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Abstract

In this thesis we will explore methods to generate random numbers from any
distribution.

The basic idea behind generating random numbers is to use a mathematical
sequence for which it should be impossible to guess what the next number is
without knowing exactly how the sequence is generated. Although any hard to
guess sequence would work, this thesis focuses on the linear congruential sequence,
Xn+1 = aXn + c mod m. There are two advantages to this sequence, firstly it
is quick, secondly it has underlying theorems on how to use it. These theorems
which have been studied in Donald Knuths the Art of Computer Programming
volume 2, will be explored and proven in this paper.

To get any distribution we will also need the inversion and rejection methods.
The effectiveness of these as methods to get random numbers is what W.Hörmann
and G.Derflinger has studied in their paper. We will do the same testing of those
methods and try to replicate their results. Replicating their results failed, however
the same conclusion can be drawn.
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Popular Abstract

A random number generator is a method to produce random numbers. In
actuality the number we generate are not truly random, they are completely pre-
determined by a mathematical sequence, but without knowledge of how exactly
the sequence is defined the numbers will seem and act like random numbers.

The method studied in this thesis can be thought of as a shuffled deck of cards
with numbers from one to a very large number on each card. To generate each
number one draws a card and puts it at the bottom of the deck. So if one knows
how exactly one shuffled the deck, one can predict what number is coming next.
For anyone who doesn’t know exactly how the deck was shuffled the numbers will
seem random. This metaphor just like the actual method shows that if we generate
the number 5 then that number will not appear again until one has gone through
the entire deck. Also a deck of card such as this will generate any number with
the same probability. However sometimes one may want some numbers to be more
likely to appear than others, so we also study two methods to generate numbers
with other distributions.
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Chapter 1

Introduction

Numbers that are randomly generated, or at least very hard to predict, has uses in
various areas of science as well as outside of the sciences. For example, there exists
monte carlo methods which employ random numbers to numerically calculate a
result. Or one could use it to test statistical results. However getting a lot of
random numbers can be a tedious process. For example doing 100 coin flips and
recording the results can take quite a while. Thus before the computer there
used to be large table of random number[7, pp. 1-6]. With the invention of the
computer, the invention of random number generators (RNG) soon followed. A
RNG is a method from which one calculates a number, such that it should be hard
to predict, and seem random to someone who doesn’t know the inner workings of
the RNG.

In 1946 John von Neumann suggested the "middle-square" method. In which
a number is generated by taking the square of the previous number and then use
the middle digits as the next number[8]. However this method tends to either get
stuck at 0 or a relatively short string of repeating digits.[7, pp. 1-6].

When generating random numbers it is important that one uses a method that
has been studied, and has underlying theory about how it works, and which has
been well tested to make sure it truly acts as if it was random.

A RNG which has been well studied is the linear congruential method(LCM),

Xn+1 = aXn + c mod m

which will generate uniformly distributed numbers, where X0, a, c and m are
integers. This method is the focus of this thesis. The theory of choosing the
integers above will be studied and theorems related to it will be proven. The
theory behind the LCM is largely based on Donald Knuths the art of computer
programming volume 2, chapter 3.

Once we have the LCM to generate numbers from a uniform distribution, we
will introduce the inversion method. The inversion method converts a number
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from a uniform distribution between 0 and 1 by plugging it into the inverse of the
wanted distributions cumulative distribution function (CDF). The theory for the
inversion method is also taken from the art of computer programming

However as the inversion method requires an analytical CDF its not able to
generate numbers from any distribution. To fill the gaps we also introduce the
rejection method which will generate one number and then we randomly accept
or reject it with a probability such that the accepted numbers will be from the
wanted distribution. This method has been studied in the paper of W.Hörmann
and G.Derflinger. With these three methods combined we will be able to generate
numbers from any distribution.

We will finish the thesis by trying to replicate the results of W.Hörmann and
G.Derflinger. The attempt to replicate the results of W.Hörmann and G.Derflinger
did fail, however the results can still be used to draw the same conclusion, that a
small multiplier in the linear congruential sequence is bad when one is pairing it
with the rejection method.
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Chapter 2

Generation of uniformly distributed
numbers

2.1 Definitions and properties
To understand this thesis you are expected to have some prior mathematical under-
standing. We will however here explore a brief explanation of modular arithmetic
as it lays the ground work for the generator. We start with a few definitions.

Definition 2.1.1. a is a divisor of b, if there exists some integer c such that
b = ac, we write this as a|b. [4, pp.83-85]

Definition 2.1.2. If a|b and a|c then a is a common divisor of b and c. In
particular if it is the greatest such number it is called the greatest common divisor
(GCD).[4, pp. 83-85]

Definition 2.1.3. If the greatest common divisor of a and b is 1, then they are
said to be coprime or relatively prime.[4, pp. 83-85]

Definition 2.1.4. For any a, b ∈ N we say that h is a common multiple of a
and b if a|h and b|h. We say that a common multiple h of a and b is a least
common multiple if h divides every common multiple of a and b. We denote the
least common multiple of two numbers by lcm(a, b). [4, pp. 83-85]

Definition 2.1.5. Two integers a, b are said to be congruent modulus m if,

(a− b)|m.

