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Abstract

Optimising plant growth in a controlled climate requires good measurements
of both biomass (measured in grams) and relative growth rate (measured in
grams of growth per day and gram of plant). In order to do this efficiently
and continuously on an individual level during plant development, this has to
be done non-destructively and without frequent and labor intensive weighing of
plant biomass. This thesis compares the ability of two machine learning meth-
ods, Multi-Variate Regression and Neural Networks, to estimate the biomass
and relative growth rate from images of plants. The plant data set consists of
images of 57 plants from two angles taken on 1-hour intervals during a 5 day pe-
riod. The results show that images taken from a top-down perspective are best
used with multi-variate regression, while images taken from the side are better
when used with neural networks. In addition, using images from both cameras
improved the biomass estimates from the neural network, but not those from
the multi-variate regression. The predictions were improved in all cases when
a moving average was taken of consecutive predictions, which likely reduced
short-time variance in the data set. For both methods, the relative growth rate
estimates were greatly improved by using estimates from both cameras. The
low number of individual plants and high image capture frequency created a lot
of correlation within the training set, which likely decreased generalization and
lowered accuracy of the predictions on the test set. The best biomass estimates
were made using multi-variate regression with images from the top camera and
a moving average filter, resulting in an RMSE of 0.0391 g. This corresponds to
a relative RMSE of around 11% which is comparable to previous studies. The
relative growth rate estimates were not very accurate, but the best method used
a neural network with both cameras, resulting in an RMSE of 0.1767 g/(g ·day).
This corresponds to a relative RMSE of over 100%. A bigger data set with mea-
surements from a larger set of individual plants during a longer time interval
within the cultivation period would likely improve these estimates.

5



6



Contents

1 Introduction 9

2 Background 11
2.1 Aeroponic Hydroculture . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Factors in Plant Development . . . . . . . . . . . . . . . . . . . . 12
2.3 Cultivation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Camera Rig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Method 15
3.1 Trial Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Trial Data Set . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.2 Trial Outline . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Ground Truth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Method 1: Multi-Variate Regression . . . . . . . . . . . . . . . . 21

3.4.1 Feature Evaluation in R . . . . . . . . . . . . . . . . . . . 22
3.5 Method 2: Neural Network . . . . . . . . . . . . . . . . . . . . . 23

3.5.1 Pre-Processing of Training Data . . . . . . . . . . . . . . 23
3.5.2 ResNet-50 . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5.3 Network Architecture . . . . . . . . . . . . . . . . . . . . 26

3.6 Method Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Result 29
4.1 Trial Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.1 Confusion Matrices for Trial Experiment . . . . . . . . . . 33
4.2 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.1 Multi-Variate Regression . . . . . . . . . . . . . . . . . . 34
4.2.2 Neural Network . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Discussion 39
5.1 Trial Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.1 Classification Accuracy . . . . . . . . . . . . . . . . . . . 39
5.1.2 Training Progression and Loss . . . . . . . . . . . . . . . 39
5.1.3 Regression within Age Classes . . . . . . . . . . . . . . . 39

5.2 Method 1: Multi-variate Regression . . . . . . . . . . . . . . . . . 40
5.3 Method 2: Neural Networks . . . . . . . . . . . . . . . . . . . . . 41
5.4 Method Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.5 Prediction Quality . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Summary 43

7



8



1 Introduction

Food and water security is a crucial topic for ensuring the well-being of the
human population, as noted by the UN, see Sustainable Development Goals 2
”Zero Hunger” and 6 ”Clean Water and Sanitation”[1]. With the growing threat
of global warming and its effects on arable land, safe drinking water, weather,
and climate, it is of utmost importance to take sustainability into account when
discussing our agricultural practices.

The current emergence of hydrocultural practices, such as Aeroponics, is one
of many possible paths toward securing a sustainable food production in the fu-
ture. With controlled growth conditions that such practices entail, it is possible
to optimize the cost-to-yield in whatever cost metric is of importance. Be that
the cost in terms of water, nutrition, money, emissions, or land-use. However,
in order to make these optimization, it is necessary to determine the effects that
parameters such as temperature, pH, lighting, space, CO2, and nutrient con-
centration. have on the the status, quality, growth and development of plants.
These experiments often require destructive measurements of the plants charac-
teristics by harvesting them. This, of course, prevents the plant from growing
further and only results in one data point per plant. This method is not only
labor intensive, but results in poor estimates on an individual level and can only
contribute to an estimate of the population as a whole. In order to estimate the
effects on the scale of individual plants, continuous and non-destructive biomass
estimates is a preferred choice.

The goal of this thesis is to evaluate two different image-based machine
learning methods for estimating plant growth in aeroponic farming. These two
methods are; Multi-Variate Regression (MVR) and Neural Networks (NN). The
aim is for these methods to estimate the biomass (g) of a given plant, as well
as the Relative Growth Rate (RGR) measured in g/(g · day).

The methods will be evaluated on a curated data set of spinach (Spinacia
oleracea) grown in an aeroponic setup at an indoor farming facility in Gödelöv,
Sk̊ane. The data set used contains images of plants from two different angles
taken at one-hour intervals. The aim is to estimate the biomass of the depicted
plant given an image. The accuracy of the estimate is compared between using
images from just one angle, multiple angles, or at multiple adjacent time points.
These biomass estimates are then used to estimate the RGR.

With an accurate enough estimate of RGR, a virtual sensor could be de-
veloped, that can measure RGR continuously. This would allow for real-time
optimization of plant growth, which can decrease the amount of unnecessary
resources spent, including water, nutrients, lighting, electricity, and labor.
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2 Background

2.1 Aeroponic Hydroculture

In conventional farming, nutrients and water are supplied to the plant roots
through soil. However, these kinds of cultivation methods comes with some is-
sues and limitations. For example, a lot of the water dispersed on the field will
either trickle down into the ground water or evaporate due to the large exposed
surface area, meaning that a lot of the water is lost to the environment. The
fertilizers used together with soil or other solid substrates can also be carried
down with the water, leading to nutrient waste and water eutrophication. In
addition, outdoor farming leaves the plants exposed to a number of factors that
can harm the plants, such as droughts, soil-borne diseases, bad weather, pest
attacks, and floods.

An alternative to soil-based farming is hydroculture, where the nutrients are
carried to the plants using water as the nutrient carrier. In particular, hydro-
ponic farming has seen a large increase in commercial use in the last couple of
years, Nordic Harvest, Swegreen, and Grönska being recent Nordic examples.

