
Characterization of the Hand Grasping
Using Sensor Fusion

Endre Yllö

2022

Master´s Thesis in
Biomedical Engineering

Supervisor: Nebojsa Malesevic

Faculty of Engineering LTH
Department of Biomedical Engineering

Abstract
This master‘s thesis explores the possibility of constructing a device capable of

classifying human arm movements while performing a set of common tasks. Intended
for use on patients undergoing rehabilitation, the device collects data using multiple
sensors and applies a convolutional neural network in order to detect different activities
of daily living. The sensors used by the device are limited to two inertial measurement
units and one radar module. Beyond constructing the device this thesis also attempted
to gather its own data set for training and evaluate the systems performance. Finally
possible improvements and modifications to the system are proposed.

1

Contents

1 Introduction 4

2 Background 5
2.1 Upper limb functionality . 5
2.2 Inertial measurement unit . 6
2.3 Radar . 6

2.3.1 Radar cross section . 7
2.3.2 Radar envelope curve . 8
2.3.3 Acconeer radar module . 9

2.4 Machine learning . 9
2.4.1 Supervised machine learning 9
2.4.2 Classification . 10

2.5 Artificial neural networks . 12
2.5.1 Perceptron . 12
2.5.2 Deep Feed Forward Network 13
2.5.3 Convolutional Neural Networks 14
2.5.4 Preprocessing . 15

3 Methodology 17
3.1 Sensor configuration . 17

3.1.1 Implementation of the data acquisition system 17
3.1.2 Sensor placement . 18

3.2 Protocol . 20
3.3 Neural Network . 21

3.3.1 Preprocessing . 21
3.3.2 CNN . 23

4 Results 26
4.1 Sensor fused data . 27
4.2 High definition IMU data . 31
4.3 Radar Envelope Data . 32

5 Discussion 33

2

Glossary

IMU Inertial Measurement Unit

RCS Radar Cross Section

TP True Positive

TN True Negative

FP False Positive

FN False Negative

ANN Artificial Neural Network

NN Neural Network

CNN Convolutional Neural Network

EM Electro Magnetic

3

1 Introduction
Stroke is a large public health concern in the modern world, in the year 2020 Sweden
saw about 27000 cases [1]. Recovery guidelines show that about 75% make a recov-
ery but suffer some impairment as a result. Survivors can be left with several kinds
of afflictions depending on what region of the brain experienced the stroke. If the left
cerebrum was damaged, there might be impairment regarding speech and understand-
ing words. If the right side of the cerebrum was damaged the patient may experience
changes in vision. Another common consequence of stroke originating in the cere-
brum is motor function impairment or paralysis, often affecting the opposing side of
the body to where the stroke originated in the brain [2].

In order to aid the recovery and increase quality of life in patients suffering from
this kind of motor impairment, rehabilitation is vital. However it requires extensive
use of the affected limb to regain functionality, this is often a problem due to patients’
tendency to rely more heavily on their healthy limb to perform actions. In order to aid
and assess rehabilitation it is important to gather qualitative and quantitative informa-
tion on how the limb is used in day to day life. This will allow for analysis of what
actions the patient has done and how they were executed, providing insight into the
rehabilitation process. Therefore a wearable device which collects information on how
the paretic limb is used and what actions it performs could prove to be of great value.

This project aimed to construct a device to be worn on the arm, capable of gathering
information on its movements. In addition, a computational method was constructed
capable of accurately discerning what type of action was performed. The device uti-
lized two inertial measurement units (IMU) and a radar module for gathering infor-
mation combined with a convolutional neural network (CNN) tasked with classifying
the information into different activities of daily living. The project was constrained
to classify 19 common actions performed in everyday life, using data gathered by the
device on test subjects.

Human activity recognition is a field of study concerned with identifying movement
patterns by using sensor data. It has seen vast improvement enabled by the availability
of sensors and large developments in artificial neural networks. Often taking the form
of multivariate time series classification, enabled by artificial neural networks [3][4].
Human activity recognition can find application in rehabilitation where the activity
of patients is essential when prescribing optimal therapy. Part of the challenge when
working with human activity recognition is the large variation in how movements are
performed by different individuals [5].

By allowing this wearable device to collect information and feeding it to the neural
network it is the goal of this thesis to explore the possibility of usage in rehabilitation.
This is done by collecting data from several people performing actions while being
recorded in order to gain data and using it in a convolutional neural network to analyze
performance.

4

2 Background

2.1 Upper limb functionality
In order to better understand the loss of functionality in the upper limb due to stroke,
it is useful to understand how a healthy limb functions. The human arm is capable
of limited rotation along all three axes and it is useful to understand how positions
and readings of sensors corresponds to arm movements. The position of an arm can
be described by the positions of the major bones contained within, these bones are
pictured in figure 1.

Figure 1: Bones of the arm, used on the basis of creative commons [6].

The upper arm is capable of moving in a wide range of motions centered around its
connection to the shoulder via the glenohumeral joint. It is not only capable of move-
ment around this anchor point but also of rotation around the humerus longitudinal axis
during external and internal rotation of the shoulder.

For the limited scope of this paper the movements of the lower arm can be broken
down into three core movements. First, the flexion and extension via the elbow joint.
Second, the rotation of the wrist, supinating and pronating the forearm. Lastly, the
flexion and extension of the wrist. All the above mentioned movements are important
when assessing how the upper limb is operating and should therefore be taken into
account when gathering information.

Differences in people’s arms is also a relevant factor to consider. Especially in the
aspect of sensor placement, it is necessary to place sensors in similar positions across
subjects.