This can be written as,

a ≡ b mod m.[4, pp.83− 85]
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In words we can explain it as two numbers are congruent modulus c, if their
remainder when divided by c are equal. A direct consequence of this definition is
that

a = b+ qm for some integer q. (2.1)

With modular arithmetic we also have some important properties.
If we have a ≡ b mod m and arbitrary integers k,

Property 1. a+ k ≡ b+ k mod m

Property 2. ak ≡ bk mod m

Property 3. ak ≡ a mod m if k is coprime m[4, pp. 106-107]

2.2 The linear congruential sequence
Computers are inherently unable to produce randomness, since given a certain
input they will always act in the same way, giving the same output. If we multiply
3 by 5 the computer will always get 15. If we take 15 mod 11 we will always get
4. However if we repeatedly multiply the result by 5 and take modulus 11, we get
a sequence

3, 4, 9, 1, 5.

This sequence, whilst not random makes it hard to guess what the next number
will be without doing the calculations. However, the very next number in the
sequence is 3 after which it will continuously repeat the same five numbers. We
can define such sequences in general as,

Xn+1 = aXn mod m, (2.2)

where a, m and x0 are integers. By making better choices for the modulus m,
the multiplier a and the starting value X0, we can get a different sequence, with a
longer period giving a more "random" sequence. However we will study a slightly
different sequence, where we include an increment c,

Definition 2.2.1. For integers a, c, m and x0, a linear congruential sequence
(a, c,m, x0), is a sequence of the form,

Xn+1 = aXn + c mod m. (2.3)

since it can yield an even longer sequence [7, pp. 15-24]. However both se-
quences are of interest, since equation 2.2, has slightly faster calculation times
whilst still having the possibility to give a sequence that is long enough for most
problems. If we know Xn, we may be interested in Xn+k, which we present as a
lemma,
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Lemma 2.2.2. If Xn is the nth number of a linear congruential sequence
where a ̸= 1 then the (n+ k)th number is given by

Xn+k = akXn +
(ak − 1)c

a− 1
mod m

[7, pp. 15-24].

Proof. We will prove this by induction over k. Thus we first let k=1 and get,

Xn+1 = aXn + c mod m = a1Xn +
(a1 − 1)c

a− 1
mod m.

Next we make the inductive hypothesis, that it holds for k = t,

Xn+t = atXn +
(at − 1)c

a− 1
.

We now use equation (2.3) to generate Xn+t+1 from Xn+t

Xn+k+1 = aXn+t + c mod m = a(atXn +
(at − 1)c

a− 1
) + c mod m =

at+1Xn +
(at+1 − a)c

a− 1
+ c mod m = at+1Xn +

(at+1 − a)c+ (a− 1)c

a− 1
mod m

= ak+1Xn +
(ak+1 − 1)c

a− 1
mod m,

which finishes the proof.

2.3 Choice of m

Let us consider the modulus parameter. We note that Xn can at most be m − 1
due to the modulus. Further a given number can only appear once per period.
Thus in the longest possible linear congruential sequence, we can imagine every
integer between 0 and m − 1 will appear once, so we see that our sequence will
never have a period longer than m. Since a long period is one of the things we
want, we can conclude that we want m to be large. Naively one might conclude
then that we choose m to be the word size. That is for a 10-bit computer we let
m = 210. However this is a bad choice, to show why lets consider a sequence with
m = 210, a = 33, c = 0, x0 = 102. Then a part of the sequence looks as follows,

102, 294, 486, 678, 870, 38, 230, 422, 614, 806. (2.4)
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It might not be immediately evident, but upon closer inspection one may notice
that all these numbers are even. It could also be possible that the sequence would
be all odd or that it alternates between odd and even. This same problem would
happen for a 64-bit computer as well and letting m = 264. To explain what exactly
is happening here, we introduce a lemma,

Lemma 2.3.1. If we have Xn belonging to a linear congruential sequence , with
multiplier a, increment c and modulus m, with m being a multiple of d. If we then
have,

Yn = Xn mod d,

then it follows that,
Yn+1 = aYn + c mod d.

[7, pp. 15-24]

Proof. Let q be some integer and m = pd then we have,

Xn+1 = aXn + c mod m =⇒ Xn+1 = aXn + c− qm = aXn + c− q(pd)

=⇒ Xn+1 mod d = aXn + c− q(pd) mod d =⇒ Yn+1 = aYn + c mod d

So the problem above happened because m is a multiple of d = 2. Today
computers can quite easily go beyond the 264 and we may choose any large number.
Lemma 2.3.1 above guide us to choosing any large prime number and completely
avoid this trouble. We will when choosing the other parameters find that this
comes with more advantages, but also some limiting issues.

2.4 Lehmer random number generator
We continue by studying the special case when c = 0, that is sequence (2.2),

Xn+1 = aXn mod m.

We saw earlier that m sets the upper limit for the period. A period of m means
that each integer between 0 and m − 1 appears once, but if Xn = 0 then all
following numbers will also be 0. So we can’t reach a period of m, however we can
still get a satisfactory period for some m, according to a theorem which we soon
will introduce, but first we will prove a lemma.

