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Abstract

Aiding farmers with their tremendous task of sustainably and cost-efficiently feed-

ing the world is of utmost importance. Information technology plays a crucial role

in supporting farmers and supplying them with accurate information about their

crops. The information gives farmers operative benefits, such as optimized timing

of fertilization and plant protection to name a few.

Satellite optical imagery from Sentinel-2 satellites has been used to predict

harvest but is severely hampered by cloud cover, which is not the case for Synthetic

Aperture Radar (SAR) backscatter from Sentinel-1 satellites. In our thesis, we

used primarily Sentinel-1 satellite data and additional weather, topography, and

elevation data to predict the winter wheat harvest on selected fields in Sk̊ane,

a region in Southern Sweden. We compared the performance of two machine

learning models: Light Gradient-Boosting Machines (LGBM) and Feedforward

Neural Networks.

Our results show that Sentinel-1 data contains valuable information for winter

wheat harvest prediction, and can achieve a top RMSE of 0.74 tonnes per hectare

using all data and LGBM. We tested different resolutions of the harvest data

grid. To our surprise, the lower-resolution grid outperforms the higher-resolution

grid. Furthermore, we tested if transfer learning between years were possible. In

general, we could not achieve transfer learning, as the harvest data distribution

varied greatly for each season.

Further work is needed to investigate why the lower-resolution grid outper-

formed the higher-resolution grid and to model the varying harvest distribution.

Moreover, the combination of both Sentinel-1 and Sentinel-2 data might lead to

better results, since it is possible that Sentinel-1 backscatter contains information

that can not be derived from Sentinel-2 optical imagery and vice versa.

Keywords: Precision Agriculture, Sentinel-1 SAR, Machine Learning, Winter Wheat,

Harvest Prediction, RFI-filtering, Despeckling
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Chapter 1

Introduction

Aiding farmers with their tremendous task of feeding the world is of utmost im-

portance. To feed all of mankind we need more food, whilst at the same time, we

need to preserve our ecosystems. To produce more food without any new inno-

vation, farmers need to cultivate larger and larger areas of land, which comes at

the expense of the planet’s ecosystems and their wallets. Information technology

can aid in this issue. Supplying accurate information to farmers may lead to an

increase in efficiency. With higher efficiency, the farmers can achieve larger har-

vests, potentially using fewer resources and lowering the costs of their operations.

This may free up land for preservation and make food more affordable - helping

both the Earth and mankind.

In modern-day society machine learning (ML) and data are omnipresent, and

can be used for different ends. There are several positive applications of ML, for

example predicting protein folding [5], self-driving cars [2], and cancer prognosis

[25] to name a few. ML can, however, also be used for morally questionable activ-

ities, such as surveillance of citizens [51]. Data can be used to build vast fortunes

by financial modeling of the stock market [18] or better performing ads fueling

consumption [14]. We believe that with great power comes great responsibility1

and that the great power gained by ML and data should be used for meaningful

ends.

We will investigate the possibilities of using ML models to predict winter wheat

harvest on fields in the region of Sk̊ane, Sweden. Why is this important? To put

it simply, with accurate information farmers can make well-informed decisions for

effective operations [36]. With ML models, a farmer might be able to use fewer

pesticides and less fertilizer and still be able to achieve a larger harvest than

without it. With ML models, a farmer might be able to achieve a larger harvest

using less land, leading to less energy used by machinery and freeing up land for

1Made famous by the great comic author Stanley Lieber.
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1.1. GOALS & RESEARCH QUESTIONS CHAPTER 1. INTRODUCTION

the regrowth of natural habitat [24].

Now that we understand what we need and why, how do we create the ML

models? We need the aforementioned - data. A multitude of data will be used to

train the ML models, with the primary data coming from Sentinel-1 backscatter

and harvest data from the fields. Our thesis will leverage ML and data to build

models which, hopefully, will be able to accurately help farmers with their oper-

ations. The concept of using ML and data to help farmers is part of precision

agriculture.

1.1 Goals & Research Questions

The main goal of this thesis was to investigate the possibility of using radar

backscatter from Sentinel-1 satellites for harvest prediction on winter wheat fields

in Sk̊ane, a region in Southern Sweden. To be able to reach the main goal, several

sub-goals were set:

• Pre-processing of the Sentinel-1, weather, topology and elevation data

• Georeferencing satellite data with local harvest data from fields

• Extensive coding to facilitate the thesis, e.g. downloading satellite data,

running evaluation of models, etc.

From the main goal, several research questions were sparked, such as:

• How do different ML models affect performance?

• What is the effect of computed indices of satellite bands?

• How do weather data, topology classification, and elevation data affect the

performance?

• Are models trained with data from one year able to predict another year’s

harvest?

1.2 Division of Work

In general, the coding was carried out in tandem, frequently pair programming.

If not stated otherwise, equal collaborative effort can be assumed with all parts

of the code. We had some separation of responsibility, with Christoffer focusing

on despeckling of Sentinel-1 data, radio frequency interference filtering, weather

data handling, topology data, and elevation data whilst Oliver focused on data set

10



CHAPTER 1. INTRODUCTION 1.2. DIVISION OF WORK

creation, model building, and experiments. However, individual responsibilities

should not imply complete isolation, as we frequently offered a lending hand when

individual progress haltered.

In general, the report was written as a team with all parts being thoroughly

discussed and reviewed. If not stated otherwise, equal collaborative effort can

be assumed with all parts of the report. Some separation of the writing process

was done. Christoffer had mainly the responsibility of writing about precision

agriculture in the Background. For the Methodology, he was the main author

of despeckling, radio frequency interference filtering, light gradient boosting ma-

chines, and transfer learning. Further, he was the main writer of all parts of the

Discussion and Conclusion. Oliver was the main writer responsible for writing the

Abstract and Introduction. In the Background, he had the main responsibility

of Sentinel-1, machine learning, related work, and scientific contribution. In the

Methodology, his main responsibility was Sentinel-1 data (excluding despeckling

and radio metric interference), sampling, feedforward neural networks, metrics,

and k-fold cross-validation. The Result section was mainly his responsibility, pro-

viding all figures and tables and writing most of the text. Similarly to the coding,

individual responsibilities should not imply complete isolation, as we frequently

offered a lending hand to review and discuss the content of each other’s sections.

11
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Chapter 2

Background

In this chapter, we will introduce several topics relevant to the thesis. We will

start by presenting precision agriculture and then a more thorough presentation

of Sentinel-1. We will also mention briefly machine learning, free and open-source

software, and Alvis. Finally, we will discuss related work and our scientific contri-

bution.

2.1 Precision Agriculture

Precision agriculture is the practice of using science and technology to improve

farming in order to achieve the best outcome possible [27]. More precisely, this

means that we want to maximize yield while sustaining the long-term health of

the soil and having the smallest possible impact on the environment. This is done

by using technology to collect information about the local variations within fields

to adapt the use of fertilizers, seeds, crop nutrients, plant protection, etc. [48].

Most of the modern precision agriculture practices can be divided into the

following three phases [30].

1. Data collection

2. Data analysis

3. Operational application

In the first phase of data collection, a variety of methods can be employed

depending on the specific application. Some common techniques include taking

soil samples, using unmanned aerial vehicles (UAVs) equipped with remote sensing

devices, and using modern farming machinery such as combine harvesters to collect

data about local variations in yield.

13



2.2. THE SENTINEL-1 MISSION CHAPTER 2. BACKGROUND

The second phase, data analysis commonly consists of employing a mathemati-

cal model, e.g. a machine learning model, to understand what the data says about

the field. Our work mainly contributes to this phase of precision agriculture.

The third phase, the operational application consists of using the obtained

knowledge about the field in order to improve the yield, minimize the environmen-

tal impact, or simply save money by only using products such as fertilizer where

it is needed.

2.1.1 Harvest Data

For this project, we have received harvest data for winter wheat fields in Sk̊ane.

The data was collected with combine harvesters1 in the years 2017, 2018, 2019,

and 2020 during the harvest season. The data was preprocessed and resampled

into a format suitable for machine learning before being sent to us. The specifics

of the harvest data are described later (Section 3.2).

2.2 The Sentinel-1 Mission

The Sentinel-1 mission is the European Radar Observatory for the joint Coperni-

cus initiative and aims to provide a constellation of two polar-orbiting satellites2,

which will operate day and night performing C-band Synthetic Aperture Radar

(SAR) enabling imaging of the Earth’s surface regardless of the weather. The two

organizations responsible for this initiative are the European Commission (EC) and

the European Space Agency (ESA). The mission has several objectives including a

variety of different applications, such as land monitoring of forests, water, soil, and

agriculture [50, 24, 36]. The polar orbit of the satellites results in higher revisit

frequencies further away from the equator, e.g Sweden compared to Kenya.

2.2.1 C-Band SAR With Dual Polarization

The satellites use a single C-band SAR instrument operating with a center fre-

quency of 5.405 GHz and dual polarization [50]. C-band radar is radar using the

frequency ranges 4.0 to 8.0 GHz and is the portion of the electromagnetic spec-

trum allocated for commercial telecommunications via satellites, designated by the

Institute of Electrical and Electronics Engineers (IEEE) [45]. SAR is an imaging

radar commonly found on moving platforms, such as air crafts or satellites, which

1A great video showing how combine harvesters work can be seen here: Smarter Every Day:
Farmers are Geniuses

2Unfortunately, Sentinel-1B has been out of service since December 2021 due to a power
supply malfunction and therefore the data may be limited after the disruption [42].
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CHAPTER 2. BACKGROUND 2.2. THE SENTINEL-1 MISSION

Figure 2.1: Sentinel-1 acquisition modes. As one can see there are different types
of swaths that may be used for different applications. Retrieved from [50]

is able to produce high-resolution imagery with relatively small physical anten-

nas. SAR works by transmitting a series of microwave signals and recording the

backscatter from the Earth’s surface [29]. Normally, to achieve high-resolution

imagery a large aperture antenna is required for stationary radars. However, with

a small and moving antenna successive recorded radar echoes may be processed

and combined, giving the effect of a larger synthetic antenna aperture (hence the

name) [45]. An advantage of SAR radar compared to optical imagery is the ability

to operate regardless of weather conditions. Satellites using optical imagery are

greatly impaired by clouds covering the target area [1]. The two polarization of

the radars are horizontal (H) or vertical (V), and relates to the polarization of

the transmitted or received signal. Different targets on the Earth’s surface have

distinct polarization signatures. The signatures reflect different polarization with

different intensities of the target. For example, forest canopy backscatters have

different polarization properties than sea surface backscatters [50].

15



2.2. THE SENTINEL-1 MISSION CHAPTER 2. BACKGROUND

Figure 2.2: Level-1 processing chart of SAR data. Level-1 processing level is the
main level for end users. Retrieved from [50]

2.2.2 Acquisition Modes & Product Levels

Sentinel-1 satellites have four acquisition modes with Interferometric Wide (IW)

swath being the main acquisition mode over land (Fig. 2.1) and three different

product levels with Level-1 being the most commonly used for end users [50]. IW

mode supports VH and VV polarization with the highest resolution of 10.0 m [42].

However, the lowest resolution we managed to download from Sentinel Hub was

11.0 m. According to ESA, IW swath is the recommended main operational mode

because it avoids conflicts, preserves revisit performance, decreases operational

costs, and builds up a consistent long-term archive of data [50]. The three product

levels are Level-0, Level-1, and Level-2, and relate to how much processing has

been applied to the raw backscatter. Level-0 product contains raw, compressed,

and unfocused SAR data, and is the basis for the other levels. Level-1 is the main

data intended for users and is the level we used. It contains several processing

steps, as seen in Fig. 2.2. We used the Ground Range Detected (GRD) product,

which contains the detected amplitude from the SAR data and uses multi-looked

to reduce the impact of speckling. The SAR backscatter can be visualized as an

image, see Fig. 2.3. At the Level-1 product stage with orthorectification and

radiometric calibration, the images are noisy and need further processing. Level-2

product is based on Level-1 product and consists mainly of geolocated geophysical

products, such as Ocean Wind field [50].

2.2.3 Orthorectification & Radiometric Calibration

Additional processing of the Level-1 product such as orthorectification and radio-

metric calibration is needed for the SAR data to be able to measure true distance

in the imagery and to convert digital numbers into physical units [47]. The process

16



CHAPTER 2. BACKGROUND 2.3. MACHINE LEARNING

Figure 2.3: Level-1 SAR backscatter, VH (left), and VV polarization (right), with
orthorectification and radiometric calibration. The bands have different intensity
distributions which is why VH appears much brighter than VV.

of orthorectified satellite imagery is to correct the imagery for topographic relief,

camera tilt, and lens distortion. Furthermore, a Digital Elevation Model is used

as a 3D representation of the terrain’s surface [42]. The result is imagery that can

measure true distances.

