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Abstract

Brain-computer interfaces (BCIs) are devices that enable people with disabil-
ities to use their thoughts to control external devices and restore or improve
their bodily functions. One important aspect of BCIs is the classification of
electroencephalography (EEG) signals, which measure brain activity and can
be difficult to interpret. To address this challenge, we use time-frequency
transformations to convert EEG signals into images and employ pre-trained
deep convolutional neural networks (CNNs) to classify the images based on
whether the subject heard a sound from the left or the right ear. We investi-
gate whether transfer learning, a technique that involves using a pre-trained
model on a related task as the starting point for training on a new task, is
effective even when the source and target domains are very different. The
best classification result achieved was 61.7%, using EfficientNet V2 tuned on
5 different test-subjects, and tuned on the target subject.
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Chapter 1

Introduction

Brain-Computer Interface (BCI), is a field of research aiming to develop tech-
nologies that allow for direct communication between the brain and external
devices, a key application of BCI is aiding people with disabilities by enhanc-
ing their ability to interact with their environment. Electroencephalography
(EEG) is a widely used technique in neuroscience for recording the electrical
activity of the brain, and is a commonly used source of data in BCI technology
[27].

In order to use EEG data to control external devices, it must first be
analyzed to determine the intended action. Time-Frequency analysis is a
powerful tool for studying the dynamics of the brain activity, as it allows for
the separation of the EEG signal into different frequency bands [21]. However,
the analysis of Time-Frequency transformed EEG data can be challenging,
as it is no trivial matter to learn patterns in this kind of data, so we take
advantage of the tools at our disposal - we let the computer do the learning.

Transfer learning is a powerful tool in machine learning that allows a
model trained on one task to be fine-tuned and reused on a different but
related task. In this thesis, we explore the application of transfer learning
to classify Time-Frequency transformed EEG data using pre-trained deep
convolutional neural networks.

In this thesis, we set out to classify Time-Frequency transformed EEG
data from subjects receiving auditory stimuli, and determine from which
side they heard the sound. To do this, we employ inductive (different task)
transfer learning, by using deep convolutional neural networks that have been
pre-trained on ImageNet, the target task is different, in that we are performing
a binary classification, whereas the ImageNet dataset has hundreds of different
classifications.

More notably, the source domain from which the classifier input data
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originates is quite different, since ImageNet consists of photos from the real
world. The only real similarity between the Time-Frequency transformed
EEG data, and ImageNet, is that they are both images and perhaps share
generic features present in natural images. This inherent difference between
the source and target domains, is non-standard in this type of classification
task, and will be one of the main challenges we hope to overcome in this
thesis.

This constitutes an additional point of interest, will this non-standard, or
quasi-inductive, transfer learning yield useful results.

All the code used throughout this thesis, to train and evaluate models, visualize
results, etc. is accessible on Github:
https://github.com/Lussebullen/EEG Classification/tree/InterSubTL.
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Chapter 2

Theory

In this chapter, we give a high-level description of the machine learning con-
cepts and tools used in this project, we cover the most important aspects of
convolutional neural networks, and introduce key few-shot learning techniques.
To do that, we first introduce the learning problem, from computational learn-
ing theory.

2.1 The Learning Problem

To formally introduce the learning problem, we must first introduce some
notation. Let X denote the set of all possible examples, also called the feature
space, and let Y denote the set of all possible labels, i.e. the label space. A
concept, c : X 7→ Y, is a mapping from X to Y, a concept class is a set of
concepts we have an interest in learning, and is denoted C.

Let us clarify this notation by example, imagine you are an ice cream
maker, every ice cream consists of a base (cone or cup), one scoop (any flavor)
and a topping (like sprinkles), and you are interested in determining whether
an ice cream tastes good or bad. In this learning example, the feature space
is the set of all possible ice creams you can construct. The label space would
simply be {bad, good}, the concept class would contain multiple concepts for
determining whether an ice cream is good or bad, and a specific concept
of interest, c ∈ C, might be ”does the ice cream taste good or bad to my
customers”.

For the formulation of the learning problem, we first assume that examples,
x ∈ X , are independent and identically distributed (i.i.d.) according to an
unknown probability distribution P (x).
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The learning problem, as formulated by Mohri et al. [20], is then:

The learner considers a fixed set of possible concepts H, called a
hypothesis set, which might not necessarily coincide with C. It
receives a sample X = (x1, . . . , xn), containing n examples drawn
i.i.d. according to P (x) as well as the labels Y = (c(x1), . . . , c(xn)) =
(y1, . . . , yn), which are based on a specific target concept c ∈ C
to learn. The task is then to use the labeled sample X to select
a hypothesis hX ∈ H that has a small generalization error with
respect to the concept c.

We will detail this further in the section on backpropagation.

2.2 Convolutional Neural Networks

Multilayer feedforward networks and, its subclass, convolutional neural net-
works (CNNs), are universal approximators [17].

This means there exists model parameters, such that they are able to
approximate any continuous function with arbitrary accuracy, provided the
network architecture is chosen appropriately [34].

In this paper the primary focus will be on CNNs. As it turns out, this network
variant works extremely well, not just in theory, but in a wide fan of practical
applications, particularly within image recognition.

To understand the advantages and drawbacks of CNNs, we first review a
basic artificial neural network, namely the multilayer perceptron (MLP), and
some of its key mechanisms.

2.2.1 Multilayer Perceptron

A multilayer perceptron consists of an input layer, multiple hidden layers,
and an output layer. See figure 2.1 for the general structure of an MLP.