Aeroponics is a variant of hydroculture where the nutrient-rich water is dis-
persed as an aerosol around the roots. This method has a number of benefits
compared to soil cultivation and hydroponics. The first benefit is reduced wa-
ter usage. In comparison, the water cost of 1 kg of tomatoes is 200-400 L in
conventional soil farming, 70 L in hydroponics, and 20 L in aeroponics [2].
Another advantage is that a limiting factor of hydroponic farming is the oxygen
content in the water, which can be a maximum of 8 ppm [2]. This means that
the aeration of the plants roots is much better in aeroponics, leading to a higher
growth rate.
A third and major benefit of aeroponics is the effective distribution of water and
nutrients as droplets to the roots, which together with an adaptive branching
strategy of plant roots (a dense network of fine roots and root hairs) creates an
optimized supply and a large uptake area for water and nutrients. If the fluid
and the droplets in the aerosol contains the necessary nutrients (N, P, K, Ca, S,
and Fe) in optimal proportions, they will be supplied in a non-limiting capacity,
where uptake just is determined by the root uptake capacity.
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2.2 Factors in Plant Development

There are several factors or conditions in the environment that will deter-
mine plant growth and development. Two factors are mentioned in section
2.1, namely water- and nutrient supply. Three other main factors are

• supply of carbon as CO2 for uptake by plant leaves and used in photosyn-
thesis,

• supply of light as photons, captured by chloroplasts in plant leaf cells and
tissues and used in photosynthesis, and

• a number of climate factors and environmental conditions, such as tem-
peratures (air, leaf, fluid, root), air humidity, CO2 concentration in air,
nutrient concentration (measured as ions with electrical conductivity, EC),
pH and dissolved oxygen (DO).

The main strategy in controlling plant growth and development is to quan-
tify and control these factors to levels that induce the desired plant behavior.

The research conducted at Swedish University of Agricultural Sciences (SLU),
during a long period from the 1970s to the millennium shift, has created a broad
and solid scientific framework for controlled plant growth- and development and,
thereby, highly efficient and productive plant cultivation. This research is well
documented in scientific papers, dissertations and plant development databases
[3–8] and provides a solid ground for the hypotheses and assumptions to be
tested within the scope of this master thesis.

One main assumption behind the goal of this thesis is that there exists a
strong correlation and coherence between relative rates of growth for biomass
and leaf area, respectively. This has been verified in different experiments and
is documented in [3, 7], where biomass growth rates have been determined by
weighing of plants, roots and leaves and leaf area growth rates by measuring of
projected area via a scanner/copier.

The main idea is that these correlations between the plant’s total biomass
and leaf area is a good motivation for using image analysis. Since the leaf area
is likely extractable from images, it should mean that the biomass is as well.

2.3 Cultivation Setup

The setup used for plant growth and development consists of four growing beds
and one reservoir. The reservoir contains the nutrient rich water along with
sensors for temperature, pH, and electrical conductivity, and a heater to keep
the water at a preferred set temperature. The water from the reservoir is then
pumped to the four growing beds.
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Each growing bed consists of a container with a removable lid. Inside the
container, there are two sonicators, which contain membranes that vibrate at
an ultrasonic frequency that agitate the water into an aerosol, in the form of
a dense fog. The lid of the container has 24 holes with small baskets (plant
holders), in which the plants are placed such that the roots hang down and
are immersed in the aerosol, continuously replenishing the supply of water and
nutrients. The bottom of the container has a drainage pipe which returns the
water back to the reservoir, as shown in Figure 1.

Figure 1: Growing bed schematic from the side.

Above each growing bed is an array of LED lights. These can be either set to
full or half intensity. The full intensity assures that the plants receive saturated
light levels, measured as Quantum Flux Density (QFD) in the range of 350-400
µmol/m2s. At half intensity the QFD is in the range of 150-200 µmol/m2s.
At this level, the light conditions become a limiting factor, which according to
theory and experiments [8] will lower the relative growth rate (RGR).
Two of the growing beds received optimal and saturated light conditions, while
the other two were grown under limiting light conditions. This introduces vari-
ance in the RGR between the plants, and thus increases the variance in our data
set. This will, most likely, improve the generalization of our estimates, but the
effect of this is not evaluated in this thesis.
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2.4 Camera Rig

The camera rig consists of 8 cameras (2 per bed) of the model PlexGear WC-800
set up as shown in Figure 2. Four of the cameras capture images from a top
view, placed on the long edge of each bed. These cameras are referenced to as
the top cameras. The other four cameras are placed further down and over the
adjacent bed, so that they capture images from a lower angle. These cameras
are referenced to as the angled cameras.

Figure 2: Camera rig for image capture (left) and example of captured image
(right).

The cameras are connected to a computer next to the rig, which runs a
script to capture images, shown in Figure 2, with each camera on 1 hour inter-
vals. These images are then stored locally and sent directly to a cloud sharing
service so that the camera status and plant development can be monitored re-
motely.
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3 Method

The goal of this thesis is to compare the precision of two methods for predicting
the biomass based on a given image or set of images. The first method is to
use Multi-Variate Regression (MVR). This essentially means that a number of
potentially interesting features are extracted from each image and these features
are then used to estimate the biomass. This is similar to a methods employed
by Jung, Dae-Hyun, et al. [9] for estimating biomass in lettuce. In their paper
they used several methods for pixel classification between plant and background.
The number of pixels were then used to estimate the biomass using polynomial
regression. The structure for my method uses similar manually curated features
in order to estimate the biomass, which should be promising based on their
findings.

The second method is to use Neural Networks (NN) in order to predict the
biomass. A pre-trained network base called ResNet-50 is used to extract a fea-
ture vector which is then fed into a regression head which aims to predict the
biomass. This method is based on previous research by N. Buxbaum et al. [10].

In order to predict biomass from images we will need ground truth data and
input data. The input data consists of images of plants and the ground truth
data consists of values for the biomass of the corresponding plant. These image-
value pairs constitute our data set, which is used as training data for the two
methods.

The estimates of the biomass in the images are then compared using three
View Types in three Tasks. The first two view types are predictions made using
the images from the top and angled camera respectively. The third view, called
Dual View, is the average of these predictions for a given plant and time point.
The purpose of evaluating this is to determine if there is a benefit to having
both cameras.

These three views are used to complete three tasks. The first task, Single
Image, is simple biomass prediction using a single plant and time point. The
second task, Moving Average, uses the average of three consecutive time points
to estimate the biomass. This task should remove high frequency variations in
the estimates since the real biomass has had minimal change during this 3 hour
period. The third task, Relative Growth Rate, uses three random time points of
a plant to estimate the RGR. By sampling this 100,000 times, a good estimate
of the method’s ability to estimate RGR from biomass is evaluated.

