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Abstract

Estimating the distance between a sound source and receiver is an important
problem. This thesis explores the possibility of estimating distance from a sound
source using the attenuations regarding different frequencics over a distance.
This method can be useful in cases where currently existing distance approxima-
tion methods are not an option. We aimed to use an image recognition convolu-
tional neural network, a]ongside a Widely used feature extraction tool in sound
analysis called Mel Frequency Cepstral Coefficients to create a model that can
use frequency attenuation for sound source distance estimation. Our goal is to
pcrfbrm a pi]ot study, hoping for an accuracy within a few meters. The final
model in this project has an accuracy within a few meters when tested indoors
with little ambient noise. The model is limited in scope and has limited data, so
the results may not be reliable bcyond the scope of this thesis.
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Chapter 1

Introduction

1.1 Background

The process of‘mcasuring the spatial distance between a sound source and a receiver is called
sound source distance estimation. This process can be used in several applications, such as
determining the distance to a gunshot for surveillance purposes [5], robot human interaction
like speech recognition[lG] and service robots [3].

Humans have a good sense of spatial distance and there have therefore been studies on the
accuracy of human perceptions of sound signals [4][20]. When a machine is trying to perform
sound source distance estimation it is usually done by transmitting data from an array of
microphones or a binary sound source [29] [6]. However, there are situations where data
from only one source is accessible. In these scenarios, there are several features of the signal
that varies with distance [7].

The topic of this project, using frequency attenuation for sound source distance estimation,
appears to be an unexplored area. Since there is no previous work to draw upon, we will be
using standard sound analysis methods commonly used in machine learning,

The correlation between the features of a signa] and the distance traveled b_v that signal is
not straightforward. The acoustics of the room, the temperature, and more have an impact
on the signal. Due to this, there is reason to perform sound source distance estimation with
the he]p of machine learning. A machine 1eaming approach that shows promising results in
sound analysis isusing convolutional neural networks in combination with mel based spectral
features [28] [30]. This is discussed in sections 2.2.3 and 2.2.4




1. INTRODUCTION

1.2 Problem Statement

The goal of this project is to estimate the distance berween a sound source and a microphonc
inside a system of network devices. When attempting to communicate with a speciﬁc device
on a network, some way of identifying that device is needed. One solution to this is to use
the fact that the devices on the network have different physical locations. If a user could
estimate the distances between a handheld device and the devices on the network, they could
place themself close to the device they wish to communicate with, and would then be able to
identify that device on the network using their distance to the user.

Measuring the distance between two electronic devices is usually done with common types of
wireless communication such as Bluetooth or WiFi. Using sound mgnals is another common
solution for distance measurement. The travel time of the signal or the fallof of its volume
are the most common ways of achieving this. However, sometimes none of these solutions
can be used. For example; when the devices do not have wireless communication, or when
the internal clocks of the different devices are not in sync, or when the output volume of the
devices is not known.

The approach to distance estimation we exp]ored in this project came to be during asummer
work project where the installation process of network speakers were to be streamlined. We
needed some way ofidentifying the speaker, and estimating the distance between a user and
a speaker seemed to be a good solution to this. The idea of using frequency attenuation
came from the constrained nature of these systems, where previous established methods of
distance, volume, and time offsets could not be used

1.3 Purpose of the Study

The aim of the project is to attempt to exploit a property of sound called frequency atten-
uation to estimate the distance between a speaker and a microphone, The idea is to use a
convolutional neural network with mel frcqucncy ccpstral coefhicients for this rask. We are
hoping to achieve predictions with errors less than a few meters.

1.4 Disposition

This report will contain relevant thcory for the experiments that have been done during the
project. This includes some basic information about sound analysis and the machine 1earning
technologies that have been used. The report will also cover the process of the data gathering,
the sound analyses, and the creation of the machine learning models. The results of which
will be presented with graphs and followed up with a discussion of reasons behind the results,
and furure improvements.




Chapter 2

Theory

2.1 Sound Analysis

Using sound as a mapping tool is not a new thing. Different animals like bats and dolphins use
differences in sound frequency, intensity and duration for tracking and navigation. Sound
waves are pressure waves created by vibrations and when acoustic waves moves through a
medium like air or water we say that it propagates through that medium. During propagation,
the waves can be reflected, refracted, and attenuated. The medium affects the propagation
by its density7 pressure, temperature, motion, and viscosity [23]. The propagation of sound is
what makes it possible to determine properties like distance and direction.

2.1.1 Frequency Dependent Attenuation

The attenuation rate of the sound wave is dependent on the wave’s frequency, higher fre-
quency rcsulting in more attenuation. Highcr ﬁequcncies are also highly reflective, rcsu]ting
in more inference [9]. The frequency dependency of acoustic attenuation can be expressed
through the power law:

S(x + Ax) = S(x)e @A~
' (2.1
a(w) = aplwl’
where S represent the amplitude of a acoustic field variable such as pressure or velocity, and
w represent the angular frequency, and where Ax is the propagation distance. There are two
material dependent variables @ and y where y lies between 0 and 4. For example, in water,
the y coeflicient is 2 and the attenuation becomes frequency squared dependent [2].
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2.1.2 Stokes Law

Stokes law of sound attenuation illustrates the loss of amplitude of the sound wave when it
travels through a Newtonian fluid, because of the fluid’s viscosity [21]. A Newtonian fluid
is a fluid with some speciﬁc properties, air is such a fluid [17]. Stokes law states that the
amplitudc of the sound wave decreases with a rate of

2nw?

@=-—" (2.2)
3pV3

where 17 is the dynamic viscosity coefficient, w is the angular ﬁ’equency, pis the densit_y and V

is the speed of sound [21]. There are more factors of sound attenuation that is not accounted

for within the expression.

The viscosity, density, and speed of sound in air are affected by temperature. For viscosity, the
most important factor is the temperature. For 1iquids the higher the temperature the lower
the viscosity. The relationship can be expressed in a function that takes the temperature as
input and outputs the viscosity as follows [22]:

Nair(T) = 279110777073 (23)

Temperature affects the spccd of sound in air by hcating the air molecules and giving them
more energy to vibrate faster, this results in the sound waves traveling faster. The difference
in speed in room temperature versus freezing temperatures is 15 meters per second. The
formula for che speed of sound in air is [25]:

v = 331m/s + 0.6’%/ST (2.4)

2.1.3 Frequency Response

In the context of audio, the frequency response denotes how the speaker system will replicate
an input signal. The human car can hear frequencies between 20 Hz to 20 kHz but not all
speakers can replicate these frequencies. Different frequencies will also be amplified differ-
ently, Changing the volume of the input Signal. In most speakers’ technical speciﬁcations7
there is therefore a frequency band and a deviation denoted in + db [13].

