
Implementations and evaluation of machine
learning algorithms on a microcontroller unit for

myoelectric prosthesis control

Jonathan Benitez
2023

Master’s Thesis in
Electrical Measurements

Supervisor: Christian Antfolk
Examiner: Johan Nilsson

Faculty of Engineering LTH
Department of Biomedical Engineering

Abstract

Using a microcontroller unit to implement different machine learning algorithms for myo-
electric prosthesis control is currently feasible. Still there are hardware and timing constraints
that need to be accounted for. This master thesis presents results from automatically generated
Arduino code for some Neural Networks, Convolution Neural Networks and linear machine
learning models that was implemented on a Teensy 4.1 board to see where these constraints
were on this specific board. The results show promise that simpler algorithms can be generated
for 50 classes with an accuracy of around 40-50%, but more complex algorithms usually run
into memory constraints or timing constraints. The results also show that different algorithms
are more accurate for different subjects in the used NinaPro database [1]. This suggests that
configuring the prosthesis on a patient basis, like the one implemented, is useful.

3

Acknowledgements

I want to thank Christian Antfolk for guiding me through this thesis whenever I needed it. I also
want to thank Johan Nilsson for helping with all the administration. I want to thank CSN for
helping me with my economic problems and I also want to thank William Marnfeldt for giving
me helpful tips about how to solve different problems. I also want to thank Emma Jönsson for
helping me with simple machine learning tips like knowing when a model is overfitted.

5

Contents

1. Introduction 9
1.1 Aim of Thesis . 9

2. Background 11
2.1 Electromyography . 11

2.1.1 Windowing of sEMG data . 11
2.2 Feature extraction . 12

2.2.1 Integrated EMG . 12
2.2.2 Mean absolute value . 12
2.2.3 Modified mean absolute value type 1 12
2.2.4 Modified mean absolute value type 2 12
2.2.5 Variance of EMG . 13
2.2.6 Root mean square . 13
2.2.7 Waveform length . 13
2.2.8 Average amplitude change . 13
2.2.9 Simple square integral . 13
2.2.10 Temporal moment 3rd, 4th and 5th 13

2.3 Machine learning algorithms . 14
2.3.1 Linear models . 14
2.3.2 Artificial Neural Networks . 14

2.3.2.1 Dense Neural Networks . 15
2.3.2.2 Convolution Neural Networks 15
2.3.2.3 Pooling layers . 16
2.3.2.4 Dropout . 17
2.3.2.5 Flatten . 17
2.3.2.6 Activation functions . 17

3. Methodology 19
3.1 Resources . 19

3.1.1 Scikit-learn . 19
3.1.2 TensorFlow Keras . 19
3.1.3 NinaPro Database . 19
3.1.4 Teensy 4.1 . 21

3.2 Implementation . 22
3.3 Tests . 24

3.3.1 Linear Discriminant Analysis test: window size 24
3.3.2 Linear Discriminant Analysis test: accuracy for all persons 24
3.3.3 Convolution Neural Network test: comparing results between the two

models . 24
3.3.4 Dense Neural Network test: output dimension 25
3.3.5 Convolution Neural Network test: output dimension and window size . 25
3.3.6 Convolution Neural Network test: kernel size 25
3.3.7 Two layer Convolution Neural Network test: kernel size 26

7

CONTENTS

3.3.8 Memory constraint estimate . 26

4. Results 28
4.1 Linear Discriminant Analysis result: window size 28
4.2 Linear Discriminant Analysis result: accuracy for all persons 29
4.3 Convolution Neural Network result: comparing results between the two models 30
4.4 Dense Neural Network result: output dimension 31
4.5 Convolution Neural Network result: output dimension and window size . . . 32
4.6 Convolution Neural Network result: kernel size 33
4.7 Two layer Convolution Neural Network test: kernel size 34
4.8 Memory constraint estimate . 35

5. Discussion 37
5.1 Accuracy evaluation . 37
5.2 Implementation constraints . 37
5.3 Further work . 38

5.3.1 Conclusion . 39

Bibliography 41

8

1
Introduction

Around 94 000 people in the European community have an upper limb amputation [2]. In
the USA, an estimate of 158 000 undergo amputation, with this number increasing over time
[3]. The leading cause of amputation in a countries varies. Countries with recent history in
warfare have higher trauma related causes for amputation while for countries like Japan, USA,
Denmark have a higher disease related causes from tumours, diabetes, etc. [4].

Upper limb amputation affects day to day life and can be debilitating for the person affected
[5]. In trying to rehabilitate the consequences of the amputation, different kinds of prosthetic
hands are currently used[4]. One type of prostheses, which aims to resemble the human hand is
the myoelectric prosthesis. Myoelectric prosthesis can be controlled by measuring the electric
activity in muscle contractions, and to measure this activity there are two methods: intramus-
cular electromyography (iEMG) and surface electromyography (sEMG). iEMG sensors give
more accurate readings while sEMG sensors are used as they are non-invasive [2]. Despite the
benefits of using a prosthesis, most upper limb amputees do not use them. Usually people with
amputations from the elbow upwards tended to use prosthesis less. The documented number
of upper limb amputees using prosthesis vary between 27 to 56 percent. [3].

A person with an amputated hand still has muscles that control the hand motions throughout the
arm which means that by measuring these muscles movements one can differentiate between
which motion the hand would make [6]. Machine learning algorithms (MLAs) is commonly
used evaluate which muscle motions generate what hand motions. [7] By training with a data
set of which muscle readings corresponds to what motion one can implement the finished
trained MLA on a smaller device such as a microcontroller unit (MCU) to then do the calcula-
tion with the muscle readings. By doing so, a cheaper and more energy efficient system can be
implemented on a portable system [8]. This of course also means that the algorithm cannot be
too computational heavy as the MCU might not be able to handle all the processing in real time.

1.1 Aim of Thesis

The aim of this thesis is to be able to implement different kinds of MLA to a smaller MCU
from the model given after training. The goal is to see if it is feasible to design a configurable
system that could handle different kinds of input sizes, sampling rates and window sizes. It
will be investigated if an autonomous system can be implemented that can handle different
MLA algorithms, convert them to C/C++/arduino code, and then look over what the limits of
this systems are. Once this is done different machine learning algorithms will be implemented
using this program and evaluated on complexity of implementation and usage on the MCU.

9

2
Background

For this thesis, the background will be split up in different sections. The first part will be
about Electromyography, afterwards Feature extraction will be brought up, and lastly different
machine learning algorithms will be explained.