2.2.4 Radio Frequency Interference

Sentinel-1 operates in the C-band where radio waves from other applications, e.g.

missile guidance, can interfere with the originally transmitted signal from the

satellite, causing radio frequency interference (RFI) [29]. An example of how RFI

typically looks in the resulting backscatter can be seen in Fig. 2.4. Separating the

part of the backscatter with RFI can be difficult, due to the values not being NaN

or infinity. There are several proposed algorithms for detecting RFI for Sentinel-1

data [29]. Although the algorithms are publicly available, implementing them from

scratch is not trivial. There is an alternative way of downloading Sentinel-1 data,

using the Sentinel-1 Toolbox [50], where the data will be annotated with a flag if

it contains RFI. The toolbox is significantly more difficult to use compared to the

eo-learn python package [9], which we used to download the Sentinel-1 data.

2.3 Machine Learning

Machine Learning (ML) can be seen as a form of applied statistics with an increased

focus on the use of computers (machines) to statistically estimate (learning) com-

plicated functions and a decreased focus on providing confidence intervals for these

17



2.3. MACHINE LEARNING CHAPTER 2. BACKGROUND

Figure 2.4: An example of Sentinel-1 data being affected with RFI, see VV band
(right)

functions [13]. ML is a field of study within AI, and in general, when speaking

about ML one tends to mean specific ML models or algorithms. A model is a

description of a system using mathematical concepts and language. A learning

algorithm is a process able to learn parameters of the model from data [13]. The

learning process is often referred to as training of the model, and we will use the

terms interchangeably.

A formal concise definition of learning is given by Mitchell [34]:

A computer program is said to learn from experience E with respect to

some class of tasks T and performance measure P, if its performance

at tasks in T, as measured by P, improves with experience E.

A classical example, using the definition above, is the task of classifying hand-

written digits. The performance measure can be the percentage of correct answers.

The model (computer program) can be trained with experience from the MNIST

data set [6]. The data set is divided into two parts: the handwritten digits stored

as digital images (input data) and a label annotating what number the input is

(ground truth).

In our thesis, the task is harvest prediction on winter wheat from fields in

Sk̊ane. The performance measures will be the root mean squared error, accuracy,

and F1-score. There will be two main algorithms trained with supervised data

(experience): Sentinel-1 radar backscatter, a multitude of weather-related data,

topology classification of the terrain, and elevation data (input data); measure-

ments of coordinate-wise average harvest in tonnes per hectare from the fields

(ground truth).

18
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2.4 Free & Open Source Software

This thesis would not be possible without free and open-source software, which

we have used extensively. The main projects we would like to highlight and thank

are:

• Python [16]

• Numpy [52]

• Pandas [53]

• Matplotlib [20]

• Tensorflow [15]

• Keras [11]

• Project Jupyter [10]

• LightGBM [31]

• QGIS [12]

• Open OnDemand [17]

2.5 Alvis

We were granted access to the Alvis cluster at Chalmers University of Technology

[37] for this project. The cluster is used for ML and AI research, and consists

of several compute nodes with powerful and expensive graphical processing unit

(GPU) accelerator cards. We had many computationally heavy tasks, such as

self-supervised despeckling and model training, which would not be viable to per-

form at this scale on our own machines due to memory and computational power

limitations.

2.6 Related Work & Scientific Contribution

In this part, we will present work related to our thesis and how we contribute to

science by adding to the authors’ work. We will start by presenting a larger study

in the Netherlands where they used Sentinel-1 to monitor several crops. Then,

we will present a study done in Sk̊ane where they used Sentinel-2 optical imagery

to predict the harvest of winter wheat. Finally, a study from Lebanon will be

presented, which used Sentinel-1 to monitor winter wheat.
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2.6. RELATED WORK & SCIENTIFIC CONTRIBUTION CHAPTER 2. BACKGROUND

2.6.1 Crop Monitoring in the Netherlands Using

Sentinel-1

In a case study from the Netherlands, Sentinel-1 data was used to monitor the

characteristics of sugar beet, potato, maize, wheat, and English ryegrass [24]. The

monitored characteristics of the crops were the phenological stage, height, and

key dates of interest. Comparing the time series of the radar backscatter with

hydrometeorological data and field measurements, it was shown that Sentinel-

1 data reflect moisture and structural changes associated with the phenological

development of the crops during the growing season.

This study shows the tremendous potential of using Sentinel-1 data for crop

monitoring and is a fundamental part of the science which this thesis builds upon.

There are several similarities between this study and our thesis. We will also use

Sentinel-1 data to get information about crops. The key difference is that we aim

to predict crop characteristics (harvest can be viewed as a characteristic), instead

of monitoring. This fundamentally changes the purpose of the Sentinel-1 data.

In their study, they show that there exists a signal in the radar backscatter, by

comparing the data with actual ground measurements and hydrometeorological

data. Our goal is to leverage the signal in the Sentinel-1 data and combine it with

other data to train ML models to predict the harvest.

2.6.2 Winter Wheat Prediction in Southern Sweden Using

Sentinel-2

In a study from Sk̊ane, Sweden, Sentinel-2 satellite imagery combined with local

weather data, national soil databases, and local field data was used to train a Light

Gradient Boosting Machine able to predict winter wheat yield with an accuracy3

of 82 % [1]. The study presents several challenges of working with satellite data

combined with other data where spatial and temporal scales differ. For example,

combining satellite data which is continuous in space with soil measurements which

are heterogeneous in space. Furthermore, the authors present one downside of

using Sentinel-2 optical imagery - its dependence on cloud-free conditions to not

block the imagery.

The study shows that harvest prediction on winter wheat in the Southern area

of Sweden is possible. A benefit of this thesis is that we will get data from the

same source as the authors of the study and from the same area of Sweden. We

will build upon this research by using Sentinel-1 data, which does not suffer from

3Other metrics for regression were also reported by the authors. However, these are from
training and not testing of the models, and as such, not comparable with the errors we present
as they come exclusively from testing.
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cloudy conditions. Another addition to the study is the use of the topological

classification of the fields. Finally, we will also test a Feedforward Neural Network

model and compare it with the model they used.

2.6.3 Winter Wheat Phenology Monitoring Using

Sentinel-1

The ability to use Sentinel-1 data to detect important winter wheat phenological

phases and harvest was thoroughly investigated in a study from Lebanon [36].

Temporal variations of the Sentinel-1 backscatter were analyzed as a function

of phenological phases’ (germination, heading, and soft dough) and harvesting

dates, and it was shown that the variations of the Sentinel-1 data could be used to

estimate the dates of these important phases. The authors thoroughly investigated

how the different polarization (VH, VV) and the ratio VV/VH with different

incidence angles could be used to predict the important dates. It was shown that

different signals of the backscatter were more efficient for certain tasks, e.g. the

ratio VV/VH was shown to be the best predictor of the germination and harvesting

phase.

The authors speak at length about the importance of these dates for the farm-

ers, as phenological phases may require interventions by farmers and decision-

makers. Interventions include irrigation, fertilization, pesticide application, and

yield handling. Mapping the dates correctly in a real-time setting can lead to

farmers being able to perform the interventions at the correct time. For example,

applying irrigation past the appropriate time window may lead to increased fungal

diseases. The dates are also important from a crop modeling perspective. For

example, the germination phase is a critical phase for the farmers, as this date

is the starting point for the growing degree days accumulation in crop simulation

models (used to estimate the season’s production outputs).

The study is of great value to us, as its main focus is the same crop we aim to

analyze. Furthermore, the usage of IW swath Sentinel-1 GRD data is the same as

we will use. Similarly to the study from the Netherlands [24], a difference between

our thesis and their study is that our aim is not to monitor the crop but to predict

harvest using ML models trained with Sentinel-1 data combined with other data.

Another key difference is that our study is done in Sweden, which has a different

climate compared to Lebanon.
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Chapter 3

Methodology

This chapter describes how all data was obtained, how it was preprocessed, and

how it was used to construct data sets for the machine learning models. Further-

more, we also describe our models, metrics, and features in the final data sets. We

collected the most important parts of our methods in a GitHub repository [49].

3.1 Sentinel-1 Data

The Sentinel-1 data was captured with acquisition mode IW swath, Level-1 prod-

uct, GRD, resolution 11 × 11 m2, with added orthorectification, and radiometric

calibration over fields in Sk̊ane (Fig. 3.2) for the years of interest and main time

period. The years of interest were 2017, 2018, 2019, and 2020 and the main time

period was April 1st until July 31st (see Fig. 3.1). We selected the years because

of the availability of data from the fields (i.e. measured harvest). We selected

the main time period due to previous work on winter wheat harvest prediction

from Sk̊ane [1], where they show that the main time period contains the growing

dynamics of winter wheat, see Fig. 3.3. For the main time period, we got 2-3

samples of Sentinel-1 data per week. To build our data sets, the first sample with

defined values for the VH and VV band, i.e. the intensities not being NaN, was

picked for a given week.

Our downloaded Sentinel-1 data was a time series of VH and VV backscat-

ter for each year over the main time period, with around 2-3 days between each

backscatter. The backscatter can be viewed as images, where each pixel value

relates to the 11 × 11 m2 backscatter intensity for a part of the Earth’s surface,

see Fig. 2.3.
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Figure 3.1: The Sentinel-1 and weather data was collected from the first of April
until last July. The end date is about a month before the harvest which occurs in
mid-September. The data collected had a higher resolution in time than one week,
and as such, it was resampled into weekly samples. For Sentinel-1, this was done
by selecting one day for the whole week, and for weather, the daily measurements
were either averaged or accumulated.

Figure 3.2: A geographical overview of the data. The left figure shows the field
points and the figure to the right shows the patches of Sentinel-1 data. The patches
used are highlighted in green and covered all the field data. As the field data was
in a coordinate grid, extra steps were needed to get the corresponding VH and VV
backscatter from the larger patch, which also contained backscatter from outside
of the fields.

Figure 3.3: The normalized difference vegetation index from [1], showing the in-
crease in the vegetation of winter wheat starting in April until the end of July.

24



CHAPTER 3. METHODOLOGY 3.1. SENTINEL-1 DATA

3.1.1 Derivatives of VH & VV

To help the ML models perform better, feature engineering was performed to create

derivative features based on the VH and VV data. These derivatives, referred to

by us as indices, were computed by simple mathematical operations. The simplest

was the ratios, which simply was VH/VV and vice versa. The other indices were

slightly more complex:

RVI =
V H

V H + V V
(3.1)

M-RVI =
V V

V H + V V
(3.2)

MI0 =
V H − V V

V H + V V
(3.3)

MI1 =
V H − V V

V H
(3.4)

It should be noted that there were no divide-by-zero issues with any of the

indices, as after despeckling with SAR2SAR (see Section 3.1.2) all VH and VV

values were larger than 0 or NaN.

3.1.2 Despeckling

The benefit of SAR satellites’ ability to penetrate clouds and operate day and night

does not come without drawbacks. SAR data is frequently corrupted by speckle

noise which must be dealt with before it is interpreted by any human or model.

Speckle noise is caused by a physical limitation of SAR satellites, occurring when

the radar is tasked with summing different elementary incoherent scattered radio

waves from within a single-resolution cell.

What makes speckle noise extra tricky to work with when compared to most

other noise is the fact that it is multiplicative noise, meaning that the speckle

noise u is modeled as multiplication with the underlying reflectivity v resulting in

a final intensity w = vu. This makes simpler noise reduction methods unusable

since they usually model additive noise.

There exist traditional methods for speckle filtering, such as Gaussian filters,

median filters, or Lee filters. The problem with these filters is that they distort

the data such that information is lost. Frequently, filtering these images leads to

excessive blurriness or introduces other unwanted distortions and artifacts.

Recently, an ML approach for despeckling SAR data called SAR2SAR was

developed [3]. The method is an extension of an earlier but also recently proposed

idea called Noise2Noise [28]. These methods enable the restoration of noisy data
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Figure 3.4: Intensity input distribution for one of the provided example images
which came with the SAR2SAR repository

without ever having access to any clean examples. This is possible through the

use of self-supervised learning. In rough terms, SAR2SAR learns to despeckle an

image x by distorting it with additional synthetic speckle noise to create two new

images y1, y2 such that y1 = f1(x), y2 = f2(x). The model then uses these new

images to train a U-Net despeckling network using y1 as input and y2 as the label

(ground truth). Since they are the same image with different amounts of noise,

the network learns to remove speckle noise.

