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Abstract

This master’s thesis discusses the implementation of a convolutional neural
network on a Field Programmable Gate Array (FPGA). It deals with imple-
mentation be describing a tool chain, starting with the designing of a model
in Keras, transforming the model to Hardware Descriptive Language, and
finally implementing it on an FPGA. Performance on three different scales
of the same model topology are compared, in the following terms: accuracy,
timing and power consumption. Findings show that timing is within accept-
able ranges, with limitations lying in model capacity, and power consump-
tion. Furthermore, the specific model is compared with a similar topology.
Finally, suggestions for future attempts are proposed, suggesting new layer
types.

Keywords: electromyography, convolutional neural networks, classifier, field
programmable gate array, prosthetic hand
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Can artificial neural networks be deployed on FPGAs
for prosthesis control? - Popular Science Summary

With FPGAs, custom hardware can be designed for artificial neural net-
works. This may lead to performance improvements for artificial neural
networks, thereby allowing for more advanced prosthesis control.

For an amputee, a comfortable and easily controllable robotic prosthesis may
significantly their improve life quality. One of the proposed inputs for con-
trolling robotic prostheses is by surface electromyography. In other words,
the prosthesis can be controlled bymeasuring the electrical potential inmuscles
from the surface of the skin. A neural network can then be trained to infer
movement patterns from these signals. An issue with neural networks, is
their large complexity, making them difficult to adopt to on smaller micro-
controllers, typically desired on prostheses that run on battery. This puts a
limit on the scale and speed of the neural networks that can be deployed. A
good prosthesis controller should not only correctly determine the intended
movement, but also do it within a short time frame. For this reason, the al-
ternative approach of using FPGAs was attempted. An FPGA is in essence
re-configurable hardware, where instead of programming software onto hard-
ware, the hardware itself is programmed. This allows task specific hardware
to be built which can do many calculations at once. In short, the main advant-
age would be allowing for multiple calculations to be performed in parallel as
opposed to in a sequence, thus gaining a speedup. A workflow was proposed
and followed in which a Convolutional Neural Network was constructed and
trained on a computer. It was then, through several steps, translated into
a corresponding hardware design, and deployed to an FPGA. The resulting
implementation was fast enough to allow for multiple inferences within the
desired timing constraint. This, in turn, meant that majority voting could be
used to improve results. There still remains issues, notably in accuracy and
a power consumption. Overall, this project successfully demonstrated the
possibility of using FPGAs as controllers. In the future, this may open up
for possibilities of using more dedicated hardware for neural networks, with
FPGAs acting as design prototypes.
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1 Introduction

The loss of a limb is a devastating event to an individual. Although not the
most common type of amputation, the consequences of a transradial amputa-
tion include functional and vocational limitations. This involve the complic-
ation of everyday actions, such as eating, washing or dressing [1]. Previously
trivial tasks, may become very demanding. Therefore, one of the main goals
of any prosthetic should be to restore functionality to its user. A common
option for amputees are electronic prostheses, which may offer better control
than the body powered alternative [2].

1.1 EMG-controlled prostheses

One approach to controlling robotic prostheses is through the use of surface
electromyography (sEMG). This provides the benefit of being non-invasive,
requiring no surgery. By measuring electrical signals in muscles on the sur-
face of the skin, a prosthetic limb can be made controllable, allowing am-
putees to regain some functions of their lost limbs. Using electromyography
to control prosthetic limbs is a technique that was pioneered in the late 1940’s.
Since then, the field has seen improvements: both in terms of prosthesis, be-
ing lighter and more dexterous, with a higher degree of freedom, but also in
improving how they are controlled. [3].

One of the challenges of controlling the prosthesis is reading and classifying
the sEMG signals, i.e. parsing the incoming signals and translating them
to an appropriate output. Various approaches to controlling the prosthesis
have been proposed. They can be categorized as pattern recognition based or
non-pattern recognition based. Pattern recognition based control schemes,
offer larger degrees of freedom in control, i.e. the ability to perform more
actions with the prosthesis. Typically, some sort of classifier is used, i.e. an
algorithm to determine which set an observation is given to [4].

1.2 Classification on an FPGA

Classification can be computationally heavy, making it difficult to implement
in real time applications. As such, traditional CPU-architecture, being very
sequential in nature, struggles with latency issues. Even for pre-trained net-
works, running classification may be problematic due to timing constraints.
Controller delays should optimally be around 125-150 ms and no larger than
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300ms [5]. Many of these calculations required can be run in parallel provid-
ing room for speedup [6]. A possible route of implementation is therefore to
run the model on an FPGA. The advantage of an FPGA implementation is
the possibility to increase the level of parallel processing, thus allowing for
a higher throughput of information. Since multiple sEMG signals are being
measured in parallel, a faster system is expected. In certain cases, there may
also be improved power usage, as compared to CPUs [7].
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2 Aim and Research question

The main goal of the thesis is to investigate the use of FPGAs for classi-
fication of surface elecromyographic signals for the purpose of controlling
robotic prostheses. The purpose for doing this is to examine potential bene-
fits and issues related to its use for future research. The intent is to answer
the following question: Are FPGAs a viable option for the control of sEMG
based robotic prostheses? Another topic to be examined is the workflow.
Developing hardware descriptions for FPGAs is time consuming. Therefore
finding and describing a workflow would be beneficial.
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3 Basic Concepts

A proposed control system would consist of, input acquisition of sEMG sig-
nals, preprocessing, classification and finally a control scheme. Figure 3.1
provides a simple overview for the steps in such a system. The larger portion
of the project ascertains to producing a workflow to enable faster design of
classifiers. This demands a principle understanding of each stage. As such,
the fundamentals of each step in the project will be discussed.