Lemma 2.4.1. Let the decomposition of m into prime factors be,

m = pe11 ...pett .
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The length, λ, of the period of the linear congruential sequence determined by
X0, a, c,m is the lowest common multiple of the periods λj of the linear congruential
sequences determined by X0 mod p

ej
j , a mod p

ej
j , c mod p

ej
j , p

ej
j [7, pp. 15-24]

Proof. We prove this by induction on t. When t = 1 the lemma is trivial, since it
states that the length of the period of a LCS is the same as an identical LCS. The
case when t = 2 means we have m = pe11 pe22 = m1m2. If we have linear congru-
ential sequences defined by, a mod m1, c mod m1,m1, Y0 = X0 mod (m1) and a
mod m2, c mod m2,m2, Z0 = X0 mod (m2), then according to lemma 2.3.1 we
have that

Yn = Xn mod m1 and Zn = Xn mod m2, for all n. (2.5)

According to a law in[6], since m1 and m2 are coprime then a ≡ b mod m1m2

iff a ≡ b mod m1 and a ≡ b mod m2. That is,

Xn ≡ Xk mod m1m2 if and only if
Yn ≡ Xk mod m1m2 and

Zn ≡ Xk mod m1m2.

(2.6)

So according to equation 2.5 we get,

Xn = Xk if and only if Yn = Yk and Zn = Zk. (2.7)

Let λ′ be the least common multiple of the period lenghts λ1 and λ2. Then we
have Yn = Yn+λ′ and, Zn = Zn+λ′ , hence by equation 2.7 we have Xn = Xn+λ′ .
Hence we know λ′ is a multiple of the period λ and therefore λ ≤ λ′. By definition
of the period we have Xn = Xn+λ, again by equation 2.7 we get Yn = Yn+λ and,
Zn = Zn+λ. Thus λ is a multiple of both λ1, λ2, thus λ ≥ λ′. Thus we have that
λ = λ′.
When t = n + 1, where the induction hypothesis is that it holds for t = n, we
set m1 = pet1 , m2 = pe12 ...pent . Here, m2 has period λ2 = LCM(pe12 ...pent ) by the
induction hypothesis. Now showing that λ = LCM(λ1, λ2), is identical to what
we did for t = 2. Thus, the proof is complete.

Theorem 2.4.2. The maximum period possible fora linear congruential sequence
when c = 0 is λ(m), defined as

λ(m) =


λ(2) = 1 λ(4) = 2

λ(2e) = 2e−2 if e ≥ 3

λ(pe) = pe−1(p− 1) if p > 2

λ(pe11 ...pett ) = lcm(λ(pe11 ), ..., λ(pett ).
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This period is achieved if
i) X0 is relatively prime to m;
ii) a is a primitive element modulo m.[7, pp. 15-24][3]

Proof. Since λ(pe11 ...pett = lcm(λ(pe11 ), ..., λ(pett ) and by lemma 2.4.1, we can see
that we only need to consider the case when m = pe. Thus we have the sequence
Xn+1 = aXn mod pe and according to lemma 2.2.2 we have

Xn = anX0 mod pe.

If a is a multiple of p, ie. a = qp, then when n = e we get Xe = qepeX0 mod pe = 0.
So we need a to be relatively prime p to not converge to a sequence of only 0. If
we let pf be the greatest common divisor of X0 and pe, and X0 = qpf we get,

X0 = aλX0 mod pe ⇐⇒ qpf = aλqpf mod pfpe−f ⇐⇒ 1 = aλ mod pe−f .

Since a is relatively prime to p Euler’s theorem holds, and thus we find λ is a
divisor of φ(pe−f ), where φ(m) is Euler’s totient function.

φ(m) =


φ(2) = 1 φ(4) = 2
1
2
φ(2e) = 2e−2 if e ≥ 3

λ(pe) = φ(pe) = pe−1(p− 1) if p > 2

,

We note that λ(m) is a divisor of φ(m),

λ(m) =


λ(2) = φ(2) = 1 λ(4) = φ(4) = 2

λ(2e) = 1
2
φ(2e) = 2e−2 if e ≥ 3

λ(pe) = φ(pe) = pe−1(p− 1) if p > 2

,

and , it is the period.[3]

In particular we note that if we choose m to be a large prime, X0 ̸= 0 is
relatively prime, and so is every a, thus by Fermat’s little theorem ap−1 ≡ 1
mod p, a is a primitive element.

2.5 Choice of a and c
In a previous section we saw that m sets the upper limit for the period, but the
sequence 2.4 clearly did not have a a maximum period since it only had even values
so at most it had a period of m/2. So clearly we also need to make smart choices
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with the other parameters. We may ask our self if achieving this maximum period
is achievable. The sequence

Xn+1 = Xn + 1 mod m,X0 = 0 (2.8)

is an linear congruential sequence, and clearly every value [0,m] appears, so it
has the maximum period. However this sequence is simply

0, 1, 2, 3, 4, 5, 6, 7, 8, ...,

but if we want to use the sequence as random numbers this is clearly a very
poor choice. So we need consider more than simply getting the maximum period.
We will prove a theorem which lets us find other linear congruential sequences
with period length m. The proof for this theorem requires a few lemmas, so lets
introduce and prove those first.

Lemma 2.5.1. Let p be a prime number, and e a positive integer such that pe > 2.
Then if

x ≡ 1 mod pe and x ̸≡ 1 mod pe+1

then
xp ≡ 1 mod pe+1 and xp ̸≡ 1 mod pe+2

[7, pp. 15-24]

Proof. By the first condition we have x = 1 + qpe, where q is not a multiple of p,
since then the 2nd condition wouldn’t be met. Using the binomial expansion we
get

xp = (1 + qpe)p =

p∑
n=0

(
p

n

)
(1p−nqnpne) = 1 +

p∑
n=1

(
p

n

)
(qnpne)

1 + qpe+1(1 +

p∑
n=2

(
p

n

)
(qn−1pe(n−1)−1)).