Given that we have access to many noisy examples of Sentinel-1 SAR data, but

no clean data, this method suited our needs perfectly. Since we lacked the time

to train a SAR2SAR model using data Sentinel-1 data from Sk̊ane, we decided to

use the pre-trained model provided by the SAR2SAR team [8]. Before we could

do this we had to adapt our data to fit the model. Luckily for us, the SAR2SAR

team provided examples of input images to the model. We decided to look at the

intensity distribution of the examples (see Fig. 3.4) and construct a transformation

that would map our data to have a similar intensity distribution. The transform

we came up with to transform each pixel x in a backscatter X from Sentinel-1 was

T (x, p) =

20 logb(50 · 2x+ 2) if p = V H

20 logb(50 · 10x+ 2) if p = V V
∀x ∈ X , b ∈ [1.5, 2]

The ”magic numbers” in this expression were there for a specific purpose. Firstly,

we did not want to compute the logarithm of zero, and we also did not want

pixels to be less than or equal to 0 after the transform. This would have made

later processing more difficult and tedious, so we added a constant of 2 to the
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expression to avoid these situations. Secondly, we needed to scale the VH and

VV bands separately because they had different ranges, excluding outliers. These

ranges were approximately VH ∈ [0, 0.5] and VV ∈ [0, 0.1], so we scaled VH by 2

and VV by 10 to give them both an approximate range of [0, 1].

The scaling numbers 50, 20, and the log base b = 1.8 were found by experi-

mentation where the goal was to construct an intensity distribution similar to the

intensity distribution of the provided example images. We noted that the whole

interval b ∈ [1.5, 2] yielded good despeckling. We confirmed the transformation by

assuring that we had a good despeckling effect in the output and by plotting the

distributions for some examples. Furthermore, we also tested and compared the

performance of our ML models with and without despeckling and regularly saw

an increase of about 5-15 % in accuracy and F1-score when using the despeckled

data.

See Fig. 3.5 which shows how this transformation affected the intensity distri-

bution of the VH and VV bands. The results from despeckling with SAR2SAR

were significant, see Fig. 3.6 for examples of this.

27



3.1. SENTINEL-1 DATA CHAPTER 3. METHODOLOGY

Figure 3.5: The effect of the transformation T (x, p) on the intensity distributions.
The left column is the distribution of the raw data while the right column is
the distribution of the transformed data. Note that the scales shift significantly.
Also, note that the mean is slightly higher than the example distribution (Fig.
3.4). However, since we had good despeckling results when using these images we
decided that we could ignore this.

28



CHAPTER 3. METHODOLOGY 3.1. SENTINEL-1 DATA

Figure 3.6: The results of despeckling with SAR2SAR for both bands. Some
sharpness is lost in the process, but compared to traditional methods, this is a
huge improvement.
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3.1.3 Filtering RFI

As an optional extra step of preprocessing Sentinel-1 data, we wanted to see if we

could remove some of the RFI which can be seen in Fig. 2.4. The RFI varies a lot

in intensity, density, and size as can be seen in Fig. 3.7.

Ideally, we would probably like to both detect and filter the RFI with an ML

model on its own, but this solution is outside of the scope of this thesis and we

decided to use a much simpler method based on morphology. The core idea of

our method is that the RFI vanishes when an image is averaged over several time

steps. We detect the RFI XRFI
t by computing the difference between a current

image Xt and its average over time Xmean such that

XRFI
t = |Xt −Xmean| =

∣∣∣∣∣Xt −
∑

t0≤t≤t1

Xt

∣∣∣∣∣
where 0 ≤ t0 ≤ t1 ≤ T, I = t1 − t0.

where T is the final time step and I a sampling interval size. We have some

edge cases when choosing t0 and t1 at the start and the end of the time series. We

deal with these cases by averaging more forward or more back in time as needed

from the current image Xt to maintain the interval length I. The resulting image

XRFI
t contains most of the RFI in Xt if it had any. We can then remove it from Xt

with the help of morphology. The pseudocode for the full algorithm can be seen in

Alg. 1. The morphology filter sizes and thresholds found in the pseudocode were

found by trial and error in every step of the process until sufficiently good results

were achieved. Fig. 3.8 shows the effect of the RFI-filter on the data.

Algorithm 1 RFI Filter

X ← Load Images()
for t ∈ [0, ..., T ] do

Xt ← X(t)
Xmean ← Compute Mean(t,X)
XRFI ← |Xt −Xmean|
Xtresh ← XRFI > Noise threshold
Xeroded ← Erode(Xtresh)
Xlabel ← Label connected regions in Xeroded

Outlier labels← Area(Xlabel) > Area threshold
XOutlier ← Merge outliers into single binary image
XOutlier = Dilate(XOutlier)
XFinal ← X(XOutlier) = NaN
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Figure 3.7: Examples of RFI noise in the VV band (which contains most of the
noise). Notice how the RFI varies in intensity, density and size. Some images have
large areas covered by low-density noise while others have small areas covered by
high-density noise and so on. This makes it hard to find a single method that
captures all variations of RFI.
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Figure 3.8: The effect of the RFI filter on the dataset. The top row depicts a good
example. While one spot was not detected, it still removed the worst regions with
quite good precision. The second row depicts the worst example we could find,
where the filter removes a lot of data that has no visible RFI at all. Fortunately,
we could only find a single case of this happening at this scale. Usually, the filter
only removes RFI while sometimes missing a spot. It rarely removes good data.
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3.1.4 Visualization

Time series over an area of interest can easily be visualized with plots, revealing

important information about the data. From our field data, the coordinates of

the fields (Fig. 3.12) were known, and therefore visualization of only VH and VV

from the fields was possible. This was done by picking the VH and VV values

for the coordinates and their 1-distance neighbors. VH and VV values outside

the fields, e.g. of a city, could therefore be filtered away and were not part of the

visualization, see Fig. 3.10 and Fig. 3.11. The figures show the result of the mean

of all VH and VV on fields for a certain patch. The discontinuity of the curve in

the plots comes from the fact that we have a lot of NaN values in our data. Fig.

3.9 depicts what the NaN values look like in the satellite data.

We refer to a time series of VH and VV data as a patch. Some patches do not

have the problem with periodically reoccurring NaN values (see Fig. 3.10 while

others do (see Fig. 3.11). We believe that the cause of these NaN values comes

from the patch only partially being contained inside a common Sentinel-1 orbit

operational range.

The good patches (78 and 117) do not have the problem of reoccurring NaN

values. Fig. 3.10 shows a time series for fields within patch 117 where we can see a

clear downward trend in the VH band from April until the middle of May followed

by a clear upward trend until the end of the time period. For the VV band, there

is a small upward trend for the whole time period. VH seems to have a higher

variance and range of values in general.

The Bad patches (42, 43, and 79) contain more missing values, leading to a

discontinuity in the curves, see Fig. 3.11. The cause of these gaps was that for a

certain date all VH or VV values on the fields were NaN. The general trend for

VH and VV seemed to be similar to the good patches.

Effect on ML Models

Ideally, all patches would look similar to the good patches, with low amounts of

discontinuity. However, the bad patches do not necessarily have a large impact

on our ML models. For each given coordinate of measured harvest, we created

a feature vector containing the VH and VV data (also potential indices based on

VH and VV) from one date in each week. Because only one VH and VV sample

was needed for a week, we tended to be able to find one such date for all patches

where the values of VH and VV existed. As such, the missing values in patches

did not impair our ability to create large data sets and therefore we believe the

effects were limited. Furthermore, the general trends seemed to align between the

good and bad patches, which further supports our belief.
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Figure 3.9: The data contains a lot of time steps which consist mostly of NaN
values. Since the data which is not NaN was fine we suspect that this comes
from the fact that the satellite can not always cover the full area we requested
to download on every orbit, but Sentinel Hub still sends us whatever data was
available.
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Figure 3.10: This figure shows how the mean of all VH and VV values on fields
from patch 117 (see Fig. 3.2) vary from the start of April to the end of July 2019.
For the VH band on this patch, there seems to be a downward trend from April
to the middle of May, where it then turns into an upward trend until the later
dates of July. There seems to be a slight upwards trend for VV with low variance
and occasional spikes over the time period. In an ideal situation, all other patches
should have similar continuous plots but this was only true for patch 78. For the
other patches, this was not the case (see Fig. 3.11) and several patches had dates
where fields VH and VV values were all NaN.
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Figure 3.11: This figure shows how the mean of all VH and VV values on fields
from patch 43 (see figure 3.2) vary from the start of April to the end of July 2019.
As in figure 3.10, we see a downward and upward trend in the VH band and an
upward trend for the VV band. The discontinuity in plots is caused by the patch
having only NaN values over the fields. This problem was seen over all the years,
and also occurred for patches 42 and 79.
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Figure 3.12: Example section of the harvest data grid when viewed in Qgis. Note
that the points only cover fields and not any unnecessary regions

3.2 Harvest Data

The raw harvest data is gathered by combine harvesters1 and can be thought of

as discrete data points in space and time which measure the harvest in tonnes

per hectare. Using the raw data points directly is not coveted, due to issues of

uneven distribution, overlap, duplicated data points, and other issues. To deal

with this, T-kartor has supplied us with two2 coordinate-based grids containing

the summarized harvest data for an area. Each grid summarizes the harvest within

grid blocks with areas of 50×50 m2 or 22×22 m2 (see Fig. 3.12). The summarizing

in each grid block is done by averaging the data points within a 25 m or 11 m radius

of the center coordinate, resulting in the average data point harvest (tonnes per

hectare) for this area (see Fig. 3.13). The grid coordinates establish the foundation

for our data sets. All data coming from other sources are sampled based on these

points. This makes the sampling process easy and by design, gives us a way to

control data leakage.

The amount of harvest data varies over the year. Fig. 3.14 shows how much

data we have for each given year and resolution. Notice the large increase in data

when using the 22 m grid compared to the 50 m grid (more than 4x).

1A video showing how combine harvesters coordinate-wise approximate the yield can be seen
here: Smarter Every Day: Farmers are Geniuses

2Late into the thesis, we also got a 12× 12 m2 grid structure and the results for this grid are
informally shown in the Appendix.
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Figure 3.13: Illustration of the unevenly distributed points in the raw harvest data
and how it was resampled into a 50× 50 m2 grid.

Figure 3.14: Data set size for each year with the 50 and 22 m grids.
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3.3 Weather Data

We were granted access to an API for fetching weather data made by Niftitech.

The API allows us to access a database with historical weather data collected from

weather stations all over Sweden, Fig. 3.15 shows these weather stations in Sk̊ane.

The database is a collection of 4 public databases called Lantmet, Trafikverket,

Fieldsense, and partly SMHI.

To use the API we have to provide it with a coordinate, a time period, weather

metrics, and a maximum allowed sampling radius. The API then looks up all

weather stations within the allowed search radius and sends us the averaged data

collected at these stations divided into daily buckets, such that we get the mean

or accumulated sum of the metric for each day within the given time period. The

weather metrics we decided to use were.

• Temperature

• Solar radiation intensity

• Precipitation

• Wind speed

• Humidity percentage

Since the density of the weather stations is much smaller than our harvest data,

we thought that it was unnecessary to fetch weather data for each individual point

since nearby points will use data from the same weather station and thus have

identical weather data. Hence, to simplify the process, we only fetched data for

the mean coordinate of each field and then later assigned each point within a field

the same weather data. Finally, since we do the machine learning on a weekly

timescale we decided to resample the daily weather data into weekly weather data

to fit with the rest of our data set (see Fig. 3.1).
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Figure 3.15: Positions of the weather stations in Sk̊ane used by Niftitechs weather
API, note that there are large regions that do not have a weather station in the
database.

3.4 Elevation & Topological Classification

Skogsstyrelsen has gathered elevation data with 10 m resolution which covers a

majority of Swedish landmass by using laser scanners attached to airplanes [44].

This data has been extracted for the fields of interest (see Figure 3.16) and then

later processed by Grass GIS, more specifically the geomorphon terrain classifica-

tion algorithm of Grass GIS [19]. This algorithm classifies each pixel of a pixelated

terrain into one of ten integer classes based on each pixel’s surroundings by con-

sidering the relative elevation difference between itself and its neighbors. More

specifically, these classes are flat, peak, ridge, shoulder, spur, slope, hollow, foots-

lope, valley, and pit,

Fig. 3.17 shows a visual representation of these classes and Fig. 3.18 shows the

resulting terrain classification raster. To use the raster data in the model we vec-

torize it by sampling the raster at the coordinates where we have the harvest data.