5

2.2 Inertial measurement unit
IMUs are used to measure the kinematics of an object it is attached to. Each unit
consists of three-axial accelerometers and three-axial gyroscopes. There are additional
three-axial magnetometers, however they were not used in this project.

The accelerometers measure linear acceleration, comprised of both the sensors
movement and the effect of gravity. Gyroscopes measure angular velocity, which
is comprised of the sensors speed of rotation. The IMUs used for this project are
BNO080 by Bosch (Gerlingen, Germany) mounted on accompanying SparkFun VR
IMU Breakout board by Sparkfun (Boulder, Colorado, USA) pictured in figure 2.

Figure 2: IMU used for the project, used on the basis of creative commons [7].

2.3 Radar
By emitting radio waves and then recording the waves after they have been reflected
by the environment it is possible to gather various information about the environment,
such as distances, velocities and compositions of objects reflecting the waves. A sys-
tem that acquires information in this way is referred to as a radar, which stands for
radio detection and ranging.

Figure 3: Illustration of radar concept.

A radar system can be used and implemented in various ways, this project utilized
a radar system to detect and determine the distances of objects from the sensor. The
foremost object to be detected in this implementation is the dorsal side of the hand
during wrist extension.

6

2.3.1 Radar cross section
In order for a radar system to detect an object it is of great importance that the object
in question reflects a significant amount of the transmitted radar pulse. This reflective
property of an object is referred to as its radar cross section (RCS). An object’s RCS
mainly depends on three different factors, interception, reflection and directivity [8].

Antennas radiate electromagnetic (EM) waves in specific patterns based on the
structural properties of the antenna. This pattern of radiation is described by lobes of
varying strength, but is often dominated by an intended main lobe of radiation aimed
towards the object to be detected. Interception of a radio wave depends on how much
of the transmitter’s main lobe intercepts the target object.

Once an object is intercepted by incoming EM waves only a portion is reflected
back in the same direction as the source. Some of the waves will be absorbed or
simply propagate through the object without interacting. To what extent EM waves
are reflected depend on the material properties of the object. If the object is made
out of a conducting material, more of the EM wave will be reflected than if the object
is made out of a material possessing dielectric properties. The surface of the object
is also of importance in how EM waves reflect off it. Smoother surfaces will more
uniformly direct the reflection in what is called specular scattering, rougher surfaces
will reflect EM waves in several directions called diffuse scattering. The difference of
these scattering types is shown in figure 4 [8].

Most objects do not look the same from every angle, unless they are spherical.
Which means that the orientation of the object facing the radar will likely impact its
RCS.

7

Figure 4: Illustration of specular vs diffuse scattering.

2.3.2 Radar envelope curve
In order to calculate the distance to an object the radar measures the time it takes for the
EM wave to propagate towards an object and then propagate back to the radar system.
Knowing the speed at which the EM wave travels, which is close to the speed of light
in vacuum, enables the radar to calculate the distance to the object. In practice there
are often several objects within the radar field of view, placed at different distances,
possessing differing RCS. When the radar emits an EM wave and then proceeds to
listen for reflections it will receive EM waves of varying delay, representing distances,
and magnitude representing RCS. By plotting the strength of returning EM signals and
plotting them over time it is possible to construct a radar envelope seen in figure 5.

8

Figure 5: Example of radar envelope.

2.3.3 Acconeer radar module
The XM112 radar module from Acconeer (Lund, Sweden) is built around the A111 60
GHz pulsed coherent radar, it features high precision distance measurements and up-
date frequency. A pulsed radar utilizes the advantages of emitting a pulse of EM wave
as opposed to a continuous emission, granting the radar a lower power consumption.
A coherent radar has a stable time and phase reference allowing for higher accuracy
in measurements. The pulsed coherent radar combines these two methods in order to
gain the best aspects of both approaches. More information about the radar module
can be found in the modules accompanying data sheet [9] [10].

2.4 Machine learning
Machine learning aims to use data in order to have a computer program recognize
different patterns within data without using explicit instructions. This is achieved by
having a computer program automatically adjust itself based on observations and ex-
amples called training data. Machine learning is typically divided into the three cate-
gories, supervised learning, unsupervised learning and reinforced learning. Supervised
learning relies on labeled data and attempts to assign data to known labels. Unsu-
pervised learning does not use labeled data, instead it infers it´s own self organized
labels. Reinforced learning focuses on interaction with an environment and uses a re-
ward mechanism as feedback in order to make beneficial decisions. This project used a
supervised machine learning model due to the ease of labeling while recording clearly
defined actions.

2.4.1 Supervised machine learning
Supervised machine learning utilizes training data that contains examples of how spe-
cific input results in specific output, and the goal function of the machine learning
system after training is to map known input variables x to unknown output variables y.

9

Figure 6: Three sub categories of machine learning.

In order for the machine to be able to construct a function capable of mapping
x to y it requires a large amount of training data providing examples. This demand
for training data is increased when the set of possible y mappings is large or if the
statistical properties differentiating them are too complex to easily separate based on
inputs x.

The output y is referred to as a label and represents a higher fact or quantity asso-
ciated with input data points. Labels can take on many forms such as numerical values
or more abstract concepts such as the state of what is being observed. As an example,
this project will take inputs relating to how the arm moves and use this data to label
movements with actions such as answering a phone call.

2.4.2 Classification
A common task for a machine learning model is to classify data points into categories.
Machine learning models dedicated to this task are often focused on classifying objects
in pictures such as cars or animals. The complexity of solving this type of problem will
increase with the number of classes and how similar they are. As an example it is a
less complex problem to correctly classify pictures displaying the two categories of
boats and cars, but it is considerably harder to categorize pictures of several different
car models. Partly because of the high similarities of cars and partly because of the
higher number of car models.