2.1 Electromyography

Electromyography (EMG) is the recording of the electrical activity from a muscle. In the
medical field EMG can be used to detect and give additional diagnostics to different mus-
cular diseases [9]. To get the EMG recording, either invasive, intramuscular EMG (iEMG),
or non-invasive, surface EMG (sEMG), electrodes can be used [10]. EMG signals have an
amplitude from 0 to 10 mV. The frequency of the signal is from 0 to 1000 Hz, but the most
dominant energy frequencies are concentrated between 20 to 500 Hz [11]. Multiple channel
sEMG recordings have been shown to be able to control myoelectric prosthesis with a high
accuracy using a machine learning based control system [12].

2.1.1 Windowing of sEMG data
Windowing is used to analyze the EMG recording from smaller chunks. By doing so the char-
acteristics of the window can be further analysed and be used as inputs for the control schemes
for myoelectric prosthesis [13]. There are two types of windowing: disjointed and overlap
windowing. Disjointed windowing are only characterized by a window size, while overlap
windowing has a window size and an overlap size [13][14]. This is represented in figure 2.1.

Figure 2.1 Overlap and disjointed window where ts is window size, ps is overlap size and T is processing
delay.

11

Chapter 2. Background

For the disjointed window, the optimal size ranges from 200-300 ms while for the overlap
window ranges from 225-300 ms with an overlap size of 10%-30% of the window length [13].
For time domain features the window size has less significant effect on the EMG parameters
than the frequency domain features [15]. For larger window sizes, the time required to process
the EMG recording increases. This time delay can make the prosthesis feel unresponsive if the
delay is to high, for 90th percentile of users this time delay is only excessive above around 100
- 125 ms of delay[14].

To note, the process delay T is constrained by the window size ts and the overlap size ps. Thus
T cannot be too large or the system will not function, this constraint is described in equation
2.1.

ts− ps > T (2.1)

2.2 Feature extraction

Feature extraction are different algorithms that extract the hidden information in sEMG record-
ings thus removing the unnecessary information. The different feature extraction algorithms
can be grouped up into 3 domains: time domain, frequency domain, and time-frequency or
time-scale representation. Of these time domain feature extractions are usually the easiest to
implemented as there is no need for any transformation to implement these algorithms. [16]

All the following time domain feature extraction algorithms were taken from [16]. In the fol-
lowing equations, N is the number of samples of the window size, xi is the value of the sEMG
recording of sample i.

2.2.1 Integrated EMG
Integrated EMG (IEMG) is the sum of the absolute values of the EMG signal, described in
equation 2.2.

IEMG =
N

∑
i=1

|xi| (2.2)

2.2.2 Mean absolute value
Mean absolute value (MAV) is a feature that takes the average of the absolute value of the
EMG signal, this is described in equation 2.3.

MAV =
1
N

N

∑
i=1

|xi| (2.3)

2.2.3 Modified mean absolute value type 1
Modified mean absolute value type 1 (MAV1) is similar to MAV but uses a weight function wi,
this is described in equation 2.4.

MAV 1 =
1
N

N

∑
i=1

wi|xi|, wi =

{
1, 0.25N ≤ i ≤ 0.75N
0.5, i < 0.25N or i > 0.75N

(2.4)

2.2.4 Modified mean absolute value type 2
Modified mean absolute value type 2 (MAV2) is similar to MAV1 but uses a continues func-
tions for the weight function wi, this is described in equation 2.5.

12

2.2 Feature extraction

MAV 2 =
1
N

N

∑
i=1

wi|xi|, wi =

1, 0.25N ≤ i ≤ 0.75N
4i
N , i < 0.25N
4(i−N)

N , i > 0.75N

(2.5)

2.2.5 Variance of EMG
Variance of EMG (VAR) is the average of the squared values from the EMG signals. The
feature is similar to variance, but as the mean value of the EMG signals is usually very close to
zero, it can be negligible, this is described in equation 2.6

VAR =
1

N −1

N

∑
i=1

x2
i (2.6)

2.2.6 Root mean square
Root mean square (RMS) is the square root of the average squared EMG signal amplitude, this
is described in equation 2.7

RMS =

√
1
N

N

∑
i=1

x2
i (2.7)

2.2.7 Waveform length
Waveform length (WL) is the length of the waveform over the window, this is described in
equation 2.8

WL =
N−1

∑
i=1

|xi+1 − xi| (2.8)

2.2.8 Average amplitude change
Average amplitude change (AAC) is similar to WL, but it is averaged out, this is described in
equation 2.9

AAC =
1
N

N−1

∑
i=1

|xi+1 − xi| (2.9)

2.2.9 Simple square integral
Simple square integral (SSI) is the summed square of the EMG signals, this is described in
equation 2.10

SSI =
N

∑
i=1

x2
i (2.10)

2.2.10 Temporal moment 3rd, 4th and 5th
Temporal moment 3rd, 4th and 5th are very similar to MAV and VAR, but with a higher order.
Temporal moment 3rd is described in equation 2.11

T M3 = | 1
N

N

∑
i=1

x3
i | (2.11)

Temporal moment 4 (TM4) is described in equation 2.12

13

Chapter 2. Background

T M4 =
1
N

N

∑
i=1

x4
i (2.12)

Temporal moment 5 (TM5) is described in equation 2.13

T M5 = | 1
N

N

∑
i=1

x5
i | (2.13)

2.3 Machine learning algorithms

There are many different Machine learning algorithms (MLAs) that can be implemented. This
section will be split up into Linear models, and Artificial Neural Networks.

2.3.1 Linear models
Linear models are models where the output y is a linear combination of input x. This is done
by fitting the values of the weights w = w1, ...,wN and the intercept w0. For models with binary
classification the output y can be calculated according to equation 2.14. From the output y the
prediction ŷ can be calculated according to the equation 2.15 [17].

y(w,x) = w0 +w1x1 + ...+wNxN (2.14)

ŷ =

{
0, y ≤ 0
1, y > 0

(2.15)

There are also linear models that can predict multiple different classes. The output matrix Y is
thus dependent on the weight matrix W , one dimensional input matrix X and intercept matrix
B. This is described in equation 2.16. The predicted output Ŷ is index of the largest value of Y .
This is described in equation 2.17 [17].

Y (X) = XW +B (2.16)

Ŷ = argmax(Y) (2.17)

2.3.2 Artificial Neural Networks
Artificial Neural Network (ANN) artificially models how neurons work. One of these models
is the perceptron. The perceptron is a linear model, which can be described by equation 2.14.
Multiple perceptron can be connected to each other making a feedforward neural network.
Feedforward neural networks are neural networks that have three parts: input layer, hidden
layers, and output layers. A figure of a feedforward neural network can be seen in figure 2.2
[18][19].

14

2.3 Machine learning algorithms

Figure 2.2 An example of a feedforward neural network, includes three parts: input layer, hidden layers
and an output layer.