3.1 Trial Experiment

In studies analyzing plant growth using machine learning, it is common to use a
classification output where the plant growth is lumped into a number stages of
progression. For example, growth stages of wheat is typically grouped into the
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stages; Tillering, Jointing, Booting, Heading and Ripening [11, 12], correspond-
ing to different visual and biological processes in the plants. This makes the
learning easier since the targets are limited to discrete values, and usually one is
only interested in a rough estimate of the plant’s state of growth. However, for
the purpose of estimating the RGR, a numeric value of the biomass is necessary.
Therefore, the commonly used classification is insufficient.

3.1.1 Trial Data Set

To see the effect of using a numeric output instead of a classification, a trial
experiment was conducted on a public data set before shaping our own experi-
ment and data set. The data set used for this is outlined in Beck et al. [13]. The
authors of this paper released an open-access sample of this data set containing
14 different plant species with 1000 images each. The data set also contains
information about the date and time at which the images were taken. As a trial
experiment, a neural network of the same structure as the one used on our own
data set was used to predict the age of soybean plants, examples of which are
shown in Figure 3.

Figure 3: Example images from the trial data set.

The dates were converted to hours and normalized such that the earliest
image had the age 0 hours. In the interval 600-1100 hours, no images seemed to
exist as shown in Figure 4. The images were then split into two classes, those
taken before this period and those taken after.

The young age group was much larger than the old age group, with a split
of 861 vs 139 samples. Therefore, augmentation was introduced to balance the
sizes of the two age group. Each image added was rotated by a random angle
and resized to 64x64 pixels, as this was about the size of the smallest images.
The old age group could therefore be filled with rotated copies of itself so that
both sets were of the same size. This experiment was conducted both with and
without the class balancing in order to evaluate its effect. Finally, the data set
was divided into a training and validation set with a 80-20 split.

16



Figure 4: Age distribution in the trial data set.

3.1.2 Trial Outline

The goal of this trial is to classify the plants in two ways, with a classification
network, that classifies what age group the plant belongs to, and a regression
network that estimates the age of the plant in a given image. The output of the
regression network can then be used to classify the plants into the two groups.
This is done by finding an optimal age threshold in the training set where the
network output can be split into the two age classes.
The ability of these two networks to classify the plants are then compared, and
the accuracy of the regression network to predict the direct age is analyzed.

Usually, when the data has a clear split similar to this, it could introduce
biases into a classification network through features such as background shifts,
camera equipment, or human input that happen in the period between 600-1100
hours. This is also the case for this purpose, however, these biases should not
affect the accuracy of the regression network within the classes. So if the accu-
racy of the two networks to classify the plants are comparable, and the accuracy
of the regression network is good within the two groups then this indicates that
a regression network could perform well for the purpose of predicting the direct
biomass in our experiment as well.
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Both networks used an architecture similar to the one used for our main
experiment (see Figure 10), using a pre-trained ResNet-50 network base with a
1000 feature vector output followed by a regression head (further explained in
Chapter 3.5). The regression head consisted of two dense layers of size 512 and
64 with ReLU activation, followed by an output layer that differed between the
two network types. The classification network used an output layer of size 2
with Softmax activation. The regression network used an output layer consist-
ing of a single node with Linear activation.

3.2 Ground Truth

The ground truth data is gathered by sampling the plant weight during the
growth period. This was done at two points during the growth period. At each
measurement, all plants are weighed non-destructively in their baskets. Since
the plants are weighed in their baskets, the basket weights are measured as well
so that these can be subtracted from the total measured weight.

Since images are taken on one hour intervals, these two measurements have
to be interpolated in order to get ground truth data for images in between mea-
surements.
A paper by O. Hellgren and T. Ingestad [6] has shown that in controlled cultiva-
tion experiments with a constant relative addition rate of nutrients, plants have
a constant relative growth rate. To achieve this for the thesis experiment, nu-
trients and water are supplied in free access, which imply non-limiting addition
rates. This should ensure that the plant’s RGR is close to constant, meaning
that each gram of plant increases its mass by a constant amount per day. This
holds true in the early stages of a plant when all plant cells are dividing and
the whole biomass is productive and growing, called vegetative growth, which
is the case for leafy green plants such as spinach. This is not necessarily true
for plants which produce structural cells that are not dividing (such as woody
plants), or for example plants which have started flowering. Since our harvest
period only covers the vegetative state, this assumption should be a good ap-
proximation. However, since the plants experience an environmental shift when
they are placed in the containers, there is an initial period of plant acclima-
tisation, where the RGR increases to a stationary level. This means that the
estimates through our interpolation might differ from the true biomass of the
plants. A larger data set over a longer period should give a clearer and more
accurate ground truth data, but given the limited data set this should at least
give a close approximation.

Given this assumption of a constant RGR, that means that the change in
biomass is proportional to the biomass itself. This can be expressed as a differ-
ential function ẇ = a · w, where w is the biomass and a is the constant RGR.
This differential function is solved by a generic exponential function

18



w(t) = C · eat,
where C is a constant. By taking the logarithm of the biomass measurements,
we get

ln(w(t)) = log(C) + a · t,
which is the equation for a line. By fitting a line to the logarithm of the weight
measurements as a function of time, we can estimate the relative growth rate
and the exponential function which the biomass follows. This function is then
used to get ground truth data for intermediary time points.

3.3 Input Data

The input data to the model consists of image-biomass pairs. At each time
point, 8 images are captured, each of which cover an entire tray.

Figure 5: Example of input image transformation.

In order to convert the images of an entire tray to images of individual plants,
the image has to be segmented. This is done by manually marking the positions
of the four corner baskets of the tray in each camera. From these points, the po-
sitions of all plant containers can be inferred. The four corner points will make
up a distorted rectangle, which can be transformed into the correct proportions
since the aspect ratio of the tray is known. This is done using a projective trans-
formation, an example of which is shown in Figure 5. After this transformation,
a square region is cut out around each plant basket’s position. Finally, each
plant image is resized to so that all images are of the same dimensions, 64 by
64 pixels. An example of the resulting images for one plant is shown in Figure 6.

As can be seen, the top camera captures the image more clearly, while the
angled camera becomes slightly distorted to accommodate the larger distance
between the closest and furthest plants. This is, however, important to make
sure that the pixel scale is proportionate for all plants, independent of their
distance to the camera. The angled camera does capture more complexity, such
as height and leaf slope, which is lost in the top view.
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Figure 6: Example of plant development as input images from both the top and
angled camera.