Figure 3.1: Overview of the main steps in a prosthesis control system [8].

3.1 Electromyography

Electromyography, or EMG is the measurement of electrical potential over
skeletal muscles. It can be used to detect neural stimulation of a muscle, and
as such, it provides a way to identify muscle activation. Typically, a distinc-
tion is made between intramuscular EMG and surface EMG (sEMG), which
are invasive and non-invasive respectively. Invasive EMG involves using
needle electrodes to measure the potential over the muscle of interest. The
non-invasive nature of the surface EMG makes it an attractive alternative in
prosthetic control as it only requires electrodes placed on the surface of the
skin. Using sEMG is not without its downsides. A common issue is cross-
talk, where energy from adjacent muscles groups is detected by a surface
electrode. The recorded signal may therefore contain information from other
muscle groups, making it difficult to isolate the muscle groups individually.
Another issue arises from the amount of measurement points, limiting the
amount of monitored muscle sites. Therefore, the measured signals will typ-
ically not represent all muscle activations [9]. As such, properly classifying
movements
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3.2 Data Preparation & Feature extraction

After acquiring a set of raw sEMG signals, they will need to be prepared.
Typically, the main energy of the signal lies between 0-500 Hz, as illustrated
in figure 3.2.

Figure 3.2: Spectrogram of the input signal. The vast majority of its content
exists below 500 Hz.

As such, artifacts above this frequency are typically discarded [10]. Fur-
thermore, due to power line interference, filtering out 50 Hz on systems is
typically done [11]. Once noise artifacts have been removed, feature extrac-
tion is performed. Feature extraction refers to processing a signal in order to
express a certain feature, such as an average amplitude, or a measurement of
frequency. These features can then be used to determine the current class.
For example, if all incoming signals are of a very low amplitude, it would
be reasonable to assume that no movement was intended. Traditionally, fea-
tures are hand crafted and are typically categorized as belonging to the time
domain, the frequency domain, and spatial domain. In practice this means ap-
plying a known function to the input data, for example calculating the average
amplitude over the sample window, or counting zero crossings in a window.
Recently, there have been successful attempts at using convolutional neural
networks to generate features instead of handcrafting them [12]. This has the
benefit of reducing the time spent finding adequate features, but may also
enable new features to be found.
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3.3 Timing Constraints

Controller delays should optimally be around 125-150 ms and no larger than
300 ms. Anything larger than that will be degrade user experience [5]. As
such, a primary timing constraint is given. Windowing, i.e. sampling the in-
coming the signals over a certain length of time, is typically used when clas-
sifying sEMG signals. The sampled windows are then processed. In order to
increase the number of classifications performed, for example when using a
majority voting scheme, the windows that are sampled can be overlapping.
An example of this is given in figure 3.3.

Figure 3.3: Majority voting with overlapping sampling [5].

In figure 3.3, Ta refers to the window size, with τ being the classification
time and Tnew the stride length. In regards to figure, the maximum delay
Dmax can be described as [5]:

Dmax =
1

2
Ta + (

n+ 1

2
)Tnew + τ (3.1)

Where n is the vote count, i.e.. the number of votes used.
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3.4 Power Constraints

For any controller, low power consumption is desirable as the prosthesis
would be battery powered. As such, lower power consumption allows for
less battery weight or longer battery life. The batteries need to last for 12-16
hours before recharging [13]. The controller for the SmartHand transradial
prosthesis is reported to have a power consumption of 1.44 W, although this
is stated as being too large[14]. This gives a rough comparison point for a
controllers power usage.

3.5 Classification

Once the incoming signals have been filtered, the next required step is to un-
derstand the user’s intent from the signals. Simply put, how can the filtered
signals be mapped to the intended motion? Classification refers to mapping
a given combination of inputs to discrete classes, in this case, which move-
ment is being performed. In the simplest case, classification involves only
two classes, when more classes are available it is referred to as multi-class
classification. Put in layman’s terms, the classifier should be able to figure
out what movement the sEMG data corresponds to. In order to determine the
quality of the classifier some metrics will be introduced. Typical metrics of
interest for a multi-class classifier are balanced accuracy, precision, recall,
and f1-score. Before discussing these metrics, four terms commonly used
when discussing binary classifier will be introduced. These are:

• True Positive - Classifier predicts positive, actual value is positive.

• False Positive - Classifier predicts positive, actual value is negative.

• True Negative - Classifier predicts negative, actual value is negative.

• False Negative - Classifier predicts negative, actual value is positive.

In a small confusion matrix the terms would be allocated as illustrated in
figure 3.4.
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Figure 3.4: Confusion matrix for a binary classifier, each term allocated.

Although the terminology would seem to refer to the binary case, the concept
can be expanded upon to work with multi class classifiers. This is done by
iterating over the different classes and focusing on one at a time as the true
class. As such, false positives exist on the same column as the class in ques-
tion and false negatives on its row. As for true negatives, they fill the re-
maining spaces. This doesn’t present an issue as they won’t be used for any
calculations. Figure 3.5 illustrates this with the second class being in focus.

Figure 3.5: Confusion matrix for multiple classes with focus on class b.
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For multi-class classification, regular accuracy, i.e. the total number of true
positives for each category divided by the total classification attempts, may
seem enough. However, if the data is unbalanced, one or more classes being
over-represented may lead to a high number of correct classes for the over-
represented class without the model even being able to classify the other cat-
egories. This justifies the need for balanced accuracy. By weighing each in-
dividual classes accuracy by its occurrence in the test data, no single category
can outweigh the rest. Balanced accuracy can be expressed in the following
way:

BalancedAccuracy =
1

N

N∑
k=1

TPk

TPk + FNk
(3.2)

WhereN is the number of classes. This way, no single class is over-represented.