Here, node j in the layer, l, has the weight (wl
jk) associated with the output

from node k from layer (l − 1), each weight represented by a vertex. The
linear combination of weights and the previous layers outputs (activations),
along with the associated bias, is then fed into the activation function (f l),
which yields the activation of node j in layer l

alj = f l

(
blj +

∑
k

wl
jka

l−1
k

)
.
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This can be simplified with the use of linear algebra, by prepending 1 to each
activation-vector, Al = (alj), and adding a row of weights to account for the
bias term

Al = f l(W lAl−1), (2.1)

where W l = (wl
jk), and f l is applied elementwise [23].

The possible non-linearity of f l allows the multilayer perceptron to learn
arbitrarily complex decision boundaries [2].

Figure 2.1: A multilayer perceptron displaying how weights and activation
notation associated with the nodes and vertices in the network. Layer 1, 2
and 3 are the input layer, a hidden layer, and the output layer respectively.

In an MLP, we can feed our data into the input layer, after which we pass it
forward through each layer, and at the output layer we get an interpretable
output.
Thus far, we have just created a network of nodes that, when given data, will
output probabilities for a desired amount of classes. Unfortunately, these
probabilities aren’t exactly worth much yet, since the network is initialized
with random weights. We have to learn the weights, such that, when given
data, the network outputs probabilities that accurately represent the label(s)
of the data.

2.2.2 Backpropagation

From the learning problem, we wish to achieve a small generalization error,
or risk, of a hypothesis h ∈ H. The risk is dependent on how we quantify the
performance of our model.

To quantify the performance of our model, we choose a loss function,
ℓ(y, ŷ), that given the true value of our example, y = c(x) ∈ Y for an example
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x ∈ X, and the model prediction ŷ = h(x;W ), will give us a measure of the
model error, or loss.

We want a model that generalizes well, and has low loss everywhere, so
we introduce the empirical risk function, which is the mean loss for all of our
training example/label pairs from our sample, (xi, yi) for all i ∈ {1, . . . , n},

J(W ) =
1

n

n∑
i=1

ℓ
(
yi, h(xi;W )

)
. (2.2)

The empirical risk function is also known as the objective function, this is
what we wish to minimize.1

This is what we use backpropagation for, it is a method of computing
the objective function gradient, so that we can adjust the model weights to
minimize ℓ.

The core principle of backpropagation is the chain rule, this results from
equation 2.1, as this is one forward pass, calculating a layer from the previous
layer outputs. Let L and x denote the total amount of layers in the network
and an input example respectively, then the network can be represented as

h(x;W ) = fL(WLfL−1(· · · f 1(W 1x) · · ·)).

This is clearly a composite function, meaning we need to use the chain rule
to determine the gradient of the objective function from equation 2.2 [2].

We can use this gradient to nudge the weights towards a local minimum,
see figure 2.2, in this example we only have one parameter, as you can
imagine with many weights, the objective function landscape will grow very
complicated.

Figure 2.2: Gradient descent with only one parameter θ [10].

1Empirical risk is colloquially referred to as loss, loss often appears as an axis label in
graphs displaying the empirical risk.
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2.2.3 Convolutional Layer

What really sets apart CNNs from the MLP is the convolutional layer, this
layer is quite adept at picking out features from images. To see why the
convolutional layer is so well suited for detecting features in images, let us
consider an example.

A convolutional layer consists of an arbitrary m × n filter and various
other, less pertinent for our purposes, parameters. See figure 2.3, here we
have a 3× 3 filter that is applied to an input image (represented as a matrix),
resulting in the output array, also called the feature map.

Figure 2.3: First calculation in a convolutional layer [9].

The convolution operation here consists of ”sliding” the filter over the input
image, and calculating the sum of the elementwise products for each possible
position of the filter.

Now consider the example in figure 2.4, from the filter we can imagine
that at any pixel where all the eight neighbouring pixels have the same color,
will result in zero after the convolution.

Thus, we only get non-zero results when there are differences in color
around a pixel, and the resulting value deviates further from zero the larger
the differences. This results in all the clearly visible edges of the image being
highlighted.

Convolution filters can be constructed to perform various different image
operations, such as sharpening, blurring, edge detection etc.

This is what CNNs take advantage of, we feed the network images, and
have it train to adjust the filter such that is extracts features that improves
the networks classification accuracy. This learning of the filter, is also done
through backpropagation, only it can be adjusted to function for convolutions
[28].
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Figure 2.4: Ridge detection filter applied to image [7].

By adding multiple convolutional layers, it is possible to learn much more
advanced features. Filters in the early layers might be able to detect simple
features like edges and colours, whereas filters in later layers may be able
to detect constructions of features learned in earlier layers, like a certain
collection of edges might make up a bicycle [9].

2.3 Few-Shot Learning

Problems arise when you don’t have an abundance of data to train your
model, one such problem is the vanishing gradient problem.

When training neural networks where backpropagation is used to update
the weights, we compute gradients using the chainrule, with a deeper network
we end up with a product of many partial derivatives in the initial layers of
the model. Many of the most common activation functions have derivative
values between 0 and 1, so working our way towards the beginning of a deep
network, the gradient risks becoming negligibly small [3].

If we only have access to a small amount of training data, this becomes
an issue, as we simply won’t be able to train the weights in the early layers
of the network, so it becomes unfeasible to train a deep neural network on a
small dataset.

This type of learning problem, with little data to learn the intended task,
is what we call few-shot learning (FSL) [30].

2.3.1 Overfitting

Given the lack of data, FSL problems are prone to overfitting. Overfitting
occurs when the model, instead of learning a pattern that generalizes to
never-before-seen data from the same distribution, learns to fit the noise in
the training data, see figure 2.5.
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Figure 2.5: Different models’ separation boundaries for identical data. In the
first (from the left) example, the choice of separation boundary is suboptimal,
the second choice fits well to the apparent distribution of the sample, the
third choice is fit exactly to the sample, and will likely not perform well on
future data from the same data generating distribution [11].

The problem with overfitting is that the model is only good for the training
data, where we already know the labels, we want a model that lets us predict
accurately on future data.