In total the data set is over a 5 day period with a total of 96 plants. However,
due to some acclimation issues, some of the plants had to be replanted. These
plants had a shorter time period between the two biomass measurements which
resulted in a high variance. Therefore, these were excluded from the data set.
In total 57 plants were in the data set, of which 5 days of images were taken.
This resulted in 10,197 images of individual plants.

The data set was split into training, validation and test sets. Since both
the biomass and the images are highly correlated between time points, the data
splitting was done based on plant individuals as opposed to a random splitting.
When a random splitting was tested, the accuracy was extremely high with al-
most no error. However, since potential future plants will not be represented in
the data set, this high accuracy cannot be said to reflect the generalization of the
problem. Therefore, the split was done on an individual basis. The validation
and test set were created with 6 plants each, this resulted in a split of [77,4%,
11,3%, 11,3%] with 7894, 1153, and 1150 samples in each set respectively. The
reason that there is a difference in sizes between the validation and test set is
that some images were lost due to camera malfunction. Half of the images in
each set was from the top view, and the other half from the side view. Therefore,
these sets were further split based on the camera angles. The result is two data
sets with the two view angles consisting of image-biomass pairs. Each data set
has a training, validation and test set that were split using the same individuals.
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3.4 Method 1: Multi-Variate Regression

The first method for estimating biomass is a multi-variate regression based on
manually decided features, similar to what is explored in, [14]. Specifically,
linear regression of pixel-wise features is used. These types of features do not
capture structure which differentiates it from the NN method which is highly
dependent on structure. These features Fi : R64x64x3 → R can be expressed as

Fi(I) =

64∑
x=1

64∑
y=1

fi(Ix,y), fi(p) : R3 → R,

where I is an image and Ix,y is a pixel in that image. These features are based
both on the RGB and HSV values of a given pixel p = Ix,y. These are expressed
as pr, pg, pb, ph, ps, pv below. The features included were inspired by previous
research of image based plant segmentation [14–16]. Due to the principles of
linear regression, the features that could be written as a linear combination of
others were excluded. In addition to these features, some hue and saturation-
based features were added.
The features can be grouped into six groups. The first group is just summations
of each of the six color channels: Red, green, blue, hue, saturation and value.
The next group is ratios between the three colors. The third group is Thresh-
olding Features which count the number of pixels within certain hue ranges;
Red-Green, Green-Blue, Blue-Red. The fourth group is Highlighting features,
which operates similarly to the Thresholding Features but weights the pixels by
their saturation so that more vibrant pixels count for more. The fifth group is
a single feature VEG which represents the Vegetative Index [17].

• Red: f1(p) = pr

• Green: f2(p) = pg

• Blue: f3(p) = pb

• Red/Green: f4(p) = pr/pg

• Green/Blue: f5(p) = pg/pb

• Blue/Red: f6(p) = pb/pr

• Red-Green Hue: f7(p) = 1 if ph < 1/3 else 0

• Green-Blue Hue: f8(p) = 1 if 1/3 < ph < 2/3 else 0

• Blue-Red Hue: f9(p) = 1 if 2/3 < ph else 0

• Red-Green Highlight: f10(p) = ps if ph < 1/3 else 0

• Green-Blue Highlight: f11(p) = ps if 1/3 < ph < 2/3 else 0

• Blue-Red Highlight: f12(p) = ps if 2/3 < ph else 0

• Vegetative Index: f13(p) = pgp
−2/3
r p

−1/3
b

These 13 features were normalized to the interval [0,1] based on the training
set and exported, along with the ground truth values, as an csv -file to the
programming language R.
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3.4.1 Feature Evaluation in R

In order to determine what features are used in the final model, a step-wise
iteration of models is implemented. This is done by starting with an empty
constant model containing only the intercept. Features are then added to the
model depending on the Akaike information criterion (AIC). The AIC of a
model is defined as

AIC = 2k + 2ln(L̂),

where k is the number of predicted parameters and L̂ is the maximum value
of the Likelihood function. When the AIC cannot be improved by adding or
removing a feature, the iteration is done and a final model is given.

This iteration is also done using the BIC value, which is a variant on the
AIC value where the function is changed from 2k + 2ln(L̂) to ln(n)k + 2ln(L̂),
where n is the number of samples in the training set. This change punishes
large models, typically resulting in a smaller model.

To compare the AIC model to the BIC model, their corresponding R2
adj val-

ues are calculated. This is a variant on the R2 value which is a measurement of
how much of the variance is explained by the model. The R2 value is calculated
through

R2 = 1− SSres

SStot
,

SSres =

N∑
i=1

(yi − ŷi)
2, Stot =

N∑
i=1

(yi − ȳ)2,

where SSres is the sum of squares of the residuals, SStot is the sum of squares
between the data points and their mean, ŷi is the predicted value and ȳ is the
mean of the data. To get the R2

adj value, the R2 value is adjusted through

R2
adj = 1− (1−R2)(n− 1)

n− k − 1
,

where n is the number of data points and k is the number of features.

In addition to performing this fitting to the biomass, a similar method is
performed for the log-biomass. The selected features for the biomass model
and log-biomass model is then used on the validation set. The model with the
lowest Root Mean Squared Error (RMSE) on the validation set is used as the
final model for the MVR method.

For this method, two of these models are made, one for the top-view cameras,
and one for the angled-view cameras.
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3.5 Method 2: Neural Network

The second method used is a Neural Network (NN), inspired by previous re-
search in biomass prediction [10]. The network utilizes a pre-trained image
recognition network called ResNet-50, trained on data from ImageNet[18], as a
base. This network returns a feature vector. These features are then fed into
the second part of the network, a regression head, with untrained weights, which
predicts the biomass.

3.5.1 Pre-Processing of Training Data

The image data of the plants are highly correlated with each other. This means
that the network can easily overfit to the training data. In order to combat this
augmentation is applied to the images. This is done by rotating each image by
a random amount. This resulted in a massive decrease in the validation loss, at
the cost of increasing the training loss.

In addition to this, different color spaces were explored as shown in Figure 7.
The first color space was the conversion to HSV. The background mainly con-
sists of black values with some white from the plant holder and water residue.
In the RGB colorspace, black and white are [0,0,0] and [1,1,1] respectively, while
they are [0,0,0] and [0,0,1] respectively in HSV. This means that a HSV color
space could be beneficial since the difference between black and white is much
smaller. This color space also has a basis in previous research for plant segmen-
tation [16, 19]. In addition, two personally curated color spaces were tested.
The second color space explored was one where the Value channel of the HSV
color space was set to 0.5 and converted back to RGB. The idea behind this was
to keep the color space RGB, while removing the difference between black and
white.
The third color space also took the Saturation of the HSV color space into con-
sideration. Instead of setting the Value channel to a constant 0.5, it was set
to (0.5 − |0.5 − V |) · 2S, where V is the Value channel and S is the saturation
channel. This meant that pixels that are dark, white, or lack color are dimmed.
The resulting image was then turned back to RGB. This highlighted the plant
parts very well as seen in Figure 7.