When creating the topology features, we represent them with one-hot-encoding in-

stead of their integer value. We thought this made sense since classes with nearby

integer representations are not necessarily topologically close to each other.
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Figure 3.16: Selected elevation data from Skogsstyrelsen for our fields of interest
with our harvest data points on top.

Figure 3.17: Visual representation of terrain classes generated by Grass GIS geo-
morphon algorithm. Retrieved from [19]
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Figure 3.18: Zoomed in portion of the classified terrain with harvest data points
on top. The color code is the same as presented in figure 3.17. Notice the very
fine resolution of the classification compared to our data grid. The straight green
lines at the borders represent the boundaries of our fields of interest.

3.5 Resolutions

When creating the data sets we had to take the different resolutions of the data into

account. For the 50 m grid, each entry was based upon the individual coordinates

of the harvest data, see Fig. 3.12, which had a lower resolution (50 x 50 m2)

compared to Sentinel-1 (11 x 11 m2), topology (10 x 10 m2) and elevation data

(10 x 10 m2). A problem arises due to the resolutions mismatch: The coordinate-

wise harvest data summarizes the harvest within a 50 x 50 m2 area but the finer

resolution data can only cover an area of roughly 10 x 10 m2, see Fig. 3.19.

If feature vectors were constructed with only one sample closest in space from

the satellite, topology, and elevation data, the whole area that the harvest data

summarized would not be covered.

For the 22 m grid, we do not have to take resolutions into account since in-

cluding any auxiliary data from the neighbors would create a data leakage. This

issue is described more in the next sections.
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Figure 3.19: Visualization of the mismatch in resolution between the harvest,
Sentinel-1, topology, and elevation data. The lowest resolution was the harvest
data, where each data point summarizes the harvest within a 50 x 50 m2 area.
The satellite data had a finer resolution of 11 x 11 m2 whilst the topology and
elevation data shared a resolution of 10 x 10 m2. This resolution difference was
the reason for introducing grid sampling instead of just sampling the nearest data
point in space.
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3.6 Nearest & Grid Sampling

To handle the mismatching resolutions two different samplings approaches were

adopted when creating the feature vectors: Nearest and Grid sampling. For a

given coordinates longitude and latitude, Nearest sampling simply ignored the

resolution mismatch and picked a single data point nearest in space for Sentinel-1,

topology, and elevation, hence the name. For Grid sampling, a neighborhood of

data points was picked to form a 3-by-3 grid. The data point closest in space was

the center point. From the center point, all neighboring data points in directions

North, North-East, East, South-East, South, South-West, West, and North-West

(8 additional data points) were added.

Avoidance of data leakage is crucial when grid sampling, to not skew the results.

In ML, data leakage happens when information about the test set is available in

the training process, leading to a leak of information and giving the algorithm an

unfair advantage during testing. Data leakage may result in an overestimation of

the algorithm’s performance. A data set should in most machine learning tasks be

split into different sets, where the training data is the only data the algorithm will

see. The rest of the data should not be used for training, nor should it be included

in the preprocessing of the data. The data which is not part of the training set is

commonly split into a validation set (used for model tuning) and a test set (used

for final model evaluation) [55]. Fig. 3.20 illustrates why 3-by-3 Grid sampling

does not introduce data leakage for the 50 m grid. When we are using the 22 m

grid we only use Nearest sampling since Grid sampling would introduce significant

data leakage.

3.7 Machine Learning

Now we have described how all data was collected and preprocessed, the next step

is to vectorize all data and use it to train a machine learning model. To do this

we have to construct feature vectors, select models, and decide which metrics we

want to use to evaluate the performance of the models.

3.7.1 Light Gradient Boosting Machine

Light Gradient Boosting Machine (LGBM) is a machine learning model based

on decision trees that belongs to a family of Gradient boosting Decision Tree

(GBDT) models [22]. LGBM utilizes Gradient-based One-Side Sampling (GOSS)

and Exclusive Feature bundling (EFB). With GOSS, the model learns to exclude

a significant proportion of data with small gradients which is a particularly useful

aid when the feature importance is unknown. EFB bundles mutually exclusive
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Figure 3.20: Illustration depicting the different cases of sampling data at different
resolutions with a grid. The image depicts both good cases (bottom right) and
worst cases of grid sampling. Notice how it is impossible for us to get data from
the next harvest square with this method. In an edge case scenario, we can get
data ∼ 22 m from the data point but we can never cross the boundary (25 m) to
the next harvest square.

features together to decrease the number of features which speeds up the training

process with almost no loss in accuracy. The default hyperparameters were used

unless explicitly stated otherwise, which can be found in great detail in the official

documentation [32].

We use the LGBM model in this project. The motivation for this is the fact

that GBDT models have previously shown good results for harvest prediction tasks

with optical data from Sentinel-2 [1]. Another great property of decision trees for

this problem is their ability to deal with imbalanced data. Our features are quite

imbalanced. Some features such as elevation do not change with time and thus

require fewer features to be represented than the satellite data or the weather

which varies in time.

3.7.2 Feedforward Neural Network

Feedforward Neural Network (FNN) is the quintessential deep learning model mim-

icking a network of neurons in the brain (hence neural network) by a cyclic directed

graph of nodes. Each node, or neuron, have a defined input and output. The input

is the feature vector or potentially the output of other nodes in the network. The

output of a node is produced by first applying a linear operation on the inputs

reducing the vector input to a scalar and then passing it to a non-linear activation
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function. These models are called feedforward because the information in the net-

work flows in a forward direction in the network, which is to say that the output of

one node is never fed back to that node. As information flows forward, each level

of nodes can be viewed as a layer, with an input layer, several hidden layers, and

an output layer for the whole network [13]. The depth of a network is measured

by the amount of hidden and output layers it contains. The number of nodes in a

layer is the layer’s width.

When designing an FNN, the depth and width of the hidden layers, activation

functions, the desired output type, learning algorithm, and regularization need to

be considered [13, 43, 38, 56]. We decided to have a depth of 6 and a scaling width

for each hidden layer depending on the number of features, nf , in the input with

a certain minimum or maximum width for each layer:

• Hidden Layer 1 width := max (5 · nf , 500)

• Hidden Layer 2 width := max (3 · nf , 300)

• Hidden Layer 3 width := max (2 · nf , 200)

• Hidden Layer 4 width := min (max (0.5 · nf , 50), 200)

• Hidden Layer 5 width := min (max (0.2 · nf , 20), 50)

Each hidden layer had a Rectified Linear Unit (ReLU) activation function. The

output layer was always a single node with linear activation, as this was a regres-

sion problem. For our gradient descent optimizer, we picked Adam with default

hyperparameters [23], as tests have shown that this algorithm is a good default

optimizer with adaptive learning rates [38]. The loss was the mean squared error.

A maximum of 50 epochs were used, with an Early Stopping scheme monitoring

the validation loss with 10 epochs of patience used to regularize and stop over-

fitting. The validation set was randomly picked 10 % of the training set and the

batch size was 32.

3.7.3 Metrics

To evaluate our machine learning models we use Root Mean Squared Error (RMSE),

Accuracy (Acc.) and weighted F1-score (F1) [40]. The definitions of these met-

rics are shown below. Let yi be the ground truth measurement from the harvest

data, ŷi be the predicted value, TP/FP be True/False positive, and TN/FN be

True/False negative.
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RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP
F1-score = 2 · Precision · Recall

Precision + Recall

Recall =
TP

TP + FN

The metrics are both for regression and classification tasks [35]. A benefit of

using RMSE is that the regression error will have the same unit as the labels,

i.e. average measured harvest in tonnes per hectare. Harvest prediction is a

regression problem but can be reformulated as a classification problem by rounding

harvest values [1]. This allows us to easily compare how Sentinel-1 performs against

Sentinel-2 for harvest prediction for winter wheat fields in the same region.

A significant problem with rounding to the nearest integer to create classes is

that close prediction in harvest might yield different classes and vice versa. For

example, say the true harvest was 6.51 (rounded to 7) tonnes and that the predicted

harvest was 6.49 (rounded to 6). The prediction would then be very close and an

excellent estimation, but still be counted as an incorrect classification. In contrast,

an objectively worse prediction, say 7.49 (rounded to 7) would be counted as a

correct classification, even though significantly larger error. This issue is due to

the task of harvest prediction fundamentally being a regression task and not a

classification task. Hence, just rounding to the nearest integer skews the results

and should not be used.

A better way of rounding would be to take the RMSE into account. For

instance, we want RMSE predictions that are within some error tolerance ϵ to be

assigned the same class as the true harvest. To do this, we start by creating our

classes. We will use the non-negative integers as our classes, i.e. 0, 1, 2, etc., which

is what the authors did in the study using Sentinel-2 [1]. Now, given that the true

harvest and predicted harvest are within some error, we want both to belong to the

same class. Let us illustrate this with an example. Given that the error tolerance

is ϵ = 0.5, the true harvest is 10.7 and the predicted harvest is 10.3, we see that

the absolute value of the difference will be |10.7− 10.3| = 0.4 < 0.5 = ϵ. Because

the value is within the error tolerance, this will be a correct classification. So,

how should we round to make this the case? If we blindly rounded to the nearest

integer we would have true harvest 11 and predicted harvest 10. We instead do

the following: If the prediction is within the tolerance, set the prediction to the

same class as the true harvest regardless of rounding, i.e. 10.3 is set to 11 in our
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example. Note, for the true harvest we always do integer rounding. It is just the

predicted harvest that needs extra attention. Another example, given that the

error tolerance is ϵ = 0.5, the true harvest is 10.7 and the predicted is 11.4, we see

that the absolute value of the difference will be |10.7− 11.4| = 0.7 > 0.5 = ϵ. The

value is not within the error tolerance and as such, the rounding needs to be done

so they do not share the same class. Here, we see another issue that needs special

attention. If we just rounded both numbers independently then we would get 11

as the true harvest class and predicted harvest class. Therefore, we added extra

conditions in our code to handle this. The code checked first if the prediction was

within the error tolerance, and if it was not then we rounded both independently

to classes. If the prediction was not within the error tolerance and the true and

predicted harvest were rounded to the same class, then the predicted harvest was

changed to a class above or below the true harvest. In the previous example,

because the predicted harvest was 11.4 > 10.7 the class was changed from 11 to

12. If the predicted harvest was lower, then the class would instead have been 10.

Note, that this alters the notion of a clearly defined class but is what we found to

be the best way to handle the issues by just rounding to the nearest integer. The

full code for transforming RMSE to classes can be seen in Appendix B.2. Unless

otherwise stated, we will use the same default value of ϵ = 0.5 as authors in [1] for

our classification results.

3.7.4 K-Fold Cross-Validation

K-fold cross-validation is a common way of evaluating model performance, and it

does this by dividing the data set into k folds. Each fold contains a random and

distinct split of the data: a training set and a test set. The model is then trained

with the training set and tested with the test set (unseen data). The metrics are

averaged over all folds, giving a mean of the performance with k different splits

[39, 54]. By averaging over k different splits, a better performance evaluation of

the model is achieved.

3.7.5 Feature Importance

Feature importance (FI) algorithms can be used to reduce the number of features

in a data set before training a model. This is particularly useful when we do not

know which features are useful and which are not. This property allows us to use

feature importance algorithms to qualitatively make sense of and explain a complex

problem with many parameters. Since feature importance algorithms reduce the

number of features in a data set, it reduces training speed as a consequence.

Sometimes, in best-case scenarios, it can also increase the performance of a model
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by dropping uncorrelated features which essentially just become noise in a model.

The feature importance algorithm we chose to use was Boruta [26]. Boruta

can be thought of as an extension of a Random Forest model. It tests random

combinations of features and samples, with a random forest classification test, and

keeps the ones that throughout several trials show a consistent correlation with

the target data.

We used the python package Boruta, which supplies an implementation of

the Boruta algorithm [4]. We used a Random Forest model from scikit-learn

[41] with balanced class weights and a test size of 20 % as an estimator for the

Boruta algorithm. A maximum of 100 iterations were used, with the rest of the

hyperparameters set to default. The result from the execution of the algorithm is

two lists of features: support and weak support. We decided to use the features

in both of these lists. Furthermore, the execution of the algorithm was repeated

17 times and the two lists from each individual run were merged with one final

list. This was done separately for both Grid sampling and Nearest sampling of the

50 m grid. The final list of merged features from the 17 runs represents the final

feature importance vector.