In order to evaluate the performance of a system tasked with classifying data it is
useful to implement a confusion matrix. The confusion matrix is a way of displaying
how the machine learning model performed on test data. A confusion matrix is con-
structed by logging what the model guessed the class to be versus the actual class the
data points belong to in a matrix. This aids in discovering classes that are commonly
mistaken for each other, there are also several performance metrics that can be calcu-
lated from the data in the confusion matrix. These metrics are calculated using the rate
of the four indexes, True positive (TP), True negative (TN), False positive (FP) and
False negative (FN). These indices are organized in a manner seen in figure 7. Take
note that the cell labels are dependent on which class is being evaluated, however they
follow the geometric pattern outlined by the color coding in figure 7 which is labeled
for the evaluation of class C.

10

Figure 7: Confusion matrix example labeled for evaluation of class C.

There are several performance metrics that can be calculated using the above men-
tioned indexes, this report will mainly focus on the following.

• Accuracy: The proportion of correct guesses positive or negative made by the
model in relation to the total amount of guesses made. Calculated once for the
whole matrix, this performance metric calculates the proportion of guesses that
are placed in the top left to bottom right diagonal of the confusion matrix. Pic-
tured in figure 7 with blue and green. This metric is an evaluation of the matrix
as a whole and will therefore not be calculated with any single class in mind.

• Precision: The proportion of correct positive predictions by the model in rela-
tion to total positives. That is to say the percentage of correct guesses made out
of positive outcomes. This metric represents an aspect of the performance of a
single class, and can thus be calculated once for every class contained in the ma-
trix. The calculation is presented in equation 1, where precision is evaluated for
a specific class indicated by the subscript k. Note that this calculation utilizes in-
formation contained in the confusion matrix column of the class being evaluated,
marked by an orange and green background in figure 7.

Precisionk =
TPk

TPk + FPk
(1)

• Recall: Proportion of correct positive guesses in relation to everything that should
be predicted as positive in an ideal system. This metric is also class specific and
thus calculated for every class k. Calculated according to equation 2 it utilizes
information gathered from the true instances of a specific class pictured in figure
7 as the purple and green horizontal line of cells.

Recallk =
TPk

TPk + FNk
(2)

11

• F1: The harmonic mean of precision and recall for a specific class. Being a
combination of the two previous metrics F1 gives an estimate of the systems
performance for a single class that takes both aspects into account. Calculated
according to equation 3.

F1k =
2 ∗ Precisionk ∗Recallk
Precisionk +Recallk

(3)

In addition to the three previously mentioned class specific performance metrics
their respective averages can be used to evaluate the confusion matrix as a whole.
These averages take the prefix macro and are calculated as the arithmetic mean of the
respective metric according to equation 4 using F1 as example and where K represent
the total amount of classes.

macroF1 =

∑K
k=1 F1k
K

(4)

When tasking a model with classification it is of importance to ensure that each
class is equally represented in the data set. It is of course important that the model
has enough examples to learn from, but beyond that the instances of classes in relation
to each other comes into play. When one or more classes is over represented in the
training data set it can lead to a bias developing in the model, where it in cases of
severely skewed data sets can reach a high performance by simply guessing on the
most over represented class regardless of what the data points suggest. In order to
mitigate this issue, it is good to aim for an equal distribution of classes in the training
data set so that no class is significantly over or under represented [11].

2.5 Artificial neural networks
Artificial neural networks (ANN) have gained a lot of attention in recent years and
can be introduced as analogous to their natural counterpart, biological neural networks
from which they were first conceptualized. A neuron in the mathematical sense is a
nonlinear parameterized function, several neurons linked together form a network of
neurons also known as an artificial neural network. In practice we use the perceptron
model to describe a neuron that takes weighted inputs and applies an activation func-
tion to generate an output. In order for the ANN to achieve its intended goal, whatever
that might be, it requires the weights being applied to the inputs to be ’correct’. In
order to achieve correct weights the network needs to be trained.

2.5.1 Perceptron
The fundamental building block of an ANN is known as a perceptron. These percep-
trons when linked together form an ANN. In order to fully comprehend ANNs it is
useful to understand the perceptron model that describes the foundation of these sys-
tems.

The perceptron model takes inputs denoted x1, x2, .., xn and multiplies each input
xi with a weight wi unique to each input, these weights are used as the trainable pa-
rameters for the system. Calculating the sum of the products from every input xi and
weight wi paired together with an additional bias b singular value enters into an acti-
vation function. The result of this activation function is the output y of the perceptron.

12

The full perceptron model is pictured in figure 8 and described in equation 5 [12]. Ac-
tivation function can vary depending on implementation but its purpose is to map the
summation onto a nonlinear output. Examples of activation functions are the rectified
linear unit (ReLU) defined by equation 6 and sigmoid defined by equation 7.

Figure 8: Illustration of the perceptron model.

f

(
wbias +

n∑
i=1

xiwi

)
= y (5)

f(x) = max(0, x) (6)

f(x) =
1

1 + e−x
(7)

2.5.2 Deep Feed Forward Network
By arranging several perceptrons in a layer and connecting each perceptron output of a
layer to the input of every perceptron in the next layer, one can create a several layers
deep neural network. The varying sizes of the layers and the total number of layers
will correspond to the complexity of the network, more complex networks enable the
network to carry out more complicated tasks. An example of this layered architecture
is pictured in figure 9, where each circle represents a node that calculates the sum of
input arrows and maps it to an activation function. Each arrow represents a pathway
and has a weight associated with it.