(2.9)

Its clear that 2.9 is congruent to 1 mod pe+1. We now need to show that its not
congruent to 1 mod pe+2. We start by noticing that every term in the summation
is divisible by p, this is clear for every n > 2 as then we have an exponent greater
than 1. For n = 2 this is not the case when e = 1, however then p ̸= 2 by the
condition that pe > 2 and thus odd, and as such

(
p
2

)
= p(p−1)

2
= pp−1

2
is a multiple

of p. It follows that since every term in the sum is divisible by p the whole sum is
divisible by p. So when multiplied by qpe+1 it is a multiple of qpe+2 and vanishes
under modulus pee+2 leaving behind,

xp ≡ 1 + qpe+1 mod pe+2. (2.10)

Since q is not a multiple of p, this is not congruent to 1.
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Corollary 2.5.2. Let p be a prime number, and e a positive integer such that
pe > 2. Then if

x ≡ 1 mod pe

then
xp ≡ 1 mod pe+1

Proof. The proof is identical to to that of lemma 2.5.1 except we don’t have that
q is not a multiple of p and hence equation 2.10 may be congruent to 1. But we
still have that equation 2.9 is congruent to 1 mod pe

Proposition 2.5.3. If a ̸≡ 1 mod p, then an−1
a−1

≡ 0 mod pe if and only if an−1 ≡
0 mod pe[7, pp. 15-24]

Proof. We start by noting that a ̸≡ 1 mod p, means that a − 1 is coprime to pe

so we are justified to cancel the division. First we show the implication,

an − 1

a− 1
≡ 0 mod pe =⇒ an − 1

a− 1
= qpe =⇒ an − 1 = (a− 1)qpe

=⇒ an − 1 ≡ 0 mod pe.
(2.11)

For the implication the other way we assume that an − 1 ≡ 0 mod pe, and get

an − 1

a− 1
≡ t mod pe =⇒ an − 1 ≡ t(a− 1) mod pe =⇒ t(a− 1) ≡ 0 mod pe,

(2.12)

the last equivalence can hold only if a ≡ 1 mod pe, or if t ≡ 0 mod pe. But the
first case cannot be true, since a ̸≡ 1 mod p.

Lemma 2.5.4. Assume that 1 < a < pe, where p is prime. If λ is the smallest
positive integer for which (aλ − 1)/(a− 1) ≡ 0 mod pe, then

λ = pe if and only if

{
a ≡ 1 mod p when p > 2

a ≡ 1 mod 4 when p = 2
(2.13)

[7, pp. 15-24]

Proof. We first show that λ = pe =⇒ a ≡ 1 mod p by contradiction. We assume
that λ = pe and a ̸≡ 1 mod p. The definition of λ and proposition 2.5.3 then
implies that ap

e − 1 ≡ 0 mod pe. From which we get that ap
e ≡ 1 mod p.

However by Fermats little theorem ap ≡ a mod p, we get that ape ≡ a mod p,
which is a contradiction.
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Lets also show that a ≡ 1 mod 4 when p = 2, again we do this by contradic-
tion. We already know that a ≡ 1 mod 2 by the previous argument, so lets make
the assumption that a ≡ 3 mod 4. We have,

a ≡ 3 mod 4 ⇐⇒ a = 3 + 4q =⇒ a2 = 9 + 24q + 16q2 =

1 + 8(1 + 3q + 2q2) =⇒ a ≡ 1 mod 8,
(2.14)

for some integer q. Thus we have

a2 ≡ 1 mod 23.

Now we can use lemma 2.5.1 repeatedly and get that

a2
e−2 ≡ 1 mod 2e. (2.15)

Further if we let q be an integer and denote a2
e−2

= x, we have

x ≡ 1 mod 2e ≡ x = 1 + q2e =⇒ x2 = 1 + q2e+1 + q22e+1

=⇒ x2 = a2
e−1 ≡ 1 mod 2e+1 =⇒ a2

e−1 − 1 ≡ 0 mod 2e+1.
(2.16)

We note that,

a ≡ 3 mod 4 =⇒ a− 1 ≡ 2 mod 4 =⇒ a− 1 = 2 + 4q = 2(1 + 2q) (2.17)

Note that 1+ 2q is coprime 2e. Thus by equations 2.16 and 2.17, we have that for
some integer t,

a2
e−1 − 1 ≡ 0 mod 2e+1 =⇒ a2

e−1 − 1 = t2e+1 =⇒ a2
e−1 − 1

2
= t2e

=⇒ a2
e−1 − 1

2
≡ 0 mod 2e =⇒ a2

e−1 − 1

a− 1
≡ 0 mod 2e

(2.18)

But then we have that λ ̸= pe since there exists a smaller number satisfying
(aλ − 1)/(a− 1) ≡ 0 mod pe . Thus the condition is necessary. If we have a ≡ 1
mod p then there exists some value f such that,

a ≡ 1 mod pf , a ̸≡ 1 mod pf+1. (2.19)

since we have a = 1 + qp for some integer q ̸= 0 since a > 1.
By 2.19 and a ≡ 1 mod 4 we can use lemma 2.5.1 g times to get,

ap
g ≡ 1 mod pf+g, ap

g ̸≡ 1 mod pf+g+1. (2.20)
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So by equation 2.19, and 2.20 we have ap
g
= 1+ qpf+g, and a = 1+ tpf , where q, t

are not multiples of p. Giving

ap
g − 1

a− 1
=

qpg+f

tpf
=

qpg

t
≡ qp ≡ 0 mod pg, (2.21)

where we could cancel, t
q

since it’s not multiples of p thus we also have ap
g−1

a−1
̸≡ 0

mod pg+1. In particular by letting g = e we see that we have ap
e−1

a−1
≡ 0 mod pe,

and any smaller integer satisfying the condition would be a divisor of pe. But by
letting g = e − 1 we see, ap

e−1−1
a−1

̸≡ 0 mod pe, thus pe is the smallest positive
integer satisfying the modulus, that is λ = pe.