2.3.2.1 Dense Neural Networks

The dense layer is a linear model that is used to model one layer of perceptron. An ANN using
only Dense layers is usually called Dense Neural Networks (DNN), when they have a lot of
dense layers it is also considered "deep" [20]. To calculate the output of the dense layer Ŷ , the
weights W , bias b, input X is added together as in equation 2.16 and the result is the input to an
activation function σ . The activation functions will be more thoroughly specified under section
2.3.2.6. The dense layer is fully described in equation 2.18 [21].

Ŷ = σ(XW +b) (2.18)

For the dense layer, the amount of perceptron or "dimension" of the output layer Ŷ can be
specified between layers. Afterwards the activation function of each dense layer can also be
chosen.

2.3.2.2 Convolution Neural Networks

Convolution Neural Networks (CNN) is a type of Artificial Neural Network that uses con-
volution. CNN are mainly used in image processing but can also be used in processing raw
sEMG data by modelling the data as an image [7][22]. Compared to DNN, Convolution Neu-
ral Networks can work with inputs of 2 to 3 dimensions. A visual example of Convolution,
or more specifically 2-dimensional convolution, that performs a convolution operation on an
input matrix can be seen in figure 2.3. This is done following equation 2.19. Where w is the
weight, b is the bias, x j,k is the input value at position (j,k), n1 and n2 are the kernel sizes of
the convolution layer, σ the activation function and finally ŷs,t is the output in position (s, t)
and is dependent on the kernel size of the weight matrix and position (j,k) of the input matrix
[19].

ŷs,t(x j,k) = σ(b+
n1

∑
l=0

n2

∑
m=0

Wl,mx j+l,k+m) (2.19)

15

Chapter 2. Background

Figure 2.3 Example of convolution, with no bias, the kernel is the weight matrix; in brown is a high-
lighted example of the element wise calculation.

There are also different parameters that can be changed in a convolution layer. Firstly, the
kernel size of the convolution layer can be specified. Thus, changing the dimensions of the
weight matrix. The amount of output layers can be increased or decreased. Convolution layers
also have different activation functions [21]. These are presented in section 2.3.2.6.

2.3.2.3 Pooling layers

Pooling layers are usually used in CNN to decrease the spatial dimension of the feature maps
and therefore also decreases computational costs. There are different kinds of Pooling layers,
average and max pooling are the most common ones. Average pooling takes the average of the
pooled values, which is shown in figure 2.4, while max pooling takes the highest number in the
pooled values, shown in figure 2.5. [23]

Figure 2.4 Example of Average pooling, with a 4x4 input matrix and a pooling layer of size 2x2.

16

2.3 Machine learning algorithms

Figure 2.5 Example of Max pooling, with a 4x4 input matrix and a pooling layer of size 2x2.

2.3.2.4 Dropout

Dropout is a layer used for training. Dropout randomly "deletes" neurons of a layer by setting
their weight value to zero. Dropout is used in training to not make the MLA overfitted by
relying on the population of neurons instead of the activity of other specific neurons [21][24].

2.3.2.5 Flatten

The flatten layer is used to make a multi-dimensional matrix into a 1 dimensional matrix. This
is most often used to connect a CNN with a dense layer for the output prediction. It can also be
used just to connect a CNN with a DNN [21].

2.3.2.6 Activation functions

There are many different kinds of activation functions, and different activation functions are
used in different ways. Two of these are the ReLU activation function and the linear activation
function.

The linear activation is the easiest to understand, it returns the input value of the activation
function. The linear activation function is usually the default one when no activation function
is specified. The equation for Linear activation function can be seen in equation 2.20 [19][21].

f (x) = x (2.20)

ReLU is also called Rectified Linear Unit. The ReLU activation function gives out the input if
it is larger than zero and if it is lower than zero it instead will output zero. ReLU can also have
a set zero point, but in this case ReLU will be defined as is described in equation 2.21 with a
fixed zero point [19][21].

f (x) =

{
x, x > 0
0, x <= 0

(2.21)

17

3
Methodology

The methodology was split up into three sections: Resources, Implementation, and Tests.

3.1 Resources

There were many different software resources and hardware resources that were used during
this project. From databases to microcontroller units. For this specific implementation, the
different resources that were used will be described below.

3.1.1 Scikit-learn
Scikit-learn also called sklearn is a python library for machine learning. Scikit-learn includes
different kinds of trainable models and different ways to train these models. Sklearn have many
different linear models than can be implemented, from models that can only perform binary
classification to multi label classification. One of these linear models that can do multi label
classification with a high degree of accuracy is Linear Discriminant Analysis (LDA). LDA was
used to assess most of the feature extraction algorithms [25].

To be able to assess the linear model, or other MLA, sklearn has a function that checks the
accuracy and balanced accuracy of the model. The accuracy is the percentage of correct pre-
dictions against total predictions. Balanced accuracy is used if there is an imbalance in the
amount of datasets for the different classes. If there are more datasets for one motion than
another, the balanced accuracy will take this into account [26][25].

3.1.2 TensorFlow Keras
TensorFlow Keras, or just Keras is a python library that trains and implements different
MLAs. It is most well known for being able to implement feedforward neural networks and
convolution neural networks. Keras can implement different layers such as Dense, Convolu-
tion, Pooling layers, Dropout, Flatten and has different activation function for these layers [21].

During the project, different kinds of Keras models were tested and implemented in the hard-
ware. Keras was mainly used to generate and train different kinds of DNN and CNN models.
Once these models were generated, the Keras models were also used to crosscheck the validity
of the generated model and to assert that they performed equally.

3.1.3 NinaPro Database
The sEMG data used was taken from NinaPro. NinaPro is a public database used to foster the
research in robotic and prosthesis hands. NinaPro has many different databases, but the one
used was db2, which has 50 recorded hand motions sampled with 12 different sEMG channels
with a sampling frequency of 2kHz. Each hand motion has 6 repetitions [1]. An example of
stimulus data for 18 hand motions and EMG data from one channel for person 5 can be seen
in figure 3.1.

19

Chapter 3. Methodology

Figure 3.1 Stimulus data (upper plot) and EMG data (lower plot) of test person 5.

The different values from the stimulus data correspond to different hand motions. So value 1
corresponds to hand motion 1. This is the case for all motions except stimulus value 0, which
in this case is the rest hand motion, also motion 50. All the different motions in the database
can be seen in figure 3.2.

Figure 3.2 All the different hand motions in NinaPro database 2 [1].

20

3.1 Resources

3.1.4 Teensy 4.1
Teensy 4.1 is a microcontroller that can use the Arduino IDE with teensy add-ons. Teensy
4.1 board uses an ARM Cortex-M7 CPU with a clock speed of 600 MHz. It can perform
floating point arithmetic with 64 or 32 bits and has a 7936 Kbytes of Flash memory. For all the
specifications of the Teensy 4.1 board see figure 3.3 [27].

Figure 3.3 Hardware specifications for Teensy 4.1 board [27].