2.1.4 Anechoic Chamber

Anechoic means echo-free and an anechoic chamber is a room with the purpose of eliminat-
ing echos. It is frequently used by product manufacturers to test the sound of components.
Orfield Laboratories was in 2014 the quictest place on earth with a chamber that had a sound
level of -9 decibels. For comparison a quiet library has a sound level of around 30 decibels
[14]. An anechoic chamber usually has the walls and the ceiling covered with foam triangles,
an examp]e of which can be seen in Figure 2.1.

8



2.1 SOUND ANALYSIS

Figure 2.1: A example of a anechoic chamber [24].

2.1.5 Signals

Impulse

A transmission system is defined as an enclosed space that sound travels through. The prop-
erties of which can be found by looking at the impulse response. The impulse response is
defined as the output signal of a system that has been fed an impulse [11]. This process as well
as the characteristics of the signal can be seen in Figure 2.2.

6(t) gft)
Input e—=——— Linear system Cutput
‘ AN,

Figure 2.2: Figure of an impulse response [11].

An impulse signal includes all frequencies in equal amounts, likewise, the impulse response
represents the response to all frequencies [26].

Spectrum

Any signa] x(t) can be represented by a sum of sinusoidal waves over a period of time 7 as

follows [27]:

N
x(t) = Ag + Z Awcosrfit + dy) (2.5)
k=0

If the amplitudes Ay and the phases ¢y is written as a function of the frequencies Jfr we
can instead describe the signal with respect to frequency. This is defined as the spectrum
X(f). The spectrum uses the amplitudes and the phases to represent x(¢) as a function of the
frequencies in x(f) [27].
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A magnitude spectrum is used to find the distribution of energy over a signai’s frequencies.
A Fourier transform can be used to get the specific magnitudes for chis [27].

2.2 Machine Learning
2.2.1 The Basics of Neural Networks

A neural necwork is a machine iearning method that tries to emulate bioiogical brains.

Put simply, a brain, or a real neural network, works by having a web of interconnected neuron
cells, that send electrical signals to each other. Each neuron will send out a signal depending
on the strength of its input signais. The structure of the network, aiong with the speciﬁc
signal criteria each neuron has to send a signal of their own, gives rise to the complex behav-
ior.

The way a neural network in a machine iearning context tries to emulate this is hy having
a network of interconnected nodes. Each node has inputs and outputs, and an activation
function that rakes its inputs, and decides what its output will be. Each neuron has param-
eters, also called weights, that can change to modify the behavior of its activation function
and output. Each node also has a bias, a constant value that is added to its input. The bias
is used to help the models to shift the activation function towards the positive or negative
side.

These networks are generally struccured in layers, with an input on the top layer, and an
output at the bottom layer.

The weights of the connections and the biases are the trainable parameters of anetwork.

Training a network
For aneural network to perform the task one wants it to perform, it needs to be trained.

Training anetwork requires some training data. These data are fed through the network, and
the output is then evaluated according to a loss function. The loss function is in essence a
way of measuring how well the network performed the task one wanted it to perform. There
are a plethora of loss functions, depending on the nature of the data one is using.

To move a network towards the behavior that is wanted, an optimizer is used. This optimizer
is trying to minimize the result of the loss function, by updating the values of the trainable
parameters after all the data has been fed through the network. The size of the steps the
optimizer is using is called the ]carning rate.

Each full cycie of feeding the dara through the network, and then updating its trainable
parameters is called an epoch.

Supervised learning

The type of training we use in this project is called supervised iearning. This means the
data we use to train consists of some input data (X), and their corresponding output values

10



2.2 MACHINE LEARNING

(y). The value for the loss function for each data point in X is calculated by comparing the
network’s output value with the known y value. This comparison can be done in several
different ways.

Overfitting

When training a machine 1earning model, it is important to try to avoid overﬁtting the model.
Overfitting means that the model has been fitted too well to the training data. This can
happen because the training data are not general enough, or has some hidden pattern that
the model was able to pick up on, along with a lot of other reasons. The result of this is that
the model will pcrform very well with data it was trained on, but not with data it has never
seen before.

Validation set

To be able to check the performance of a model, looking at the loss for the data the model
was trained on is not enough. Since the loss tells one nothing about how the model pcrforms
with data outside of the training set, another set of data is needed. This other set of data is
called the validation set.

The validation set can be fed through the network every epoch, without updating the weighes,
to give information about how well the model is actually performing cach epoch.

Hyperparameters

There are a lot of variables that can be changed about a neural network to impact its per-
formance, like how well it will be able to be trained, and how prone to overficting it will be.
Things like the nerwork’s structure, usage of regulizers7 the learning rate of the optimizer,
and even how the training data is preprocessed are all things that can have a ]arge impact on
the final pcrformancc of the model.

All of the mentioned variables are called hyperparameters. Finding the best values for these
hyperparameters is one of the main challenges of a neural necwork.

Mean squared error

The Mean squared error is a loss function that takes the average of the square of each predicted
values error. This means that large errors will have an exponentially larger impact than small

CITOTS.

The Mean squared error MSE is defined as:

1 n
MSE = — = 9)? 2.6
2 20 20)

where 7 is the number of predicted values, y is the real values, and J is the predicted val-
ues.
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Mean absolute error

The Mean absolute error shows how large the error is in general. This is a useful tool to give
an idea of how accurate a model is.

The Mean absolute error MAE is defined as:

1 n
MAE:— i—Al‘ 27
n;w il @7

where 7 is the number of predicted values, y is the real values, and ¥ is the predicted val-
ues.

Regulizers

The purpose of'using a regulizer in a neural network is to reduce overfitting. A regulizer
will stop a network from getting too specia]ized, by punishing excessive growth of certain
trainable parameters given the model’s pcrformancc on the validation set [12].

Activity rcgulizcrs will pcnalizc the output of the iaycr, while Bias rcgulizcrs will pcnaiizc

the bias of the layer [12].

Batch Normalization

Batch normalization is a method that is used to stabilize the training of a network. A small
change in one iaycr might give very iarge effects on the layers beneath it. Batch normalization
works h_y normalizing the connections between hlyers, which can reduce this effecc [8].

2.2.2 Tuning Pretrained Networks

A good strategy when we have a limited amount of data is to use a pretrnined network and
retrain it with the new data. This significantly cuts down the amount of data needed. A
strategy for doing this is to add 1ayers to the end of the network, and either train oniy the

added part of the network, or the entire network. This process is called tuning,

MobileNetV2

MobileNetV2 is a light-weight image classification network. The authors, Mark Sandler,
Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chich Chen, describe the
arcitechture of the network as "The MobileNetV2 architecture is based on an inverted resid-
ual structure where the input and output of the residual block are thin bottleneck layers
opposite to traditional residual models which use expanded representations in the input an
MobileNetV2 uses lightweight depthwise convolutions to filter features in the intermediate
expansion iayer.” [19].