Now we are equipped with the lemmas to introduce and prove the theorem

Theorem 2.5.5. The linear congruential sequence defined by m, a, c and X0 has
a period length m if and only if,

i) c is relatively prime to m.
ii) a− 1 is a multiple of p, for every prime p dividing m.
iii) a− 1 is a multiple of 4 if m is a multiple of 4.[7, pp. 15-24]

Proof. We assume λ = m, then according to lemma 2.4.1 we have that,

m = pe11 ...pett = λ = lcm(λ1, ..., λt) ≤ λ1...λt ≤ pe11 ...pett

where the equalities holds if and only if λj = p
ej
j for all j. Therefore we can prove

the theorem for m = pe without loss of generality.
Case1 :a = 1
Condition ii) and iii) are always met, thus we only need to show condition i). If
we have period m then xn must be able to take any value 0, ...,m thus we can
assume X0 = 0. Let d ̸= 1 be such that m = ld and c = kd then we get,

xn = nkd mod ld =⇒ xn = nkd+ qld.

But then Xn is always a multiple of d and as such we can’t have a period m. If
we have c coprime m, we get,

Xn = nc mod m ⇐⇒ Xn = nc+ qm,

Bézout’s identity claims that ax + by = 1 has solutions if and only if x and y are
relatively prime. That is in our case, since c and m are relatively prime, we have
that

Xn = 1 = nc+ qm.
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By multiplying n and q by any number, t we can then get Xn = t, so Xn can take
any value.
Case2 :a ̸= 1
Again we can use X0 = 0 without loss of generality. So by lemma 2.2.2 we get,

Xn =
an − 1

a− 1
c mod m. (2.22)

Again Bézout’s identity claims that ax + by = 1 has solutions if and only if x
and y are relatively prime. That is in our case,

Xn = 1 =
an − 1

a− 1
c+ bm,

has solutions if and only if c and m are relatively prime. If 1 doesn’t appear in the
sequence, then the period isn’t m. So condition i) is implied by the claim. Now
lets assume we have condition i). Again assuming X0 = 0, we have that the period
λ = m if and only if its the smallest value such that Xλ = 0. Since c is relatively
prime to m, equation 2.22, gives,

an − 1

a− 1
≡ 0 mod m. (2.23)

Which by lemma 2.5.4 holds if and only if condition ii) and iii). This completes
the proof.

We learn a thing from this theorem. We need m to have a prime factorization
m = pe11 ...pett , where at least one en > 1, 1 ≤ n ≤ t, since otherwise the only number
which is a multiple of all pn is m itself and thus a = 1 is the only multiplier which
produces the maximum period length of m.

2.6 Potency
We finish the discussion about the linear congruenital sequence by analyzing how
well it works to produce random numbers. We do this by introducing the concept
of potency. We start by mentioning that potency will be used to reject poor gen-
erators but it will not suffice as proof that our random number generator is good.
First we want to introduce b = a− 1 as this will simplify some notation.

Definition 2.6.1. The potency of a linear congruential sequence with maximum
period is the smallest integer s such that,

(b)s ≡ 0 mod m.

[7, pp. 15-24]
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We note that such an s always exists as theorem 2.1 implies that b is a multiple
of each prime dividing m. Thus if m = pe11 ...pett , then s = e1...et satisfies the
condition. As the definition of potency demands the maximum period we can
use X0 = 0, when analyzing what its meaning is. Thus for a linear congruential
sequence with potency s we get that

Xn =
(b+ 1)n − 1

b
c mod m,

which we can expand into

Xn ≡ c

b
(−1 +

n∑
k=0

(
n

k

)
bk) ≡ c

b
(

n∑
k=1

(
n

k

)
bk) ≡ c(

n∑
k=1

(
n

k

)
bk−1) mod m. (2.24)

Now we note that since bs = 0 mod m, every term in the sum with k > s is zero,
so we get

Xn ≡ c(
s∑

k=1

(
n

k

)
bk−1) mod m. (2.25)

We recall the deliberately bad sequence 2.8, which had a = 1 for which b = 0
and thus the potency is 1, equation (2.25) gives Xn = cn. Lets consider a slightly
better sequence which has potency 2. Then Xn = c(n + n(n−1)

2
b) and Xn+1 =

c(n+ 1 + n(n+1)
2

b) so the difference between each number in the sequence is,

Xn+1 −Xn = c(1 + bn).