21

Chapter 3. Methodology

The Teensy 4.1 board was used as a microcontroller were all the models were generated to.
To test that the models were the same, a python script sent the sEMG data to the Teensy 4.1
board through Serial communication. Afterwards, the Teensy 4.1 board would send back the
predicted results and the values of the last output layer as cross validation.

3.2 Implementation

The code for the Teensy 4.1 board was implemented as a function with 4 different states,
excluding specific debug and printing states. The four different states implemented were
__init__, where it waits until the input memory buffer is full. The FeatureExtraction state,
where it performs the feature extraction for the sEMG data once the input memory buffer is
full. The feature extracted data is then put in another memory buffer called feature extracted
data. MLA state, where it performs the different implemented Machine Learning Algorithms
on the feature extracted data with the weights and bias of the model and outputs the data in
an MLA memory buffer. The classification state is where it classifies the results and outputs
the prediction for the given sEMG data. The state diagram and the block diagram for the given
implementation is described in figure 3.4.

Figure 3.4 Block diagram and state-machine for the Teensy implemented code.

To generate the Arduino code for a given machine learning model and to validate that the
generated model worked as intended, a python model was implemented. The python model
consisted of different scripts that worked similarly to the teensy 4.1 model. The first script
was process_data.py where the Ninapro data was processed by extracting the stimulus and
sEMG data. The processed sEMG data from the first script was then passed through the second
script f eature_extraction.py where the relevant features were processed, which was then used
as the training, testing or validation data for either the sklearn linear models or the Keras

22

3.2 Implementation

models with the stimulus data being the classifier. From the model and the called features, the
teensy code can be generated with mla_model_parser.py. The mla_model_parser.py script
uses some helper scripts, one for the called features called f eature_parser.py and one for the
MLA model called layer_parser.py. The teensy code can then be compiled into the Teensy 4.1
board. All of this is described in figure 3.5.

Figure 3.5 A top down chart of the different scripts and the data passed through these scripts.

The first step in mla_model_parser.py is to read the sEMG data. To be able to read
the sEMG data with disjointed windows a circular memory buffer was implemented in
mla_model_parser.py. The circular memory buffer can be implemented by having a memory
array that circles back to the first element when reaching the end of the memory array. By
doing so, one can start reading new values from the end of the last window, and do so for
samples N, where N =window size−overlap size. A representation of the circular memory
buffer can be seen in figure 3.6.

Figure 3.6 Example of a circular memory buffer where the overlap size is 1/4 of the window size, for
window N where N ̸= 0.

Afterwards the Feature extraction was implemented. Here all the equations from section 2.2
were implemented in both python code, in the f eature_extractions.py script, and in C++ code
for the Teensy code generation in f eature_parser.py script. The next step was to make the
Arduino code for the different models, these were implemented according to the description in
section 2.3 and were implemented in layer_parser.py. The output classification, which is the
last step, was implemented according to equation 2.17 for binary classification and according to
equation 2.20 for multiclass classification. All floating-point variables in the Teensy 4.1 code
used for memory or temporary variables by the Teensy 4.1 board were implemented by the
datatype float32.

23

Chapter 3. Methodology

3.3 Tests

For testing, another script called arduino_communication.py was implemented that could send
and read data from the Teensy 4.1 board. Different kinds of tests were devised, mostly looking
at how different parameters change the execution time on the Teensy 4.1 board. This was done
to see how the execution time scales with the increase of different parameters. If the execution
time is too large, it will not hold the timing constraint. Some tests also looked at how the
accuracy of the model changed with the different feature extraction methods used. During
all the tests, 500 test windows were sent to the Teensy 4.1 board and the output layer were
compared with the python model to assert that they predicted the same value. The execution
time was measured from when the Teensy 4.1 board exited the __init__ state until it had made
a prediction. Even though there are some variances in execution time between runs, the highest
execution time for the 500 windows were used in the results. All the tests will be described
below.

3.3.1 Linear Discriminant Analysis test: window size
Firstly a test was performed looking how different feature extraction algorithms with varying
window sizes affects the execution time and the accuracy of a Linear Model trained using Lin-
ear Discriminant Analysis. The tests were done by using a disjointed window and the window
size was increased in steps of 100 samples, from 100 to 800 samples. The overlap size was
set to 1/4 of the window size. All the implemented feature extraction algorithms were tested.
The split for the dataset was set so 4 repetitions were used as training data, and 2 repetitions
as testing data. For rest, or class 0, 66% of the repetitions was used as training data and the
34% was used as testing data. The tests were performed on person 1 in the dataset, with the
first 40 movement classification and rest, and had all the available channels used. The accuracy,
balanced accuracy and execution time were measured.

3.3.2 Linear Discriminant Analysis test: accuracy for all persons
Another Linear Discriminant Analysis test was performed looking at how the different feature
extraction algorithms affected the accuracy for each person in the dataset. Again, a disjointed
window was used, the window size and overlap size were set to 450 and 120 samples re-
spectively. For the first 40 classes and rest were used in the classifications, with all available
channels used. The splits were set the same as the previous test. The accuracy and balanced
accuracy were measured for all 40 persons in the dataset.

3.3.3 Convolution Neural Network test: comparing results between the
two models

To see that the code could successfully generate the same model in the Teensy 4.1 board as in
the python model, a CNN test model was used. In the input the test model used all 12 channels
and all 12 features. The MLA consisted of 2 layers of convolution, one with ReLU activation
and the other with linear activation. Afterwards the MLA had a max and average pooling
layer, which was then followed by a flatten layer and two dense layers, one with ReLU the
other with linear activation. One of the dense layers also had a dropout layer. Only the first 10
classifications were used. The output for these models was compared, and some values will be
shown as an example. The model is described in table 3.1.

24

3.3 Tests

Table 3.1 Summary of the layers in the CNN for Teensy 4.1 model and python model comparision

Layer Output Shape Number of Parameters
Conv2d with ReLU (11, 11, 25) 125
average pooling 2d (5, 5, 25) 0

Conv2d (3, 3, 25) 5650
Max pooling 2d (1, 1, 25) 0

Flatten 25 0
Dense with ReLU 64 64

Dropout 64 0
Dense 11 715

3.3.4 Dense Neural Network test: output dimension
To see how the dense layer dimensions affects execution time a two layer DNN was imple-
mented. The first dense layer had a varying amount of output dimension starting at 64 and
incremented with 64 for each step. All available feature extraction algorithms were used. The
window size was set to 225 ms with an overlap size of 62.5 ms. The accuracy of this model
using all 50 classifications and the execution time was measured. The different layers, the
output shape and the number of parameters is shown in table 3.2.