12



2.2 MACHINE LEARNING

2.2.3 Convolutional Neural Networks

A very popular way of‘tackling the problem of analyzing audio with machine learning is to
borrow from the image analysis side of machine learning. There, the most widely used type
of model is called a Convolutional Neural Network (CNN). By converting the sound to an
"image", we can utilize the power of CNN:s in audio research.

A CNN uses layers called convolutional layers in its network. These layers apply sliding filcers
over its input. These types of'layers are very useful for image analysis, because the filters can
be multidimensional, and can therefore use the spatial context of an image.

2.2.4 Sound Feature Extraction to Create an Image

When training a Neural Network, it is common to transform the training data before use.
This transformation can be done simply to format the data to a usable format for training, but
also commonly includes steps to extract the features of interest in the data. A common fea-
ture extraction method for sound analysis is called the Mel Frequency Cepstral Coefficients
(MFECCs). This method turns the waveform of the sound into an image, which is exactly what
we need when using an image—based network. An example of how an image created with this
method can be seen in figure 2.3

Figure 2.3: Extracted MFCCs of a pulse signal

Mel frequency scale

The mel scale is an attempt at mapping the normal linear fiequency spectrum to a more
"human-centric" scale. Humans do not perceive frequency linearly7 so the mel scale is loga—
rithmic, and tries to closcly match what a person would perceive as a linear ficqucncy scale

[15].

A general formula for converting a frequency f to mels m is [15]:

_ /
m = 2595log;(1 + =o5) (2.8)
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Cepstrum

In general, a cepstrum is obtained by transforming the logarirhm of a spectrum of a signal
in a way to highlight pcriodic structures in the spectrum. This transform is gcncrally the
inverse Fourier transform, but other transforms such as the discrete cosine transform are also
widely used. Highlighting these structures can be a very useful tool when analyzing a signal,
especially sound, which has a lot of‘periodic harmonic frequencies to analyze [1].

Mel frequency cepstral coeficcents

Mel frequency cepstral coefficients, shortened as MFCCs, is a widely used feature extraction
tool used in sound analysis. It is calculated by first using a short time fourier transform on a
signal to obtain a spectrum; then, mapping this spectrum to the mel scale, using triangular
overlapping windows in the process. Then, the discrete cosine transform is applied to the
logs for the powers of cach mel frequency band obtained from the triangular filcers. This
results in a mel fi'cqucncy cepstrum. The amplirudcs of this spectrum are what are called the

mel frequency cepstral coefhicients [18].

A useful variation to the basic MFCCs process is to also calculate the first and second deriva-
tives of the cepstrum, to give further information about the signal.

2.2.5 Alternatives to Using MFFCs and CNNs

MFCCs vs spectrums

Since the mel scale is based on human perception, it is very counter-intuitive that using any
features based on this scale would perform better than using the normal frequency scale.
However, MFFCs have been widely used in machine learning research that is not related to
human perception, or sound, and have been shown to yield better results than using the raw
spectrum [31] [28].

Waveform based networks

There are more modern solutions that instead of‘using MFCCs and image recognition net-
works use the raw waveform as input to the networks. These solutions are in many ways
superior to the older MFCCs-based solutions [10]. The reason for us choosing to use the
often inferior ilnage—hased networks can be seen in section 3.7.1




Chapter 3

Methodology

3.1 Simple Data Synthesis

For the ﬁrst simplest prOOf‘OfCOl’lCGpE models, we LlSGd COH’IPIC[’G]}’ Syl’ltheSiZCd data. We dld

this for a couple of reasons. First to check if the concept would work. And secondly to see
how the attenuated sound data would work with machine lesrning.

Using the Formula 2.2 for stokes law, we simulated how a signal consisting of a selection
of’ frequencies with equal amp]itudes would attenuate over a distance in an ideal setting.
To get the attenuation from stokes law we calculated the viscosity of the air as a function
of temperature per Formula 2.3. And for the density term, we used a 1ookup table with
temperature as the input. There are many attenuation factors that were not considered at
this state. Such as air humidity7 frequency response, a]osorption, and reflection.

We trained all simple regression models in the scikit learn library on the synthesized data. The
best performing model types were linear and Gaussian process regression. These regression
model types were used for our four final machine learning models with the synthetic data. For
the models to not use the general volume as a feature the general amplitude was randomized.
First, we created Linear and Gaussian process regression models for the pure data. Then
we also added noise to the ump]itudes of the different frequencies7 which gave us two more
regression models. The best performing model was also tested with real sound data.

3.2 Type of Signals Used

During our experiment, we used five different kinds of signals.

« Asweep, a signa] that linearly ch:mges from 0 to 20 000 Hz

15



3. METHODOLOGY

« A short pulse
+ Multiple sine waves
+ A sine wave of one frequency followed by a sine wave of another frequency.

. Multiple sine waves of some frequencies7 followed loy multiple sine waves of some other

frequencies

The reason behind using a sweep was that it includes every single frequenc_\/7 which would
give the most accurate data on how the amplitudes of every single usable ﬁ'cquency have
changed. It however does not have a lot of usable data on how the reverberations in the room

bCthVC.

The logic behind using a pulse is similar to a sweep since it includes every frequency. However,
since the pulsc is only recorded with a few sarnples, a lot of frequency information is lost.
The short length of the signal can still be favorable since it makes it easy to cut a lot of the
reverberations from the data.

The last two signals we would call step-sounds in the project. The logic behind using step-
sounds is to get a good compromise between the two previous signal types. Long stretches of’
constant frequencies, with a sharp "pulse—like” ch;mge in the signal.

3.3 Ideal Data Gathering

In our collaboration with AXIS, we got access to an anechoic chamber. For these experiments,
we used two different signals: One with multiple sine waves between 0-20000 Hz, and one
consisting of’ pulses. The collected sound data was very similar to the data we synthesized
since the chamber eliminated all noise and reverberations.

We perfbrmecl this experiment as an extension of the last one. We theorized that the interac-
tion with the environment and noise would be the most hindering elements to the machine
learning results. This experiment was made to see if the theory worked without these fac-

tors.

We collected a few hundred sound recordings ranging between 0 to 3 meters. The data col-

lected was used to create linear and Gaussian regression models, these type of models was

chosen because they performed the best on the data. The mean squared error for the valida-
)

tion data was calculated and a scatcer plot of the relationship between the real value and the

predicted value was made. The predicrions of the resulting models were tested inside, and

outside the anechoic chamber.

3.4 Attempting to Create a Robot for Au-
tomated Data Gathering

We knew that we were facing a complex problem and that a simple machine learning model
as in previous experiments would not suftice. We were also considering the effect different
environmental setrings would have on the sound, and wished to gather data from as many

16



3.4 ATTEMPTING TO CREATE A ROBOT FOR AUTOMATED DATA GATHERING

different settings as possible. The data would also have to be gathered in a 1arge range of
distances and positions relative to the speaker. Doing this manually would be labor-intensive,
slow, and prone to human errors.