13

Figure 9: Neural network architecture, consisting of three layer each containing 5 neurons.
Configured in a feed forward manner.

Since every layer only propagates outputs ’forward’ into new layers and does not
feed back into earlier layers it is referred to as a ”feed forward network”, opposed to a
recurrent neural network that can feed some information ”backwards” forming a loop.

Once several of these layers are placed sequentially and interconnected in a feed
forward manner, they are referred to as hidden layers. This structure handles the bulk of
the problem solving ability of the system. In order to reduce computational complexity
the hidden layers can be coupled with input stages.

2.5.3 Convolutional Neural Networks
By placing many perceptrons and connecting them in an organized manner, together
with some other functions one can construct the architecture of an ANN.

A convolutional neural network is a type of ANN architecture that has been demon-
strated to be capable of achieving good results when applied to classification problems
similar to the one presented in this thesis. It is primarily known for classifying images,
however it has also been successful in the multivariate time series classification type
problem presented in this report. Utilizing a CNN architecture comes with an espe-
cially useful advantage, namely automatic feature extraction. Features are properties
of the data that are used as input to the neural network, examples of features could
be the mean value or variance. Extracting them automatically frees the user from ex-
tracting useful features in the data and feeding them to the ANN, instead the CNN is
capable of extracting features on its own.

A CNN is based around the convolution operation, presented in equation 4. Where
x is the input and w is a weight function. This equation is essentially generating a
weighted average of the input to generate the output s. From a machine learning per-
spective, the w is referred to as a kernel which contains the adaptive element, while the
output is referred to as a feature map [13].

14

s(t) =
∞∑

a=−∞
x(a)w(t− a) (8)

The convolutional step is often coupled with a pooling layer. Pooling layers are
used to reduce the amount of information while preserving the underlying feature. In
max-pooling this is done by selecting the maximum value in a subset of the data and
describing all data points in the subset with this number. Other pooling operations may
take the average of the subset, such as average pooling [14].

Other relevant layers are the dropout and flattening layers. Dropout layers simply
remove certain randomly selected inputs, at a user defined rate. Additionally it scales
up the remaining inputs so that the total sum over all inputs remain unchanged. The
purpose of a dropout layer is to prevent overfitting. Flattening layers are used to col-
lapse the dimensions of the input into a one dimensional array. This is done in order to
satisfy the input requirements of upcoming layers.

2.5.4 Preprocessing
In order for the CNN to perform well it is important to perform preprocessing on the
input data in order to increase legibility. An optimal preprocessing scheme will be task
specific, however some preprocessing steps are standard practice, such as normaliza-
tion.

It is common practice when applying a time series to a classifying CNN to parse the
data into time windows that represent each time series over a subset of time. Each of
these time windows will represent an example of data belonging to a single category.
Time windows can be generated with a time ”overlap” in an effort to make efficient use
of the available data. Figure 10 illustrates the time windowing process [15]. Where
L is the window length and s is the step length separating the start of adjacent time
windows.

Figure 10: A time series that has two time windows marked with a length of 3 samples, sepa-
rated by a step length of 2.

Combining several time windows with corresponding timestamps and aligning them
into a 3 dimensional matrix creates an input tensor. This tensor will describe the con-
stituent time series values over a specific subset of time. It is wise to select time series
that when combined contain useful features in order to aid the ANN. As an example,

15

this project has constructed 5 tensors separated by sensor module and what information
is described.

16

3 Methodology
This section aims to describe the manner in which the system used to collect data was
put together, and how the CNN used for classification was constructed and trained.
Firstly the set up of the sensors will be detailed followed by how they come together
into the complete data gathering system and lastly the composition and training of the
CNN will be described.

3.1 Sensor configuration
The system was centered around a PC running a python script acting as a commu-
nication host. The PC hosted two connections, the first leading to a Teensy 4.0 micro
controller development board via UART using a baud rate of 500000 bits/s. The Teensy
was in turn connected to the radar module via another UART connection which oper-
ated on a baud rate of 115000 bits/s. The second connection to the PC was to a Teensy
4.1 via UART using a baud rate of 115200 bits/s. This Teensy communicated with two
BNO080 using two SPI channels. Figure 11 illustrates how the system was configured.

Figure 11: Description of the systems configuration

3.1.1 Implementation of the data acquisition system
The XM112 radar module is capable of performing in several different modes intended
to accomplish a variety of tasks such as presence detection or in-phase quadrature.
After consideration, the ”power bins” mode was selected. This operating mode was
used in order to create an envelope curve. Selecting modes and operating parameters
was done by manipulating the modules registry via a UART connection according to
the XM112s data sheet. The first objective was to find what parameters would be best
suited for the task at hand. It was expected that the primary information sought after
by the radar module would be the angle of the wrist. Radar parameters were set until a
clear signature of the wrist extension was distinguishable in the envelope curve, while
the module was placed at a distance of 10 cm from the wrist. Table 1 below contains
the parameters decided upon.

After the parameters used by the radar were decided upon, the next step was to
integrate the IMUs by constructing a script logging their output values. No parameters
were needed for implementing the IMUs, as they were pre set to stream raw gyroscopic
and accelerometer data.

17

Bins Start depth Depth range
1034 100mm 500mm

Table 1: Radar settings.

The script used to log data was written in python utilizing modules serial to read
sensor data from the UART buffer and numpy to organize it. The script also used
module keyboard to allow for labeling of data during recording and time to gain a
unified time reference for when each data point was collected. Data was continually
saved in .txt files in order to gain a constant sampling rate. The sampling rates for the
IMUs and radar are presented in Table 2, these sampling rates were the highest the
system could achieve.