Which is a simple relation between one random variable and the next, thus it is
not sufficient as a PRNG. In fact according to Donald Knuth, a potency of at least
5 is needed for a sufficiently random behaviour. [7, pp. 15-24]
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Chapter 3

Other distributions

3.1 The inversion method

So far we have a way to generate numbers between 0 and m − 1, and since each
number can only appear once per period, each number is equally probable to
appear. If we generate a number Xn using the linear congruential method, then

Un =
Xn

m− 1

is a number between 0 and 1. However we may be interested in other distributions.
One method to do so is the inversion method. The idea is simple enough, we start
by generating a number Un from a uniform distribution Un ∈ Un(0, 1) and then
we plug this into the inverse of the wanted distributions cumulative distribution
function(CDF)[7, pp. 102-103]. As an example lets say we want to sample from
the Cauchy distribution X0 = 0, γ = 1[1]. This has CDF

f(x) =
1

π
arctan(x) +

1

2
, (3.1)

and inverse

f−1(x) = tan(πx− π

2
). (3.2)

When using the LCG with a = 5776, c = 28561,m = 33078375, x0 = 0, to generate
2000 random numbers, we get the histogram in figure 3.1.

18



Figure 3.1: Inversion method to generate 2000 Cauchy distributed random numbers
X0 = 0,γ = 1, plotted as a histogram.

This method however has a problem, not all distributions have a CDF and thus
we can’t use this to get any distribution. In particular the normal distribution has
no analytical CDF and thus we can’t use the inversion method to sample from it.
Thus in the next chapter we will discuss another method.

3.2 The rejection method

As previously mentioned, we can’t always use the inversion method since it requires
a CDF. The idea behind the rejection method is to first generate a random number
from a distribution h(x) such that αf(x) ≤ h(x) for all x, with some number α, and
PDF of the wanted distribution f(x). In general h(x) can have any distribution
which one knows how to generate if it satisfies the mentioned condition. In our
case we start with h(x) being the uniform distribution and there is always a valid
α, since the distribution is never 0. Once h(x) is chosen we generate a number
X from its distribution. Now we want to either accept or reject X. To decide
what we do, we generate a new random number V from the uniform distribution
(0, h(X)). In our case since h is the uniform distribution, we get V = Un(0, 1).
Now if V ≤ αf(X), we accept X as a number with density f , and otherwise
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we reject it and repeat the process.[9] To try the method, we use the LCG with
a = 25, c = 1,m = 972, x0 = 0), and try to sample from the beta(2, 3) density
f(x) = 12x(1− x)2[9]. The result, which is rather poor, can be seen in figure 3.2.

Figure 3.2: Histogram of the accepted points using the rejection method of a beta(2,3)
distribution and the LCG (1024,33,1).

The issue is illustrated in figure 3.3. In the figure the blue points represents
two consecutive random numbers from an LCG that is X and V . With the orange
function being αf(X), so each point below the orange function is an accepted
number. As can be seen the points X, V forms a lattice, the shape of which
depends on the choice of the multiplier. Note that in figure 3.3b the lattice is
such that there are regions where many generated numbers are accepted followed
by regions where none are accepted. This issue will occur anytime we choose
a dominating function such that αf(x)

h(x)
is small compared to 1. But the issue is

amplified since a is approximately
√
m which makes the rows almost parallel to

the y-axis.
The areas where αf(x)

h(x)
is small can be reduced by choosing h(x) to be distri-

bution other than the uniform. If for example we want the normal distribution,
we can choose h(x) to be Cauchy distributed which we get by using the inversion
method.
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(a) All the pairs of consecutive random
numbers produced by the LCG with
a = 253,c = 1, and m = 972.

(b) All the pairs of consecutive ran-
dom numbers produced by the LCG
with a = 25,c = 1, and m = 972.

Figure 3.3: Random numbers generated by two different LCGs, and the beta distribu-
tion in orange. Every point below the orange function are accepted.

3.3 Testing
In this section we will analyse how good our linear congruential generator combined
with the rejection method is, and try to replicate the results of W. Hörmann and
G. Derflinger.[9] In their paper they introduced the discrepancy of a sequence as,

D1
N(F ) := sup

s≤t
|#{yl : s < yl ≤ t, i = 1, ..., N}

N
− (F (t)− F (s))| (3.3)

where yl is a sequence of all the accepted random numbers, N is the total number
of accepted numbers over the entirety of the domain, and F is the distribution
function. The F (t)− F (s) is derived from,∫ t

s

f(x)dx = F (t)− F (s) (3.4)

where f(x) is the probability density function. That is, the correct probability
that a random number should be in the region (s, t]. The fraction part is the
probability that our random sequence lands in (s, t]. Thus the difference between
them is a measure on how wrong our sequence is in the region (s, t]. By then
taking the supremum of the unsigned value we get the measure on how wrong
our sequence is, in the worst possible case. However, it is difficult to numerically
calculate this value so instead we have calculated the largest discrepancy over 106
subintervals with m/106, generated numbers X each. Our first step is calculating
N . This is simply estimated to be αm, since both f(x) and h(x) are probability
functions the area under their graphs are 1 thus, the area under αf(x) is α. Next
we need the cumulative distribution function of the beta(2,3) distribution,

F 2,3
β (x) = 1− (1− x)3 − 3x(1− x)3. (3.5)
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Anton Sjödin W. Hörmann and G. Derflinger
χ2 statistic m· discrepancy χ2 statistic m· discrepancy

multiplier normal beta normal beta normal beta normal beta
742938000 114567 100050 6.86 8.4 1000020 99404 194 164.27
95076400 92312.6 99977 8.18 8.6 100195 100071 189 233.14
630360000 108382 99865 8.1 9.4 99529 99495 202 148.34

39373 217150 293290 3398 3655 206056 367132 48582 56799
16807 306143 496821 3478 3752 144163 214154 20789 24297
48271 209535 241573 3367 3628 131314 177831 16937 20077
69621 171119 149834 3286 3550 113625 131067 11734 13722

Table 3.1: Theχ2 statistic and discrepancies for Lehmer generators using the modulus
231−1 and various multiplier as seen in the first column. The large difference between my
results and W. Hörmann and G. Derflinger in discrepancy is due to poor documentation
of where they calculated discrepancy.