Precision aims to answer the question: Out of all the predictions made to a
given category, how many were of that category? It can be expressed as the
following for each element:

Precisionk =
TPk

TPk + FPk
(3.3)

Recall, in contrast, answers the similar but differing question: Out of all the
occurrences of a specific class, how many were correctly classified?

Recallk =
TPk

TPk + FNk
(3.4)

F1-score exists in two categories for multi class classification. For the sake
of brevity, since only macro F1-score is used it will furthermore be referred
to as F1-score. F1-score is the harmonic mean of the Precision and Recall of
the classifier. It therefore gives a semblance of an average between the two
scores. It can be expressed as the following:

F1 = 2 · MAP ·MAR

MAP−1 +MAR−1
(3.5)

In the equation, the terms MAP and MAV refer to the Macro Average Preci-
sion, and Macro Average Recall respectively. They are the average Precision
and Recall of all classes [15]. Since the F1-score is a combination Precision
and Recall, the metrics used in the project will be Balanced Accuracy and
F1-score.
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3.6 Artificial Neural Networks

Artificial Neural Networks (ANNs) are a subset of machine learning based on
emulating neurons. Although the concept is rather old, with early attempts
at modeling a neural network dating back to the 1940’s, the use of ANNs
has become more frequent. Today, neural networks are used for a plethora
of different applications, from pattern recognition of DNA to estimating the
shelf life of food products [16].

Although artificial neural networks are commonly described as emulating
the human brain, this description offers little help in understanding how they
function. An ANN can be considered a composition of multivariate functions
as illustrated in figure 3.6. The component functions are referred to as layers.
Each layer contributes in complexity to the function and as such, the topology
of the model determines the function [17].

Figure 3.6: Each layer of the neural network acts as a component to the com-
posite function.

The trainable weights behave as gradients and constants to each component
function. The distance between the desired outcome and the given output is
expressed as loss function. The distance between the twomay be expressed in
various ways, depending on the character of the problem. When the network
is trained, the weights of each layer are adjusted so as to minimize the loss
function. To put it simply, the ANN can be considered an adjustable function
and the purpose of training is adjusting the functions weights so as the model
behaves as well as possible [16].

Recently, the use of Convolutional Neural Networks (CNN:s) has gained
popularity. One of the proposed advantages of using CNN:s is their ability
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to extract features, thereby removing the need for handcrafted feature ex-
tractors [18]. What this means, is that raw or very lightly filtered sEMG data
can be used as an input signal, thereby reducing the amount of pre-processing
needed. Atzori et al. demonstrated such a networkwith a an average accuracy
of 60.27 ±7.7% [19]. The following sections will provide a brief introduction
to the layers used in the model.

Dense layer

The dense layer is also commonly denoted as a fully connected layer. It func-
tions by multiplying each incoming value with a trainable weight, summing
up the weighted signals, and finally, applying a bias. The output for a dense
node can be described by the following equation [20]:

y = X ·W T + b (3.6)

In equation 3.6 y, X , W and b represent the output, input, weights and bias
respectively. X and W represent vectors, hence the capital notation. Figure
3.7 illustrates how a dense node performs it’s operations.

Figure 3.7: The dense node multiplies and accumulates every input signal with
it’s corresponding weight. A final bias is then applied.
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Convolutional Layer

The convolutional layer performs an n-dimensional convolution between the
input tensor and an n dimensional weight tensor, the kernel. For each ele-
ment in the input tensor, the kernel is centered atop the element, followed
by the multiplication of each overlapping elements of the kernel and tensor.
The products of each element pair are then summed together followed by the
summation of an additional bias. This process is performed for every element
in the vector. As such, it is computationally expensive to perform convolu-
tions. In the case of the kernel and input tensor not overlapping completely,
for example in the corners and edges of the input tensor, zero padding may
be used. In effect this means that any range outside of the input tensor is
considered a zero, as illustrated in figure 3.8. Alternatively wrap-around can
be used, as with normal discrete convolutions. If this is not used, the output
tensor would shrink in size. [20] .

Figure 3.8: Example of zero padding being used to preserve the output tensor
dimensions.

The resulting elements in the output tensor, in the case of a 2-dimensional
operation can be expressed as follows:

yi,j =

p∑
k=0

[

q∑
l=0

(x(i+k−⌈ p
2
⌉),(j+l−⌈ q

2
⌉) · wk,l)] + b

(3.7)
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Where x, w and b are the input tensor, kernel and bias. Furthermore, p and
q are the width and height of the kernel. It should be noted that the limits of
summation In the case ofmultiples of kernels in a layer, the output will consist
of several channels, each being a convolution between the input and one of
the kernels. When the input tensor has multiple channels, a convolution is
performed for every channel with the same kernel. The resulting outputs are
then summed together, forming a single output tensor. As such, the number
of channels of an output tensor is determined by the number of kernels that
a convolutional layer has regardless of the number of input channels. It is
possible to keep the channels separated with separable convolutional layers
[21].