There are many techniques that aid in the prevention of overfitting, but
the most fundamental method is to split your labelled data into three (or
two) parts:

1. Training data, used to train model parameters.

2. Validation data (optional), used to train model hyper parameters2.

3. Test data, used only to assess performance of the final model.

This split allows us to monitor the model performance on the training and
validation data during model training. If the training error keeps decreasing
while the validation error increases, it is a symptom of overfitting, since the
model no longer generalizes well, see figure 2.6 [32].

2.3.2 Transfer Learning

As discussed earlier, deep neural networks (DNN), such as CNNs with many
layers, are able to learn many features, and can ”compound” these into
advanced features. The problem with these DNNs is that it takes a lot of
data, compute, and time to train them properly. This is simply not possible
in the context of FSL.

2Parameters that affect the learning process itself, such as the choice of optimizer.
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Figure 2.6: Detecting overfitting using training and validation accuracy, when
both training and validation error is high, we are underfitting, if the gap
between training and validation error becomes too large, we are overfitting,
and the model will no longer generalize well [32].

It has become a popular practice to take pre-trained deep neural networks
and adjust them to FSL tasks, in order to use the already learned features
and simply tune the complex model to fit your needs. This is what we call
transfer learning.

Definition 2.3.1 (Transfer Learning). A domain D is comprised of a feature
space X and a marginal probability distribution P (X) where X is a sample.
Given a specific domain, D = {X , P (X)}, a task consists of a label space, Y ,
and an objective predictive function, or concept, f : X 7→ Y .

This task, T = {Y , f(·)}, is learned from the training sample exam-
ple/label pairs.

Given a source domain DS, learning task TS, target domain DT and
learning task TT , transfer learning aims to help improve the learning of the
target predictive function f(·) in DT using the knowledge in DS and TS, where
DS ̸= DT , or TS ̸= TT [33].

There are two widely practiced ways in which to use a pre-trained network,
namely fixed feature extraction and fine-tuning, see figure 2.7.

In fixed feature extraction we freeze the weights in the entire model, and
introduce a new classifier as the final layer that has been adapted to our task,
and then training the model on our data, the training will be localized to
only the classifier which reduced the computation time from backpropagation
significantly.

In fine-tuning we also replace the final model layer (assuming the pre-
trained and desired model are predicting a different amount of classes), but
here we do not freeze the entirety of the model, we choose which layers we
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Figure 2.7: Pre-trained deep CNN (gray), and two types of transfer learning
(coloured), fixed feature extraction and fine-tuning, from the left respectively
[32].

want to train on our data, in order to tune the weights in a larger portion of
the model to fit our learning problem.

For our purposes, in both the above cases, we adapt the final layer to our
target classes. This is the case from definition 2.3.1 where TS ̸= TT , and is
called inductive transfer learning [24].

2.3.3 Data Augmentation

The most immediate problem with FSL is the lack of data, so what better
way to solve the problem than to acquire more of it? Unfortunately, this can
be a prohibitively difficult endeavour. Luckily, we do have a clever trick to
achieve a similar effect to having more data, namely data augmentation.

Data augmentation is simply modifying the data you already have, so
that it is different, but still has the desired learnable features. For example
by flipping, rotating or adding noise to an image, a lion is still a lion if it is
rotated.

Adding augmented data in your training is an effective measure to prevent
overfitting, as it prevents the model from seeing the exact same data during
each training iteration, and thus stops it from overfitting to certain features
specific to the original image [32].
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Chapter 3

Method

In this chapter, we examine the data we will be working with, introduce the
deep neural networks we will be training. Lastly, we will outline the three
different training variations we will apply to the models.

3.1 Data

In this section we describe the data used for this project, and perform an
initial, superficial, data analysis to see what we are working with. The data
was generously provided by Mikael Johansson, professor at the Department
of Psychology, Lund University.

It consists electrical brain activity measurements, in the form of EEG
recordings from test-subjects who were exposed to visual and auditory stimuli.

More specifically, we have a pre-epoched dataset for each test-subject.1

Each epoch consists of a time series of electrical activity over an approximately
9 second time period, during which various events take place, see event
encoding in figure 3.1.

3.1.1 Metadata

The EEG data was recorded using a Neuroscan SynAmps RT (Compumedics)
amplifier, Curry 7 software and 64 active Ag/AgCl electrodes mounted in an
EasyCap, according to the 10% system, covering the 10/20 area, see figure
3.2. Data was recorded from 60 electrodes, these are all visible along with
their associated names and positions from figure 3.2b, with a sampling rate
of 1000 Hz downsampled to 500 Hz offline.

1Here epoch refers to a recording of EEG data, unlike in the context of neural networks.
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Figure 3.1: Encoding of each section of an epoch, the first being baseline
recording, in the 2nd an image representing the word class is shown, in the
3rd is the word is played into either the subjects left or right ear, in the 4th
the subject renders a decision on which ear they heard the word in, in the
5th the result is revealed, the last section is the inter-trial interval.

The words were presented auditorily in the experiment recorded in the same
female voice, presented through in-ear headphones (SONY MDR EX650AP).

Data were pre-processed with a high-pass filter at 0.1 Hz and segmented
into epochs of 9 seconds with event segments as encoded in figure 3.1. The
data were baseline corrected based on the average of the whole epoch to
minimize offsets. Line noise at 50 Hz was reduced and artifacts were removed
by visual inspection. Independent component analysis (ICA) was applied to
remove components corresponding to ocular and muscle artifacts.

Data were collected from 6 different test-subjects, with varying amount of
epochs, see table 3.1.