Radar IMUs
18Hz 947Hz

Table 2: Sampling rates.

The last step in constructing the data gathering system was to consecutively store
the gathered data in a separate file in order to limit any slowdown of sampling rate
during the devices run time due to inefficient storage.

The data from the IMUs were stored in separate files from Radar data, and linked
together via an event id shared between them. The IMUs data contains 12 total time
series, 6 for each IMU unit. Furthermore it contains a timestamp for each sample and
an action log representing what action was performed by the user during every times-
tamp. The radar data was organized according to an envelope curve, each timestamp
has an associated 1034 bins representing radar return from different distances between
0.1 and 0,6m. In addition to this, two unique id signatures were assigned. One for
every run of the protocol called ”event-id” and one for distinguishing between users
called ”user-id”.

Figure 12: Example of the data structure, containing meta data and acceleration of the lower
arm IMU.

3.1.2 Sensor placement
Consideration was made to ensure that sensor placement would be as similar as pos-
sible between test subjects. For the radar module, this was done by measuring the
distance between the radar and the wrist and placing it with approximately 10cm of
space separating them. The IMU intended for use on the upper arm was placed at the

18

distal region of the upper arm facing inward towards the torso. Placement was below
the contour of the bicep as to limit movement caused by its contraction. The second
IMU intended for the lower arm was placed in the carpal region below the palm. Fur-
ther elaboration on sensor placement can be seen in the figure 13. Where the white
boxes contain the IMUs and the grey box holds the radar module.

Figure 13: Pictures of sensor placement. The white boxes contain the IMUs and the grey box
in the lower figure contains the radar module.

19

3.2 Protocol
A protocol was made in order to gather concise data to be used during training of the
neural network. This protocol consisted of 19 tasks that were perceived to represent
everyday actions of a user. A total of 10 people participated as test subjects. Every test
subject executed the protocol twice, yielding two data sets per subject each containing
a full execution of the protocol. Each task was performed for a duration of 20 s and
separated by a 10 s rest period. More detailed information about the performance
of each task is presented in the list below. All tasks were performed sitting down
in front of a table, certain tasks involved props in order to increase the realism of
the actions. The tasks are mean to represent common movements in everyday life of
varying similarity to provide an appropriate challenge for the CNN.

• Phone call: The subject’s own phone was picked up from the table and held to
the ear by the right arm. The phone was placed back on the table by the end of
the action before the resting phase began.

• Texting: The subject’s own phone was picked up from the table and used to type
any message of the subjects choosing, after which the subject placed the phone
back on the table before the next resting phase began.

• Wash hands: The subject held up his/her hands in front of them and pretended to
wash their hands in a sink. No actual soap or water used.

• Dry hands: Performed by picking up a towel and drying hands, then placing the
towel on the table.

• Wipe counter: performed by taking the towel and cleaning the table, no specific
instruction on wiping movement was given.

• Use Tv-remote: Performed by picking up remote and repeatedly changing chan-
nels on an imaginary tv.

• Write on paper: The subject was provided with a pen and paper to write on. No
instructions were provided on what to write.

• Type on keyboard: The subject typed whatever they deemed fit on a provided
keyboard.

• Use mouse: performed by using a provided mouse. No instruction was given on
how it was to be used.

• Tying knot: A sting was provided and the subject was instructed to tie any type
of knot on it.

• Brush teeth: The subject pretended to brush their teeth, no toothbrush was used.

• Brush face: The subject was instructed to apply imaginary makeup or shaving
foam to their cheeks.

• Comb hair: Performed by pretending to comb their hair, no comb was used.

• Open bottle: A bottle was provided and the subject was instructed to repeatedly
open and close it.

20

• Drink water: Using the same bottle while the lid was closed, the subject pre-
tended to drink from it in several swigs.

• Eat with spoon: The subject was provided with a spoon and pretended to eat
something with it.

• Take medicine: The subject was instructed to take several imaginary pills placed
on the table.

• Button shirt: The subject was instructed to button and unbutton their clothing, if
the subject did not wear any garment with buttons the task was mimicked.

• Resting: The subject was instructed to rest their arm on the table and keep it as
still as possible.

Detailed instructions to the test subject on how to perform each task was avoided,
in order to generate data that better reflects a person’s natural behavior.

3.3 Neural Network
Once the training data had been collected, the next objective was to generate a neural
network model capable of classifying the tasks with the highest possible accuracy. In
order to achieve this, several different network architectures were tested together with
different preprocessing methods, to see what would yield the best results.

3.3.1 Preprocessing
A script was made to fix certain errors that occurred during the recording, caused by
accidental logging of an action during the execution of the protocol. It was noted
that accidental logging of the wrong actions was most common during the first second
of starting a new task. The accidental pressing of the wrong key would quickly be
remedied by pressing the correct key, however the error would still be present in the
data set. The script searches the data sets and marks locations where an action was
performed for an unreasonably short amount of time. It achieved this by searching for
actions that took place for less then approximately 2 s and noting their position in the
database. By examining the locations of expected errors provided by the script and
comparing them to what was supposed to be logged according to the protocol. The
data set was then pruned and altered on a case by case basis.

In order to feed the data from the separate sensors to the CNN it is vital that each
time series is of the same length. In order to achieve this, the time series collected from
the IMUs were decimated to a point where the only samples kept in these times series
had a corresponding sample from the radar taken at approximately the same time. This
was done by matching the timestamps associated with each sample.

In an effort to improve computation time, the data provided by the radar was re-
duced via summing several bins into one. This reduced the data used to describe the
radar envelope by a factor of 20.