ReLU

Activation functions are functions placed on the output of a node meant to
represent the firing of a neuron. One of their main purposes is providing
non-linearity to each layer, thus allowing for better approximation of general
functions. A Rectifying Linear Unit (ReLU) is a type of activation function
that works like a rectifier. The output f(x) is equal to the input x as long
as the input is larger than a predetermined threshold z, sometimes referred
to as a zero point. This threshold is typically set to zero. The ReLU can be
expressed as [22]:

f(x) =

{
x
∣∣ x > z

0
∣∣ x ≤ z

(3.8)

Softmax

The softmax layer is another activation function that is typically used in the
final layer of a neural network, as it outputs the normalized probability dis-
tribution of each output class. It can be expressed as [20]:

f(xi) =
exi∑N
j=1 e

xj
(3.9)
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Where f(xi) is the probability of class i. As seen in equation 3.9, the softmax
layer takes into account all of the signals of the previous layer.

Pooling

A pooling layer is a downsampling layer. It downsamples by selecting a
subset of input elements from a vector or matrix (depending on dimensional-
ity) and outputs a single value corresponding with the specific pooling type.
The two most common pooling types are average pooling, where the average
value becomes the output and max pooling, where the largest value becomes
the output [20].

Figure 3.9: The values in the blue boxes are downsampled to one value
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Batch Normalization

Batch normalization is a layer that normalizes the input, the resulting output
being scaled and shifted so as to have a mean close to 0 and a standard devi-
ation close to 1. It has been shown to allow the use of higher learning rates,
as well as reduce the sensitivity to parameter initialization [23]. The equation
used by Keras is the following [24]:

f(x) = γ ∗ x− µx√
σ2
x + ϵ

+ β (3.10)

Here, β and γ are trainable parameters. Furthermore, ϵ corresponds to a small
pre-defined constant. It should be noted that the mean and variance are only
calculated during training and fixed during inference. As such, the expression
simplified during inference, resulting in a much simpler affine function [25]:

f(x) = kx+m (3.11)

where k can be denoted as:

k =
γ√

σ2
x + ϵ

(3.12)

and m as:
m = β − µx√

σ2
x + ϵ

(3.13)

This scaling becomes useful for data types with limited ranges, as it helps
bound the ranges.
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3.7 Field Programmable Gate Arrays

AField Programmable Gate Array (FPGA), is an integrated circuit consisting
of non-specific configurable blocks called logic blocks or logic units (LU),
along with memory and DSP-accelerators. In contrast to a microcontroller,
it is not programmed in a traditional sense as there is no CPU on which it ex-
ecutes instructions. Instead, it emulates hardware on a register transfer level
(RTL), which is described using Hardware Descriptive Languages (HDL). In
summary, instead of programming a series of sequential instructions to per-
form a task, hardware that would perform those instructions is described and
implemented. The primary motivation for implementing neural networks on
FPGAs is parallelism.

Figure 3.10: The sequential architecture requires less resources but performs
slower.

Consider the following example, the dot product of vectors X and C, as illus-
trated in figure 3.10. In the example to the left, one element from each vector
is multiplied and subsequently accumulated. Because the register, which be-
haves like a small memory, requires a positive flank from the clock to update
it’s value, a single multiplication and accumulation requires one clock cycle.
In the example to the left, the operation is unrolled so that the multiplications
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are performed simultaneously, thereafter summed together and finally saved.
In the first example, four clock cycles would be required to perform the op-
eration, whereas in the second example, all summations could be performed
in one clock cycle. Thus, at the cost of more hardware usage, the opera-
tion could be sped up. Although the first example is not an equivalent to the
architecture of a processor, a processor executes operations in a sequential
matter. For the purpose of later results the term reuse factor is introduced
as a measurement of how unrolled a process is. Reuse factor describes how
much the same components are reused in regards to a given task. In regards
to the previous example, the same multiplier and adder were used to perform
4 operations. As such it’s reuse factor would be 4. In essence this term de-
scribes how many times a multiplier is used to perform operations. As with
the example, low reuse factors therefore require more hardware resources but
take less time.

Parallelizable architecture is not exclusive to FPGAs, Application Specific
Integrated Circuits (ASICs) can also have multiple data-paths, and are typ-
ically faster and less power consuming. Kuon and Rose [26] measured a
roughly 9 times larger power consumption on an FPGA than on an ASIC per-
forming the same task. The difference is however that an FPGA is reusable
and doesn’t require extensive development time. As such, it allows for easy
prototyping while still retaining many of the advantages of an Application
Specific Integrated Circuit.

Components

Naturally, there is a limit to what can be implemented on an FPGA. Only
sufficiently small designs can be fitted on to an FPGA. Additionally, different
FPGAs have different amounts of onboard building blocks. The three main
building blocks of concern are Logic Slices, digital signal processors (DSP:s),
and block RAM (BRAM).

The basic building block is the Logic Slice, also known as Logic Blocks
or Configurable Logic Blocks. They contain a given number of flip flops
and look up tables, depending on which device. They function by replacing
conventional logic with look up tables, where the result of a combination
of inputs are pre-stored. As such, instead of using logic gates, memory is
used to represent the given output. The look up tables can in other words
be considered truth tables. This is also what makes them re-configurable:
by simply rewriting the truth table, the function they represent is changed.
Figure 3.11 exemplifies a representation of an AND-gate. As such, they can
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be made to emulate combinational logic. The flip flops further the concept
by allowing the implementation of clocked logic.

Figure 3.11: Logic gate equivalents can be designed using look up tables. The
look up table in the figure is simplified for purposes of demonstra-
tion.