Table 3.2 Summary of the layers used in the DNN, where N went from 1 to 8

Layer Output Shape Number of Parameters
Flatten 144 0

Dense with ReLU 64N (144*64N)+64N
Dense with ReLU 50 64N+50

3.3.5 Convolution Neural Network test: output dimension and window
size

To see how the input size and output dimension of a CNN affects execution time a CNN was
implemented using raw EMG data instead of the feature extracted data. The model used all
12 channels and classified the first 10 hand motions. The window size, ts, was set from 25 to
100 samples with 25 samples increments. The output dimension parameter N was incremented
with 25, starting at 50 and ending at 300 samples. A pooling layer, a flatten layer and a Dense
layer was also used. The different layers, the output shape and the number of parameters for
this CNN model is shown in table 3.3.

Table 3.3 Summary of the layers used in the CNN with varying window size ts and output shape N

Layer Output Shape Number of Parameters
Convolutional with ReLU ts-2, 10, N 10N

Max Pooling 1, 1, N 0
Flatten N 0

Dense Layer 10 10 +10*N

3.3.6 Convolution Neural Network test: kernel size
Another CNN was similarly implemented where the kernel size was increased from 1 to 5
steps. The window size, ts, was set from 25 to 650 samples. The CNN had a convolution layer
with a parameter N that was incremented with 25 samples. It also had a pooling layer, a flatten
layer and a Dense layer. The different layers, the output shape and the number of parameters
for this CNN model is shown in table 3.4

25

Chapter 3. Methodology

Table 3.4 Summary of the layers used in the CNN test with incremental kernel size and window size ts

Layer Output Shape Number of Parameters
Convolutional with ReLU ts-kernel size+1, 12-kernel size, 25 25*kernelsize2+25

Average Pooling 1, 1, 25 0
Flatten 25 0

Dense Layer 10 260

3.3.7 Two layer Convolution Neural Network test: kernel size
Afterwards a similar test was done but with 2 2 dimensional Convolution layers, where the
window size, ts, was set from 25 to 650 samples with 25 samples increment. The kernel size of
the second convolution layer was increased from 1 to 5 with one step increments. Afterwards
a flatten and Dense layer was used, the model is shown in table 3.5.

Table 3.5 Summary of the layers used in the CNN with incriminating kernel size and window size ts

Layer Output Shape Number of Parameters
Convolutional with ReLU ts, 12, 25 50
Convolutional with ReLU 50-kernal size , 300 - kernel size, 25 625*kernelsize2 + 25

Average Pooling 1, 1, 25 0
Flatten 392 0

Dense Layer 10 3930

3.3.8 Memory constraint estimate
Lastly, during all the testing, the maximum number of memory usage was estimated. These
results will be presented as an estimate to the complexity of the model compared to memory
usage.

26

4
Results

Below, the different results will be described in different sections named similarly as their
corresponding section under section 3.3.

4.1 Linear Discriminant Analysis result: window size

For the varying window sizes test the different feature extraction algorithms had different exe-
cution times. The execution time can clearly be seen to be linearly dependent on window size.
The fastest being Variance of EMG and Root Mean Square, while the slowest was Modified
Mean Absolute value type 2. Even for the slowest algorithm, the execution time was very low,
only taking a maximum of 0.8 ms. This is shown in figure 4.1.

Figure 4.1 Window sizes in samples against the execution time (ms) for different features.

The accuracy and balanced accuracy of these models can also be seen to be dependent on
the window size, with higher window size usually corresponding to a higher accuracy. The
accuracy of the model was much higher than the balanced accuracy. The difference was around
30%, which is reasonable as there was a lot more data for rest than the other movements. For
the accuracy the feature resulting in the highest accuracy was from average amplitude change.
It could also be seen that the feature which resulted in the highest balanced accuracy varied.
Average Amplitude Change and Root Mean Square gave the highest accuracy dependent on
window size, where one performed better for some window sizes and the other performed
better for other. The accuracy is shown in figure 4.2, while the balanced accuracy is shown in
figure 4.3.

28

4.2 Linear Discriminant Analysis result: accuracy for all persons

Figure 4.2 Different window sizes in samples against the accuracy for different features.

Figure 4.3 Different window sizes in samples against the balanced accuracy for different features.

4.2 Linear Discriminant Analysis result: accuracy for all persons

The accuracy of the feature extraction algorithms using Linear Discriminant Analysis can be
seen in figure 4.4 and the balanced accuracy can be seen in figure 4.5. As the figures show,
some feature extraction algorithms performed better for different subjects. The feature extrac-
tion algorithms were unequal in performance, where some performed better and other worse.
The three worst performing algorithms were Temporal Moment 3, 4 and 5. Average Amplitude
Change and Root Mean Square usually performed the best between the test subjects for the
balanced accuracy test and Average Amplitude Change usually performed the best for the
accuracy test. The difference between the accuracy and the balanced accuracy could be seen to
be around 20% to 30%.

29

Chapter 4. Results

Figure 4.4 Accuracy of the different implemented feature extraction model using Linear Discriminant
Analysis.

Figure 4.5 Balanced accuracy of the different implemented feature extraction model using Linear Dis-
criminant Analysis.

4.3 Convolution Neural Network result: comparing results between the
two models

The results from the comparison between the test model and the Teensy 4.1 model is shown
in table 4.1. The results show slight difference between the two models, in the range of 10−12.
Why there is a difference between these results will be further discussed in section 5.

Table 4.1 Difference between Teensy model and MLA model for last output layer before classification

element Teensy 4.1 board result python model result difference between the two models
1 0.000617405981756 0.00061740592354908585548400878906 5.8∗10−12

2 0.000091110487119 0.00009111045801546424627304077148 2.9∗10−12

3 -0.000272167089860 -0.00027216711896471679210662841797 2.9∗10−12

4 -0.000382805068511 -0.00038280503940768539905548095703 2.9∗10−12

30

4.4 Dense Neural Network result: output dimension

4.4 Dense Neural Network result: output dimension

The results show that both the parameters and the execution time scale linearly with the output
dimension of the dense layer. Figure 4.6 shows how the execution time in micro seconds scales
with the output dimension size. While figure 4.7 shows how the execution time scales with the
amount of parameters. After reaching 100 000 params count, the Teensy 4.1 board could not
compile the code due to insufficient memory. This means that the timing constraint holds with
a lot of spare room when using dense layers for window size, ts = 225ms and an overlap size
of 30%. This can be said with certainty as the maximum amount of delay received was under
4ms.

Figure 4.6 Dense test showing how the number of the output dimension correlates to the execution time.

Figure 4.7 Dense test showing how the number of dense parameters correlates to the execution time.

31

Chapter 4. Results

4.5 Convolution Neural Network result: output dimension and window
size

The result of this test shows that the execution time scales linearly with output dimension. This
is shown in figure 4.8. As the figure also shows, even though there is an increase in execution
time between this model and the Dense model, the execution time is still small enough that it
will handle the timing constraints for most model having a window size between 200-300 ms
with an overlap size of 10-30%.