The next preprocessing step aimed to reduce the over representation of the resting
action. This was done in two steps, firstly the data collected in resting state before the
first task and after the last task was removed from the data set. Secondly resting data
points were removed from the start and finish of each rest event, keeping a proportion-
ate amount of data in the middle of each resting event in order to properly represent the
class. The now proportionate but scattered resting data points were sorted and placed

21

in a group. This was done in order to support the upcoming windowing operation that
would otherwise have suffered from additional partitioning of classes. A simplified
illustration of this process is found in figure 14 using only two actions separated by
resting.

Figure 14: Truncating and organising resting data.

The next preprocessing step was to normalize the data in every time series used as
input by scaling every data point in a time series to range between -1 and 1. This was
followed by chunking it into time windows. Each time window had a window size
of 54 samples and used a step length of five. This corresponds to a window size of
3 s and a step length of 0.28s when measured in time. The time series were grouped
into 5 separate tensors, two describing the accelerometer data for each IMU, two more
containing gyroscopic data for each IMU and lastly one time series containing the
radars envelope curve.

The training and testing data was partitioned in a manner that assigned a person’s
protocols so that one was represented in the testing set and one in the training set. Re-
sulting in the 50/50 split in training and testing data shown in figure 15. This concludes
the preprocessing done prior to feeding the data to the CNN.

Figure 15: Partitioning of data into training and testing sets.

Other combinations of preprocessing schemes and CNN architectures were tested,
in order to see their impact on the results and gain further insight about the systems
performance. The alterations tested are listed below.

22

• Instead of having every person represented in both training and testing data sets,
the partitioning was organized so that no person was represented in both data
sets. Maintaining the 50/50 split in training and testing data shown in figure 16.

Figure 16: Alternative partitioning of data into training and testing sets.

• Altering the input tensor by removing the radar envelope data and using the IMU
data set before decimation, therefore containing higher sampling rate. While
using the original train/test separation shown in figure 15. The time windowing
process used the same window size and step length in respect to time.

• Altering the input tensor by removing IMU data and only train and test it using
radar envelopes. While using the original train/test separation.

3.3.2 CNN
The CNN features a 5 headed design where input tensors are separated based on what
is being measured and from what module it originates. This allows for feature extrac-
tion to be done on each head separately, it also enables simple modifications to the
architecture. Such as omitting specific sensor information in order to evaluate specific
parts of the systems performance. After the feature extraction is done, the resulting
features are put through max pooling and dropout layers. After this all heads were
combined into one tensor and flattened before being fed into the deep neural network
layers. The last layer possesses an amount of nodes equal to the amount of classes
the CNN attempts to classify. The final layer uses the softmax activation function, as
opposed to all previous layers utilizing the relu activation function.

23

Figure 17: Description of the CNN used to obtain results, activation functions are relu if not
specified otherwise. Shape corresponds to the shape of the output tensor.

24

All data obtained from IMUs were applied to identical feature extraction steps,
consisting of 2 convolutional layers defined by 32 nodes each and a kernel size of 2.
Feature extraction was continued by applying a max pooling layer of size 2 and final-
ized by a dropout layer using a rate of 0.9. The data originating from the radar module
used a feature extraction identical in structure but with separate parameters. The con-
volutional layers were consisting of 16 nodes each and using a kernel size of 20. The
max pooling layer was of size 6 and the dropout layer used the same rate as the other
heads of 0.9. After feature extraction all heads were flattened and concatenated into
a single tensor that was fed into the dense layers making up the deep neural network.
Each of the layers consisted of 128 nodes and the network was made up of four layers,
excluding the final output layer that was made up of 19 nodes. Training of the neural
network was done while shuffling the order in which the windows appear.

25

4 Results
The results will be presented in three parts, the first is going to focus on the perfor-
mance of the first CNN presented in figures 18 and 19 using decimated IMU data and
the radar envelope. The second part will focus on the performance while only using
the full IMU data without decimation. The third part will examine the performance of
the radar information alone. Each system’s performance was evaluated in two sepa-
rate evaluation methods, once for when each person is represented in both training and
testing data and once more for when every person is either represented in training or
testing data, not both.

All confusion matrices are normalized over true labels and the values represent
percentages. F1 score is calculated over each class. Each result was derived from
one training and testing event and accuracies should be compared to the chance level
0.0526.

26

4.1 Sensor fused data
The first method is presented in figure 18 using decimated IMU data combined with
radar data resulting in the following confusion matrices. The first was trained and
tested while every person was being represented in both data sets with separate record-
ings of the protocol. The second result organized the training test separated by indi-
vidual user id.

This confusion matrix describes performance of the sensor fused CNN. It is fol-
lowed by a table of performance metrics for every action it attempts to classify.

Figure 18: Confusion matrix describing performance of the sensor fused CNN.

27

Action Precision Recall F1
brush face 0.652336 0.572131 0.609607
button shirt 0.640000 0.652529 0.646204
comb hair 0.744186 0.742952 0.743568

drink from bottle 0.713568 0.910256 0.800000
dry hands 0.457746 0.215589 0.293123

eating with spoon 0.661157 0.655738 0.658436
open bottle 0.693374 0.734095 0.713154
phone call 0.967123 0.568438 0.716024

resting 0.800926 0.860697 0.829736
take medicine 0.614754 0.747508 0.674663

texting 0.588972 0.760518 0.663842
tooth brush 0.739726 0.722408 0.730964
tv remote 0.870674 0.773463 0.819195
tying knot 0.601246 0.634868 0.617600

type on keyboard 0.630542 0.427379 0.509453
use mouse 0.527068 0.854305 0.651927
wash hands 0.494253 0.654822 0.563319

wipe counter 0.979203 0.962521 0.970790
write on paper 0.770992 0.483254 0.594118

Macro Averages 0.691991 0.680709 0.673985

Table 3: Performance of each class for the sensor fused CNN.