The DSP-slices can be considered accelerators, dedicated to performing mul-
tiplication and accumulation operations of binary numbers. Multiplication
of binary numbers is performed as a series of additions and bit-shifts. For a
wider bit-width, more area on the chip is required. For long numbers, this
becomes very hardware demanding, as large numbers of adders need to be
cascaded. As such, maintaining a high utilization of each DSP-slice is de-
sirable, not only performance wise, but also in terms resource usage as it
reduces the number of Logic Units needed to perform the same operation.

The final important building block is the BRAM or Block Random Access
Memory. These are onboard blocks of RAM memory. In a similar fash-
ion to the DSP-slices, these blocks exist to reduce resource usage of Logic
Units, which could in fact also be used for memory, as they contain flip-flops.
However, in many cases when larger memory storage is needed, such as in a
buffer, BRAM is advantageous [27].
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Table 3.1 presents the resources of the two devices used in the project. BRAM
is represented in 36Kb blocks .

Table 3.1: Summary of resources available on the used devices. Each Logic
Slice contains 4 LUTs and 8 Flip Flops. [28][29]

Board Nexys Video Zybo Z7
FPGA XC7A200T-1SBG484C XC7Z020-1CLG400C

Logic Slices 33650 13300
LUTs 134600 53200

Flip Flops 269200 106400
DSP-Slices 740 220
BRAM 365 (13Mb) 140 (4.9Mb)

Although the Zybo Z7 consists of fewer resources, it has an integrated ARM
A9 processor, thus removing the need for a soft microprocessor core and
certain peripheral drivers.
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3.8 Numerical Representations & Quantization

A commonly used way to reduce hardware size and consumption, as well
as increase speed, is to replacing floating point representations with fixed
point representations [30]. Although the stated advantages, the use of float-
ing point representations is still very common. In order to understand why
one would be preferred over the other, an examination is required. In the
following section a brief look at how values are represented will be given,
as well as a comparison between a fixed point fractional representation and
a floating point representation. There exists a multitude of different ways to
represent values. Regardless of representation scheme, the various combin-
ations are limited by the number of bits used to represent unique values. It
can be described as follows:

ncombinations = 2N (3.14)

Where N is equal to the number of bits used for the representation. The first
representation to be discussed is the fixed point fractional representation. It
is an expansion of a binary representation where fractions are included by
using bits to represent negative powers of two as opposed to just positive
powers. It can be summarized by the following expression, in this case with
an unsigned notation:

xN−1 ∗ 2(N−1−D) + ...+ x1 ∗ 2(1−D) + x0 ∗ 2(−D) (3.15)

In the expression, N denotes the number of total bits, and D denotes the num-
ber of fractional bits used. A large number of fractional bits implies a higher
resolution, but subsequently demands a sacrifice in range. Additionally, if
negative numbers are to be represented, the most significant bit can be altered
to represent its negative complement. Since the largest bit is negative, the in-
terval is thus shifted from [0, 2N −1] to [−(2N−1), 2N−1−1]. This negative
notation is commonly referred to as two’s complement.

The second type of representation is the floating point representation. It func-
tions similarly to a scientific notation in that it consists of a significand and
exponent. The representation is however in base 2, and it contains a negat-
ive offset to the exponent to accommodate for small numbers. In addition,
negative numbers are represented by a sign bit. It can be expressed as the
following:

(−1)s ∗ (1 +m) ∗ 2n−Offset (3.16)

Where s is the sign bit, m the significant and n the exponent. What is im-
portant to note is that the representable numbers are not evenly spaced. For
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large numbers, the spacing is larger than for small numbers, as the exponent
sets the ”step size”. For larger exponents, every increment of the significand
results in a larger step [31]. This means that the standard allows for high pre-
cision for small numbers while still retaining a large range. This forms the
basis for the IEEE standard for floating point arithmetic or IEEE 754 [32].
Figure 3.12 illustrates bit allocation for a 32 bit floating point number.

Figure 3.12: Bit allocations for a IEEE 754 floating point value [32].

When comparing the two presented types of representations, the first ap-
parent difference is numerical spacing. The fixed point uses fixed spacing,
whereas the floating point representation uses variable spacing. The second
difference between the representations, although less obvious, is how oper-
ations are performed on the numbers. For a fixed point representation, the
majority of operations can be performed on integer based hardware, whereas
floating point operations typically requires specialized floating point hard-
ware [31].

Quantization & Pruning

When implementing classifiers on FPGA:s, a large bit-size may be very tax-
ing in terms of resources [33], 32-bit numerical representations require more
resources than 16- or 8-bit numerical representations. Furthermore, floating
point mathematics are more resource intensive, requiring up to 5 times as
many DSP-slices as the equivalent fixed point operation [31]. In order to
reduce hardware usage, a preferred architecture uses as few bits as possible
to represent values as well as a fixed point representation. This comes with
a trade-off, however. For every bit removed, the number of possible numer-
ical representations is halved. A fixed point representation requires careful
handling of range to avoid overflows or saturation errors.

The tools commonly used to develop and train ANN:s commonly use 32-
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bit floating point values. As such, quantization is necessary. Quantization
aims to map a given set of numbers to a smaller subset. This is done by
approximating each value to a similar existing value. It is typically performed
by rounding. However, when quantizing a model, classification accuracy
may be reduced due to the rounding errors introduced. This drop in accuracy
can be reduced by performing Quantization Aware Training (QAT), which
takes into account a desired quantization of parameters when initially training
the neural network. The model size can be reduced additionally by pruning.
This works by identifyingweights with values close to zero, and subsequently
setting them to zero. This can be done during training, allowing the model to
adjust to the reduction in weights [34].