In order to address this challenge, we attempted to create a robot that could position itself
accurately within a room and gather data for us. This automared data gathering would ad-
dress all of our concerns and eliminate many of the problems associated with manual data
collection. By using a robot, we hoped to streamline the data gathering process and improve
the accuracy of our results.

The robot ultimately could not be used due to time constraints not allowing us enough time
to finalize it. Even though we were unable to fully operationalize the robot, our efforts on the
project may still be valuable for others who want to build upon our work in the future. The
robot can be modified with a reiatively small amount of work to perform automatic sound
recording, and it was a major part of the project. By sharing our findings, we hope to provide
a heipfui starting point for others who may be interested in continuing our work.

3.4.1 Main working principle of robot

The principle we decided to use for the positioning of the robot was to suspend the micro-
phone with strings from three anchor points in the ceiling and have the robot vary the iength
of these strings; creating three axes of movement, and therefore letting the robot move the
microphone anywhere within a triangular prism bound by the three anchor points in the
ceiling. The illustration of the setup and the boundaries can be seen in Figure 3.1.

Figure 3.1: Bounding prism for robot movement.

3.4.2 Build and Hardware

The robot brain is a raspberry pi 3, with two Adafruit motor HATS to control three stepper
motors. The stepper motors in turn move the strings that held the microphone. The unit can

17



3. METHODOLOGY

(a) (b)
Rasp- Robot
bCl'l‘dV p] case

Figure 3.2: Tmages of the robot enclosure and the raspberry pi.

be seen connected to a screen and keyboard in Figure 3.2. As the separate parts had to hang
from the cciling we had to make a custom-made case that we then 3d printcd.

The ceilings we planned to hang the robot from were located at an AXIS location which had
ceilings with panels. The panels were held up hy a1 cm metal ledge and we used this to our
advantage when designing the robot. The top part of the robot could slide between the ledge
and the panel, keeping the robot up. Following the blueprints of the step motors and the
raspberry, we could make a snug fit with outlets for cables, that used a minimal amount of
plastic. The robot was designed with the purpose ofﬂmoving it around, an idea that was later
changed. There was therefore a perceived need for minimal weight and for the internal parts
to stay in place. The resulting case can be seen in Figure 3.2.

This enclosure was mounted in the ceiling7 and the strings were fed through holes in the three
3d—printed mounting points in the ceiling. These are then tied to the microphone, which was
connected with a cable to a laptop. The illustration of this can be seen in Figure 3.1.

3.4.3 Connecting the Robot to WiFi

The raspberry pi 3 that we are using for the robot had a defective wireless module. This
meant we had no way of connecting the robot to both WiFi and the Bluetooth speaker. The
Bluetooth issue was solved by making the laptop that controlled the robot also control the
speaker. But the robot did need to have access to WiFi to be controlled rcmotely when it was
mounted. Otherwise, we would need a keyboard, mouse, and screen to be plugged into the
robot while it was hanging from the ceiling. This would make the calibrations and testing
much harder.

When these experiments were made there were no other raspberries available to buy. So the
issue had to be solved with a WiFi USB dongle. However, as raspberry Pi 3 is supposed to
have WiFi built in there are not a lot of compatible dongles. There is only a small span of’
Linux versions that support the version of python that is needed to control the motors. And
these Linux versions are not cornpatible with most dongles. We did manage to find one in

the end.

The WiFi dong]e would however not work without some more prob]em—so]ving. Firstly the
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drivers for the dongle had to be found externally from an open-source project. And secondly7
the dongle was recognized as a mass storage unit by the raspberry on boot and would need
to be Cjcctcd to work as a network device. To circumvent this we had to write a script that
correctly ejected the device automatically when the 1'aspberry was plugged in.

3.4.4 Increasing the Strength of the Motors

The step motors that were available to us were weak. A fact we learned throughourt the
process. In our original plan for the robot, we wanted to move the whole robot, pi and
motors and all, around the room. But since the motors could not lift more than a couple of
hundred grams, we had to work around that in some way.

We tried many things that would make it possible to move the robot around. We attempted
to use mechanical pulleys to lessen the load on the motors. We also changed the mode of the
motors to a more powerful, but less accurace mode. Another thing we tried was to decrease
the diameter of the spools mounted on the motor axle to increase the force it could output.
But the motors were still too weak to lift the around 1 kilogram robort.

We then changed the approach to have a stationary robot and motors. Instead of having the
microphone plugged into the robot we connected it with a cable and moved just it instead.
Some design changes did have to be made as a result of this. In the end, the microphone and
cable weighed around 150 grams.

This was still not enough to be able to move around the microphone. The diameter of the
spool we had mounted on the axle was still too large, even at 3 cm. Removing the spool
completely and having the string wrap around the naked axle was the only way we got enough
power to actually litt the microphone.

3.4.5 Spooling the Thread

Using a spool

The original plan for controlling the length of the strings used to position the robot and later
microphone was to use spools on the motor axles. The plan was for the thread to wind up on
the spool. The illustration of this system can be seen in Figure 3.3.
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Figure 3.3: String spoo]ing around the motor axle.

As we came to understand how weak the motors were we had to change our approach, we
needed to reduce the diameter of the axle. The origina] p]an was to use a ]argc diameter of’
the spool to reduce the change in diameter the spooling of the thread would have. We started
by investigating if the string would be wound up on the smaller spool in a predictable way, so
we could model it into the positioning software. It turned out not to be predictable, and to
mitigate this we would have to make the spoo] width very small. A narrower spoo] resulted in
a largc axle diameter when the string was complctcly wound up, which meant that the mortor
no 1onger could lift the microphone.

Using counterweights

The solution for the spooling issue was to not use the motor axle as a spool, but instead, use
it as a way to feed the string through at a constant rate. The original idea was to wind the
string some turns around the axle, to give it enough friction to grip on the axle, and then
unwind again by using a Countcrwcight. It turned out that even if the string was just wound
around the axle a single time, it would get tangled up and start winding up the string at both
ends.

The way we tried to solve this was to switch to a thicker rougher rope and glue course sand-
paper on the axle. This made it possible to have the string wound just half a turn around the
axle, but still have enough grip to lift the microphone. The illustration of how this looked
can be seen in Figure 3.4.
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Figure 3.4: String with counterweight lying on the motor axle.

3.4.6 Calibration

Calibrating the positioning system was a challenge The goal was to give the system enough
information to position the microphone accurately, and to always know the distance to the
speaker. To accomplish this there were three problems that needed to be solved.

The lengths of the strings

Knowing the length of the strings at all times was the first problem. Given that the diameter
of the motor axle was known and that the motor could be spun in a predictable way, it was
possible to calculate how much the length have changed. If we knew the starting length and
saved it we could updatc the value every time we modified the lcngth.