Further we also generated 106 random numbers, and calculated the χ2 value,

χ2 =
105∑
k=0

(Oi − Ei)
2

Ei

, (3.6)

where Oi is how many numbers we observed in one of 105 sub intervals, and Ei is
how many we were expecting[2]. Using Ei = npi, we can estimate each subinterval
as a uniform region with uniform probability, where the probability function is
P = f(i+ 0.5) and thus,

pi = P ∗ 10−5 =⇒ Ei = 10P = 10f(i+ 0.5) (3.7)

The results can be seen in table 3.1.
Although our discrepancy values doesn’t agree with that of W. Hörmann and

G. Derflinger, we do note that an LCG with an multiplier which is of the order
of

√
m produces random variables with relatively high discrepancy. As for the χ2

statistic we note that when we have a large multiplier the statistic is of the order
of 105 meaning that it is a good fit. Thus despite not getting identical values, we
can still support their conclusion. When combining the LCG with the rejection
method, one wants to use multipliers which are much larger than

√
m.
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Chapter 4

Summary

We went out with the goal to create a random number generator of any distribu-
tion. In doing so we started by defining the linear congruential generator, as a
method to get uniformly distributed numbers,

Xn+1 = aXn + c mod m.

Thus we discussed a lot of theory on how too choose a, c,m and X0, to get a hard
to predict sequence with a long period. We noted that m should be a large number
with a prime factorization where the primes had to be raised to some power. This
was necessary since when choosing a, we found that b = a − 1 by theorem 2.5.5
had to be a multiple of every prime factor of m, thus if m only had unique factors
the only valid a would be 1. We also discussed in the chapter on potency how we
can’t just take any a that achieves maximum period, we wanted an a such that,

b4 ̸= 0 mod m.

As for the increment c we found that it only needs to be relatively prime with
m, in particular this means that c = 0 could never achieve the maximum period.
Nonetheless we discussed the case when c = 0 and m is a prime, and found that
such a generator has a period of m− 1 which is satisfactory.

We then went on to discuss the inversion method and rejection method, so
that we could transform our uniformly distributed numbers and get numbers with
any distribution. The inversion method was limited to distribution which had
a cumulative distribution function. The rejection method however can give any
distribution that we can give a distribution function for. We combined the rejection
and inversion method as doing so gives better results[9]. We then went ahead and
tried to replicate the results of W. Hörmann and G. Derflinger.
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Appendix A

1

Below is the python program used to get the values in table 3.1 can be seen. The
program also has some other functions related to the theory of linear congruential
generators, such as finding the potency. The code is largely written in a straight
forward naive way. In the function maxperiod a loop which repeatedly divides odd
numbers to find shared prime factors between b and the modulus is used[5].

Listing A.1: Python code

import numpy as np
import math as ma

#%%

class Linear_congruential_method :
def __init__( s e l f , a , c ,m) : #i n i t i a l i z e

s e l f . mu l t i p l i e r=a
s e l f . increment=c
s e l f . modulus=m

def Next_in_sequence ( s e l f ,X_0) : #de f i n i t i o n o f the sequence
X_1=s e l f . mu l t i p l i e r ∗X_0+s e l f . increment
return X_1%s e l f . modulus

def N_th_in_sequence ( s e l f ,X_0, n ) :
a=s e l f . mu l t i p l i e r
mod=s e l f . modulus
c=s e l f . increment
a_to_n=a∗∗n #ca l c u l a t e t h i s on ly once
term2=((a_to_n−1)∗c //(a−1))
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X_n=(a_to_n∗X_0+term2 )
return (X_n%mod)

def zero_to_n ( s e l f ,X_0, n ) : #ge t n numbers from the sequence
sequence =[ ]
for i in range (n ) :

print ( i )
sequence . append (X_0)
X_0=s e l f . Next_in_sequence (X_0)

return (np . array ( sequence ) )
def max_period ( s e l f , Pr int=True , Factors_of_m=False ) :

b=s e l f . mu l t i p l i e r −1
c=s e l f . increment
m=s e l f . modulus
i f ma. gcd ( c ,m) !=1 :

i f Print :
print ( ' c , and m need to be r e l a t i v e l y prime ' )

return ( Fa l se )

i f ( (m%2==0) and not (b%2==0)):
i f Print :

print ( 'm i s d i v i s i b l e by 2 , but a−1 i s not ' )
return ( Fa l se )

i f ( (m%4==0) and not (b%4==0)):
i f Print :

print ( 'm i s d i v i s i b l e by 4 , but a−1 i s not ' )
return ( Fa l se )

while m%2==0:
m//=2

while b%2==0:
b//=2

i=3
while i<=ma. c e i l (np . s q r t (m) ) :

i f m==1:
break

i f b==1:
i f Print :

print ( ' ' 'm={} has a t l e a s t 1 prime d i v i s o r ,
which doesn \ ' d i v i d e a−1={} ' ' ' . format (m, b ) )

return ( Fa l se )
i f (m%i==0) and not (b%i ==0):
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i f Print :
print ( 'm i s d i v i s i b l e by {} ,
but a−1={} i s not ' . format ( i , b ) )