29



4 Methodology

The following sections will describe the various tools used in the workflow
throughout the process. As one of the goals of the project is identifying a
workflow that would allow low development times, an automated workflow
is advantageous as compared to handwriting neural networks in Hardware
Descriptive Language. The ideal workflow would allow a high level model
of a neural network to be immediately deployed onto an FPGA. As such,
automating the design flow is the preferred method. The following sections
aims to describe each tool used, as well as to explain their purpose in the
workflow.

Figure 4.1: Summary of the proposed workflow, starting with a Keras model
and ending with a deployable bitstream.

Figure 4.1 summarizes the tools used throughout the project. It should be
noted that theworkflowwas iterative, andmany iterationswere pushed through
the workflow. As will be discussed, not all layers could be implemented
using the tool set, something that was discovered during the course of the
project.
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4.1 Model Design and Training

Dataset and Pre-processing

The NinaPro DB2 [8] database was selected as the data set for the model.
This was in large due to it being sampled at a sufficiently high frequency, at
2 kHz, as well as being one of the more commonly used data sets. Out of the
49 classes available in the data set, the 23 grasp movements from exercise
C, as illustrated in figure 4.2, along with the class for resting were selected.
For each movement class selected, repetitions 1, 3, 4 and 6 were used for
training. The remaining repetitions, 2 and 5 were used for testing. This was
done to ensure that the full movement sequences would be unchanged. Due
to the same rationale, the data remained unshuffled.

Figure 4.2: The 23 functional grasps from exercise C of NinaPro DB2 [8].

During training sessions different ways of processing the data were experi-
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mented with. Originally the data was filtered, rectified and normalized but
the filtering and rectification were ultimately dropped in favor of normaliz-
ing the data and downsampling it to 1 kHz. As such, the input data was very
close to being ”raw”. The data was divided into windows of 128 samples,
with a 32 sample stride length. In the second iteration of it’s implementa-
tion, the stride length was reduced to 4 samples. As such, every window
represents 128 ms, with each stride being a step forward in of 32 ms or 4 ms
respectively. The input ultimately consisted of a 2-dimensional matrix, with
each column being a time-series of one of the input channels as illustrated in
figure 4.3. The figure does not represent the final dimensions.

Figure 4.3: The time-series of each channel constructs the image. Each row
represents a time series for a specific channel.

Model

The model was initially designed in Keras. Keras is an API built on top
of TensorFlow to simplify the implementation of artificial neural networks.
Simply put, it is easy to use. It includes libraries of commonly used pre-
implemented network layers. It was chosen due to its accessibility, with a
large set of layers, as well as being compatible with tools used down streams
in the workflow. It should be noted that an additional add-on tool QKeras
was used in conjunction, to enable quantization aware training by providing
drop in replacement layers. This meant that layers were typically denoted
with the prefix Q if they used quantized weights. This notation will hereafter
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be used in descriptions when referring to quantized layers.

The network designed was a 5-layer convolutional neural network, with sim-
ilarities to the models used by Gijsberts et al. [35] and Pinzón-Arenas et al.
[36]. Similar to the network used by Gijsberts et al., the network used raw
inputs from which the convolutional layers extracted features. In order to re-
duce the total number of output weights required, a convolutional layer with
a 1x1 kernel was used as the final convolutional layer. This effectively ac-
ted as a way to reduce the number of channels before flattening. As such it
reduced the number of weights required by the dense layer. From the initial
model design, the convolutional and dense layers were replaced with 16 bit
quantized layers. Furthermore, the average pooling layers were replacedwith
max pooling layers. This was due to conversion issues further downstream
in the workflow. The broad topology is illustrated in figure 4.4.

Figure 4.4: Overview of model architecture.

The model was tested with three scale configurations: small, medium and
large. The difference was only in the size of its layers, meaning that larger
models had more neurons in each layer. Table 4.1 presents a summary of the
layer sizes for the three models.
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Table 4.1: Table of layer sizes for each model.

Layer Kernel Size Small Medium Large
QConvolutional 5x5 8 10 16
QConvolutional 3x3 8 10 15
QConvolutional 3x3 16 20 32
QConvolutional 2x2 16 20 32
QConvolutional 1x1 8 8 8

QDense - 24 24 24
Total Parameters - 7,880 9,546 16,173

Training was performed over 50 epochs, ie. 50 passes over the entire dataset,
with a batch size of 50 windows. In order to avoid over-fitting, the training
was set to stop early if the loss didn’t decrease after 10 epochs. Further-
more, the training rate was gradually halved after a five epoch loss plateau.
After initial training, the model was additionally pruned and retrained an ad-
ditional 10 epochs with the same training hyperparameters. The target prun-
ing sparsity was set to 30%. For the purpose of producing a comparison to
other works, the large model was trained on all 40 patients. The small and
medium models, with the main purpose of providing comparisons in terms
of scale, were trained on subject 1.

4.2 Model Deployment

Once the model was trained and pruned, it was exported to HLS4ML where
it was converted into a C++ model. HLS4ML is a tool to enable deployment
of ANN:s to FPGAs. It functions by converting the Keras models into a
C++ equivalent model, which can then be used by the Vivado High Level
Synthesis (HLS) workflow. In addition, the software also provides profiling
tools, to analyze the weights, and outputs of each layer of the models. Using
the tool, the data widths were profiled in order to avoid situations when the
weights or results would be out of range, which would result in overflow
issues. In order to ensure no accuracy loss at conversion, seeing as the model
was already quantized, the Keras model was compared along side a C++
simulation of the hardware model. It was also at this stage that each layer’s
reuse factor was configured.
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4.3 High Level Synthesis

When the converted and quantized model was verified, it was run through
Vivado HLS to synthesize a hardware description. Xilinx Vivado HLS is
a high level synthesis tool, which allows deploying C, C++, and System C
algorithms on Xilinx FPGA:s without having to manually write RTL. It is
commonly used to implement digital signal processing algorithms into hard-
ware. Parameters for this stage were set through HLS4ML:s configuration
files. This step became mostly automated with the exception of the models
input and output. A wrapper file was written to reduce the number of inputs
and outputs by implementing a streaming interface. For an input tensor with
12 channels and 128 time samples, a total of 1536 values are required. How-
ever, since convolutions function by having kernel traverse the tensor, not all
inputs are required immediately [37], as illustrated in figure 4.5. Therefore,
streaming is utilized and the values can be fed sequentially. The CNN model
was exported as an IP-block.