The positions of the anchor points

The second problem was to have knowledge about the positions of the anchor points. This
required defining a coordinate system, and finding a way of measuring and calculating the
position of the anchor points in this coordinate system.

The way we solved this was by defining the triangle created by the anchor point as seen in
Figure 3.5. First, we defined one anchor point A as having the coordinates (0, 0). Then, we
measured the distance AB from anchor point A to anchor point B, and defined the coor-
dinates of anchor point B as (0, AB). Next we measured the distance AC between anchor
points A and C, as well as the distance BC between anchor points B and C.
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Figure 3.5: Triangle created by the anchor points.

We then found the coordinates of C using the distance formula d = \/(xz —x1)%+ (2 — y1)?
twice.

AC = (x =02 + (y — 0)?) >
- AC? =x"+y* -

— x = £AC? —y?

BC =+/(x-0)2 + (y - AB)> -
— BC* =x"+y* + AB> = 2yAB —

— 2yAB = (AC? — y2)* + > + AB*> — BC* -

AB? + AC? — BC?
2AB

—y=

There existed two possible x values for C and we would use x = {/AC? — y? moving for-

WElI'd.

The position of the speaker

The third prob]em was knowing the position of the speaker. This was done simi]arly to the
previous problem, using the tetrahedron created by the three anchor points and the speaker
as seen in Figure 3.6. We added a dimension to our pl ane with the anchor points. The anchor
points coordinates was then A = (0,0,0), B = (0, AB,0) and C = (/AC? — )2, ABZMC BCZ 0) =
(xcsyc, 0).
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A c
B

Figure 3.6: Speaker positioning.

We measured the distances AD, BD and CD, between the anchor points A, B and C to the

speaker D. This time we used the distance formula in three dimensions three times.

AD = (x = 0)2 + (y — 02 + (z = 0)> —

— x = +\AD? — y? - 72

BD = (x - 0)> + (y — AB)> + (z — 0)> —
BD? = x* +y* + AB* = 2yAB + 7> —
— 2yAB = (AD? —y2 — 22)? + y* + AB* + 7> — BD?> —

_ AD? + AB* - BD?
B 2AB

-y

CD = (x = xcP + (y = yo)* + (2= 0)* —
CD? = X%+ x2 — 2xxc + Y7 + Y2 = 2yyc + 22 —
— CD? = (VAD? = y2 — 22)* + x% — 2xc(\JAD? — y2 — 22) + y* + y2 = 2yyc + 22 —

— CD? — AD* — x2 — y& + 2yyc = 2xcAD? —y2 — 722 —
CD? - AD? - xé - yé + 2yyc

2Xc

—>AD2—y2—Z2:( )2_>

CD? — AD? — xZ — y% + 2yyc
ZXC

)2

—>z=i\/AD2—y2—(

CD?-AD? ﬂcé 7}% +2yyc

We choose z to be z = \/A02 Y ()
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3.4.7 Positioning of the Microphone

When positioning the microphone there were three things we had to consider. First generat-
inga random point within the prism with the base made up of the anchor points. Sccondly,
we needed to translate the coordinates of the point to the 1engths of the strings holding the
microphone. Lastly, we needed to consider practical implementation of the microphone po-
sitioning,.

Random point within a triangle

We accomplished this in two different ways. The first way was by finding a random point
within a rectangle and then checking if it was within the bound of the triangle. The second
way was by a method similar to the method of‘weighted average. We chose the second method
because of its lower time complexity.

In the second method the random points within the triangle made up of the anchor points
with vertices A, B, and C were generated in four steps.

+ We defined the vectors AB = B — A = (0, AB) — (0,0) = (0, AB) and AC = C — A =
(xc,yc) —(0,0) = (x¢, yc) , between point A at the origin and points B and C.

+ We then generated two random uniform values ul, u2 ~ U(0, 1).

« After this we checked if ul + u2 > 1, if this was true we applied the transformations
ul > 1 —ul andu2 = 1 — u2.

« Lastly we found the random point by w = ul X A—B> +u2 X A—C>'

The z-coordinate was defined as a random value between zero and two meters.

Coordinates of the microphone

With the information from the previous steps, the method for getting the microphone to
the desired position was simplc. When positioning the microphonc we had to calculate how
10ng each of the strings suspending it should be. The positions of the anchor points were
known and we could compute the vectors between the anchor points and the microphone.
The lengths of the strings could then be calculated by taking the norm of those vectors.

Practical implementation

Because of the physieal way we controlled the strings, we could never let a string slack. It
the weight of one of the strings was ever too small, the counterweight would pull the string
taught. We would then lose the information about the lcngth of that string. Dcpcnding on
the angles of the strings there was a risk of one motor not being able to keep up with the two
other motors. The motor control code was not capable of variable speed, so we had to find
another solution.

The solution was to move the microphone a couple of centimeters at a time. There would
then be too small of a change for the different speeds to matter. This also had the added
benefit of being able to move to more positions within a set time.
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3.5 Manual Data Gathering

During the project, we also had to gather manual data. This was done in four iterations.
Improving the data quality and decreasing the amount of labor at every step. The data was
gathered at distances between 50cm and 7m, due to the inside environments that were avail-
able to us.

In our first attempts, the code and the practical component were very simple. The code
started to record sound on a USB microphone and then played the sound from a Bluetooth
speaker. When the recording was done the sound file was then named after the measured
distance. The script was started with the input of the distance we wanted to record at. The
method of gathering a daca point was then to measure the distance to the speaker and start-
ing the script. At this point, we used three different sounds. A pulse, a sweep, and a step-
sound.

In the second iteration, we randomized the volume of the sound. The reason for this was to
obscure the volume as a usable feature. We also streamlined the gathering process by using
the setup seen in Figure 3.7. The microphone connected to the computer was moved linearly
at the same height as the speaker.

Figure 3.7: First manual data gathering method using chairs and
measuring tape.

The problem with the previous approach is that it created secondary features that a machine
1earning model could exploit. The most worrisome of which was the reverberation from the
ceiling. The ceiling remained at a constant distance from the microphone, giving a possible
predictable reverberation of the signal7 which could be used to determine the distance. It’s
hard to see what features a machine learning model is actually using, so there was no way
of knowing the features the model used. To solve this we held the microphone at different
angles and different distances to the cei]ing. Figure 3.8 shows how this was done. To be aware
of the distance to the speaker we placed the microphone at the end of a measuring tape that
was connected to the speaker. At this stage, we also changed one thing about the code. To
eliminate the time feacure that was present in the data we added a random amount of silence
before the sound was played. This way the model didn’t get information about the time it
took for the sound to travel to the microphone.
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Figure 3.8: Second manual data gathering using longer measuring
tape.