Figure 4.8 CNN test over how the output dimension corresponds to the execution time.

The total storage elements also seems to scale linearly with the execution time, this is shown in
figure 4.9. Here it can be seen that before the execution time starts to be larger than the timing
constraints, it will run out of memory. Of the models tested, it seems that the Teensy 4.1 board
should be able to handle most of these models.

Figure 4.9 CNN test over how the output dimension correspond to the total MLA memory usage.

32

4.6 Convolution Neural Network result: kernel size

4.6 Convolution Neural Network result: kernel size

How the kernel size of the CNN affects the execution time can be seen in figure 4.10. Here it
can be seen that there is a larger increase in execution time between the second and third kernel
size, and then seems to be quite linear towards the end. The largest measured execution time
was slightly below 100 ms. For these tests, the timing constraints holds for windows between
200 - 300 ms, with an overlap of 30%.

Figure 4.10 CNN test over how the kernel size corresponds to the execution time.

The amount of MLA storage is dependent on kernel size. This can be seen in figure 4.11. It
can also be seen that with a larger kernel size the amount of storage decreases decreases. This
is reasonable as there is less intermediary storage, even though more parameters need to be
stored for the higher kernel size count. As it could be seen in the figure before, the execution
time seems to increase with the kernel size, and as the total amount of memory decreases, it
means that higher kernel sizes than the ones tested could result in timing errors. This can be
seen in figure 4.12.

Figure 4.11 CNN test over how the kernel size correspond to the total MLA memory usage.

33

Chapter 4. Results

4.7 Two layer Convolution Neural Network test: kernel size

For the two layer convolution layer it can be seen that the execution time greatly increases
with the kernel size and the window size. For a window size of 75ms and a kernel size of 5,
the execution time is above 250ms. This means that here there will be timing errors for most
window sizes between 200 - 300 ms. This can be seen in figure 4.12.

Figure 4.12 CNN test over how the second convolution layers kernel size corresponds to the execution
time.

The total amount of MLA storage units used was also plotted against the kernel size which
can be seen in figure 4.13. It can also be seen that for larger kernel sizes, the total amount of
memory storage decreases. This means that there could be larger timing errors for larger kernel
sizes than the ones tested as the execution time increased with the kernel size.

Figure 4.13 CNN test over how the second convolution layers kernel size correspond to the total MLA
memory usage.

34

4.8 Memory constraint estimate

4.8 Memory constraint estimate

It was found that the models complexity accounting for memory storage could roughly be
estimated by the following equation: MLA storage units + params units < 100 000 memory
units, where the MLA storage was the storage needed for the intermediary steps and params
where the total amount of parameters needed to implement the different weights for the models.
There were some models that could be implemented with larger values than 100 000 memory
units, but no model was found to not fit this constraint.

35

5
Discussion

The discussion was split up into different sections. First the accuracy of the different algorithms
was evaluated from the results of section 4.1 and 4.2. Secondly, the hardware constraints and
implementation constraints were discussed from the result of section 4.3 to 4.8. Afterwards,
further work will be discussed and finally the conclusion of this thesis will be presented.

5.1 Accuracy evaluation

As it could be seen Temporal Moment 5 had the worst accuracy out of the different feature
extraction methods, as seen in figure 4.5. This is likely due to Temporal Moment 5 producing
results in the 10−25 range. This can be a problem and should be handled better especially when
using float32 to represent the data. This was also a problem but to a lesser extent for Temporal
Moment 3 and 4, as they also had low accuracy.

The balanced accuracy for Linear Discriminant Analysis seen in figure 4.5 also shows that
different feature extraction performed better for different subjects in the database. This is
probably because every person controls their muscles in different ways. Making some methods
better for some people and other better for other people. This means that there were no "clear
winners". The same result can be seen when only comparing the accuracy of the different
models, which is shown in figure 4.4. Having a system that can implement the best model for
each person is thus preferable and having this configurable system that can implement all these
models can be helpful to increase the accuracy of myoelectric prosthesis for each person.

5.2 Implementation constraints

The compared results between the Teensy 4.1 board and the python model shows that there
was at least a difference around 10−12 range. This result was shown in table 4.1. It is important
to note the received data from the Teensy 4.1 board had a precision of 16 decimals, so more
discrepancy could not be shown. As the error of the value is relatively low the accuracy should
not be lessened compared to the python model. The underlying issue was not found for the
discrepancy, but it was assumed that the discrepancy appeared due to some rounding being
missing in the python model.

During testing, it was noticed that the biggest constraint for the different designs were memory
constraints. While a DNN could be implemented using feature extracted data; once raw data
was used most models would run into memory problems. This is because the Teensy 4.1 board
did not have enough memory available. This could be solved adding an SD-card to the Teensy
4.1 board to give it more memory but accessing this memory also could take more time depen-
dent on the SD-card used and the boards specifications.

37

Chapter 5. Discussion

Even though the memory constraint was estimated, the actual constraint depends on different
factors. For an example, something that was not accounted for was a larger window size would
consume more memory as it would be stored twice, in the input buffer and as the input array
for the feature extraction. The number of lines of code could also affect the memory constraint,
as these lines needs to be stored in memory.

For the timing constraint, it was noticed that most of the tested models could be implemented
with a window size between 200 to 300 ms except for models using two convolution layers
with larger kernel sizes. Most other models ran out of memory before the time constraint
became relevant. This was seen for single convolution layers, dense layers, and other linear
models. Even though all these models could be implemented with a large window size and a
large overlap size, this would result in a bad performance for the myoelectric prosthesis control
unit. The same thing also applies for very small window sizes for the models, as they will lose
accuracy.

5.3 Further work

There were some model parameters that were not implemented for the different TensorFlow
Keras layers. Firstly, one can currently not choose different padding for convolution or pooling
layers. Padding sets the output shape to either the same as the input shape or smaller output
shape. Currently it can only implement smaller output shape to the Teensy 4.1 model. There
are also "stripes" which can also be implemented for these layers. When performing convolu-
tion or pooling layer instead of checking a matrix with indices next to each other "stripes" can
choose to compare indexes with a further step than one. There are also a lot more activation
functions that could be added to the system, like SoftMax or tanh. By implementing these
features, more complex CNN and DNN could be implemented that hopefully would produce
better results.

Currently all intermediate memory in the MLA have different memory buffers. Some of these
are redundant. To make the code work better, a shared intermediate memory system could be
implemented to free more redundant memory usage from the system. Which would also allow
for more complex models to be implemented as the memory constraint is lessened.

All the memory systems are currently implemented with float32, but being able to implement
some models as float64 could be preferable for models using Temporal moment 3, 4 or 5
even if it would cost more in processing time. To the same extent, being able to implement
everything as fixed point arithmetic’s instead of floating point arithmetic’s could also help with
performance when doing different arithmetic’s operations. Quantization of the memory could
also be investigated as a trade-off between accuracy and memory usage could be useful.