Test Subject Info
Subject Epochs #Left #Right
Subject 10 352 174 178
Subject 11 343 169 174
Subject 12 366 182 184
Subject 13 368 184 184
Subject 14 349 179 170
Subject 15 370 186 184

Table 3.1: Metadata for each test-subject, amount of epochs for the test
subject, how many of the epochs were labelled left and right. All subjects
have balanced datasets, none are skewed heavily towards one label.
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(a) Positions of EasyCap electrodes in 3D.
With the FPz channel facing the same
direction as the subjects nose.

(b) Positions of EasyCap electrodes in
projected onto 2D cross-section of a sub-
jects head. Triangle represents the nose.

Figure 3.2: Standard M1-EasyCap montage visualization with 74 channels,
generated with the MNE library [14]. Obsolete channels are marked with red,
leaving our 60 channels of interest with black markers.

3.1.2 Data Exploration

Each epoch contains a lot of information, as it consists of 60 channels, each
of which is a time-series with 4501 data points. As it can be hard to visualize
all 60 channels from one epoch, we start out with a single channel, see figure
3.3.

Figure 3.3: Channel T8 EEG recording from the first epoch from Subject 10.
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Given the seemingly random/noisy data, it is hard to conclude anything from
a graph like this, from our encoding in figure 3.1, we might expect, on average,
to see distinct activity in each section, less during the baseline, more during
visual and auditory stimuli etc.

We check this by averaging all epochs and creating a butterfly plot to
visualize all channels, see figure 3.4.

Figure 3.4: Butterfly plot depicting mean voltage for each EEG channel.

Despite averaging over all epochs, the butterfly plot still seems rather noisy,
in an effort to make it easier to analyze, we perform a running mean over
each channel to get a smoother plot, see figure 3.5.

Figure 3.5: Same as figure 3.4, but with each channel smoothed.
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From figure 3.5 the segments described in the encoding are clearly visible,
we have low activity during the baseline period, a distinct spike during the
visual stimulation, and then some kind of low voltage response during the
auditory phase.

Since the auditory phase is split into two classes, namely whether the
sound is played in the left, or right ear, we create a butterfly plot while
averaging over each class, and inspect where activity is localized during time
periods of interest, see figure 3.6 and 3.7.

Figure 3.6: Smoothed butterfly plot depicting mean voltage for left-ear stimuli,
with topographical activity maps of the scalp at points of interest.

Figure 3.7: Smoothed butterfly plot depicting mean voltage for right-ear
stimuli, with topographical activity maps of the scalp at points of interest.

As we can see, there is not much distinguishing the activity for right/left ear
stimuli, so unfortunately we cannot make any conclusions about particularly
interesting channels, although it does prove to be a welcome sanity check
with regard to the encoding from figure 3.1.
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3.2 Network Architectures

In this section, we detail the specific deep convolutional neural networks
employed in this paper, namely EfficientNet V2 and ResNet18. Both of these
networks were designed to perform well with image classification, specifically
on the ImageNet dataset, but this easily generalizes to many other images
through transfer learning.

3.2.1 EfficientNet V2

EfficientNet V2, henceforth referred to as EffNet, is amongst the newer
architectures, specifically designed to achieve near state-of-the-art accuracy,
but using significantly fewer computational resources [29].

EffNet is primarily constructed from the two block types, MBConv and
Fused-MBConv, introduced alongside EffNet. The two blocks and their
general structure can be seen from figure 3.8.

Figure 3.8: MBConv and Fused-MBConv, the primary building blocks of the
EfficientNet V2 architecture [29].

The full architecture of EffNet, as given by the original authors, is given in
table 3.2. From the blocks in figure 3.8 and overall structure in table 3.2
we gather that EffNet is a very large model. In fact, it contains over 21
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million parameters, clearly it is not feasible to train this model on the modest
data-set we have available.

Fortunately, the PyTorch library has the EffNet model, as well its weights
when pre-trained on ImageNet available, so we will realistically be able to
work with the model despite our limited training data [12].

Stage Operator Stride #Channels #Layers

0 Conv3x3 2 24 1
1 Fused-MBConv1, k3x3 1 24 2
2 Fused-MBConv4, k3x3 2 48 4
3 Fused-MBConv4, k3x3 2 64 4
4 MBConv4, k3x3, SE0.25 2 128 6
5 MBConv6, k3x3, SE0.25 1 160 9
6 MBConv6, k3x3, SE0.25 2 256 15
7 Conv1x1 & Pooling & FC - 1280 1

Table 3.2: The EfficientNet V2 architecture, where #Layers describes the
amount of occurrences of the operator in the associated stage. From #Chan-
nels we see the final stage has 1280 features going into the fully connected
layer [29]. Here stride refers to the filter’s ”step size” during convolution.

3.2.2 ResNet18

ResNet18, henceforth referred to as ResNet, is a well known DNN, also
specialized in image classification. Like EffNet, ResNet is a large model with
over 11 million parameters, and is available as a pre-trained model from
PyTorch [13].

Like EffNet, ResNet is also made up of simpler blocks, named BasicBlocks.
The structure of BasicBlocks can be seen from figure 3.9.

Figure 3.9: The general structure of the basic block, notably it can include a
downsampling section.
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The full architecture, although simplified from the original version, can be
seen in table 3.3. Clearly it is still a large network, but significantly smaller
than EffNet, both when considering total parameters, and amount of layers.
Thus, we expect shorter training times for ResNet.

Stage Operator Stride #Channels #Layers

0 Conv7x7 & MaxPool3x3 2 64 1
1 BasicBlock, Conv3x3 1 64 2
2 BasicBlock, Conv3x3 - 128 2
3 BasicBlock, Conv3x3 - 256 2
4 BasicBlock, Conv3x3 - 512 2
5 AvgPool, FC - 512 1

Table 3.3: The ResNet18 architecture, where #Layers describes the amount
of occurrences of the operator in the associated stage. From #Channels we
see the final stage has 512 features going into the fully connected layer. The
BasicBlock in layer 1 of stage 2-4 includes a downsampling [16].