Figure 4.5: Input sequence for the streaming scheme. The convolutional layer
doesn’t require the full tensor to begin computing, only the elements
covered by the kernel.
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4.4 Hardware Design

Once the IP was generated for the design, it could be implemented into hard-
ware. The resulting block required a surrounding infrastructure to manage
dataflow and input/output. As such, a surrounding infrastructure was de-
signed. For the larger Nexys Video, this involved implementing a Micro-
Blaze soft processor core and connecting the exported IP-block to it via a
streaming interface. The MicroBlaze was connected to desired inputs and
outputs. For testing purposes, this primarily meant a UART interface, as it
could be connected to a computer via USB allowing for quick validation with
scripts. The main reason why a processor core was included was to allow
for easier integration of different accelerators and methods of input/output
without needing to change the underlying architecture. This would have been
required if a specialized overhead had been used. Hence the used architecture
allows for interchangeability. Figure 4.6 illustrates the difference between
using a custom overhead and the more generalized design which was imple-
mented.

Figure 4.6: Using an interconnected processor grants larger interchangeability
between the blocks.

For the Zybo Z7 the equivalent models were implemented, with the only ma-
jor difference being an ARM core instead of the MicroBlaze, thus requiring
less setup. Once the design was synthesized and implemented, its hardware
specifications were exported to Xilinx Vitis for programming.

4.5 Design Programming

The imported device was programmed in Xilinx Vitis. Xilinx Vitis is a tool
for programming processor architectures implemented on Xilinx FPGA:s. It
is in essence an IDE with capabilities for generating bit-streams for a given
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hardware architecture on a processor core. A simple program was designed:
The device would receive the input data via UART from a computer. It would
then package it and stream it to the designed accelerator. After fetching the
results, these would then be transmitted back to the computer where they
could be evaluated. A small segment of code was also written for temporal
majority voting, but for testing purposes this was ultimately done offline.
The majority voting scheme consisted of a FIFO-queue, where the most fre-
quently occurring result was selected.
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5 Results

Because of the broad scale of the project, the results describe both the model,
but also it’s hardware implementation. Due to the nature of the models being
implemented on an FPGA, key aspects of its implementation will be presen-
ted along with the models actual performance.

5.1 Resource Usage and Reuse Factor

As can be seen in the following tables, resource usage differs not only on
scale, but also on reuse factor. The result of having to vary the reuse factor in
order to accommodate the differing resource availabilities of the two devices
is a difference in resource usage. In order to achieve consistency between the
models the default reuse factor used was 64 with the exception of the output
layer, which had a reuse factor of 24. For the smaller Zybo Z7 the reuse
factor used was 256, with the output layer maintaining a reuse factor of 24.
It should be noted that the reuse factor was determined empirically.

Table 5.1: Resource Usage for the small sized model. The difference in resource
usage between the devices can be explained by differing reuse factors.

Component Nexys Video Zybo Z7
LUT 44147 (32%) 35162 (66%)

Flip Flop 54046 (20%) 43084 (40%)
BRAM 180 (49%) 140 (100%)
DSP 244 (30%) 121 (86%)
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For the medium and large sized models, implementations on the Zybo Z7
were unsuccessful due to insufficient resources. As such, only the results for
the Nexys Video are presented.

Table 5.2: Resource usage for the medium and large sized models.

Component Medium Large
LUT 48961 (36%) 62372 (46%)

Flip Flop 58985 (21%) 74386 (28%)
BRAM 212 (58%) 323 (88%)
DSP 274 (37%) 381 (51%)

From just a glance at the tables it becomes clear that the heaviest resource
usage lies in BRAM. This was also the reason why the medium and large
models were not successfully implemented on the Nexys Video.

5.2 Timing

It was discovered that implementations of the model failed at frequencies
above 60 MHz. The failures occurred to due insufficient slack times within
the circuit. In order to mitigate, as well as gain some additional slack, the
implemented models’ clock frequency was set to 50 MHz.

The time for one prediction for each accelerator is depicted in the table below,
timings used were the maximum:

Table 5.3: Inference delay for the differing implementations at 50 MHz.

Size Nexys Video Zybo Z7
Small 1.213 ms 2.734 ms

Medium 1.213 ms -
Large 1.406 ms -
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5.3 Power Usage

The following table illustrates the expected power usage as reported byVivado
post-implementation. Surprisingly, the design requiring the least amount of
hardware resources, namely the small model, as implemented on the Zybo,
has the largest power consumption.

Table 5.4: Estimated power usage as reported after device implementation.

Size Nexys Video Zybo Z7
Small 1.41 W 1.972 W

Medium 1.498 W -
Large 1.96 W -
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5.4 Classification Results

The following table lists the balanced accuracy and F1-scores for the 3 mod-
els. For the large model, the results reflect all 40 patients. For the smal-
ler models, patient 1 was used. Since the results are numerically the same,
regardless of which device they were tested on, the results apply for both
devices.