However, the different variations of color space did not outperform the simple
RGB. This is likely because our network uses a pre-trained ResNet-50 network
which has been trained on real images. By modifying the color space, the net-
work receives input that is further away from the data set it has been trained
on, thereby decreasing the accuracy. It is therefore possible that a network built
from scratch could benefit from these other color spaces while ours didn’t.

A pre-processing of the biomass was also explored. Since the plants grow
exponentially, the use of the log-biomass as target was tested. In addition, the
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Figure 7: The different explored color spaces.

biomass and log-biomass was normalized based on the maximum and minimum
values of the training set. The distribution of both these targets in the training
set is shown in Figure 8. For the final model, the log-biomass was used since it
was found to perform much better on the validation set. This could be because
the log-biomass is much more evenly distributed than the linear biomass.

In conclusion, the data used to train the NN was randomly rotated RGB
images of the plants with normalized log-biomass targets.

3.5.2 ResNet-50

Deep neural networks are common in the field of Image Recognition. The depth,
specifically, is important to capture the complex structures of images. There
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Figure 8: Distribution of Biomass and Log-biomass in Training set.

are, however, some issues when increasing the depth [20].

The first issue is Vanishing Gradients. When back-propagating the feedback
from training to a weight, the gradient of the loss with respect to that weight is
utilized. If the network is deep, the deep inner derivatives result in a product
of many factors. If these factors are small the gradient quickly becomes small,
meaning that the network learns very slowly on the deeper weights.

The second issue is an observed degradation in the accuracy. As explained
in [20], increasing the depth of a network increases the accuracy to a point, after
which the accuracy stagnated before degrading quickly. As they point out, this
degradation is not due to overfitting.

Deep neural networks have many layers. These extra layers are noted as g(x)
in Figure 9. If the shallow layers, noted as f(x), of the network are accurate,
then f(x) is a good approximation of the desired output y. By adding the deep
layers, the output of the network becomes g(f(x)). The network can achieve
the same accuracy if g(f(x)) ≈ f(x), so the training accuracy should not decline
with more layers. However, this requires that g(x) ≈ x, but convergence to the
identity function can be difficult to achieve in training according to [20].

In order to combat this, the authors created a Residual Neural Network
(ResNet). In the Residual Block the result from previous layers are added to
the output, changing it to g(f(x)) + f(x). In order for this to achieve the same
accuracy as the shallow network, we instead get

g(f(x)) + f(x) ≈ f(x) ⇒

g(f(x)) ≈ 0 ⇒

g(x) ≈ 0.

This is much easier to achieve, since this simply involves setting the weights
to 0. This means that adding the Residual block should never decrease the
training accuracy, since it can easily default back to the result of the previous
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layers.

The number of layers inside such a residual block is typically two or three,
and stacking multiple of these after each other allows for very deep networks
that minimize the risk of accuracy degradation.

Figure 9: Residual Block used in ResNet.

The ResNet architecture is used as the first part of my network. In particular,
ResNet-50 is used, where 50 denotes the number of layers. The network has
been pre-trained on the ImageNet data set [18] and should therefore allow for
advanced image feature recognition without the need for a large data set.

3.5.3 Network Architecture

Two networks were employed, one for each camera angle. The network architec-
tures were identical and consisted of a ResNet-50 network base that resulted in
a feature vector of length 1000. This vector was then fed through a Regression
Head with 3 layers of size 512, 128, and 1 respectively as shown in Figure 10.
These layers were densly connected and used ReLU activation, except for the
final output layer which used a Linear activation function. Since the problem
is rather complex, but has a lot of redundancy in the training set due to the
short times between images, the network complexity is operating on a fine line
between capturing complexity while not overfitting, as is often the case with
tasks in image analysis. So a smaller regression head, with fewer and/or smaller
layers, increased the error of both the training and validation set, while a larger
one decreased the error for the training set but increased it for the validation.

The learning rate had to be set very low, at 0.0005. A higher learning rate
lead to instant collapse where the network would output a constant value. A
lower learning rate slightly increased the error for both the training and valida-
tion set. The networks were trained for 20 epochs.
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In order to combat overfitting, L2 Regularization was employed. The L2
value was set to 0.1, which is on the high side. But a lower level of regularisa-
tion lead to increased overfitting. A higher level of regularization didn’t have
that much effect on the network, so it was kept at 0.1.

Another very important aspect was to allow the ResNet-50 weights to be
trainable. This meant that we would take advantage of the large network, while
allowing for slight adaptation to our problem. This greatly decreased the error.

Figure 10: Architecture of the neural networks.

3.6 Method Comparison

For both the MVR and the NN approach, the result comes in the form of
two vectors of predictions on the test tet, one for each camera angle. We call
the predictions for the top view ŷt and the predictions for the angled view ŷa.
These can be compared to the ground truth values y. The comparison between
the estimate and the true value is expressed using the root mean squared error

(RMSE), calculated using
√

1
N |ŷ − y|22, where N is the number of elements in

the set.

As mentioned the two methods are evaluated on the accuracy of the esti-
mates on a single image. This is done simply by comparing ŷt and ŷa with their
true counter parts. In addition to this, a new vector ŷd, representing the dual
view, is constructed by taking the average of ŷt and ŷa. This vector is then
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compared to the true biomass at each time point. The purpose of this is to
check if there is any benefit to having multiple cameras.

Secondly, the moving average of the biomass estimates are calculated by
grouping the data points into six groups based on the six plant individuals in
the test set. The estimated biomass vector is then sorted based on the true
biomass vector. A Moving Average filter with window size 3 is then applied to
this vector. So each biomass estimate also uses the estimates for the two time
points before it. The purpose of this is to minimize noise in the estimates. This
resulting vector is then compared to the true biomass. This is done three times,
once for each camera angle and once for the dual view.

Finally, the possibility of estimating relative growth rate is explored. This is
done by sampling three random time points in the biomass estimate and fitting
an exponential curve to the biomass, similar to how the ground truth values
was created. The estimate for the relative growth rate is then compared to the
real value for that plant.
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4 Result

4.1 Trial Experiment

In the trial experiment, the age of images of Soybean plants from a public data
set were analyzed using two networks, a regression network and a classification
network. The training progress of the two networks when using unbalanced and
balanced age classes are shown in Figure 11 and 12 respectively.

The predictions of the regression network is shown in Figures 13 and 14 for
unbalanced and balanced data sets respectively.