The last iteration of the manual data gathering was the one that yielded the most data and
had the least amount of unwanted features. The signal that in previous experiments resulted
in the best performance was the impulse. So we decided to collect only impuise data to have
a more accurate model as overficting was still an issue. We also automated the code more to
have less manual input.

An additional session of data gathering was performed towards the end of the project, gath-
ering 701 puises to be used as the test set. The final amount of‘pulses recorded between 50cm

and 7m was 9532.

3.6 Data Preprocessing

The data was gathered as raw sound. To be able to eﬁ‘ectivei}7 use the data in our machine
learning models it had to be preprocessed. This process had four parts. Isolating the part of
the sound that we wanted to use, removing i'auity dara, normalizing the data, and creating

MEFCCs.

First, we had to cut out the part of the sound file that was useful for us. The sweep and step-
sound did not need to be changed but the impuise did. Due to the nature of an impulse the
direct sound and reflected sound was separated on the time axis. We compared the perfor-
mance of‘using the entire signai, OT cutting out most of the reflected sound. We concluded
that the second option worked better. To isolate the pulse, our first approach was to find the
maximum amplitude of the signai and use a set window size portion around it. When iooking
at the waveform of the data, some of it had noise that had a higher ampiitude than the actual
pulse. This noise was in every instance we saw shorter than the pulse so this problem was
minimized hy using a sliding window maximum to find the pulse instead.

Another part of the preprocessing was to remove faulty data. Some of the recordings were
fauity, and had either not captured a signai at all or had a signal that was too quiet. The
solution for this was simple, we checked that the recording had a maximum amplitude above
a reasonable value. Another source of faulty data was sound that peaked the microphone.
The microphone had a maximum amplitude it could collect, the data that was close to this
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maximum was therefore removed. After removing the faulty data points the final amount of
pulses for the training and validation sets was 7413, and 700 for the test set.

To make sure any potential remaining correlation between volume and distance could not be
used by the model, we normalized the amplitudc of the data. We also trained some machine
learning models with the volume as input, to see it the previous efforts of obscuring the
volume as a feature were successful.

Lastly, we created MFCCs. Before using MFCCs we used the spectrum of the sound as the
input for the machine learning model, but this yielded bad results. We used the librosa lilnrary
in python to extract the MFCCs, along with their first and second derivatives. The MFCCs
and the derivatives were then stacked into a three-channel image. The pretrained machine
learning model we tuned with this data had a minimum input size of a three-channel image
of size 96 times 96, so we padded the data to fit this minimum size. We tried using 96, 48,

S.Tld 12 rnel ﬁ‘Cunl’lC_y bandsi

3.7 Machine Learning

At the very start of the project, we used simple statistical regression models for solving our
problem. Due to the complexity of our problem, these models did not perform well in a real
setting, and this confirmed that we had to use something more advanced.

3.7.1 Type of Machine Learning Model

In our project, we were Choosing between using an imagc—bascd CNN and using a waveform-
based model. The information we found about the waveform-based models was very promis-
ing, but the problem we were attempting to solve was not very complex compared to the types
of problems these networks are typically used for. Since there were a loc more resources avail-
able for creating or tuning an image-based model, we made the choice to focus our efforts to
train an image recognition—based model for this project.

Using a pretrained network

Keras, the machine learning framework that we used in this project, has a plethora of‘pre—
trained image recognition networks that are free to use. Because of the limited computational
power we had for training our models, a desktop with a single GTX 980, we chose the mo-
bilenetv2 model as a base for this project. This is because it had the smallest amount of
trainable parameters of the casily available Keras models, and would therefore be the least
cornputationally intense to train.

The ﬁI‘S[’ networks we attempted to train LlSGCl the structure 0frn0bilenetv2, lDUt WithOUt any

pretrained weights. This was done because the shape of our MFCCs did not match the set
input sizes required to use the pretrained Weights for the network.

These models never performed well, so we decided to pad our training data to enable the use
of precrained weights. This yielded significantly better results.
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3.7.2 Optimizing Hyperparameters

Evaluating models

The models are compared via the validation loss. We use the mean squared error as our loss
function. For a more intuitive understanding we also calculate the absolute error and make
a scateer plot, the plot included the predicted values versus the actual values. We also create
plots that show the percentage of predicted values that have an error less than a threshold
value, to visualize the accuracy of each model. When using the WANDB tool we also visualize
the best hyperparameters with a WANDB sweep summary plot.

The WANDB tool

To visualize and test different hyperparameters for the network we use a tool named WANDDB.
WANDRB is a tool that can be used for doing 13rge automated searches for the best hyperpa—
rameters for a model. By defining a range of values, it can search the hyperparameter space
for good values. It also saves the best model for each run, logs all the relevant info needed to
diagnose and compare the performance of models, and calculates statistical significance for
cach hyperparameter.

Tests with all signals

Before using WANDB we made manual runs that tested different hyperparameters and sig-
nals. We starced with testing models for impulse7 sweep, and step—sound signals. The h_yper—
parameters we tested were the learning rate as well as the size and amount of hidden layers.
After testing a couple of models for each of the signals we realized that the step-sound per-
formed way worse than any other signal. Moving forward, we therefore didn’t use step-sound
anymore.

Tests with pulse and sweep signals

After starting to use WANDB, we could more efficiently run our tests. In the last experi-
ments, we noticed overﬁtting so we added activity and bias regularizers. Including regular—
izers gcncrally resulted in less ovcrﬁtting. We also continued to try different lcarning rates
and hidden layer sizes. We made around ten models for each signal7 the loss and validation
loss (val loss) of the best models can be seen in Figures 3.9 and 3.10. The best model for the
sweep signal had a smaller loss but a ten times bigger validation loss than the best model for
the pulse. The absolute error was around 100 c¢m for the sweep and around 30 ¢m for the
pulse. With this in mind, we decided to focus solely on creating the best model for the pulse
signal.
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Figure 3.9: Loss and val loss early pulse model.
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Figure 3.10: Loss and val loss carly sweep model.

First candidate model

To reach our final results, we tried to optimize a selection of six hyperparameters. These
were activity and bias regularizes, batch normalization, the number of nodes in each added
hidden layer, the number of hidden layers, and the learning rate. The 7413 remaining pulse
recordings were split into a training data set of 5461 data points and a validation data set of
1952 points.

We trained and evaluated over 100 models with the pulse data, while continually adding
more data and trying to combat the issues that arose during training. We arrived at a very
promising combination of hyperparameters that led to an extremely low loss and val loss
which can be seen in Figures 3.11.

Loss Val loss
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Figure 3.11: Loss and val loss for first final candidate model.
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The scacter plot for the model shows a very clear relationship between the predicted values
and real values, as seen in Figure 3.12(b). The threshold plot, seen in Figure 3.12(a), plots the
percentage of predicted values thac have an error less than the threshold value. This model
seemed to be 95% accurate within about 33 cm.
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Figure 3.12: First final candidate model results.