return ( Fa l se )
while m%i ==0: #removes a l l f a c t o r s i from m

m//= i
while b%i ==0:

b//= i
i+=2

i f m!=1 and m!=b :
i f Print :

print ( 'm i s d i v i s i b l e by {} but a−1 i s not ' . format (m) )
return False

return True
def potency ( s e l f ) :

i f not s e l f . max_period ( Fa l se ) :
print ( 'The sequence needs maximum

per iod f o r a potency to e x i s t ' )
return ( Fa l se )

b=s e l f . mu l t i p l i e r −1
m=s e l f . modulus
i=1
while True :

i+=1
i f b∗∗ i%m==0:

return i
def rejection_method_beta ( s e l f , alpha , x_0 , n ) :

m=s e l f . modulus
N=0
K=m∗∗2
L i s t =[ ]
while N<=n :

V=s e l f . Next_in_sequence (x_0)

i f V∗m∗∗2 <= alpha ∗(12∗x_0∗(K+x_0∗(x_0−2∗m) ) ) :
N+=1
L i s t . append (V)

x_0=s e l f . Next_in_sequence (x_0)
return ( L i s t )

def rejection_methodod_cauchy ( s e l f , alpha , x_0 , n ) :
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m=s e l f . modulus
L i s t =[ ]
N=0
d iv id e=np . sq r t (2∗np . p i )
while N<=n :

V=s e l f . Next_in_sequence (x_0)/m
X=x_0/m
X=np . tan (np . p i ∗(X−0.5))
V∗=1/(np . p i ∗(1+X∗∗2))

i f V <= alpha /( d i v id e )∗np . exp (−0.5∗X∗∗2 ) :
L i s t . append (X)
N+=1

x_0=s e l f . Next_in_sequence (x_0)
return ( L i s t )

def d i sc repancy ( s e l f , alpha , a reas ) :
m=s e l f . modulus
N=m∗ alpha
numbers_per_area=m// areas+1
width=1/areas
worst=0
for i in range ( a reas ) :

accepted=0
for X in range ( i ∗numbers_per_area , ( i +1)∗numbers_per_area ) :

V=s e l f . Next_in_sequence (X)/m
X=X/m
i f V <= alpha ∗(12∗X∗(1+X∗(X−2)) ) :

accepted+=1
low=i ∗width
high=( i +1)∗width
I_x=(high ∗∗2∗(6∗−high ∗(8−3∗high ) )

−low∗∗2∗(6− low∗(8−3∗ low ) ) )
d i s c repancy=accepted /N−I_x
worst=max( [ d i screpancy , worst ] , key=abs )

return (m∗worst )
def discrepancy_cauchy ( s e l f , alpha , a reas ) :

m=s e l f . modulus
N=m∗ alpha
numbers_per_area=int (np . c e i l (m/ areas ) )
worst=0
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l e f t =−10∗∗9
d iv id e=np . sq r t (2∗np . p i )
for i in range ( a reas ) :

accepted=0
for X in range ( i ∗numbers_per_area , ( i +1)∗numbers_per_area ) :

V=s e l f . Next_in_sequence (X)/m
X=X/m
X=np . tan (np . p i ∗(X−0.5))
V∗=1/(np . p i ∗(1+X∗∗2))
RHS=1/d iv id e ∗np . exp (−0.5∗X∗∗2)
i f V <= RHS∗ alpha :

accepted+=1
r i gh t=X
width=( r ight− l e f t )
l e f t=r i gh t
I_x=RHS∗width
d i sc repancy=accepted /N−I_x
worst=max( [ d i screpancy , worst ] , key=abs )
print ( accepted /N, I_x , worst )

return (m∗worst )

#%%

def chi_square (LCM, alpha , mu l t i p l i e r s ) :
m=LCM. modulus
O=0
c h i l i s t =[ ]
d i v i d e=np . sq r t (2∗np . p i )
for a in mu l t i p l i e r s :

ch i=0
LCM. mu l t i p l i e r=a
L i s t 1=np . array (LCM. rejection_methodod_cauchy2 ( alpha ,1 ,10∗∗6 −1))
s t a r t=np .min( L i s t 1 )
end=np .max( L i s t 1 )
s t e p s i z e =(end−s t a r t )∗10∗∗−5
for x in np . l i n s p a c e ( s ta r t , end , 1 0 ∗ ∗ 5 ) :

A=Li s t1 [ x<L i s t 1 ]
A=A[A<=x+s t e p s i z e ]
O=len (A)
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p=(1/ d iv id e ∗np . exp (−0.5∗x ∗∗2))∗ s t e p s i z e
E=10∗∗6∗p
print (O,E, ch i )
ch i+=(O−E)∗∗2/E

print ( ch i )
c h i l i s t . append ( ch i )

return ( c h i l i s t )
#%%
alpha_normal=0.60653
alpha_beta=0.5626
a=[742938285 ,95076376 ,630360016 ,397204094 ,39373 ,16807 ,48271 ,69621]
c=0
m=2∗∗31−1
LCG_for_rejection=Linear_congruential_method (1 , c , m)
normal_disc =[ ]
beta_disc =[ ]
for i in a :

LCG_for_rejection . mu l t i p l i e r=i
s=LCG_for_rejection . d i s c repancy ( alpha_beta , 10∗∗6)
t=LCG_for_rejection . discrepancy_cauchy ( alpha_normal , 10∗∗6)
normal_disc . append ( t )
beta_disc . append ( s )
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