The threshold used for the regression network to classify the age group of
plants were 790 hours for both the unbalanced and balanced data sets.

Figures 15 and 16 show the ground truth age against the predicted ages
along with fitted lines using different three different groupings of the validation
data; all plants, only young plants, or only old plants. These lines show how
correlated the predictions are with the true age.
For the unbalanced data set, the slope of the lines were; 0.427, 0.709 and -0.227
for the groups all, young and old respectively.
For the balanced data set, the slope of the lines were; 0.767, 0.755 and 0.597 for
the groups all, young and old respectively.
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Figure 11: Training progression for the regression and classification network
when using a data set with unbalanced age classes. This is an acceptable result.

Figure 12: Training progression for the regression and classification Network
when using a data set with balanced age classes. The balancing improves the
result, but leads to a slight over-fitting for the classification network.
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Figure 13: Ground truth age against predictions of the regression network for
the unbalanced data set. Blue line shows optimal correlation x = y. The
predictions are fairly good in the young age group, but are not well fitted in the
old age group.

Figure 14: Ground truth age against predictions of the regression network for the
balanced data set. Blue line shows optimal correlation x = y. The predictions
are fairly good in all age groups.
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Figure 15: Fitted lines with ground truth age vs predictions on the unbalanced
data set for; entire validation set (Purple= 209 + 0.427x), young class (Red=
139 + 0.709x), old class (Blue= 1130− 0.227x). The regression can distinguish
quite well between ages in the young age group, but fails to do so within the
old age group.

Figure 16: Fitted lines with ground truth age vs predictions on the balanced
data set for; entire validation set (Purple= 191 + 0.767x), young class (Red=
189 + 0.755x), old class (Blue= 403 + 0.596x). The regression can distinguish
between ages within all age groups.
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4.1.1 Confusion Matrices for Trial Experiment

Tables 1-4 show the confidence matrices for the classifications of the two net-
works and two data sets, along with true positive/negative rates, positive/negative
predictive value and accuracy. The confusion matrices are very good with a high
accuracy.

Pred. Young Pred. Old True Pos/Neg Rate
True Young 168 2 0.988
True Old 18 12 0.400

Predictive Rate 0.903 0.857 Acc: 0.900

Table 1: Confusion Matrix for classification using the classification network on
the unbalanced data set.

Pred. Young Pred. Old True Pos/Neg Rate
True Young 162 8 0.953
True Old 17 13 0.433

Predictive Rate 0.905 0.619 Acc: 0.875

Table 2: Confusion matrix for classification using the regression network on the
unbalanced data set.

Pred. Young Pred. Old True Pos/Neg Rate
True Young 161 17 0.904
True Old 10 156 0.940

Predictive Rate 0.942 0.902 Acc: 0.922

Table 3: Confusion matrix for classification using the classification network on
the balanced data set.

Pred. Young Pred. Old True Pos/Neg Rate
True Young 166 12 0.933
True Old 16 150 0.904

Predictive Rate 0.912 0.926 Acc: 0.919

Table 4: Confusion matrix for classification using the regression network on the
balanced data set.
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4.2 Main Result

4.2.1 Multi-Variate Regression

Tables 5 and 6 show which features are used in the models created by the
iterative model generation. The tables show all 8 models that were created
with aspect to AIC vs BIC metric, Linear vs Logarithmic Biomass and top vs
angled camera view.

Feature/Model Lin-AIC Lin-BIC Log-AIC Log-BIC
R X X X X
G X X X X
B

R/G X X X X
G/B X
B/R X X X X

HueRG X X X X
HueGB X X
HueBR

HLRG X X X X
HLGB X X
HLBR X X X X
VEG

Table 5: Features included in the models for the top camera view.

Feature/Model Lin-AIC Lin-BIC Log-AIC Log-BIC
R X
G X X X
B X X

R/G X X
G/B X X X
B/R X X

HueRG X X X X
HueGB X
HueBR X
HLRG X X X
HLGB X
HLBR X X X
VEG X X

Table 6: Features included in the models for the angled camera view.

Table 7 shows the R2 and R2
adj values for each of the 8 created models. Bold

numbers show the best model with respect to AIC vs BIC metric. In each case
the model generated using the AIC metric outperformed the BIC model with
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respect to both the R2 and R2
adj values. Therefore, the AIC versions of the

models were passed on to be compared using the RMSE of the validation set.

View Target Measure R2 R2
adj

Top Biomass AIC 0.315 0.314
Top Biomass BIC 0.314 0.312

Top Log-Biomass AIC 0.298 0.296
Top Log-Biomass BIC 0.294 0.293

Angled Biomass AIC 0.344 0.343
Angled Biomass BIC 0.334 0.333

Angled Log-Biomass AIC 0.295 0.293
Angled Log-Biomass BIC 0.281 0.280

Table 7: R2 and R2
adj of models generated though AIC and BIC iteration on

the different biomass targets. The AIC was found to be superior in all cases.

For the top camera, the model that aimed to predict log-biomass performed
better than the model for untransformed (linear) biomass. The RMSE for the
log-biomass model had an RMSE of 0.1182g compared to 0.1374g for the un-
transformed biomass.

On the other hand, for the angled camera, the untransformed model per-
formed better, with a RMSE of 0.1015g compared to 0.1098g for the Log-
Biomass model. Therefore, the Log-Biomass model was selected for the top
camera, while the untransformed biomass model was selected for the angled
camera. The weights for the two models are shown in Tables 8 and 9 below.

Feature Intercept R G R/G G/B B/R
Coeff. 0.1427 -30.8498 29.9778 -4.4577 -0.4435 -4.3437
Feature HueRG HueGB HLRG HLGB HLBR

Coeff. 0.8625 1.1628 -1.3134 -2.0212 6.2662

Table 8: Top camera - MVR Model Coefficients. The highest effect comes from
the red and green features.

Feature Intercept R G R/G G/B B/R
Coeff. 0.4567 -4.0938 3.9349 -0.8282 1.0791 -0.7736
Feature HueRG HueGB HLBR VEG
Coeff. 0.6988 0.4656 1.0448 -0.6336

Table 9: Angled camera - MVR Model Coefficients. The highest effect comes
from the red and green features.
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4.2.2 Neural Network

Figures 17 and 18 show the training process for the NN trained on images from
the top camera and angled camera respectively.

Figure 17: Training Process for the neural network using images from the top
camera. The loss (MSE) and MAE are at an acceptable level.