3.7.6 Transfer Learning

Transfer learning means reusing a pre-trained model on a new problem for which

it was not initially trained for [7]. In the context of harvest prediction, this means

training a model on data from one year and testing its performance on data from

another year. Achieving successful transfer learning is the holy grail of modeling

harvest prediction. It would be a major step towards operational use since it could

be used to predict the harvest when it is still possible for the farmers to affect the

outcome.

We test how well our models do in transfer learning by training them with data

from one year and testing on data from all other years in our data set. To make

this a fair test, we randomly pick samples from the test year such that the test

size corresponds to 10% of the training size, just as we did when we tested each

year on itself.

3.7.7 Feature Vectors

A number of different feature vectors Table 3.1 were used to test how features

independently and joined affect the ML algorithms. For the main time period

spanning week 14 to week 29, different features were either sampled on a weekly

basis or once for the whole time period. The features VH & VV and Weather were

sampled once per week. For a given week, there may be a multitude of VH &
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Table 3.1: List of our final feature sets and their sizes.

Feature type Description #Features #Features
(Nearest) (Grid)

VH & VV Processed and min-max normalized 32 288
VH and VV bands

Ratios Processed and min-max normalized 32 288
VH/VV and VV/VH

Indices Normalized indices computed with 64 576
VH and VV

Weather Weekly accumulated or averaged 85 -
temperature, solar radiation intensity,
precipitation, wind speed
and humidity percentage.

Topology One hot encoded topological 10 90
classification of terrain

Elevation Min-max normalized elevation 1 9
above sea level

All Combining VH & VV, Weather, 128 472
Topology and Elevation

FI Filtering of the most important Varies Varies
features in All by the Boruta
feature selection algorithm

VV samples from different dates. Only one of the dates in the week was chosen,

with the criteria being that the bands are defined, i.e. not NaN. Topology and

Elevation were not sampled once per week in the main time period - they were

simply added once for each coordinate.
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Chapter 4

Results

In the following sections results for both harvest data with a resolution of 50× 50

m2 and 22 × 22 m2 are shown. All sections before Section 4.2 use harvest data

with a resolution of 50 × 50 m2 and all parts after contain results using harvest

data with a resolution of 22× 22 m2.

4.1 Harvest Data With 50× 50 m2 Resolution

4.1.1 Harvest Prediction Using Exclusively Sentinel-1 Data

One would expect that the performance of a machine learning model would get

better and better with more data. This is a fundamental assumption and can be

thought of as the data having a pattern that the model can learn. If this is not

the case, it would suggest that there is nothing in the data which algorithms can

learn or that the data contains other errors, e.g. RFI.

To test this assumption, a K-fold cross-validation scheme was created with the

model being LGBM evaluated with RMSE metric over an increasing size of the

data sets. The harvest data with a resolution of 50 × 50 m2 was used for ground

truth labels. Put simply, given the assumption above, we expect that the error

will decrease as the size of the data set increases. In the tests, k = 5 was picked

resulting in 80 % of the data for training and 20 % for testing. The LGBM model

with 2000 boosted trees and the rest as default hyperparameters [32] was picked

as it has shown to be a powerful model for harvest prediction [1] and the training

time was short (below 5 seconds using NVIDIA T4 Tensor Core GPU). For the

tests, an Early Stopping scheme with patience (stopping rounds) of 200 boosting

iterations was used to prevent overfitting,

The results using different feature vectors based upon only Sentinel-1 data are

shown in Fig. 4.1, Fig. 4.2 and Fig. 4.3. For all figures, a clear downward

trend in the cross-validated RMSE is seen, which implies that there is a pattern
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Figure 4.1: The regression RMSE over the size of the data set for the year 2019,
using Grid sampled and normalized VH and VV features for each coordinate in
the harvest data with a resolution of 50× 50 m2. A clear downward trend in error
as the size of the data set increases, implying that the time series of Sentinel-1
data contains valuable information for harvest prediction.

that the algorithm can learn. Interestingly, there is no significant difference in

the performance of the algorithm with different derivatives of VH and VV. The

simplest version, using only the normalized VH and VV, results in the lowest

recorded RMSE error of 0.9813 (Fig. 4.1) compared with the more complex feature

vectors containing additional ratios and indices, with errors 1.0037 and 0.9905

respectively (Fig. 4.2, Fig. 4.3) for 2019 data.
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Figure 4.2: The regression RMSE over the size of the data set for the year 2019
using Grid sampled and normalized VH, VV, and ratios features for each coor-
dinate in the harvest data with a resolution of 50 × 50 m2. A clear downward
trend in error as the size of the data set increases, implying that the time series of
Sentinel-1 data contains valuable information for harvest prediction.

Figure 4.3: The regression RMSE over the size of the data set for the year 2019
using Grid sampled and normalized VH, VV, ratios, and indices features for each
coordinate in the harvest data with a resolution of 50× 50 m2. A clear downward
trend in error as the size of the data set increases, implying that the time series of
Sentinel-1 data contains valuable information for harvest prediction.
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Table 4.1: The top 5 important features from the Boruta feature selection algo-
rithm when using Grid sampling and harvest data with a resolution of 50× 50 m2

for each year. The main features were VH, VV, accumulated rain, and elevation
(named height for 2018). Ratios, indices, and topology were not in the top 5 fea-
tures for any of the years.

2017 2018 2019 2020

1. se vv w 23 w 30 acc rain sum c vh w 21 w 27 acc rain sum

2. e vh w 24 w 21 acc rain sum n vh w 21 e vh w 21

3. s vv w 23 w height ne vh w 21 ne vh w 27

4. sw vh w 24 sw height e vh w 21 n vh w 27

5. e vh w 23 se height w vv w 22 w 17 acc rain sum

4.1.2 Feature Selection

Several features were included in the feature selection process, based upon the

harvest data with a resolution of 50× 50 m2, and the top 5 can be seen in Tables

4.1 and 4.2. The naming of the features is based on several reasons: position in

the neighbor grid, week number, and type of feature. The features which have

a position abbreviation prefix are VH & VV, topology and elevation, e.g. ”c” -

center, ”ne” - North-East, etc. The week number was either prefixed or appended

to the end of the feature name with a ”w” followed by an underscore and then the

week number. Each feature type had its unique string, e.g. ”vv” - VV, ”vh” - VH,

”acc rain sum” - accumulated rain, ”height” - elevation, etc.

The VH and VV bands were generally part of the top 5 features for both

Grid and Nearest sampling. Grid sampling seems to favor a more diverse set of

features whilst the VH and VV bands dominated the important feature rankings

for Nearest sampling. Please contact the authors for a complete list of the rankings

and features selected.

4.1.3 General Results

The general results using harvest data with a resolution of 50 × 50 m2 contain

one table for each year which consists of all performance metrics relevant to that

year using both sampling methods (Grid and Nearest), both models (LGBM and

FNN), and all main sets of input features, see Tables 4.3, 4.4, 4.5 and 4.6. To get

the classification score from RMSE ϵ = 0.5 was used. Ratios and indices were not

part of any of the sets, as the results in Section 4.1.1 showed no difference in the

performance compared to just the VH & VV bands.

There was no clear significant difference in performance between the sampling

methods, with most results being almost identical or slight performance difference
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Table 4.2: The top 5 important features from the Boruta feature selection algo-
rithm when using Nearest sampling and harvest data with a resolution of 50× 50
m2 for each year. VH and VV bands dominated the important features, with
elevation being the only other feature type present in the top 5 for 2018. It is
interesting that with Nearest sampling none of the years contains any accumu-
lated rain feature, which was an important feature when Grid sampling (Table
4.1). Weather, ratios, indices, and topology were not in the top 5 features for any
of the years.

2017 2018 2019 2020

1. c vh w 23 c height c vh w 18 c vv w 20

2. c vv w 23 c vh w 21 c vh w 19 c vh w 21

3. c vh w 24 c vv w 22 c vh w 20 c vh w 27

4. c vh w 20 c vv w 26 c vh w 21 c vv w 27

5. c vv w 19 c vh w 22 c vv w 22 c vv w 28

(Tables 4.3, 4.4, 4.5 and 4.6). A benefit of using Nearest sampling over Grid

sampling is the reduction in features leading to significantly faster training and

evaluation times.

For all years, sampling methods, and feature vectors LGBM outperformed the

FNN model (Tables 4.3, 4.4, 4.5 and 4.6). Another significant benefit of the LGBM

model was the significantly faster K-fold evaluation (∼32x faster).

4.1.4 Harvest Distributions

It was interesting to compare the true harvest distribution with the predicted

distributions from LGBM, our best-performing model, for all years using harvest

data with a resolution of 50 × 50 m2. The true distribution (left) and predicted

distribution (right) for each year can be seen in Figures 4.4, 4.5, 4.6 and 4.7. In

general, the predicted distribution was similar to the true distribution, having

roughly the same shape, mean, and variance.

4.1.5 Varying Error Margin for Classifiers

This section investigates how the classification and F1 scores change when we in-

crease the error tolerance ϵ described in Section 3.7.3. This provides an alternative

way to interpret the results instead of just looking at the RMSE. Table 4.7 shows

the accuracy and F1 scores when we vary ϵ from 0.50 to 2.00 tonnes per hectare.
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Table 4.3: Summary of results for 2017 using harvest data with a resolution of
50× 50 m2 with the different sampling methods, feature vectors, and models. The
different sampling methods yielded similar results, with no clear benefit of one over
the other. The best overall performance was achieved with LGBM using the All
feature vector, independent of the sampling method. FI and VH & VV were not
far away from having the same scores. Looking at feature vectors independently
and not combined, VH & VV was the best performing feature vector with Weather,
Topology, and Elevation having significantly worse performance. VH & VV and
Weather had much more features compared to Topology and Elevation, which
should be taken into consideration.

LGBM FNN

Features, Grid RMSE Acc. F1 RMSE Acc. F1

All 0.80 0.56 0.55 1.09 0.41 0.40

Feature importance 0.85 0.53 0.52 1.12 0.44 0.41

VH & VV 0.85 0.54 0.52 1.12 0.44 0.41

Topology 1.35 0.34 0.28 1.47 0.33 0.28

Elevation 1.23 0.37 0.34 1.33 0.37 0.30

LGBM FNN

Features, Nearest RMSE Acc. F1 RMSE Acc. F1

All 0.81 0.56 0.55 1.05 0.43 0.41

Feature importance 0.85 0.55 0.54 1.18 0.44 0.41

VH & VV 0.86 0.53 0.52 1.12 0.45 0.43

Weather 1.08 0.41 0.38 1.29 0.36 0.32

Topology 1.32 0.36 0.27 1.40 0.34 0.26

Elevation 1.24 0.36 0.32 1.33 0.35 0.25

56



CHAPTER 4. RESULTS 4.1. HARVEST DATA WITH 50× 50 m2 RESOLUTION

Table 4.4: Summary of results for 2018 using harvest data with a resolution of
50 × 50 m2 with the different sampling methods, feature vectors, and models.
The different sampling methods yielded similar results, with some significant dif-
ferences, e.g. FI for both LGBM and FNN. The best overall performance was
achieved with LGBM using the All feature vector, independent of the sampling
method. This score was also the best generally for all years tested. Looking at
feature vectors independently and not combined, VH & VV was the best per-
forming feature vector with Weather, Topology, and Elevation having significantly
worse performance. VH & VV and Weather had much more features compared to
Topology and Elevation, which should be taken into consideration.

LGBM FNN

Features, Grid RMSE Acc. F1 RMSE Acc. F1

All 0.75 0.60 0.59 0.87 0.50 0.49

Feature importance 0.92 0.49 0.48 1.70 0.38 0.36

VH & VV 0.81 0.58 0.58 0.87 0.50 0.49

Topology 1.51 0.31 0.24 1.58 0.28 0.22

Elevation 1.26 0.38 0.35 1.36 0.33 0.26

LGBM FNN

Features, Nearest RMSE Acc. F1 RMSE Acc. F1

All 0.76 0.60 0.59 0.87 0.48 0.47

Feature importance 0.78 0.58 0.57 1.25 0.49 0.47

VH & VV 0.81 0.58 0.57 0.88 0.50 0.49

Weather 1.11 0.39 0.32 1.39 0.33 0.27

Topology 1.49 0.32 0.22 1.57 0.29 0.21

Elevation 1.29 0.36 0.32 1.35 0.35 0.28
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Table 4.5: Summary of results for 2019 using harvest data with a resolution of
50× 50 m2 with the different sampling methods, feature vectors, and models. The
different sampling methods yielded similar results, with some minor differences,
e.g. All for FNN. The best overall performance was achieved with LGBM using the
All feature vector, independent of the sampling method. Looking at feature vec-
tors independently and not combined, VH & VV was the best performing feature
vector with Weather, Topology, and Elevation having significantly worse perfor-
mance. VH & VV and Weather had much more features compared to Topology
and Elevation, which should be taken into consideration.