CMSIS was not used which is a library with inbuilt Digital signal processing for the Teensy
4.1 CPU. Implementing the different arithmetic’s by using this system could increase the per-
formance of the Teensy 4.1 model. Allowing for the Teensy 4.1 board to be able to implement
more complex models without reaching the time constraint.

Currently only time domain feature extraction algorithms are implemented. Having more
feature extraction algorithms could be helpful, but implementing frequency domain feature
extraction algorithms could produce better results and should be looked into. Implementing
frequency domain feature extraction algorithms is more computational heavy than time do-

38

5.3 Further work

main feature extraction algorithms, as they need to implement Fourier Transform to work. This
could cost a lot in execution time but the added accuracy gain could be worth it.

Lastly, there are more different models in the sklearn library that could be implemented.

5.3.1 Conclusion
The results show that simpler models could be generated to a high degree of accuracy, but that
more complex models, like the two layer convolution model usually ran into memory or timing
constraints problems. For the given implementation, different feature extraction algorithms
were more useful than others, the discrepancy was dependent on the memory type used. The
results also shows that different models generated different accuracy for the different people
in the NinaPro database [1], which points towards this code generating system to be useful for
people in need of myoelectric prosthesis as they can get a system that works best for them.
Even though further work can be done in this field, like more optimization and implementation
of more algorithms, the results are satisfying enough to be useful.

39

Bibliography

[1] Manfredo Atzori, Arjan Gijsberts, Claudio Castellini, Barbara Caputo, Anne-
Gabrielle Mittaz Hager, Simone Elsig, Giorgio Giatsidis, Franco Bassetto, and Hen-
ning Müller. Electromyography data for non-invasive naturally-controlled robotic
hand prostheses. Scientific Data, 1(1):140053, Dec 2014. ISSN 2052-4463.
doi:10.1038/sdata.2014.53. URL https://doi.org/10.1038/sdata.2014.53.

[2] Silvestro Micera, Jacopo Carpaneto, and Stanisa Raspopovic. Control of hand prostheses
using peripheral information. IEEE Reviews in Biomedical Engineering, 3:48–68, 2010.
doi:10.1109/RBME.2010.2085429.

[3] Katherine A Raichle, Marisol A Hanley, Ivan Molton, Nancy J Kadel, Kellye Campbell,
Emily Phelps, Dawn Ehde, and Douglas G Smith. Prosthesis use in persons with lower-
and upper-limb amputation. J Rehabil Res Dev, 45(7):961–972, 2008.

[4] Alberto Esquenazi. Amputation rehabilitation and prosthetic restoration. from surgery to
community reintegration. Disabil Rehabil, 26(14-15):831–836, 2004.

[5] Kristin Østlie, Per Magnus, Ola H. Skjeldal, Beate Garfelt, and Kristian Tambs.
Mental health and satisfaction with life among upper limb amputees: a norwe-
gian population-based survey comparing adult acquired major upper limb amputees
with a control group. Disability and Rehabilitation, 33(17-18):1594–1607, 2011.
doi:10.3109/09638288.2010.540293. URL https://doi.org/10.3109/09638288
.2010.540293. PMID: 21166612.

[6] Guanglin Li and Todd A Kuiken. Emg pattern recognition control of multifunc-
tional prostheses by transradial amputees. In 2009 Annual International Conference
of the IEEE Engineering in Medicine and Biology Society, pages 6914–6917, 2009.
doi:10.1109/IEMBS.2009.5333628.

[7] Domenico Buongiorno, Giacomo Donato Cascarano, Irio De Feudis, Antonio Brunetti,
Leonarda Carnimeo, Giovanni Dimauro, and Vitoantonio Bevilacqua. Deep learning for
processing electromyographic signals: A taxonomy-based survey. Neurocomputing, 452:
549–565, 2021. ISSN 0925-2312. doi:https://doi.org/10.1016/j.neucom.2020.06.139.
URL https://www.sciencedirect.com/science/article/pii/S092523122
0319020.

[8] Sidharth Pancholi and Amit M. Joshi. Electromyography-based hand gesture recog-
nition system for upper limb amputees. IEEE Sensors Letters, 3(3):1–4, 2019.
doi:10.1109/LSENS.2019.2898257.

[9] K R Mills. The basics of electromyography. Journal of Neurology, Neurosurgery & Psy-
chiatry, 76(suppl 2):ii32–ii35, 2005. ISSN 0022-3050. doi:10.1136/jnnp.2005.069211.
URL https://jnnp.bmj.com/content/76/suppl_2/ii32.

[10] Roberto Merletti. Electromyography : Physiology, Engineering, and Non-Invasive Appli-
cations, volume 11. 08 2004. ISBN 0471675806. doi:10.1002/0471678384.

41

https://doi.org/10.1038/sdata.2014.53
https://doi.org/10.1038/sdata.2014.53
https://doi.org/10.1109/RBME.2010.2085429
https://doi.org/10.3109/09638288.2010.540293
https://doi.org/10.3109/09638288.2010.540293
https://doi.org/10.3109/09638288.2010.540293
https://doi.org/10.1109/IEMBS.2009.5333628
https://doi.org/https://doi.org/10.1016/j.neucom.2020.06.139
https://www.sciencedirect.com/science/article/pii/S0925231220319020
https://www.sciencedirect.com/science/article/pii/S0925231220319020
https://doi.org/10.1109/LSENS.2019.2898257
https://doi.org/10.1136/jnnp.2005.069211
https://jnnp.bmj.com/content/76/suppl_2/ii32
https://doi.org/10.1002/0471678384

BIBLIOGRAPHY

[11] Jun-Uk Chu, Inhyuk Moon, Yun-Jung Lee, Shin-Ki Kim, and Mu-Seong Mun. A super-
vised feature-projection-based real-time emg pattern recognition for multifunction myo-
electric hand control. IEEE/ASME Transactions on Mechatronics, 12(3):282–290, 2007.
doi:10.1109/TMECH.2007.897262.

[12] Massimiliano Zecca, Silvestro Micera, M.C. Carrozza, and Paolo Dario. Con-
trol of multifunctional prosthetic hands by processing the electromyographic
signal. Critical reviews in biomedical engineering, 30:459–85, 02 2002.
doi:10.1615/CritRevBiomedEng.v30.i456.80.

[13] Hassan Ashraf, Asim Waris, Syed Omer Gilani, Amer Sohail Kashif, Mohsin Jamil, Mads
Jochumsen, and Imran Khan Niazi. Evaluation of windowing techniques for intramus-
cular EMG-based diagnostic, rehabilitative and assistive devices. J Neural Eng, 18(1),
February 2021.