3.3 Approach

In this section we detail how we prepared the data for model training, and
how exactly we structured the model training and modifications to get our
initial results.

It is worth mentioning, that a general approach is taken, in order to
determine which method seems to have the most promise. Subsequently,
more attention can be given to a single model, with the goal of improving
performance.

3.3.1 Pre-Processing

First of all, we decimate the EEG sampling frequency to 64Hz, in order to
reduce computational cost. This is done under the assumption that we are
only interested in the 0-30Hz region of the time series data, as this is where
the conventionally interesting brainwaves lie [1]. The decimation is done with
the class method Epochs.resample from the MNE library [14].

Both ResNet and EffNet are designed for image classification, and therefore
only take images as inputs (or at least anything in the same format). Specif-
ically, EffNet takes 384x384 images in RGB format, meaning we need an
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additional dimension to account for each of the three color channels, so EffNet
takes tensors of shape 384x384x3.2 Similarly, for ResNet we need tensors of
shape 224x224x3.

The simplest way to accommodate this, is by creating images from the
EEG data to fit these formats. Here we choose to go with time-frequency
representations (TFR) of the EEG data, as this format has shown promise
within EEG classification using CNNs [19]. The input resolution difference
between ResNet and EffNet can be dealt with by resizing the image to fit,
using the PyTorch transform torchvision.transforms.Resize.

To obtain our TFR representations we use a Morlet wavelet transform
as computed by the function time frequency.tfr morlet from the Python
library MNE. This method, as a spectral analysis approach, is formally
equivalent to that of a short-time Fourier transform, so we will not concern
ourselves too much with the choice of TFR method [4].

Furthermore, we log-transform the wavelet-transformed results, in order
to prevent the lower frequencies from dominating the visual, as the EEG data
contains pink noise, which can be dealt with using a log-transform [6]. This
is done to ensure interpretability of the TFR in the entire frequency range of
interest, and not only have a useful visual near the lower end of the frequency
range.

The TFR is simply a matrix representing the signal power for each
frequency and time index. So it doesn’t immediately fit the RGB format, the
TFR matrix can simply be plotted with a chosen color mapping to yield an
RGB formatted image, see example in figure 3.10. All TFR images represent
the frequency range 1-30Hz on the y-axis and time range of 2.6-5.6 seconds
on the x-axis, as this is when the auditory stimuli occurs.
Though, here we are mapping the one-dimensional power to the three-
dimensional space of RGB values. In principle, when ignoring the specifics
of transfer learning, there should not be any gained information here, as
compared to a single-channel grayscale image, only the RGB version fits the
input format.

We put this to the test, by also generating a different kind of TFR image,
namely three grayscale TFRs from the channels T7, Cz, T8, and stack them
into a single RGB formatted image, see figure 3.11, this image-type will
henceforth be referred to with the GC3 (Gray-Channel-3). This method has
also seen previous success [31]. The regular colormap representations are
created from channel T8, and will just be referred to as RGB images.

2Not necessarily in this order, but that is a technicality only relevant in the code.

20



Figure 3.10: An RGB color-mapped Morlet-wavelet transform TFR of channel
T8 from subject 10. Frequency ranging from 1-30Hz on the y-axis, time from
2.6-5.6 seconds on the x-axis.

Figure 3.11: Visual of GC3 construction method, generates gray-scale TFR
for channels T7, Cz and T8, and stacks them into a single RGB image.

3.3.2 Intra-Subject

For intra-subject modelling, we train and evaluate the models only on a single
subject. We use only Subject10, due to the more extensive pre-processing.
We create an 80/20 train/test split, and train the models for 100 epochs.

For both ResNet and EffNet we use the hyperparameters described in
table 3.4. Here all parameters are PyTorch training parameters, batch size is
how many training examples are processed simultaneously, criterion is the
choice of loss function, optimizer is the choice of technique to minimize the
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empirical risk (SGD is stochastic gradient descent), and the scheduler is a
modifier that alters the learning rate of the optimizer. More details can be
found in the PyTorch library documentation [25].

Training is performed in Google Colab, using their freely provided GPUs, no
exact specifications are provided, since they can vary over time depending on
availability. Seemingly, there is 12GB of GPU RAM available, as we run out
of memory when exceeding this amount. The computation environment and
constraints are the same for all model training discussed in this project.

Parameter Value

Batch Size 4
Criterion CrossEntropyLoss
Optimizer SGD

Learning Rate 0.001
Momentum 0.09

Scheduler StepLR
Step Size 7
Gamma 0.1

Table 3.4: Notable PyTorch training hyper parameters for the intra-subject
model training. The indented parameters are parameters of their parent.

We perform 3 varieties of training for each of the model, TFR-type combina-
tions:

• Full Train
Training of the full model, with no pre-trained weights. This will almost
certainly either overfit, or fail to learn anything at all, but serves as a
good reference point.

• Full Tune
Training of the full model, with pre-trained weights, i.e. using the
weights as initialized by the training on ImageNet and adapting to the
new dataset.

• Fine Tune
Freeze entirety of model, except the last fully connected layer which
classifies left/right.
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3.3.3 Inter-Subject

For inter-subject modelling, we train the model on Subject11-Subject15 and
use Subject10 for validation. Here we investigate the models’ ability to
generalize between subjects.

We train with the leave out Subject10 split, for 50 epochs.3 We use the
same hyper parameters as in table 3.4, with the exception of batch size, which
we upped to 8 to increase computation speed whilst staying below the RAM
limit.

Again, we perform 3 varieties of training for each mode, TFR-type combina-
tion:

• Tune Full
Training of the full model, with pre-trained weights, i.e. using the
weights as initialized by the training on ImageNet and adapting to the
new dataset.