LGBM FNN

Features, Grid RMSE Acc. F1 RMSE Acc. F1

All 0.93 0.50 0.50 1.07 0.41 0.41

Feature importance 0.99 0.48 0.47 1.13 0.37 0.36

VH & VV 1.01 0.48 0.47 1.15 0.41 0.40

Topology 1.82 0.19 0.12 1.90 0.19 0.14

Elevation 1.68 0.23 0.19 1.85 0.18 0.10

LGBM FNN

Features, Nearest RMSE Acc. F1 RMSE Acc. F1

All 0.93 0.49 0.49 1.13 0.40 0.39

Feature importance 0.97 0.48 0.48 1.12 0.40 0.40

VH & VV 1.04 0.47 0.46 1.12 0.41 0.40

Weather 1.34 0.31 0.29 1.52 0.26 0.23

Topology 1.80 0.19 0.10 1.84 0.18 0.10

Elevation 1.75 0.21 0.16 1.83 0.18 0.09

58



CHAPTER 4. RESULTS 4.1. HARVEST DATA WITH 50× 50 m2 RESOLUTION

Table 4.6: Summary of results for 2020 using harvest data with a resolution of
50 × 50 m2 with the different sampling methods, feature vectors, and models.
The different sampling methods yielded similar results, with some significant dif-
ferences, e.g. FI for both LGBM and FNN. The best overall performance was
achieved with LGBM using either the All feature vector with Grid sampling or
using the FI feature vector with Nearest sampling. Looking at feature vectors in-
dependently and not combined, VH & VV was the best performing feature vector
with Weather, Topology, and Elevation having significantly worse performance.
VH & VV and Weather had much more features compared to Topology and Ele-
vation, which should be taken into consideration.

LGBM FNN

Features, Grid RMSE Acc. F1 RMSE Acc. F1

All 1.08 0.44 0.44 1.37 0.31 0.30

Feature importance 1.21 0.40 0.40 1.64 0.31 0.31

VH & VV 1.20 0.40 0.40 1.47 0.36 0.36

Topology 2.67 0.18 0.13 2.77 0.16 0.12

Elevation 2.45 0.21 0.18 2.70 0.17 0.11

LGBM FNN

Features, Nearest RMSE Acc. F1 RMSE Acc. F1

All 1.09 0.44 0.43 1.37 0.36 0.35

Feature importance 1.08 0.43 0.43 1.33 0.35 0.34

VH & VV 1.25 0.38 0.38 1.53 0.32 0.32

Weather 1.66 0.25 0.23 2.05 0.23 0.22

Topology 2.64 0.19 0.11 2.67 0.19 0.12

Elevation 2.54 0.21 0.16 2.68 0.18 0.11
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Figure 4.4: True distribution (left) and predicted distribution (right) for 2017 using
harvest data with a resolution of 50× 50 m2. The predicted distributions are from
an LGBM model with the All feature vector, which had among the best overall
performance for all years, see Section 4.1.3. The model accurately captured the
true distribution for this year, having roughly the same shape, mean, and variance.
The model seemed to have had an issue with predicting large harvest, which can be
seen in the lack of predicted harvest of about 13-14 tonnes per hectare. However,
this might be due to the lower sample size of the test set.

Figure 4.5: True distribution (left) and predicted distribution (right) for 2018 using
harvest data with a resolution of 50× 50 m2. The predicted distributions are from
an LGBM model with the All feature vector, which had among the best overall
performance for all years, see Section 4.1.3. The model accurately captured the
true distribution for this year, having roughly the same shape, mean, and variance.
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Figure 4.6: True distribution (left) and predicted distribution (right) for 2019 using
harvest data with a resolution of 50× 50 m2. The predicted distributions are from
an LGBM model with the All feature vector, which had among the best overall
performance for all years, see Section 4.1.3. The model accurately captured the
true distribution for this year, having roughly the same shape, mean, and variance.

Figure 4.7: True distribution (left) and predicted distribution (right) for 2020 using
harvest data with a resolution of 50× 50 m2. The predicted distributions are from
an LGBM model with the All feature vector, which had among the best overall
performance for all years, see Section 4.1.3. The model accurately captured the
true distribution for this year, having roughly the same shape, mean, and variance.
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Table 4.7: The varying error tolerance for the LGBM regressor trained with the
All feature vector, Grid sampling, and harvest data with a resolution of 50 × 50
m2. The error tolerance, ϵ, varies from 0.50 to 2.00 tonnes per hectare. Note that
the performance increases significantly between ϵ ∈ [0.5, 1.0].

2017 2018 2019 2020

Error tolerance, ϵ Acc. F1 Acc. F1 Acc. F1 Acc. F1

0.50 0.56 0.55 0.60 0.59 0.50 0.50 0.44 0.44

0.75 0.72 0.71 0.76 0.76 0.67 0.67 0.60 0.60

1.00 0.83 0.82 0.86 0.86 0.79 0.78 0.72 0.72

1.25 0.90 0.89 0.91 0.91 0.86 0.86 0.80 0.79

1.50 0.94 0.93 0.95 0.94 0.91 0.91 0.86 0.86

1.75 0.96 0.95 0.97 0.96 0.94 0.94 0.90 0.90

2.00 0.97 0.97 0.98 0.98 0.96 0.96 0.93 0.93

4.1.6 Transfer Learning

Table 4.8 presents the results of the transfer learning using harvest data with a

resolution of 50× 50 m2. The performance is very low, which should not come as

a surprise since the distributions of harvest between the years varies significantly

(Section 4.1.4). The best overall performance was achieved by training the model

with data from 2020 and then using that model to predict harvest on the data

from 2017.

4.1.7 Effects of RFI Filtering

The occurrence of RFI in the data might hamper the performance of the models

and therefore the performance of the models was investigated using an RFI-filtered

version of the Sentinel-1 data. The results can be seen in Table 4.9. The proposed

RFI filtering algorithm significantly reduced the number of data points for each

year. For 2018, the decrease was so large that the total number of data points was

below 100 after filtering. As such, training and testing for 2018 were no longer

feasible.

4.2 Harvest Data With 22× 22 m2 Resolution

4.2.1 Harvest Prediction Using Exclusively Sentinel-1 Data

A finer grid for the harvest data (22 × 22 m2) results in a much larger data set

(more than 4x in size) and the effect of the increase in size was tested with the
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Table 4.8: A summary over transfer learning with LGBM trained with the All
feature vector, Grid sampling, and harvest data with a resolution of 50×50 m2 from
one year and tested on data from another year. The true distributions (Section
4.1.4) varied over the years, implying transfer learning should be difficult, which
can be seen in the large RMSE error and low classification scores. The best overall
score was with the model being trained with data from 2020 and the test set
from 2017. Comparing the distributions for years 2017 and 2020 (Figure 4.4)
and 4.7) some general similarity can be seen and might be the reason for the
better performance. The distribution for 2018, Fig. 4.5, had a significantly lower
mean compared to the other years, and this might also be the reason for the low
performance when trying to predict 2018 with a model trained with data from
another year.

training year test year RMSE. Acc. F1

2017 2018 4.44 0.02 0.01

2017 2019 1.73 0.19 0.17

2017 2020 2.30 0.16 0.14

2018 2017 3.91 0.03 0.02

2018 2019 3.07 0.07 0.06

2018 2020 3.14 0.09 0.05

2019 2017 1.99 0.16 0.16

2019 2018 3.53 0.03 0.01

2019 2020 2.04 0.18 0.17

2020 2017 1.69 0.22 0.23

2020 2018 3.75 0.02 0.01

2020 2019 2.16 0.18 0.19

Table 4.9: Comparison between data with or without RFI filter. For our setup
and the proposed RFI filter we see no improvements in the metrics, but a slight
decrease in performance across the boards. The model for all tests was LGBM
using the All feature vector, Grid sampling, and harvest data with a resolution
of 50 × 50 m2. The results for 2018 are not included, as the RFI filter removed
a significant number of data points resulting in training and testing not yielding
any meaningful results.

RFI filter No filter

Year RMSE Acc. F1 RMSE Acc. F1

2017 0.86 0.53 0.53 0.80 0.56 0.55

2019 0.95 0.50 0.50 0.93 0.50 0.50

2020 1.11 0.43 0.43 1.08 0.44 0.44
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Figure 4.8: The regression RMSE over the size of the data set for the year 2019
using Nearest sampling and normalized VH and VV features for each coordinate
in the harvest data with resolution 22 × 22 m2. A clear downward trend in error
as the size of the data set increases, implying that the time series of Sentinel-1
data contains valuable information for harvest prediction. Compared with results
using harvest data with resolution 50 × 50 m2 and Grid sampling (Fig. 4.1), the
error was higher for the finer resolution.

same K-fold cross-validation scheme used in Section 4.1.1. The results are shown

in Figures 4.8, 4.9 and 4.10. Interestingly, the increase in the size of the data set

did not yield any lower RMSE error but instead a higher error, compare Figures

4.1, 4.2 and 4.3 with Figures 4.8, 4.9 and 4.10. This was not expected, as generally

more data is better for ML models.

4.2.2 General Results

The general results using harvest data with a resolution of 22× 22 m2 are shown

in the same way as for 50 × 50 m2, with the exception being only results for

Nearest sampling, see Tables 4.10, 4.11, 4.12 and 4.13. To get the classification

score from RMSE ϵ = 0.5 was used. In general, the lower resolution grid of harvest

data outperformed (Section 4.1.3) the finer grid. For all years and feature vectors,

LGBM outperformed the FNN model (Tables 4.10, 4.11, 4.12 and 4.13).
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Figure 4.9: The regression RMSE over the size of the data set for the year 2019
using Nearest sampling and normalized VH, VV, and ratios feature for each coor-
dinate in the harvest data with resolution 22× 22 m2. A clear downward trend in
error as the size of the data set increases, implying that the time series of Sentinel-1
data contains valuable information for harvest prediction. Compared with results
using harvest data with resolution 50 × 50 m2 and Grid sampling (Fig. 4.2), the
error was significantly higher for the finer resolution.

Figure 4.10: The regression RMSE over the size of the data set for the year 2019
using Nearest sampling and normalized VH, VV, ratios, and indices features for
each coordinate in the harvest data with resolution 22× 22 m2. A clear downward
trend in error as the size of the data set increases, implying that the time series
of Sentinel-1 data contains valuable information for harvest prediction. Compared
with results using harvest data with resolution 50×50 m2 and Grid sampling (Fig.
4.3), the error was significantly lower for the finer resolution. This was the only
case when the finer grid achieved better RMSE error.
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Table 4.10: Summary of results for 2017 using harvest data with a resolution of
22×22 m2, Nearest sampling, different feature vectors, and models. The best over-
all performance was achieved with LGBM using the All feature vector. Looking
at feature vectors independently and not combined, VH & VV was the best per-
forming feature vector with Weather, Topology, and Elevation having significantly
worse performance. VH & VV and Weather had much more features compared to
Topology and Elevation, which should be taken into consideration.

LGBM FNN

Features, Nearest RMSE Acc. F1 RMSE Acc. F1

All 1.07 0.48 0.47 1.26 0.39 0.38

VH & VV 1.11 0.47 0.45 1.25 0.41 0.39

Weather 1.35 0.37 0.33 1.47 0.36 0.32

Topology 1.64 0.26 0.17 1.67 0.26 0.17

Elevation 1.51 0.30 0.26 1.63 0.27 0.18

Table 4.11: Summary of results for 2018 using harvest data with a resolution of
22×22 m2, Nearest sampling, different feature vectors, and models The best over-
all performance was achieved with LGBM using the All feature vector. This score
was also the best generally for all years tested with the finer resolution. Looking
at feature vectors independently and not combined, VH & VV was the best per-
forming feature vector with Weather, Topology, and Elevation having significantly
worse performance. VH & VV and Weather had much more features compared to
Topology and Elevation, which should be taken into consideration.

