary coherence spectrum (right) than the coherence spectrum (left).
The imaginary coherence spectrum also makes a clear distinction between the time
before and during the stimulus is present.

The non-stationary methods do not treat each electrode pair separately, and we can
therefore not know which pair exhibits the strongest connectivity. The methods can
however successfully distinguish between the time before and after the lights are intro-
duced. The imaginary-based PLVs are able to di↵erentiate between the two, whereas
the normal PLVs are not. These results are not surprising since we know from Fig-
ures 14 and 15 that volume conduction is present. Furthermore, the iPLV and ciPLV
are nearly identical and there is no major di↵erence between them being obtained

Figure 15: The coherence spectrum and imaginary coherence spectrum between the
electrode pair O2-F8, before and during the lights flicker at 15 Hz.
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through filtering or the SSD algorithm.

The imaginary coherence spectrum and the PLV methods are all able to distin-
guish between the time before and after a visual stimulus of flickering lights is in-
troduced. The imaginary coherence spectrum can detect volume conduction and is
thus especially well suited for identifying the frequency at which the lights flicker. All
imaginary-based methods are in addition able to determine if the stimulus is present,
whereas the non-imaginary methods are not as successful. Lastly, the electrode pairs
that exhibit the greatest connectivity all have one electrode in the occipital lobe
and one in the right frontal lobe, suggesting that these brain regions interact when
processing the flickering lights.

4.2 Auditory stimulus

This data set consists of approximately nine-second-long EEG measurements of six
di↵erent subjects, numbered 10-15 taken from a larger dataset, where each subject is
presented with a word in either their left or right ear. Each subject was not presented
with any stimuli during the first two seconds of recording and the word was presented
after approximately 2.6 seconds through in-ear headphones (SONY MDR EX650AP).
A more thorough explanation of the data set can be found in [27]. Originally the
sampling frequency was set to 1000 Hz but it was later down-sampled to 256 Hz, and
the data was then preprocessed with a high-pass filter of 0.1 Hz, and line noise at 50
Hz was reduced. Trials containing artifacts were removed through visual inspection
and independent component analysis, which identifies ocular and muscle artifacts.
The final number of trials per subject varied between 343 and 370 trials. Finally, the
data was recorded using a NeruoScan SynAmps RT (Compumedics) amplifier, Curry
7 software, and 64 electrodes placed according to the 10% system, covering the 10/20
area, in an EasyCap.

4.2.1 Method

Similarly to Section 3.4.1, we train two sets of models, each corresponding to one
of the two research questions. Furthermore, each set is trained individually for all
subjects since EEG recordings can vary greatly between people. The first set of mod-
els is referred to as the significance models and is designed to distinguish between
silence and a word being said. The second set is referred to as the side models, and
is meant to determine which ear the word was said into. We know that the word was
said sometime between 2.6 and 5.6 seconds, and we therefore choose the entirety of
the three seconds as our stimulus subset to guarantee that word is said. The silence
subset consists of the first two seconds of the recording since no stimuli were present.

Sound is processed in the auditory cortex [28, p. 309] and we therefore choose record-
ings from 15 electrode pairs located at the center of the scalp and the temporal lobe
to train the significance models on. On the other hand, the side-based scenarios are
trained on data from ten electrode pairs, all located close to the ears. Each pair is
chosen to be symmetrically placed on the scalp, for example, T7-T8 and P1-F2. The
pairs and their locations are shown in Figure 20 in the appendix. The extraction of
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features is nearly identical to that described for the simulated data sets throughout
Sections 3.2 to 3.4, including the segmentation length of 0.5 seconds and the filter
bandwidths since we limit ourselves to only investigating brain activity in the alpha
region. We do include the PLVamp to investigate potential connectivities between
alpha and gamma waves. Both sets of models are evaluated on the validation set for
all subjects and the best subject’s models are then evaluated on the test set.

4.2.2 Results

Training any model on all subjects does not increase its performance compared to
only training it on the best subject. This is however not surprising since we know
that EEG measurements vary between individuals. Furthermore, there is a seven per-
centage point di↵erence between the best and worst subject which further strengthens
this reasoning. Only the best subject for both sets of models will thus be presented
and the value of their hyperparameters can be found in Table 7 in the appendix.

The subject yielding the best set of significance models is subject 13, where the
best one is the RF model. This model has an accuracy of 68.7% on the test set, as
can be seen on the left in Table 6. Additionally, the ROC curves on the left in Figure
16 show that the trade-o↵ between sensitivity and specificity is approximately 0.745
for both the RF and ANN models which, in addition to a good F1-score, suggest that
the model performs well.

The side models perform the best when trained on subject 11, with the RF model
having the greatest model performance. The validation metrics on the test set can
be seen on the right in Table 6, where an equivalent accuracy and F1-score indicate
a balanced model. An accuracy of 55.1% is better than chance, and that combined
with an AUC of 0.573, suggests that at least some of the features are relevant for
distinguishing the side. The ROC curves for the three side models are shown on
the right in Figure 16. The figure rea�rms the RF model as slightly superior to the
other two since the RF curve has the best trade-o↵ between sensitivity and specificity.