• Tune FC
Freeze entirety of model, except the last fully connected layer which
classifies left/right.

• Tune Block
Freeze section of the model, leaving a block of the final section with
re-initialized trainable weights, which are then all trained to optimize
the left/right classification.

Really, only the Tune Block training results are of interest for further model
development here, the two first training variants is to establish a reference
point. The goal here is to take advantage of the pre-trained weights in the
beginning of the network, which are presumably apt at general purpose image
analysis feature extraction, and tune the later weights to the more specific
task of EEG classification. The new weights early in the block should then
be proficient in extracting useful features for EEG classification, and the later
weights can then be tuned to a specific task, that is what we will try in the
next section.

For Tune Block, we need to select a cutoff for each network, from which
to make the weights trainable. For EffNet, we let the entirety of stage 7
from table 3.2 be trainable. For ResNet we let the 2nd layer of stage 4 be
trainable, although with the last batch norm replaced with a dropout layer,

3100 epochs turned out to be very excessive, given the amount of data, even 50 is more
than enough it seems.
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furthermore we let stage 5 be trainable, but with a dropout layer before the
fully connected layer. Both dropout layers have p = 0.5.

3.3.4 Inter-Subject Transfer Learning

For inter-subject transfer learning we combine the two previous methods.
We first train and validate on Subject11-Subject15, here in an attempt to
pre-train the models on a larger body of subjects, and thereby adapt the
weights to not just feature extract from regular images, but specifically EEG
TFR images, we refer to this as the inter phase. Subsequently, we use the
updated model to perform transfer learning and tune the model to perform
well on subject 10, like in the intra-subject modelling section, referred to as
the intra phase.

Seeing the previous results, we will only continue with the best amongst
the RGB and GC3 data, in order to focus on the highest potential TFR. We
will train one model with ResNet and one with EffNet, both will be trained in
two phases as described above, first we tune a large block with inter subject
tuning, after which we perform intra-subject tuning on a smaller block. To
see exactly which model parameters will be trainable during each phase, see
table 3.5.

Trainable Parameters

Phase ResNet EffNet

Inter
Stage 4 Stage 6, 15th layer
Stage 5 Stage 7

Intra
Stage 4, 2nd layer Stage 7
Stage 5 -

Table 3.5: Parameters in each model that remains trainable during each
training phase, the rest of the parameters are frozen. See table 3.3 and 3.2 to
see the architecture components referred to.

Automated hyperparameter optimization is not feasible with the resources
available, since Google Colab will stop the runtime if the session lasts too
long, or is idle. So the hyperparameters are adjusted manually, our choice of
hyperparameters for each model can be seen in table 3.6 and 3.7. Note, for
ResNet, we add a dropout layer before the fully connected layer, the dropout
probability is noted in table 3.6.
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ResNet Hyperparameters

Parameter Inter Intra

Batch Size 8 8
Criterion CrossEntropyLoss CrossEntropyLoss
Optimizer SGD SGD

Learning Rate 0.001 0.001
Momentum 0.09 0.09
Weight Decay 5e-2 -

Scheduler StepLR StepLR
Step Size 7 7
Gamma 0.1 0.1

Dropout 0.5 0.8

Table 3.6: Notable PyTorch training hyper parameters for each phase of the
ResNet model training. The indented parameters are parameters of their
parent.

EffNet Hyperparameters

Parameter Inter Intra

Batch Size 8 8
Criterion CrossEntropyLoss CrossEntropyLoss
Optimizer Adam SGD

Learning Rate 0.001 0.001
Momentum - 0.09
Weight Decay 1e-1 0.5

Scheduler StepLR StepLR
Step Size 7 7
Gamma 0.1 0.1

Table 3.7: Notable PyTorch training hyper parameters for each phase of the
EffNet model training. The indented parameters are parameters of their
parent.
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Chapter 4

Results and Discussion

In this chapter we present the training results for the three training methods
described for EffNet and ResNet, and discuss their potential implications on
transfer learning for EEG classification.

The final classifiers, trained according to the Inter-Subject Transfer Learn-
ing approach, are evaluated in order to determine whether the result is
significantly different from the trivial classifier. This is done using McNemar’s
test.

4.1 Intra-Subject

In this section, we test the performance of ResNet and EffNet as intra-subject
classifiers on both the RGB and GC3 time-frequency representations of the
EEG recordings from Subject 10.

We compare 3 different training methods for intra-subject, namely, train-
ing the full model from scratch (Full Train), tuning the full pre-trained model
(Full Tune) and training only the last fully connected layer (Fine Tune).

The training and validation results for each epoch can be seen in figure 4.1
and 4.2 for EffNet and ResNet respectively. Unsurprisingly, none of them
yield particularly impressive accuracies, but it is worth noting, that ResNet
seemingly is more prone to overfitting in general, as seen from the gap between
training and validation accuracy for all the 3 training methods.

We have summarized our results in table 4.1, we include the mean as an
interesting metric, since the accuracies from figure 4.1 and 4.2 were rather
unstable. In principle, we should just pick the best model we find throughout
training, hence the max accuracy.1

1With the condition that validation accuracy is not much larger than training accuracy.
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Figure 4.1: Intra-subject loss and accuracy results from 3 training methods
for EffNet on the GC3 (top) and RGB (bottom) TFR variants of Subject 10’s
EEG recordings. The RGB loss has very large spikes, the y-axis is capped to
preserve interpretability.