LGBM FNN

Features, Nearest RMSE Acc. F1 RMSE Acc. F1

All 0.89 0.54 0.53 1.06 0.44 0.43

VH & VV 0.93 0.52 0.51 1.02 0.47 0.46

Weather 1.32 0.33 0.29 1.37 0.32 0.28

Topology 1.72 0.26 0.18 1.74 0.26 0.16

Elevation 1.52 0.28 0.23 1.57 0.26 0.21
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Table 4.12: Summary of results for 2019 using harvest data with a resolution of
22×22 m2, Nearest sampling, different feature vectors, and models The best over-
all performance was achieved with LGBM using the All feature vector. Looking
at feature vectors independently and not combined, VH & VV was the best per-
forming feature vector with Weather, Topology, and Elevation having significantly
worse performance. VH & VV and Weather had much more features compared to
Topology and Elevation, which should be taken into consideration.

LGBM FNN

Features, Nearest RMSE Acc. F1 RMSE Acc. F1

All 1.15 0.43 0.43 1.37 0.35 0.35

VH & VV 1.23 0.41 0.40 1.30 0.37 0.37

Weather 1.59 0.27 0.23 1.80 0.24 0.21

Topology 1.99 0.17 0.08 2.01 0.17 0.09

Elevation 1.91 0.20 0.14 1.98 0.17 0.10

Table 4.13: Summary of results for 2020 using harvest data with a resolution of
22×22 m2, Nearest sampling, different feature vectors, and models. The best over-
all performance was achieved with LGBM using the All feature vector. Looking
at feature vectors independently and not combined, VH & VV was the best per-
forming feature vector with Weather, Topology, and Elevation having significantly
worse performance. VH & VV and Weather had much more features compared to
Topology and Elevation, which should be taken into consideration.

LGBM FNN

Features, Nearest RMSE Acc. F1 RMSE Acc. F1

All 1.34 0.38 0.38 1.72 0.32 0.32

VH & VV 1.46 0.36 0.35 1.75 0.32 0.32

Weather 1.93 0.23 0.20 2.33 0.19 0.17

Topology 2.88 0.18 0.10 2.91 0.19 0.11

Elevation 2.73 0.18 0.14 2.81 0.18 0.13
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Chapter 5

Discussion

In the following chapter, we attempt to explain our results and discuss what we

think possibly could have gone wrong at every step of the process. We also share

some ideas of possible improvements for further research on this topic.

5.1 Data set

The 50× 50 m2 harvest data set is relatively small for a machine learning model.

For each year we have ∼ 5000 samples which in itself is a small number of samples

for the training of a machine learning model, but even more so when considering

that we have up to ∼ 500 feature vectors when using all features. It might be

difficult for our models to learn which of these features are important. However,

if we compare the results from using the 50 m grid with higher resolutions (22

m and 12 m where Nearest sampling was used) we see a trend that decreases in

performance. This is surprising, as the higher-resolution grids greatly increased

the size of the data set (more than 4 times larger for 22 m compared to 50 m).

These results would suggest that more new novel data is needed and that the size

of the data set was not the issue.

A key difference between Sentinel-1 and Sentinel-2 is that there are only two

bands (VH and VV) for Sentinel-1 and nine bands for Sentinel-2 [1]. These nine

different bands correspond to imagery using different wavelengths, which may

contain more information important for harvest prediction. This could explain the

lower performance when using Sentinel-1 compared to using Sentinel-2, as done by

authors in [1], where they achieved an average accuracy of 0.82. Our best accuracy

score was 0.60, see Table 4.4. An interesting test that should be investigated in

the future is how the combination of Sentinel-1 and Sentinel-2 performs. It may be

possible to further improve the prediction score, even exceeding the performance

when using only Sentinel-2.
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5.1.1 Grid Sampling

The 3-by-3 Grid sampling introduces a lot of new features. For each coordinate,

time point, and feature type (excludingWeather) we now have nine features instead

of just one. This lowers the data set size per feature ratio significantly but without

it, we are missing a lot of data relevant to each point. This could explain why

we are not seeing an increase in performance when using Grid sampling compared

to Nearest sampling for the 50 m grid. It may also suggest that the neighboring

samples do not provide any new novel data to our models.

5.1.2 Weather, Elevation, & Topology

When we added weather data we expected to see a significant increase in perfor-

mance since our intuition about agriculture says that weather is crucially impor-

tant. This was not the case, as can be seen in Tables 4.3, 4.4, 4.5 and 4.6. Instead,

we just saw a small but barely significant performance increase. This could be

explained by the sparsity of the weather stations which can be seen in Fig. 3.15

which resulted in quite inaccurate weather data. A solution to deal with the spar-

sity could be to use a more sophisticated interpolation method such as Kriging

interpolation, but this was outside of the scope of this thesis. Another explanation

for the low impact of the weather data on the performance could be the data set

size per feature ratio since it adds 5 new features per time step which accumulates

to 16 · 5 new features for each sample.

Previous studies [33] have shown that altitude height data has some correlation

with the yield. When we added the relatively high resolution (10 x 10 m2) elevation

data we also expected an increased performance, but again we saw no significant

impact. The elevation data does not add many features to the data set. In fact, it

only adds a single or nine features with 3-by-3 Grid sampling since we assume that

elevation height does not change over time. The issue at play here could instead

be data balancing since the proportion of elevation features are much smaller than

the proportion of other features in the data.

Topology performed the worst of all features on its own. This could either

mean that topology is not an important feature in harvest prediction or that our

representation of topology classes as one-hot-encoding adds too many features.

Again, this could be related to the data set size per feature ratio, making the

model unable to learn the representation.
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5.2 Despeckling

The SAR2SAR model which was used for despeckling the Sentinel-1 data is es-

sentially a black box. It seems to be doing a good job of despeckling the data

while maintaining sharpness. We saw that it improved our models’ performance

by about 5− 15% but this does not exclude the possibility of it removing valuable

information. It is possible that there is a better way to despeckle Sentinel-1 data

which could yield increased performance.

5.3 Model Selection

We did not invest a great amount of time trying to find new and potentially

better models, which might have led to better results. The LGBM model was

selected as a primary model throughout the project simply because of how GBDT

models have shown previous good results in harvest prediction tasks with Sentinel-

2. However, it is worth noting that GBDT models do not explicitly deal with

spatial correlations in the same way as a Convolutional Neural Network (CNN)

model such as a Temporal Convolutional Network (TCN) does. Spatial correlations

are most likely very important to take into consideration in harvest prediction

tasks. Since points that are close to each other in space will probably have similar

harvests.

Changing the representation of the data set into a format usable for a TCN

model is not a trivial task and is outside the scope of this thesis. It would involve

grouping coordinates into small grids which could be interpreted as an image by

the TCN. The model would then be able to learn the spatial correlation within

that grid, and hopefully generalize these patterns to previously unseen data.

5.4 Results

A general pattern emerging from the results is that only Sentinel-1 data perform

better on its own than the auxiliary weather and terrain features do. Still, we

consistently get the best results when combining all features, although, not by

much.

We were not able to produce a model with accuracy reaching the accuracy

of models trained on Sentinel-2 data [1] with our 50 × 50 m2 grid. However, we

were still able to show that it might be feasible with a sufficiently large data

set (See Fig. 4.1, 4.2, 4.3). Unfortunately, when we increased the data set size

with the 22 × 22 m2 grid we only saw a decrease in performance. We are not

entirely sure why this happened. This is particularly strange when considering

71



5.4. RESULTS CHAPTER 5. DISCUSSION

the trends which suggested that the model was learning something from the 50

m data. Additionally, the same experiments for 12× 12 m2 are shown informally

in the appendix A.3 and they show a further decrease in the performance. In a

machine learning context, more data should lead to better results. We are unsure

if this is due to an error by us or if there is something wrong with the higher-

resolution harvest data. (Appendix A.4 have more results indicating that it is the

higher-resolution harvest data at fault).

5.4.1 Distributions & Transfer Learning

We found it very interesting to compare the distributions of the true harvest and

the distribution of the predicted harvest (see Figures 4.4, 4.5, 4.6, 4.7). The

model seems to roughly capture the shape of the true distribution. This was an

indication to us that the model was doing something reasonably intelligent and

not just average guessing which would look more like a thin Gaussian.

However, we also see that the distributions vary significantly over the years.

This variation has two possible explanations, the first and probably most significant

is that our data set is too small and the number of farmers who have provided

data to the data set varies between the years with an increasing trend. This makes

it hard for us to model the true distribution for each year since we only have a

glimpse of what a complete data set would look like. Secondly, In Jordbruksverkets

database [21] we can see how the mean of a more complete data set should vary

between each year. This data shows that the average harvest per area unit actually

varies significantly over the years. A way of mitigating this problem, which should

be investigated further, is to model the harvest distribution with some kind of

algorithm. We have a few models in mind for this task, those being a: dynamical

statistical model estimated with a Kalman filter or variational autoencoder. Being

able to precisely model the harvest distribution would be greatly beneficial, and

should be added to our models so that they can adapt to the variation.

This fact helps in explaining the poor results of the transfer learning on our

data since we are training it on one distribution and testing it on a significantly

different one. Ideally, this should not be a problem for a machine-learning model

trained on a sufficient amount of data. But in reality, there are probably more

hidden features that determine the distribution for a given year making it difficult

to predict.

5.4.2 Year 2018

In 2018, Sweden had its warmest summer ever recorded [46]. It was also a dry

summer with extremely low precipitation. The results of this extreme weather
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event can be seen throughout our data and results. Notice how the harvest distri-

bution for 2018 (see Fig. 4.5) differs significantly from the other years. The top

features for 2018 from the Boruta algorithm included height in the top 5 features

which were not seen in the other years and instead favored the raw Sentinel-1 data

and sometimes weather.
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Chapter 6

Conclusion

The primary conclusion of this thesis is that harvest prediction using Sentinel-1

radar backscatter is most likely feasible with a sufficiently large data set and an

adequately powerful model. We have shown that Sentinel-1 data contains valuable

information for harvest prediction. Further work is needed to investigate why

lower-resolution harvest grid scores are better than those with the higher-resolution

harvest grid.

The LGBM model outperformed the FNN model in all aspects. It consistently

outperformed the FNN model in RMSE and classification scores by a small but

yet significant amount. It was also several factors faster to train. We would also

like to mention that we tried simple models such as linear regression and logistic

regression, these performed worse than LGBM.

The indices had an interesting trend similar to the NDVI trend for Sentinel-2

in [1]. Adding indices to our models resulted in no increase in performance as was

seen for Sentinel-2 [1].

The auxiliary data (Weather, Elevation, and Topology) gave a slight boost to

performance. Weather and Elevation seem useful to a degree, as both showed up

among the most important features. Topology, on the other hand, did not seem

useful at all. It rarely showed up at all as a favored feature from the Boruta

algorithm.

Transfer learning did not work very well at all. Our best-case scenario was

when using the 2020 data set for training and predicting the data set from 2017.

This still gave us an error of 1.69 tonnes per hectare which we consider insufficient

for operational use. The poor performance in transfer learning is not surprising,

as transfer learning (in the sense of extrapolating over time) is a difficult problem.

The model would not only need to perform well for the distribution it was trained

on, but it would also need to learn how the distribution changes in the future.

Further work is needed to estimate how the harvest distribution varies between

years to hopefully someday enable the operational use of these models.
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6.1 Future works

Throughout this project, we came up with several ideas which we would like to

try but realized that it was unfeasible to try them all within the time frame for

the thesis. If anyone decides to continue our work then we would like to offer some

advice on what we think is worth investigating:

Combine Sentinel-1 and Sentinel-2 data: The major next extension of our

work is to combine Sentinel-1 data with Sentinel-2 data since it is possible that

Sentinel-1’s backscatter contains information that can not be derived from Sentinel-

2’s data and vice versa.

CNN model: The LGBM model does not take spatial correlations into account.

Our intuition is that spatial correlations are most likely very important in harvest

prediction. Further work should investigate the possibility of using a CNN-based

model, which can model spatial correlations, and see how it compares with the

LGBM model.

Transfer learning: There should be a more thorough investigation of why the

transfer learning did not work and how it can be improved. Within the project,

we discussed if it is possible to predict the next year’s distribution given previous

years’ distribution together with any auxiliary data. Furthermore, it should be in-

vestigated if a predicted distribution can be used to predict the harvest at specific

points.

Other crops: We believe that this approach of coordinate-wise harvest predic-

tion with Sentinel-1 radar data could be expanded to other crops. Winter wheat

was picked due to the possibility of comparing previous harvest prediction results

using Sentinel-2 optical imagery [1].