The feature importance plot for the significance RF model is shown on the left in
Figure 17, from which we can conclude two important things. The SSD algorithm

Table 6: Validation metrics computed on the test set for the two best subjects, for
each set of models on real EEG data with auditory stimulus. The best results are
written in bold.

Metric Significance models Side models
Log RF ANN Log RF ANN

Llog 11.5 10.8 11.1 16.0 15.5 15.7
AUC 0.735 0.743 0.746 0.555 0.573 0.555
F1 0.686 0.700 0.692 0.537 0.551 0.514

Accuracy 0.666 0.687 0.680 0.538 0.551 0.545
| {z } | {z }

Based on subject 13 Based on subject 11
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Figure 16: The ROC curves for all models on the auditory EEG data.

yields the most important feature SSDPower, though not as important as for the sim-
ulated SigDet data set. Secondly, the importance of PLVamp suggests that there is an
interaction between alpha and gamma brain waves when subject 11 processes sound.
It could be interesting to combine these features in a feature since they have the
potential to partner well.

The side RF model does not have a singular feature that is more important than
the others, as can be seen in its feature importance plot on the right in Figure 17.
The conclusions from this plot are not as reliable as in the previous paragraph since
the model only has an accuracy of 55.1%. Regardless, most features have approx-
imately the same relative importance on the side model. The plot does however
suggest that the sign of the PLI and imaginary coherence are not as important as the
metrics themselves, contradicting our expectations from Section 3.4.1. On the other
hand, the best methods for detecting the side are the imaginary methods which are
in accordance with previous parts of this thesis.

Figure 17: Feature importance for the RF models on auditory EEG data.
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Lastly, the model performances are similar within the two sets, indicating that we
have included relevant features in our classification algorithms. To clarify, it would
have been di�cult to deduce whether the final results were due to the selected features
or model selection if the models’ prediction capabilities di↵ered greatly. We can thus
conclude that the signal processing methods used to extract the features are suitable
for real EEG analysis since the evaluation metrics are roughly the same for all sets of
models.



5 CONCLUSION 35

5 Conclusion

EEG analysis is an important tool in both research and medicine, and this thesis has
evaluated and discussed several suitable methods in relation to real and simulated
data. The main focus has been on methods that address volume conduction since it
can have negative e↵ects on EEG analysis, as well as non-stationary methods due to
the noisiness of EEG recordings. Most non-stationary methods presented are varia-
tions of the PLV but the stationary coherence spectrum has also been evaluated.

The findings of this thesis suggest that some methods might be more suitable than
others depending on the purpose of the analysis. The imaginary coherence spectrum
is, for example, e�cient at removing volume conduction e↵ects, and is therefore bet-
ter suited for EEG analysis than the normal coherence spectrum. There is no clear
di↵erence between the iPLV and ciPLV, and both are suitable for detecting the sign
of the phase di↵erence. They do however struggle if the sign alternates between tri-
als. The PLVamp is able to detect coupling between alpha and gamma waves when a
subject processes sound, and it is therefore highly suitable to include it in most EEG
analyses. Furthermore, using the SSD algorithm to decompose a signal instead of
filtering has shown to always yield smoother, clearer, and more interpretable PLVs.
In addition, the most important feature for classifying whether a stimulus is present is
based on the SSD algorithm, and it would consequently be interesting to investigate
this algorithm further, by for example combining it with PLVamp.

Conclusively, it is easier to detect the presence of an auditory stimulus compared
to determining the part of the brain that processed it first. The methods in this
thesis yield a maximum accuracy of 68.7% for the first scenario and 55.1% for the
second.
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A Appendix

Simulated data

Figure 18: ROC curve for the SigDet based models for di↵erent SNR.

Real Data

Figure 19: Placement of electrodes used to record the visual EEG data in Section 4.1
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Electrode pairs
T7-T8

TP7-TP8
C5-C6

FT7-FT8
P7-P8

CP5-CP6
C3-C4
F7-F8
Fz-Pz
F3-P4
P3-F4

FC3-CP4
CP3-FC4
F1-P2
P1-F2

Figure 20: Placement of electrodes used to record the auditory data in Section 4.2
(left) as well as the chosen electrode pairs (right). The pairs marked in bold are used
for both sets of models.

Table 7: The final choice of hyperparameters for the two sets of models trained on
real EEG data from Section 4.2, where N is the total number of features.

Set of models Subject Hyperparameter N
B m S H '(a) Opt r

Side 11 5 2 8 5 tanh sgd 10�6 10
Significance 13 10 2 256 10 relu ADAM 10�4 8

| {z } | {z }
RF paramaters ANN paramaters
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