Figure 18: Training Process for the neural network using images from the angled
camera. The loss (MSE) and MAE are at an acceptable level.
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4.2.3 Comparison

Tables 11 and 10 show the RMSE on the test set for the MVR and NN respec-
tively. These tables show the quality of the method on; Single image biomass
prediction, Average of three chronologically consecutive biomass predictions,
and RGR prediction using three random data points. Each of these tasks are
performed using the model for the top camera, angled camera, and the average
between their outputs (dual view). In addition, the RMSE is shown for the full
test set and on the individual plants in the test set.

Table 10: RMSE on test set as a whole and for individual plants, when using
multi-variate regression. This shows the results for all tasks (SI = Single Image,
MA = Moving Average, RGR = Relative Growth Rate). The best method for
a given task on each individual is highlighted in bold. The top view seems to
perform best when predicting biomass, while the dual view performs the best
for RGR.

Task - View All #24 #33 #42 #64 #65 #78
SI - Top 0.0466 0.0316 0.0260 0.0448 0.0573 0.0643 0.0447

SI - Angled 0.1227 0.0924 0.0640 0.1347 0.2173 0.0960 0.0585
SI - Dual 0.0734 0.0521 0.0406 0.0882 0.1151 0.0751 0.0363

MA - Top 0.0391 0.0253 0.0200 0.0426 0.0382 0.0614 0.0332
MA - Angled 0.1178 0.0875 0.0598 0.1336 0.2089 0.0922 0.0479
MA - Dual 0.0703 0.0491 0.0380 0.0875 0.1096 0.0729 0.0287

RGR - Top 0.2268 0.2088 0.2038 0.1911 0.2413 0.2573 0.2500
RGR - Angled 0.3669 0.2816 0.2684 0.2261 0.2889 0.5410 0.4788
RGR - Dual 0.1984 0.2049 0.1736 0.1658 0.2019 0.2383 0.1974

Table 11: RMSE on test set as a whole and for individual plants, when using a
neural network. This shows the results for all tasks (SI = Single Image, MA =
Moving Average, RGR = Relative Growth Rate). The best method for a given
task on each individual is highlighted in bold. The dual view seems to perform
the best for both biomass and RGR predictions.

Task - View All #24 #33 #42 #64 #65 #78
SI - Top 0.0862 0.0339 0.0301 0.0261 0.1833 0.0553 0.0744

SI - Angled 0.0653 0.0265 0.0332 0.0284 0.0823 0.0809 0.0992
SI - Dual 0.0550 0.0260 0.0228 0.0233 0.0735 0.0639 0.0840

MA - Top 0.0812 0.0291 0.0278 0.0166 0.1752 0.0502 0.0689
MA - Angled 0.0637 0.0214 0.0304 0.0271 0.0804 0.0792 0.0985
MA - Dual 0.0523 0.0230 0.0204 0.0205 0.0669 0.0620 0.0829

RGR - Top 0.2647 0.2195 0.1982 0.3260 0.2444 0.2483 0.3243
RGR - Angled 0.1837 0.1910 0.1490 0.1314 0.1818 0.2294 0.2022
RGR - Dual 0.1767 0.1434 0.1427 0.1687 0.1867 0.2078 0.2000
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Figure 19 shows the resulting predictions of the two methods, MVR and
NN, on the two tasks, Single Image and Moving Average. The predictions are
plotted against the ground truth value for biomass in that image.

Figure 19: Predictions of the MVR and NN on the Single Image and Moving
Average tasks. The blue line shows the ideal correlation, which the points follow
to an acceptable degree.
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5 Discussion

5.1 Trial Experiment

5.1.1 Classification Accuracy

The results of the trial experiment was very promising. The categorisation ac-
curacy of the regression network was similar to the accuracy of the classification
network, as shown in the confidence matrices in Tables 1-4. This result shows
that estimating growth progress as a number instead of categorically keeps the
precision high. The accuracy is a little lower when the classes are unbalanced,
but doesn’t fall too low. However, the true old rate is very low, which is ex-
pected since that class doesn’t contain much training data.

Another interesting point is that the difference in accuracy between the two
network types is much higher for the unbalanced data set. This could just come
down to random chance, but it could also point to the regression network suf-
fering from the unbalance more than the classification network. However, this
cannot be determined for sure.

5.1.2 Training Progression and Loss

The training process was quite different between the regression and classification
networks. The classification network was at a much higher risk of overfitting,
so for the unbalanced data set the training only ran for 20 epochs instead of
50. Even for the larger balanced data set, the classification network was slightly
overfit, as can be seen in the top-right Categorical Cross-Entropy graph in Fig-
ure 12, however, this didn’t affect the accuracy too much. This indicates that a
regression network both needs to, and can, be trained for a longer period. This
increased complexity might come from the fact that the targets are binary in
the classification network, while continuous in the regression network.

5.1.3 Regression within Age Classes

As shown in Figures 15 and 16, the regression network had a strong correlation
between the real and predicted age, meaning that it has learned something.
One could imagine that this comes from the two age classes being very sep-
arated, therefore, these figures also show a fitted line using only members of
each class. When the age classes are balanced (Figure 16), we can see that the
slope is quite high even within the classes. Therefore, the regression network
has learned both to distinguish between the classes, but also learned what age
means for a plant within the two classes. This shows us that the potential for
predicting the biomass of a plant is promising.
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However, with the unbalanced data set (Figure 15), the fitted line for the
Old class has a negative correlation. This means that within the Old class, the
network has not learned what an increase in age looks like. This is most likely
due to the small training data available in this class, but it shows us the impor-
tance of having training data for the whole time period that we are interested in.

5.2 Method 1: Multi-variate Regression

The MVR models that were generated using the AIC measure performed better
than the BIC models in every case, as seen in Table 7. In the book Model Selec-
tion and Multimodel Inference: A practical information-theoretic approach by
K. P. Burnham and D. R. Anderson [21], a comparison between AIC and BIC is
conducted. Here, they conclude that BIC has an advantage to AIC if the model
used to generate the data set is included in the set of possible models. However,
they note that since the real world is too complicated, ”the primary foundations
of the BIC criteria do not apply in the biological sciences and medicine and the
other “noisy” sciences.”.
This holds true for our case, since we can with confidence say that the biomass
data was not generated using the pixel values of the image. This could be the
reason that the AIC performs much better.

From the result, we see that the MVR performed better using log-transformed
biomass for the top camera, while performing better with un-transformed biomass
for the angled camera. The reason for this is unknown, and might come from
the random variation since difference wasn’t that large.
Furthermore, for the top camera, the RMSE was much lower on the test set
compared to the validation set. The RMSE did not change considerably be-
tween the validation and test set for the angled camera. This could just be
down to random chance since the images in the test set comes from just six
individuals and is therefore highly correlated with itself. Which individuals are
in the test and validation set therefore has a large impact on the performance.
The large shift in the performance for the top camera between the sets could
therefore indicate that the log-transformation is less stable, but it is difficult to
draw such conclusion.