Table 5.5: Classification results before post-processing.

Model Size Balanced Accuracy (%) F1-Score (%)
Small 62.2 63.2

Medium 62.1 63.3
Large 66.3±6.1 64±6.3

A more in-depth look at the results illustrates some of the limitations of the
model. The classifier completely fails to determine the resting state. Apart
from the failing rest state, the classifier commonly predicts the precision
sphere grasp as a tripod grasp, and struggles with the quadpod grasp. A con-
fusion matrix for the large model is presented in figure 5.1, followed by a
figure of the mentioned grasps in figure 5.2.

Figure 5.1: Confusion matrix for the large model. The conflicting classes can
be identified by the disruption in the main diagonal.
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Figure 5.2: The precision sphere grasp is commonly classified as a tripod grasp.
Apart from the resting class, the quadpod grasp is the weakest class
in terms of correct classifications.

With majority voting, the results improve significantly. With a window size
of 128 ms and a stride length on windows of 4 ms, 41 vote counts can be con-
sidered and still meet timing demands using the equation presented earlier.
However, since the minimum stride length is limited by the delay of the clas-
sifier, the stride length could be reduced to 2-3 ms, depending on the device.
This would in turn allow for more vote counts, and potentially more stable
performance. In order to preserve some margin of error this was not attemp-
ted. Figures 5.3 and 5.4 illustrate performance increases in regard to larger
vote counts.

Figure 5.3: Accuracy improves with larger vote counts. Illustrated on subject
1.
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Figure 5.4: The F1-score improves with larger vote count. Illustrated subject 1.

It should be noted that with very large vote counts, the final accuracy and
f1-score seem to converge.
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6 Discussion

While the implementation onto the FPGA was successful, demonstrating a
relatively effective tool flow, as well as including a variety of commonly
used layers, there still exists room for improvement. What is probably the
most difficult task is comparing the results of the project to similar works.
Other works have utilized different data sets, and more successful yet more
complex architectures. The model was however chosen in part to determine
if the workflow could handle CNN:s, hence its implementation. As illus-
trated in the results section, there are classes for which the model in large
part fails to classify properly. For the resting class, this error could be mit-
igated by implementing an additional single class classifier to augment the
model. When comparing the model to works by Atzori et. al. [19], its results
are slightly better. Accuracy before post-processing is relatively similar, al-
beit performing slightly better. It should, however be noted that fewer classes
were used in this work. In terms of timing, the design was fast enough to not
only achieve real time inference, but also obtain a large number of votes in
the allotted time. An issue arises beyond prototyping, and that is the power
consumption. The almost 2 W power figure may make such an implementa-
tion difficult to run on batteries for larger times. For an ASIC equivalent the
power consumption would decrease quite dramatically. There are further-
more commonly used methods to reduce power consumption, such as clock
gating which is however beyond the scope of this project.

6.1 Tool flow

Although the tool flow, when functioning properly, allowed for quick imple-
mentations, a multitude of issues had to be overcome throughout the project.
For HLS4ML, documentation was sparse and at times outdated. Not all lay-
ers functioned properly and as such, replacements had to be made at the cost
of model performance. In many cases, the internal bit widths of accumulat-
ors would overflow, requiring manual debugging. Furthermore, setting reuse
factors become an exercise in trial and error. As the performance of an itera-
tion required synthesis to calculate resource usage, a process which in worst
cases took over an hour, optimizing resource usage became time consuming.
As such, there are still aspects of the workflow that are not fully automated.
In addition, the implementations provided by this tool flow are pre-trained.
This implies that all of the steps must be iterated over in order to modify
the model. Quantization Aware Training of pre-quantized layers allowed for
a ”what you see is what you get” approach, where the model results after
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training don’t decline further. This was desirable, as it removed the risk for
unexpected loss further downstream.

6.2 Related Work

In terms of the broader ambition to implement neural networks on FPGA:s,
there exists a large portion of projects and attempts, both in terms of ap-
proaching it from high level synthesis as well as handcrafted designs that can
be accommodate different network architectures [38][39]. Using FPGA:s for
electromyographic classification has also been performed, but implement-
ing traditional classifiers[40]. Using CNN:s for classification has been per-
formed quite extensively, Triwiyanto et al. [41] provides a review containing
both examples with handcrafted features, as well as with raw inputs. More re-
cently, CNN:s have been used in conjunction with Long Short TermMemory,
a type of layer which allows the model to retain memory of previous inputs
with promising results [42].

6.3 Future Work

There is still much to be desired in terms of both model performance and tool
flow improvements. Although this project laid out design considerations and
a tool flow, not much is given in comparison with the existing alternative of
using a microcontroller based approach. As such, future work should include
comparisons of equal models implemented side by side on microcontrollers
and FPGA:s, to further answer the question of whether the FPGA is a suitable
alternative to a microcontroller. This idea of comparability should also be ap-
plied in terms of models and data sets, to simplify comparisons. Future work
should aim to include recurrent neural networks with LSTM integration, as
they have been shown to be promising in classifier architecture.

6.4 Conclusion

This project demonstrates that it is possible to implement relatively large
CNN:s on FPGA:s for the purposes of sEMG classification. While the tool
flow still requires work, it is usable, and possibly even useful, for prototyp-
ing. The CNN, was comparable to similar architectures using raw input data.
That being said, although the FPGA implementation is feasible, it still re-
mains undetermined if it is preferable to using micro-controllers.
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