When we tried this model in real life, however, it more or less predicted random values. The
real-life tests were pcrformcd in the same rooms as the data was recorded in, with the same
speaker and microphone setup.

We suspcctcd that the issue lied in the training and validation dara split. We theorized that
the method we had used to split the data resulted in two too similar datasets. To Verify
this, we chose a different split of the data, that isolated one of the data collection sessions as
the validation data, and retrained a model using the previously found hyperp:u‘ameters. This
resulted in a model with significantly lower performance than before, as seen in Table 3.1 and
Figure 3.13. This model did perform better in real life than the previous model candidate.
Hence we moved forward with this data split.
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Figure 3.13: First model with new split.

H Hyperparameters

first model H

activity regularizer
bias regularizer
batch normalization
hidden laycr size
no. hidden layers
1caming rate
number of mel bands

0.0001
0.0074
false
1024
3
0.00037
96

best val loss

19956.2

Table 3.1: Table of hyperparameters used for the first model with

new split.

After another scarch of about 10 combinations of hyperparameters, seen in Figure 3.14, we
decided to attempt to reduce the complexity of the training data. We were at this moment
using 96 mel frequency bands, while none of the research papers we had read used more than

15.
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Figure 3.14: WANDB sweep summary for new data split.

Amount of mel frequency bands

We created two more preprocessed data sets, one with 48 mel frequency bands, and one with
12 mel frequency bands. We then evaluated which of these performed the best by trying a
range of hyperparameters for cach of the new data sets. The resules of this can be seen in
Figure 3.15, where the "train_data" category represents which of the data sets are being used.
The data set with 12 frequency bands seemed to yield the best results, so a more extensive
search for the best hyperparameters for this data set was conducted. The results of this search
can be seen in Figure 3.16

activity batch batch bias hidden  learning numberof training val
" s : . epochs ; >
regularizer normalization size  regularizer layer size rate  hidden layers data loss
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Figure 3.15: WANDB sweep summary for finding optimal Mel fre-

quency band count
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Figure 3.16: WANDB sweep summary for 12 Mel frequency bands

Using the best found hyperparameters we trained a final model.

3.7.3 Data Generator

As our amount of‘gathered darta increased we had to create a data generator. The vRAM of
the GTX 980 we used for training was quickly overwhelmed by the amount of data we were
training on. This led us to have to implement a way to dynamically load the data from the
disc.

The way we did this was by using Keras’ DataGenerator class. This is generally used for dy-
namic daca augmentation and dynamic loading of data from the disc. Since it is already com-
patible with the Keras framework, we extended the class and created our own data generator
that would make sure only one batch of the data was loaded in memory at once.
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Chapter 4

Results

4.1 Synthetic Data Models

Linear and Gaussian process regression models were created with the synthetic data. The
scatter plot of the actual values compared to the predicted values for the linear regression
and Gaussian process regression models can be seen in Figures 4.1.
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Figure 4.1: Scatter plots (in em) for synthetic data models without

noise.

Linear and Gaussian process regression models were also made with noisy data, the scatter
plots of the predicted distance values of these models versus the actual values can be seen in

Figure 4.2.
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Figure 4.2: Scatter p]ots (incm) for s_ynthetic datamodels with noise.

ThC mean squared Crror {:Ol' all four models can be seen in Tdb]ﬁ 43.

Linear regressor ~ Gaussian process regressor
Data without noise 2.076 4.759 719
Noisy data 19.773 75.678

Tab]e 4.1: Mean square error fOI' the l’IlOdClS using synthetic data.

When the model was tested with real sound recordings it had predictions that were several

meters off in both directions.

4.2 Ideal Data Models

The data for the ideal data models were collected in an anechoic chamber. Gaussian process
and linear regression models were created with pulses and signals consisting of multiple sinus
waves. The resulting scatter plots of the actual values compared to the predicted values for

the different signa]s can be seen in Figures 4.3 and 4.4.
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Figure 4.4: Scatter plots (in ecm) for pulses.

Linear regressor

Gaussian process regressor

Pulse

Multiplc sinus waves

0.057
0.020

0.003
0.008

Table 4.2: Table of mean square error for the models using ideal data.

Testing the best model inside the anechoic chamber gave predictions within a few cm of the
actual values. When testing the model outside the anechoic chamber in a regular room the
predicted distances were several meters off in both directions.
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4.2.1 Failed Automated Data Collection

The finished robot could not move the microphone accurately enough. Even after using a
thick rope, adding counterweights, and covering the axles in sandpaper the rope would still
slip. The force on the rope would change depending on the angle of the rope. Therefore, it
would also change the amount it was slipping. The added error ofmoving the microphone
thousands of times was too excessive for the robot to be useful.

4.2.2 Final Neural Network Models

The best model, along with its hyperparameters, can be seen in column one in Table 4.3.
Figure 4.5 shows the accuracy and a scatter plot of its performance on the validation data.
A clear relationship between the predicted and real values can be seen in the scatter plot. If
one would use this model they could be 95% certain that the error was not larger than 230
cm.

H Hyperparameters Best model  Second best model H
activity regularizer 0.15 0.13469
bias rcgularizcr 0.2 0.2038
batch normalization true true
hidden layer size 128 256
no. hidden 1ayers 1 1
lcaming rate 0.0004 0.00046
number of mel bands 12 96
Best val loss 15086.0 15287.7

Table 4.3: Hyperparameters used for each model and their results.
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Figure 4.5: Best model parameter result.
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4.2 IDEAL DATA MODELS

The second best model, along with its hyperparameters, which can be seen in column two
in Table 4.3, performed slightly worse than the best model. The most significant difference
berween this model and the best model was the larger amount of mel frequency bands in its

training data. Asseen in 4.6, it still shows similar performance as the best model, just slightly
worse.
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Figure 4.6: Second best model parameter result.

4.2.3 Performance On Unseen Test Set

The best performing model was evaluated on the test set. The loss was 72665, and as can be
seen in Table 4.3, the model performed signiﬁcantly worse than on the validation set. But
the threshold plot seen in Figure 4.7, seems to show similar performance for the majority of
the set, with 90% of errors being less than 202 cm. The scatter plot seen in 4.7 also shows a
clear correlation between the predicted and actual values of the test set.
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Figure 4.7: Best model pcrformancc on test set.

4.3 Simple Models With the Real Data

Linear and Gaussian regression models were made with the full dara set of‘pulscs. The pre-
processing of the data was a simple fast Fourier transform and we used the same split as the
final convolutional neural networks used. The Gaussian mean squared error was 175847.989
and the Linear regression mean squared error was 108446.424. As seen in the accuracy and
scatter plots of the validation data for both models in Figures 4.8 and 4.10, these models were
completely unusable.
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Figure 4.8: Gaussian process regressor.
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Figure 4.9: Linear regressor.