Figure 4.2: Intra-subject loss and accuracy results from 3 training methods
for ResNet on the GC3 (top) and RGB (bottom) TFR variants of Subject
10’s EEG recordings.
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Intra-Subject Accuracies

Model Method
RGB GC3

Max Mean Max Mean

ResNet18
Full Train 0.617 0.584 0.533 0.430
Full Tune 0.617 0.559 0.650 0.518
Fine Tune 0.533 0.476 0.617 0.551

EffNet V2
Full Train 0.600 0.507 0.567 0.520
Full Tune 0.650 0.566 0.583 0.453
Fine Tune 0.617 0.558 0.617 0.553

Table 4.1: Overview of intra-subject validation accuracy from 3 different
training methods on ResNet18 and EfficientNet V2 with the RGB and GC3
versions of the EEG TFR. The maximum validation accuracy over all epochs
is taken, as well as the mean.

From table 4.1, one might notice that the results for the GC3 TFR generally
are worse than for RGB. From a transfer learning perspective, this makes
sense, due to the source domain (the domain representing the ImageNet
images), DImageNet, being more closely related to DRGB than DGC3.

The pre-trained model is specialized in picking out features from images
representing regular images from the real world, so naturally our TFR images
are further removed, as they are constructed images. Even then, at least in
the RGB image, all the color channels collectively represent somewhat natural
shapes, just like for ImageNet. On the contrary, GC3 represents distinct,
somewhat natural, shapes in each color channel, the same cannot be said for
the GC3 images as a whole.

As it turns out, the additional information contained in the GC3 images
do not outweigh the negative effect of being part of a more alien target do-
main, despite intuitively having a higher potential for learning. Unfortunately,
this potential was never realized with the chosen architecture and pre-training.

Notably, from the 4.2, we see that for RGB, full tune and full train are largely
equivalent, suggesting that the pre-trained weights had little to no impact.
Although, this is not the case for EffNet.
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4.2 Inter-Subject

In this section we investigate how well our DNN’s can generalize between
subjects when trained on subjects 11 through 15, and tested on subject 10.

We compare 3 different training methods for inter-subject, namely, tuning
the full pre-trained model (Tune Full), tuning the last FC layer (Tune FC)
and tuning a block at the end of the network (Tune Block)

The results for ResNet and EffNet can be seen from figures 4.3 and 4.4
respectively. The max and mean accuracies can be seen from table 4.2.

Figure 4.3: Inter-subject loss and accuracy results from 3 training methods
for ResNet on the GC3 (top) and RGB (bottom) TFR variants of test-subject
EEG recordings. Trained on Subject 11-15, tested on Subject 10.

Clearly, Tune Full overfitted in every case, which is no surprise, given
the massive amount of trainable parameters. Tune Block was the highest
performer in every case, it seems the difference between source and target
domains are too large for us to rely on fixed feature extraction. We should
allow for the network to partially adapt to the target domain, after which we
see better classification results.

Again, GC3 underperformed when comparing to RGB, it seems the trend
of poor generalization continues.
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Figure 4.4: Inter-subject loss and accuracy results from 3 training methods
for EffNet on the GC3 (top) and RGB (bottom) TFR variants of test-subject
EEG recordings. Trained on Subject 11-15, tested on Subject 10. The RGB
loss has very large spikes, the y-axis is capped to preserve interpretability.

Inter-Subject Accuracies

Model Method
RGB GC3

Max Mean Max Mean

ResNet18
Tune Full 0.494 0.458 0.517 0.486
Tune FC 0.540 0.500 0.528 0.499
Tune Block 0.543 0.516 0.540 0.516

EffNet V2
Tune Full 0.523 0.496 0.526 0.490
Tune FC 0.548 0.521 0.511 0.478
Tune Block 0.568 0.536 0.528 0.489

Table 4.2: Overview of inter-subject validation accuracy from 3 different
training methods on ResNet18 and EfficientNet V2 with the RGB and GC3
versions of the EEG TFR. The maximum validation accuracy over all epochs
is taken, as well as the mean.
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4.3 Inter-Subject Transfer Learning

In this section, we investigate whether there are improvements to be made by
pre-training the model as described in the Inter-Subject section, and then
fine tuned on subject 10.

From the previous results, the models generally achieve higher accuracies
with the RGB data, this is particularly evident from the mean accuracy in
table 4.1 and 4.2. The training results for the new Inter and Intra-Phase can
be seen from figure 4.5.

Figure 4.5: Results from Inter and Intra-Phase for both ResNet and EffNet
trained on the RGB data.

In the inter-phase seen in figure 4.5, no model is especially convincing,
their validation accuracies do not have a general upwards trend. On the
contrary, in the intra-phase EffNet has a consistent edge on ResNet, although
not by much.

The validation accuracies are summarized for each model/phase combina-
tion in table 4.3. Here it is also evident that EffNet has performed the best.

Now, seeing as the accuracies are all above 50%, one might think that means
the models have learned something useful, this should be tested. The models
are performing binary classification, and both models have computationally
intensive training phases, making cross validation impractical, in this case
McNemar’s test is an appropriate choice [8].
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Inter-Subject Transfer Learning Accuracies

Phase Model Max Mean

Inter
ResNet 0.551 0.508
EffNet 0.551 0.511

Intra
ResNet 0.583 0.545
EffNet 0.617 0.572

Table 4.3: Inter-Subject Transfer Learning maximum and mean validation
accuracy for ResNet and EffNet over the 50 training epochs for both the inter
and intra-subject training phase.

We compare our models to the trivial classifier, namely the classifier that
always picks the most common label, we do this to determine whether our
classifiers performs significantly better than chance level. Specifically, we will
test the null hypothesis that our classifier is the same as the trivial classifier.

To perform McNemar’s test, we first set up a contingency table for
correctly/incorrectly classified results by our classifier and the trivial classifier,
see table 4.4.

Trivial
T F

EffNet
T 25 12
F 7 16

Trivial
T F

ResNet
T 13 22
F 19 6

Table 4.4: Contingency table for both EffNet (left) and ResNet (right), each
compared to the trivial classifier. T denotes a true classification, F denotes
a false classification. Meaning for EffNet, we have 25 validation examples
correctly classified by both EffNet and the trivial classifier, and 12 that were
correctly classified by EffNet, but not by the trivial classifier etc.