28

The confusion matrix in figure 19 and table 4 describe the performance of the same
sensor fused CNN but trained and tested on separate individuals.

Figure 19: confusion matrix describing performance of the sensor fused CNN with alternative
train test separation.

29

Action Precision Recall F1
brush face 0.263662 0.763458 0.39196
button shirt 0.780488 0.156607 0.26087
comb hair 0.403761 0.602310 0.483444

drink from bottle 0.638191 0.832787 0.722617
dry hands 0.384615 0.271829 0.318533

eating with spoon 0.614754 0.120968 0.202156
open bottle 0.410793 0.604538 0.489180
phone call 0.920000 0.296296 0.448234

resting 0.610390 0.905297 0.729153
take medicine 0.286932 0.502488 0.365280

texting 0.577720 0.356230 0.440711
tooth brush 0.676647 0.366288 0.475289
tv remote 0.569767 0.782748 0.659489
tying knot 0.411647 0.340532 0.372727

type on keyboard 0.628627 0.540765 0.581395
use mouse 0.473214 0.524752 0.497653
wash hands 0.440273 0.215359 0.289238

wipe counter 0.822021 0.919056 0.867834
write on paper 0.914773 0.254344 0.398022

Macro Averages 0.569909 0.492455 0.473357

Table 4: Performance of each class for the sensor fused CNN with alternative train test separa-
tion.

30

4.2 High definition IMU data
This confusion matrix describes the performance of the CNN when excluding radar
data and using IMU data before decimation. The CNN was trained and tested while
every person was being represented in both data sets with separate recordings of the
protocol.

Figure 20: Confusion matrix of performance when using highly defined IMU data.

31

4.3 Radar Envelope Data
The confusion matrix describing the performance when using radar data exclusively.The
CNN was trained and tested while every person was being represented in both data sets
with separate recordings of the protocol.

Figure 21: Confusion matrix of performance when using radar data.

32

5 Discussion
The systems performed well compared to chance level, however it is far from perfect.
In the discussion I will further analyze the results and suggest improvements to the
system based on the findings.

The result produced by the first CNN architectures seen in figure 18 seems to yield
a good result, although not perfect. It shows that the system is indeed capable of
classifying many of the actions with reasonable accuracy. When examining the results
one can see that errors in classification are more likely for certain actions. One example
of this can be seen when the systems attempt to discern between the actions ”washing
hands” and ”drying hands”. The fact that these two classes are difficult to tell apart is
due to how similar they are, as both of these actions were performed by rubbing one’s
hands together while being held at roughly the same angle. It stands to reason that
similar actions are more likely to be confused for each other. Other examples of this can
be found in the ”type on keyboard” and ”use mouse” actions, in both of these actions
the arm is held in very similar positions. Another major reason for misclassifications is
likely the limited training data available. This lack of data provided by relatively few
subjects is very punishing since subjects vary in how they perform actions. Results
would probably improve if each subject performed the protocol many more times.
This assumption is supported by the drop in performance when rearranging the test
train separation. If the network gets to train on data more similar to the test data it
stands to reason that the result will improve. This does also suggest that a lack of
training data is at play. If more data produced by different subjects could be obtained
for training it is likely that this gap will close somewhat. For real world applications I
would argue that the preferential train test data separation is more relevant due to the
fact that a unique user’s data can easily be collected and used to train the system further
for that person’s way of performing actions.

It is sound to remind oneself of the limited size of the data set before making any
major deduction based on the results. My observations during the recording of the
protocols were that subjects varied greatly in the manner they executed actions. When
one person performs an action in a distinctive manner the risk of the system not being
able to learn this association is larger due to the lack of representation in the data set.
If the data set would have been larger and recorded on more individuals, the system
might have been better able to classify these cases that were previously outliers.

A high variability of results derived from training the same CNN architectures,
makes it difficult to present fair results for every architecture. The results presented
above were handpicked in an attempt to not present outliers in performance. Certain
outlier training’s of the first network were able to achieve accuracies of about 0.8, how-
ever these results are not reliably reproducible. This large variance in performances of
the same network suggest that implementing a K-fold cross validation method onto the
CNNs could provide more relevant results.

The 5-headed CNN design was chosen because it allows for easy modification
while keeping the other parts of the architecture consistent. There could be drawbacks
when extracting features from so many separate heads if relevant features require a
combination of inputs to be recognized.

In order to gain a greater understanding of the system, it is relevant to examine how
useful the information gained from the separate sensors are. In order to discern this
information I trained similar CNNs while omitting either IMU or radar envelope from
the input tensor. These variations aim to see if the system relies more on one type of

33

sensor data. The result of this can be seen in figures 20 and 21. A poor performance
of the method based on radar signals alone can readily be seen. While methods us-
ing exclusively IMU data can rival the performance of the full system. This implies
that further development should focus on how to make the radar provide more useful
information. This can be achieved by altering parameters for the radar envelope by
changing its range and resolution. I also suggest changing the operating mode of the
radar to other built in options such as presence detection. Another way of improving
the quality of the radar information could be to alter the RCS of the hand. This could
be done by attaching a material with beneficial properties when it comes to EM reflec-
tion. Attaching for example a piece of aluminum foil to the back of the hand would
drastically improve RCS providing a more defined feature, however it would likely
make the surface more prone to specular scattering. It is also worth mentioning that
the radar’s performance might be hampered by the protocol, due to certain tasks not
involving the relevant tools. The radar would in more life-like applications probably
provide some information on what is happening in front of the hand that could prove
useful when classifying actions.