Overall, the MVR performs substantially better on the top camera compared
to the angled camera, as can be seen in Table 10. This is true, not just on the
set as a whole, but also for every individual in the test set. This makes sense
since the top camera captures more of the leaf area and is therefore a better rep-
resentation of the biomass. In addition, the nature of the angled camera causes
parts of other plants be included in the images. Since the MVR has no way of
distinguishing between these pixels, there is an inherent flaw with applying this
method on the images from the angled camera.

In Table 10 we can also see that the dual view had a higher quality com-
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pared to the angled view, but was worse than the top view. This makes sense
since the dual view is just the average between these two estimates. Because the
quality differs so much between the top and angled view, the benefit of reducing
noise seems inconsequential compared to the averaging effect between the two
camera views.

In every case, the moving average estimate had a lower RMSE than the cor-
responding RMSE for the Single Image task. This shows that there is a benefit
to capturing multiple images on a short time span, even though the biomass
increase is minimal. This benefit probably comes from the fact that the flick-
ering of the LED lights were noticeable in the camera. The noise that comes
from this likely leads to some variation in the estimates which is reduced by the
moving average filter.

Similar to the biomass estimate, the RGR estimate was significantly better
on the top camera compared to the angled camera. An interesting point is that,
on an individual basis, a poor estimate of biomass did not necessarily lead to a
poor RGR estimate. This could mean that some estimates for the individuals
follow the slope of the curve but with an offset, while others stay close to the
true value while not following the slope.

A very interesting point is that the estimate for the RGR is substantially
increased for the dual view. In fact, this is true on an individual basis as well.
This shows that there is a benefit to having two camera views when estimating
the RGR, even if there isn’t a benefit for estimating biomass.

5.3 Method 2: Neural Networks

For the NN method, the top camera performed worse than the angled camera,
as seen in Tables 11. However, this only holds true when looking at the over-
all RMSE. If you consider the RMSE on the individual plants, the top camera
performs better on four out of six plants. Plant #64 has a surprisingly large
RMSE in the top view, which inflates the overall RMSE. The low number of in-
dividuals could be the reason for this, as this increases the influence of potential
outliers. It cannot be said for sure if plant #64 is an outlier, but I would hesi-
tate to state conclusively that the angled camera is preferable to the top camera.

As opposed to the result from the MVR, the dual view performed better than
both the top and angled views. This indicates that having two perspectives is
beneficial for the NN method. The reason for this could be that the difference in
RMSE between the top and angled view is much smaller, making the variance-
reducing effect of their average much clearer.

Just as for the MVR, the moving average estimate performed better on ev-
ery view and on all individuals. This, again, shows the effect of averaging the
estimates on a short time span.
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Again, the RMSE for the RGR estimate did not correspond to the RMSE
of the biomass estimate. For example, plant #64 in the top camera had an in-
credibly poor estimate for the biomass, but had the second best RGR estimate.

Another pattern that shows up in the NN result is that the RGR estimate
was better when using the dual view compared to the top or angled view.

5.4 Method Comparison

Comparing the RMSE between the two methods shows that the MVR performed
best on the top camera, while the NN performed the best on the angled camera,
as can be seen in Tables 10 and 11.
As mentioned, the reason that the MVR has a poor result on the angled view
could be that a smaller fraction of the image is plant, and that other plants can
show up and distort the estimate.
Even if we exclude plant #64 from the RMSE of the top camera in the NN,
it has a higher RMSE compared to the corresponding MVR model. Since the
biomass is correlated with the size of the plant which is a highly visible qual-
ity, the conditions for a Regression model are good, while the relatively small
amount of data could be making it hard for the network to learn.

When it comes to the Moving Average, the same patterns hold true, but with
overall higher quality predictions. This result shows that a continuous image
capturing method should result in higher accuracy of biomass estimation.

In both models, the best Relative Growth Rate estimate was made when
using the dual view, showing the benefit of having multiple cameras for this
purpose.

5.5 Prediction Quality

The quality of the result is comparable to previous studies, however compar-
ison is difficult since most operate on different mass scales. Our MVR model
performed the best, with an RMSE of around 0.04g using the moving average
filter. With biomasses up to 0.35g this represents a relative RMSE of 11.4%. In
the paper by Wenjian Liu et al. [14], they achieve an RMSE of around 0.32g on
fresh biomass samples up to 3g, which corresponds to a relative RMSE of 10.7%.
However other papers have achieved greater accuracy on larger data sets. The
paper by N. Buxbaum et al. [10] used images of 3,888 individuals as their data
set and got an RMSE of between 1-2g on biomasses up to 40g, corresponding
to a relative RMSE of 2.5-5%.

The quality of the RGR estimates is quite poor however. As the average
RGR in the test set was 0.1173g/(g · day), even the best RMSE of 0.1767 is
larger than the average RGR. This means that the estimate is having a hard
time detecting if the plants were growing or not. The reason for this could be
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the large variance in the estimates of time-adjacent images, as the flicker of the
LED-light created some noise between the images. Having a setup where the
collected images are not affected by external factors should therefore improve
the estimate of both the biomass and RGR.

While our data set contains many images, the number of individuals is quite
small, and are taken over a short amount of time. Detecting relative changes in
biomass could be easier for larger plants, as the visual difference is larger the
further into the growth period the plants are. Further research should therefore
be done on longer growth periods with more plants.

6 Summary

The highest quality biomass estimates were made using the moving average fil-
ter on the top camera with multi-variate regression. The biomass estimate was
improved greatly in all models when applying the moving average filter over the
neighbouring time points. Having multiple cameras did not improve the quality
of the estimates for the multi-variate regression, but did do so for the neural
network.

The highest quality Relative Growth Rate estimates were made using data
from both cameras with a neural network. Using the estimates from both cam-
eras improved this estimate for both the multi-variate regression and the neural
network.

The quality of the biomass predictions is comparable to other studies, but
leaves plenty of room for improvement. In addition, the RGR estimates are quite
poor which indicates the need for larger data sets and longer growth periods
where the plants have more time to visually change. In addition to this, the fact
that the data set only contained two real measurements of the biomass makes
the ground truth interpolation very susceptible to both measurement errors and
deviations in the growth rate. Further more, by fitting the exponential function
to only two points there is no way to estimate if the assumption of a constant
growth rate holds true. Further analysis using data sets of more individuals over
longer periods of time and using more real measurements is required to verify
these results.
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