Using the discordant pair (i.e. values on the anti-diagonal, so values
where classifier predictions disagree), let the anti-diagonal values be denoted
a and b (order doesn’t matter), and we can calculate the continuity corrected
McNemar test statistic

T =
(|a− b| − 1)2

a+ b
∼ χ2

1,

which is distributed according to χ2 with 1 degree of freedom [8]. Knowing
this we can calculate the test statistic, T , and p-value for each test, see the
results in table 4.5.
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Model T p

ResNet 0.098 0.755
EffNet 0.842 0.359

Table 4.5: McNemar continuity corrected test statistic and associated p-value
for the McNemar test performed on both ResNet and EffNet compared with
the trivial classifier.

From table 4.5, we get that, according to McNemar’s test, neither the
EffNet or ResNet trained classifiers are significantly different from the trivial
classifier. So the results here are not exactly convincing, there is insufficient
certainly to claim anything much about our classifiers. We would need either
higher accuracy or a larger validation sample to potentially get sufficient
discordant values to result in a significant test statistic.

Even without considering the failure to reject the null hypothesis, the
Inter-Subject Transfer Learning failed to result in higher accuracy than the
Intra-Subject training, from table 4.1 we see accuracies of 0.650.
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Chapter 5

Conclusion

We achieved a maximum inter-subject transfer learning accuracy with Effi-
cientNet V2 of 61.7%. We were able to create multiple models with accuracies
around 60%, although the most carefully trained and tested classifiers, trained
with Inter-Subject Transfer Learning were not significantly different from the
trivial classifier according to McNemar’s test.

We see no evidence of quasi-inductive transfer learning being effective
in this case, as the pre-trained weights did not consistently improve the
classification results notably, when compared to a full training of the same
model.

We end this project without a significant result, but with some strong
notions about properties of transfer learning. Seemingly, the GC3 data
performed worse overall than the RGB data, which from a transfer learning
perspective makes sense, as the source domain of the pre-trained model,
ImageNet, shares more characteristics with the RGB data. Thus, the pre-
trained weights should transfer better to the RGB target domain, in spite of
the GC3 data containing more information.

More generally, the value of the pre-trained weights is unclear, there are
many improvements that could be made to yield more convincing results, but
more interestingly there is an entire avenue of other studies that could be
made with pre-trained classifiers that have been trained in a source domain
similar to that of the target.

5.1 Improvements

In this study, we made a variety of assumptions, some seemed to hold up
perfectly fine, such as the log-transform of the power, since EEG contains
1/f noise [6]. On the contrary, our assumption that only frequencies in the
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0-30Hz range are of interest may, in hindsight, have been a mistake. Previous
literature suggests, auditorily triggered EEG responses lie in the range of
40-150Hz [22]. Thus, we might inadvertently have excluded the region of
interest from our analysis, although this is far from certain. A potential
improvement would then be, to update the region of interest for the computed
TFRs.

Another low-hanging fruit, with regard to improvements, would be to
perform cross validation for each model training segment. This was not
a guaranteed possibility due to the computational limitations of the freely
available Google Colab GPUs [26]. Provided with more compute, it would be
simple to set up more comprehensive cross validation and hyperparameter
tuning, which likely would yield better results.

Hyperparameter tuning is another area in which improvements would
likely be achieved, this is a broad area, with many parameters on which to
optimize: choice of channel, optimizer, learning rate, scheduler, batch size,
and so many more.

Additionally, the type of data augmentation and transforms included could
also be optimized, unfortunately in this project, we never managed to perform
data augmentation due to limitations in available computational resources,
this would also be a strong contender amongst improvement opportunities.

Furthermore, there is the more specific issue that we are trying to determine
whether a sound was heard from the left and the right, but the test subject is
also meant to determine from which direction he/she heard something. This
means we do not know whether our model classifies which direction a sound
was heard from, or which direction the subject is thinking about, since it is
likely that the subject thought about this before the audio phase was over.
Statistical tests could potentially be performed to investigate this.

5.2 Further Research

From the literature exploration associated with the project, it seems to be
the most promising models use raw EEG data as input. With the amount
of parameters in these deep neural networks it is really no surprise, they are
capable of learning patterns with complexities beyond the ability of humans
to interpret. With the raw EEG data, you do not trade potentially useful
information for interpretability, like we do with the TFR transforms. It has
been shown that Deep CNNs are able to take advantage of this [5].

Perhaps even more interestingly, the recently popularized transformer
architectures used for NLP have also shown promise within the domain of
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EEG classification, notably the BENDR model network has been able to
generalize to many downstream classification tasks using transfer learning
[18].

Given the rapid advancement of image classification with DNNs spurred
on by ImageNet, and their impressive aptitude for transfer learning, a simi-
lar approach would be interesting for BCI. The creation of a large dataset,
akin to ImageNet, with raw EEG data on a unified format from different
subjects, locations, ages, recording equipment etc., would allow researchers,
and even Kaggle-enthusiasts put their skills to the test and push the limits
BCI technology. Even if it starts with a single model like BENDR, making
the pre-trained model easily available on a site like Hugging Face, could very
well result in a surge of new results within the field.

There has also been an interesting recent development within the sub-
field of liquid networks, networks whose parameters are able to change to
adapt to the incoming data stream, even after the training phase. These
networks are constructed to even more closely resemble real neurons and
neuron interactions than regular ANNs. Recently, the closed form solution
to the differential equation describing neuron interactions has been found by
researchers at MIT, this has already led to a significant increase in the speed,
and viability of these liquid networks [15].

Perhaps the use of networks that more closely resemble our own biology,
will be able to better classify biological data, EEG data might be a good
candidate, since it arises directly from neurons firing.
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