RFI-filter: The RFI-filter we constructed is very primitive. It is worth inves-

tigating if it is possible to either improve it, such that it would remove more noise

and less good data. It is also worth investigating if it is possible for an ML model

to both remove the noise and possibly reconstruct the missing data. This could

open up the possibility of using a finer time interval with 2 or 3 images per week.
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Appendix A

Latest Findings

In this part of the report, we will present our latest results which we could not

formally include in the report, due to time limitations.

A.1 Results in a Compact Form

Let Ψ ∈ {G-50,N-50,N-22,N-12} where G = Grid, N = Nearest and 50, 22, and

12 is the harvest grid resolution in meters and x̄ = Feature Vector.

Table A.1: RMSE for each year, model, feature vector, sampling method, and

resolution. Note that the LGBM model outperforms the FNN model in all cases.

2017 2018 2019 2020

Ψ x̄ LGBM FNN LGBM FNN LGBM FNN LGBM FNN

G-50 All 0.80 1.09 0.75 0.87 0.93 1.07 1.08 1.37

VH-VV 0.85 1.12 0.81 0.87 1.01 1.15 1.20 1.47

N-50 All 0.81 1.05 0.76 0.87 0.93 1.13 1.09 1.37

VH-VV 0.86 1.12 0.81 0.88 1.04 1.12 1.25 1.53

N-22 All 1.07 1.26 0.89 1.06 1.15 1.37 1.34 1.72

VH-VV 1.11 1.25 0.93 1.02 1.23 1.30 1.46 1.75

N-12 All 1.31 1.49 1.00 1.14 1.37 1.50 1.53 1.81

VH-VV 1.34 1.53 1.02 1.11 1.42 1.52 1.63 1.92
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A.2 Harvest Distribution 22 m vs. 50 m

Figure A.1: True harvest distributions for 22 m grid (left) compared with 50 m

(right) grid
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Figure A.2: True harvest distributions for 22 m grid compared with the predicted

harvest distributions
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A.3 General Results (12 m Resolution)

Table A.2: Summary of results for 2017 using harvest data with a resolution of

12× 12 m2, Nearest sampling, different feature vectors, and models.

LGBM FNN

Features, Nearest RMSE Acc. F1 RMSE Acc. F1

All 1.31 0.43 0.41 1.49 0.37 0.36

VH & VV 1.34 0.42 0.40 1.53 0.36 0.34

Weather 1.56 0.35 0.32 1.60 0.33 0.29

Topology 1.84 0.25 0.16 1.86 0.26 0.17

Elevation 1.72 0.30 0.25 1.80 0.27 0.19

Table A.3: Summary of results for 2018 using harvest data with a resolution of

12× 12 m2, Nearest sampling, different feature vectors, and models.

LGBM FNN

Features, Nearest RMSE Acc. F1 RMSE Acc. F1

All 1.00 0.50 0.49 1.14 0.42 0.41

VH & VV 1.02 0.49 0.48 1.11 0.45 0.44

Weather 1.43 0.32 0.27 1.47 0.31 0.24

Topology 1.74 0.26 0.17 1.76 0.26 0.18

Elevation 1.57 0.30 0.24 1.64 0.28 0.22

Table A.4: Summary of results for 2019 using harvest data with a resolution of

12× 12 m2, Nearest sampling, different feature vectors, and models.

LGBM FNN

Features, Nearest RMSE Acc. F1 RMSE Acc. F1

All 1.37 0.39 0.38 1.50 0.35 0.34

VH & VV 1.42 0.38 0.36 1.52 0.33 0.32

Weather 1.75 0.26 0.23 1.86 0.24 0.21

Topology 2.15 0.17 0.08 2.17 0.16 0.08

Elevation 2.05 0.19 0.14 2.09 0.17 0.11
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Table A.5: Summary of results for 2020 using harvest data with a resolution of

12× 12 m2, Nearest sampling, different feature vectors, and models.

LGBM FNN

Features, Nearest RMSE Acc. F1 RMSE Acc. F1

All 1.53 0.36 0.36 1.81 0.31 0.30

VH & VV 1.63 0.34 0.33 1.92 0.31 0.30

Weather 2.10 0.22 0.20 2.45 0.21 0.18

Topology 3.06 0.17 0.10 3.08 0.18 0.10

Elevation 2.87 0.17 0.13 3.01 0.16 0.12

A.4 Erroneous Code or Harvest Data?

As mentioned in the thesis, we would expect that the error would be lower or at

least the same for the higher resolutions grid (N-22 and N-12). Hence, there may

be either a problem with the code or the finer resolution harvest data. We suspect

that the code working correctly and that the higher-resolution harvest data is the

problem. This is due to several reasons. If we have an error in the code, then that

would reflect on the 50 m grid performance, which it does not. Further, we tested

this empirically by creating two new data sets using randomness instead of the

actual satellite data for the input data and the 50 m harvest data as labels. The

randomness was done in two ways, creating two new feature vectors for N-50. The

first feature vector we called Random, x̄ = R, and it replaced the correct VH and

VV values with samples from a uniform distribution, U(0, 1). The second feature

vector we called Patch Random, x̄ = PR, and it replaced the correct VH and VV

values with random VH and VV values from the same patch. This randomness

approach tested what would happen if the data was from Sentinel-1 satellites, but

geo-referenced incorrectly. This means that the satellite data was not completely

random, and was limited to a similar area of the Earth.

Our thought was that the Random feature vector would just guess the average,

as there would be no correlation between the input VH and VV values and the

labels. This was confirmed and can be seen in Fig. A.4.
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Figure A.3: True harvest distributions for 50 m grid (left) compared with predicted

distribution (right) using Ψ = N-50 and x̄ = R.

For the Patch Random feature vector, our thought was that getting random

samples from within the same patch could potentially lead to a more complex

predicted distribution. This could be seen for 2020, but otherwise, the predicted

distribution looked more like average guesses as seen when it was completely ran-

dom Fig. A.4. This is further evidence that the code was not at fault.
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Figure A.4: True harvest distributions for 50 m grid (left) compared with predicted

distribution (right) using Ψ = N-50 and x̄ = PR.

The table below shows the results from the different random feature vectors

using the LGBM model and N-50, see Table A.6. Guessing the average harvest

label was not a bad choice, as the RMSE was not that high. However, we see

a large decrease in the classification metrics, as these are more sensitive to the

variance of the underlying distribution.
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Table A.6: The results using the LGBM model and two different random feature

vectors for the input data. To get the classification metrics an error margin of 0.5

tonnes per hectare was used.

2017 2018

Ψ x̄ RMSE Acc. F1 RMSE Acc. F1

N-50 R 1.36 0.31 0.25 1.60 0.27 0.21

N-50 PR 1.37 0.32 0.26 1.60 0.28 0.22

2019 2020

Ψ x̄ RMSE Acc. F1 RMSE Acc. F1

N-50 R 1.85 0.19 0.12 2.73 0.18 0.12

N-50 PR 1.82 0.19 0.13 2.60 0.18 0.14

During the thesis, we mostly worked with the 50 m harvest data as the finer

resolution grids were hard to create due to the great number of data points. We

did have an error in our sampling for 50 m, which we fixed. The issue was that

the latitude coordinate was flipped when we geo-referenced it with the Sentinel-1

data, leading to the longitude being correct but not the latitude. Once this bug

was fixed, we repeated the experiments. The performance increased by about 10

percent units. We were surprised that the error did not improve more, as this was

not a small bug. However, this further showed the spatial correlation aspect of the

problem and why a CNN-based model would perform well.

A.5 Can We Overfit?

At some point in the project, we wanted to see if it was possible to overfit the

harvest data, not for any particular reason or with a particular goal in mind. But

we thought that it might be interesting to include these results as well in the

appendix, we clearly see that the model can overfit in the figures below. However,

the overfitting does not decrease the validation error by a significant amount, as

expected. This shows that the use of optimization techniques, such as drop-outs,

could further minimize the generalization gap.
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Figure A.5: Using 22 m grid and the FNN described below.

Figure A.6: Using 50 m grid and the FNN described below.

Here is the extended FNN used to achieve the overfitting:

n_features = X_train.shape[1]

inputs = keras.Input(shape=(n_features ,))

x = layers.Dense(max(n_features*11, 500), activation="relu")(

inputs)

x = layers.Dense(max(n_features*9, 500), activation="relu")(x)

x = layers.Dense(max(n_features*9, 500), activation="relu")(x)

x = layers.Dense(max(n_features*9, 500), activation="relu")(x)

x = layers.Dense(max(n_features*9, 500), activation="relu")(x)

x = layers.Dense(max(n_features*9, 500), activation="relu")(x)
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x = layers.Dense(max(n_features*9, 500), activation="relu")(x)

x = layers.Dense(max(n_features*9, 500), activation="relu")(x)

x = layers.Dense(max(n_features*9, 500), activation="relu")(x)

x = layers.Dense(max(n_features*9, 500), activation="relu")(x)

x = layers.Dense(max(n_features*8, 500), activation="relu")(x)

x = layers.Dense(max(n_features*7, 500), activation="relu")(x)

x = layers.Dense(max(n_features*6, 500), activation="relu")(x)

x = layers.Dense(max(n_features*5, 500), activation="relu")(x)

x = layers.Dense(max(n_features*5, 500), activation="relu")(x)

x = layers.Dense(max(n_features*5, 500), activation="relu")(x)

x = layers.Dense(max(n_features*4, 500), activation="relu")(x)

x = layers.Dense(max(n_features*3, 300), activation="relu")(x)

x = layers.Dense(max(n_features*2, 200), activation="relu")(x)

# Max 200 , min 50 nodes

x = layers.Dense(min(max(int(n_features* 1/2), 50), 200),

activation="relu")(x)

# Max 50 , min 20 nodes

x = layers.Dense(min(max(int(n_features* 1/5), 20), 50),

activation="relu")(x)

outputs = layers.Dense(1)(x)

model = keras.Model(inputs=inputs , outputs=outputs , name="

MyFNN_regressor")

model.compile(

optimizer=keras.optimizers.Adam(),

loss=keras.losses.MeanSquaredError (),

)

model.summary ()

epochs = 100*10

batch_size = 248

history = model.fit(

X_train ,

y_train ,

batch_size=batch_size ,

validation_split=0.1,

epochs=epochs ,

verbose=2,

#callbacks=callbacks ,

)
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Appendix B

Miscellaneous

B.1 Sentinel-1 Download Configuration

We used the eo-learn python package [9] for access to Sentinel 1 data. Using

our coordinates from the field data we could locate which EO patches covered the

fields. Using the SentinelHubInputTask class, we downloaded the data with the

following parameters:

processing_params = {

"backCoeff": "GAMMA0_TERRAIN",

"orthorectify": True ,

"demInstance": "COPERNICUS",

"downsampling": "BILINEAR",

"upsampling": "BILINEAR"

}

data_task = SentinelHubInputTask(

data_collection=DataCollection.SENTINEL1_IW ,

bands_feature=(FeatureType.DATA , "IW"),

bands=["VH", "VV"],

config=config ,

time_difference=datetime.timedelta(minutes=120),

max_threads=4,

resolution=11.0,

aux_request_args = {’processing ’: processing_params}

)

The variable processing params contains parameters for orthorectification

and radiometric calibration [42].

B.2 Calculating Class-Metrics from RMSE
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import numpy as np

from sklearn import metrics

import numpy.typing as npt

def class_metrics(y_test , y_hat , err_tol=0.5):

y_test = np.array(y_test)

y_hat = np.array(y_hat)

y_test_class = y_test.round().astype(int)

y_hat_class = np.zeros(len(y_hat)) - 1

for i in range(len(y_test)):

y_t = 6.51

y_h = 7.1

if np.abs(y_test[i] - y_hat[i]) <= err_tol:

y_hat_class[i] = y_test_class[i]

else:

y_hat_class[i] = int(np.round(y_hat[i]))

if y_hat_class[i] == y_test_class[i]:

if y_test[i] < y_hat[i]:

y_hat_class[i] = y_hat_class[i] + 1

else:

y_hat_class[i] = y_hat_class[i] - 1

acc = metrics.accuracy_score(y_test_class , y_hat_class)

f1 = metrics.f1_score(y_test_class , y_hat_class , average=’

weighted ’)

return acc , f1

B.3 Authors’ Contact Information

Oliver Persson Bogdanovski:

• oliver.persson.b@gmail.com

• +46763169956

Christoffer Svenningsson:

• christoffer.c.svenningsson@gmail.com
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