[14] Todd R Farrell. Determining delay created by multifunctional prosthesis controllers. J
Rehabil Res Dev, 48(6):xxi–xxxviii, 2011.

[15] Sherif M. Waly, Shihab S. Asfour, and Tarek M. Khalil. Effects of time windowing on
the estimated emg parameters. Computers Industrial Engineering, 31(1):515–518, 1996.
ISSN 0360-8352. doi:https://doi.org/10.1016/0360-8352(96)00188-X. URL https://
www.sciencedirect.com/science/article/pii/036083529600188X. Proceedings
of the 19th International Conference on Computers and Industrial Engineering.

[16] Angkoon Phinyomark, Pornchai Phukpattaranont, and Chusak Limsakul. Feature reduc-
tion and selection for emg signal classification. Expert Systems with Applications, 39
(8):7420–7431, 2012. ISSN 0957-4174. doi:https://doi.org/10.1016/j.eswa.2012.01.102.
URL https://www.sciencedirect.com/science/article/pii/S0957417412001
200.

[17] Athanasopoulos G Hyndman, R.J. Forecasting: principles and practice, 2nd edition,
otexts: Melbourne, australia, 2018. URL https://otexts.com/fpp2/. (accessed:
2022-11-16).

[18] B. YEGNANARAYANA. ARTIFICIAL NEURAL NETWORKS. PHI Learning, 2009.
ISBN 9788120312531. URL https://books.google.se/books?id=RTtvUVU_xL4C.

[19] Micheal A. Nielsen. "neural networks and deep learning", determination press, 2015.
URL https://www.http://neuralnetworksanddeeplearning.com/index.html.

[20] Pau Farré, Alexandre Heurteau, Olivier Cuvier, and Eldon Emberly. Dense neural net-
works for predicting chromatin conformation. BMC Bioinformatics, 19(1):372, October
2018.

[21] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Ra-
jat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software avail-
able from tensorflow.org.

42

https://doi.org/10.1109/TMECH.2007.897262
https://doi.org/10.1615/CritRevBiomedEng.v30.i456.80
https://doi.org/https://doi.org/10.1016/0360-8352(96)00188-X
https://www.sciencedirect.com/science/article/pii/036083529600188X
https://www.sciencedirect.com/science/article/pii/036083529600188X
https://doi.org/https://doi.org/10.1016/j.eswa.2012.01.102
https://www.sciencedirect.com/science/article/pii/S0957417412001200
https://www.sciencedirect.com/science/article/pii/S0957417412001200
https://otexts.com/fpp2/
https://books.google.se/books?id=RTtvUVU_xL4C
https://www.http://neuralnetworksanddeeplearning.com/index.html
https://www.tensorflow.org/

BIBLIOGRAPHY

[22] Xiaolong Zhai, Beth Jelfs, Rosa H. M. Chan, and Chung Tin. Self-recalibrating
surface emg pattern recognition for neuroprosthesis control based on convolu-
tional neural network. Frontiers in Neuroscience, 11, 2017. ISSN 1662-453X.
doi:10.3389/fnins.2017.00379. URL https://www.frontiersin.org/articles
/10.3389/fnins.2017.00379.

[23] Pravendra Singh, Prem Raj, and Vinay P. Namboodiri. Eds pooling
layer. Image and Vision Computing, 98:103923, 2020. ISSN 0262-8856.
doi:https://doi.org/10.1016/j.imavis.2020.103923. URL https://www.scienced
irect.com/science/article/pii/S026288562030055X.

[24] Pierre Baldi and Peter J Sadowski. Understanding dropout. In C.J. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K.Q. Weinberger, editors, Advances in Neural Infor-
mation Processing Systems, volume 26. Curran Associates, Inc., 2013. URL https:
//proceedings.neurips.cc/paper/2013/file/71f6278d140af599e06ad9bf1ba
03cb0-Paper.pdf.

[25] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[26] Kay Henning Brodersen, Cheng Soon Ong, Klaas Enno Stephan, and Joachim M.
Buhmann. The balanced accuracy and its posterior distribution. In 2010
20th International Conference on Pattern Recognition, pages 3121–3124, 2010.
doi:10.1109/ICPR.2010.764.

[27] Paul J Stoffregen and Robin C Coon. Teensy® 4.1 development board. URL https:
//www.pjrc.com/store/teensy41.html. (accessed: 2022-11-21).

43

https://doi.org/10.3389/fnins.2017.00379
https://www.frontiersin.org/articles/10.3389/fnins.2017.00379
https://www.frontiersin.org/articles/10.3389/fnins.2017.00379
https://doi.org/https://doi.org/10.1016/j.imavis.2020.103923
https://www.sciencedirect.com/science/article/pii/S026288562030055X
https://www.sciencedirect.com/science/article/pii/S026288562030055X
https://proceedings.neurips.cc/paper/2013/file/71f6278d140af599e06ad9bf1ba03cb0-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/71f6278d140af599e06ad9bf1ba03cb0-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/71f6278d140af599e06ad9bf1ba03cb0-Paper.pdf
https://doi.org/10.1109/ICPR.2010.764
https://www.pjrc.com/store/teensy41.html
https://www.pjrc.com/store/teensy41.html

	Introduction
	Aim of Thesis

	Background
	Electromyography
	Windowing of sEMG data

	Feature extraction
	Integrated EMG
	Mean absolute value
	Modified mean absolute value type 1
	Modified mean absolute value type 2
	Variance of EMG
	Root mean square
	Waveform length
	Average amplitude change
	Simple square integral
	Temporal moment 3rd, 4th and 5th

	Machine learning algorithms
	Linear models
	Artificial Neural Networks
	Dense Neural Networks
	Convolution Neural Networks
	Pooling layers
	Dropout
	Flatten
	Activation functions

	Methodology
	Resources
	Scikit-learn
	TensorFlow Keras
	NinaPro Database
	Teensy 4.1

	Implementation
	Tests
	Linear Discriminant Analysis test: window size
	Linear Discriminant Analysis test: accuracy for all persons
	Convolution Neural Network test: comparing results between the two models
	Dense Neural Network test: output dimension
	Convolution Neural Network test: output dimension and window size
	Convolution Neural Network test: kernel size
	Two layer Convolution Neural Network test: kernel size
	Memory constraint estimate

	Results
	Linear Discriminant Analysis result: window size
	Linear Discriminant Analysis result: accuracy for all persons
	Convolution Neural Network result: comparing results between the two models
	Dense Neural Network result: output dimension
	Convolution Neural Network result: output dimension and window size
	Convolution Neural Network result: kernel size
	Two layer Convolution Neural Network test: kernel size
	Memory constraint estimate

	Discussion
	Accuracy evaluation
	Implementation constraints
	Further work
	Conclusion

	Bibliography