Indeed the poor radar performance raises the question if the radar should even be
present in the system if it can not be improved, as its current implementation places
restrictions on other parts of the system that could prove more beneficial. Two of the
restrictions caused by the current implementation of the radar is the sampling rate and
complexity of the CNN training. The sampling rate was limited by the radar, so the
IMU data was decimated by a factor of 50. This could cause a loss of vital informa-
tion present in the original IMU data. An alternative option to decimation the IMU
data would be to interpolate the radar envelope, however this would severely raise the
computational complexity of training the CNN. In order to explore this further we can
look at figure 20 presenting the performance of a CNN trained exclusively on IMU
data before it was decimated, providing more detailed information to the system that
might contain features otherwise lost during decimation. The system could be further
improved by using more sophisticated preprocessing methods such as ”window warp-
ing” as presented in [14]. Where the sliding window is altered to allow for windows
to vary in the amount of time they represent, thereby allowing the CNN to explore
features that might have been overlooked when using a constant time scale.

34

References
[1] Socialstyrelsen, https://sdb.socialstyrelsen.se/if stroke/val.aspx, Accessed 2022-

10-17.

[2] Christopher & Dana Reeve Foundation, Stroke (Cerebral Vascular Acci-
dent (CVA) and Spinal Stroke), https://www.christopherreeve.org/living-with-
paralysis/health/causes-of-paralysis/stroke, Accessed 2022-10-17.

[3] Jiang Y, Song L, Zhang J, Song Y, Yan M. Multi-Category Gesture Recog-
nition Modeling Based on sEMG and IMU Signals. Sensors (14248220).
2022;22(15):5855-N.PAG. doi:10.3390/s22155855

[4] Zia ur Rehman M, Waris A, Gilani SO, Jochumsen M, Niazi IK, Jamil
M, Farina D, Kamavuako EN. Multiday EMG-Based Classification of
Hand Motions with Deep Learning Techniques. Sensors. 2018; 18(8):2497.
https://doi.org/10.3390/s18082497

[5] Bances, E., Karol, A.M.A., Schneider, U. (2022). LSTM and CNN Based
IMU Sensor Fusion Approach for Human Pose Identification in Man-
ual Handling Activities. In: Moreno, J.C., Masood, J., Schneider, U.,
Maufroy, C., Pons, J.L. (eds) Wearable Robotics: Challenges and Trends.
WeRob 2020. Biosystems Biorobotics, vol 27. Springer, Cham. https://doi-
org.ludwig.lub.lu.se/10.1007/978-3-030-69547-774

[6] Anatomystandard, www.anatomystandard.com,
https://creativecommons.org/licenses/by-nc/4.0/, Accessed 2022-09-30.

[7] SparkFun VR IMU Breakout - BNO080,
https://www.sparkfun.com/products/14686, https://creativecommons.org/licenses/by/2.0/,
Accessed 2022-09-30.

[8] Richards MA, Scheer J, Holm WA, Principles of Modern Radar, SciTech, pp 11-
18, 2010.

[9] Acconeer AB, Radar sensor introduction, https://acconeer-
python-exploration.readthedocs.io/en/latest/sensor_
introduction.html#radar-sensor-introduction, accessed
2022-05-22.

[10] Acconeer AB, XM112 – Pulsed Coherent Radar (PCR) Module Datasheet
v1.0, 2019-01-29 , https://developer.acconeer.com/download/
xm112-datasheet-pdf/.

[11] Sebastian Raschka, Vahid Mirjalili, Python Machine Learning : Machine Learn-
ing and Deep Learning with Python, Scikit-learn, and TensorFlow 2, Packt Pub-
lishing, 2019.

[12] Mattias Ohlsson, Patrik Edén, Lecture Notes on Introduction to Artificial Neural
Networks and Deep Learning, Lund University, 2020.

[13] Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press,
http://www.deeplearningbook.org, 2016.

35

https://acconeer-python-exploration.readthedocs.io/en/latest/sensor_ introduction.html#radar-sensor-introduction
https://acconeer-python-exploration.readthedocs.io/en/latest/sensor_ introduction.html#radar-sensor-introduction
https://acconeer-python-exploration.readthedocs.io/en/latest/sensor_ introduction.html#radar-sensor-introduction
https://developer.acconeer.com/download/xm112-datasheet-pdf/
https://developer.acconeer.com/download/xm112-datasheet-pdf/
http://www.deeplearningbook.org

[14] Le Guennec A, Malinowski S, Tavenard R. Data augmentation for time series
classification using convolutional neural networks. In: ECML/PKDD Workshop
on AALTD. 2016.

[15] L. Sadouk, ”CNN Approaches for Time Series Classification”, in Time Series
Analysis - Data, Methods, and Applications. London, United Kingdom: Inte-
chOpen, 2018.

36

	Introduction
	Background
	Upper limb functionality
	Inertial measurement unit
	Radar
	Radar cross section
	Radar envelope curve
	Acconeer radar module

	Machine learning
	Supervised machine learning
	Classification

	Artificial neural networks
	Perceptron
	Deep Feed Forward Network
	Convolutional Neural Networks
	Preprocessing

	Methodology
	Sensor configuration
	Implementation of the data acquisition system
	Sensor placement

	Protocol
	Neural Network
	Preprocessing
	CNN

	Results
	Sensor fused data
	High definition IMU data
	Radar Envelope Data

	Discussion