4.4 \Volume Based Model

Even though we tried to control for the volume as a feature, we wanted to make sure that this
was a success. This was explored by training regression models and our final convolutional
neural network with just the volume of the signal. The validation loss for the three different
models can be seen in Table 4.4. These models did not perform well.

Model type Val loss

Lincar regression 34324.09
Gaussian process regression | 39583.56
CNN 33867.42

Table 4.4: Validation loss for models based on volume.

The relationships between the actual and predicted values can be seen in the scatter plots in
Figure 4.10.
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Chapter 5

Discussion

5.1 Simple Models

Gaussian process and linear regression models were made with synthetic data and ideal data.
The models performed well with their validation data but not with data from a more realistic
setting. The Gaussian regression gave better results for both data types, which one would
expect because of the non-linear properties of frequency attenuation.

5.1.1 Synthetic Data Models

The models created with the synthetic data were a first exploration of the concept of using
frequency attenuation for distance estimation. These models were also made to test if a
simple solution would be enough to solve this problem. The first models performing well was
not very surprising, since they were simp]e and mathematica]l_y perfect models. Adding the
noise was an attempt to approximate the complex changes that the geometry and materials
in a real-world setting do to a sound signal. Both with and without noise Gaussian process
regression pcrfbrmcd 1‘cmarkab]y better than linear regression.

However, the way sound interacts with the real world turned out to be way more complex
than the simple noise model. This explains the very poor performance the first models had
when using real-life data.

5.1.2 lIdeal Data Models

The models created in the anechoic chamber validated the concept as something possibly
doable. Frequency attenuation has a relativity small effect on a sound signa] over short dis-
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5. DISCUSSION

tances. But the model created in the anechoic chamber showed that this effect was measurable
and could be used for distance approximation.

The Gaussian regression performed [l’lC best for bOtl’l signals used. Th€ best rnodels tested in
a I"Céll room SC[tng l’lZlCl CITOTS SO l’clI"gC tl’lat tl”le were unusablc.

5.2 Creating the Robot

Given more time to Complete the robot, it would have been a very useful tool for this project.
In hindsight, given how many issues arose with the robot, we should have focused more on
gathering data manually.

With small tweaks, the robot we built could have been useful. Using ball chains and a fecding
gear instead of a rope or string would remove any slipping issues. This was the only known
major issue that stopped the robot from being usable. This means the robot could become a
useful tool for future research with just a small amount of work.

5.3 Final Neural Network model

5.3.1 Validation Threats

The results of the final model showed promise and should be enough to prompt further ex-
ploration of using frequency attenuation as a distance estimation tool. However our method
includes sources ofunrelialoility.

Final Data Set

The data set in this project was small, gathered in few different locations and with limited
positions relative to the speaker. The test set was small and gathered in the same environment
as the rest of the data. These are some of the reasons the results of the final model might not
be reliable. More data would be needed to give a fuller picture of the applicability of the
solution we have proposed.

Performance in a Noisy Environment

The data we gathered for the final models in this project did not have any significant environ-
mental noise in them. This was done to limit the scope of the project, since we did not have
the resources to gather the necessary amount of data, nor augment realistic environmental
noise. This means that the performance of our proposed solution in a noisy environment is
unknown.

Scope of Hardware

The data gathered in this project was collected with the same mierophone and speaker. This
limits the scope of the project, as the frequency responses of hardware might differ wildly.

44



5.4 OTHER MODELS WITH THE FINAL DATA SET

This means that the machine learning models in this project might only perfbrrn similarly it
the same models of the microphone and speaker are being used.

This variance in frequency response given different hardware would have to be taken into
account if this method were to be implemented in a real-world solution.

5.3.2 Using Pulses for the Final Model

Our final model used pulscs, as it was the signal with the consistently best pcrformancc. We
found three different possible reasons for this. Firstly it could be because it was the shortest
signal, which also meant the smallest input. All models had problems with overfitting, but
it affected the pulse less. Secondly, it could be because we could limit the reverberations
of the signal. The impulse was cut to mostly only include direct sound, which minimized
reverberations and interference. The last reason could have been that the other signals we
used might have been unsuitable for the purpose. There could possibly be some great signals
that have been overlooked.

Some negatives ofusing only pulses are multichannel communication and scope. When com-
municating with waves one can use different frcquency bands for different devices. This is
however not possible with pulses as they include the full frequency spectra. If several signals
were used as input to the model instead of just one it would expand the scope of possible
implementations. A more generai model could be trained on a lot of different sound sig-
nals, finding a general correlation between frequency attenuation and distance. However,
this would require much more data and would be a big undertaking.

5.3.3 Number of Mel Frequency Bands

The best models we created used 12 Mel frequency bands, slightly outperforming the models
created with 96 Mel frequcncy bands. The reason we used 96 Mel frcquency bands in the
beginning was simpiy because that was the required dimensions for the pretrained network
we used. Testing a smaller number of frequency bands was done because previous research
using MFFCs generally did not use many frequency bands. Reducing the number of frequency
bands also reduced the complexity of the data, and this was generally helpful for training a
more general model. Our results confirmed this, since using 12 frequency bands consistently
outperformed 96 frequency bands.

5.4 Other Models With the Final Data Set

5.4.1 Models Based on Volume

The models using pure volume were created to see if we had properly isolated the frequency
attenuation as the only usable feature for the models. Even though we normalized the data
before feeding it to the models, we wanted to make sure that the preemptive measure of
randomizing the volume in the data-gathering stage was enough to obscure the volume as a
usable feature. Making sure the volume was properly obscured was important, because there
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5. DISCUSSION

might have been some secondary feature based on the volume that we were not aware of. The
results of the models based only on the volume did show that we succeeded with this.

5.4.2 Simple Regression Models

The results of the simple regression models with the final data sets showed that the distance
approximation problem is too complex for simpler statistical models. Linear regression could
not fic the data well, and the Gaussian process regression failed completely. This validates
the use of a more complex machine learning model.
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Chapter 6

Conclusion

The aim of this project was to use frequency attenuation to estimate the distance between
a speaker and a microphone, with an error of less than a couple of meters. The final resules
were achieved with a convolutional neural network trained on a relative]y small data set
with limited real-world factors. Even with this limited data, these results showed promise
that sound source estimation with an error of less than a few meters was possible with this
method. The results of these experiments should be enough to prompt further research into

this method.

6.1 Future Work

Future work based on the research in this thesis should include a lot more data gathering.
Prcfcrably the data should be gathcrcd from many different environments, and a wide vari-
ety of speakers and microphones should be used. One way to accomplish this would be by
finalizing the robot made in this project, as it only needs a few tweaks. Another solution
would be to create more advanced synthetic data. Using a waveform-based model instead of
an image-based CNN might also be a suitable focus for future work.
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