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Abstract

Cardiovascular diseases are the leading cause of death worldwide, increasing
yearly. However, many abnormalities in heart cycles can be discovered and
treated years before the onset of diseases. But in most societies, regular health
checkups are a concept reserved for cars, not humans. In order to save lives,
our healthcare systems must adopt a preventative rather than a reactive ap-
proach. To that end, there have been several attempts to produce automated
ECG-based heartbeat classification methods over the last few decades. But
their performance is hindered by limited access to high-quality labeled data,
restricting their usage to secondary diagnostic purposes. In this regard, a self-
supervised learning framework could provide a viable solution, as it decouples
deep learning progress from the dependence on large volumes of annotated
data, and instead uses unlabelled samples. In this thesis, we present an assess-
ment of self-supervised representation learning on 12-lead clinical ECG data to
examine whether self-supervised learning methods can be applied to electro-
cardiogram signals to produce meaningful feature representations from only
unlabelled data. We implement the self-supervised learning methods SimCLR,
BYOL, and VICReg and compare their performances to a supervised learning
method. In doing so, we find that self-supervised learning produces meaningful
representations of ECG signals. When following each method’s recommended
implementation protocol, the performance equals those of a conventional su-
pervised model, initially suggesting that self-supervised pre-training offers no
additional benefits to downstream tasks. However, by increasing the length of
the ECG signal and adjusting the data augmentation strategy, self-supervised
pre-trained models outperformed their supervised counterparts in all evalua-
tion settings. In light of our experiments, we find that a suitable augmentation
protocol is crucial for high downstream classification performance.
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1
Introduction

1.1 Background

Cardiovascular disease is the leading cause of death worldwide, killing 17.9
million people each year [WHO, 2021]. The term cardiovascular disease refers
to a group of diseases affecting the blood vessels and the heart, including a
variety of conditions such as stroke, heart failure, hypertensive heart disease,
rheumatic heart disease, cardiomyopathy, abnormal heart rhythms, and others
[Mendis et al., 2011]. Eight out of ten deaths are caused by heart attacks and
strokes and one-third of these deaths occur prematurely among people under
the age of 70 [WHO, 2021]. Thus, it is crucial to detect cardiovascular disease
at an early stage to ensure appropriate counseling and treatment – and to
prevent premature death.

Unfortunately, our current healthcare system is not equipped to provide
the preventive healthcare that is needed. With the non-availability of med-
ical diagnosing tools and limited access to medical experts, early diagnosis
and vital treatments remain absent. As many abnormalities are detectable
years before the onset of symptomatic cardiovascular events, implementing a
widespread and cost-effective screening and disease detection program could
prevent a number of premature deaths.

There are a number of industries and fields in which the application of ma-
chine learning has proven to be a successful solution to a wide range of prob-
lems. Machine learning-based systems have for example increased machine
longevity and operational efficiency in factories by monitoring and predicting
machine failures. The reason for this is that machine learning systems are
capable of analyzing a large amount of data and detecting minuscule patterns
that are largely unrecognizable by humans. The use of machine learning could
perhaps contribute to the development of similar medical systems. These sys-
tems, instead of predicting the failure of machines, would predict the failure
of the human body.

In fact, various medical fields are benefiting from machine learning, and
early detection of diseases, as well as individualized treatment plans, are now
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Chapter 1. Introduction

possible [Muhammad et al., 2020a]. Additionally, machine learning-assisted
healthcare systems may be able to meet the growing demand for affordable,
high-quality cardiac screenings, enabling improved and enhanced detection of
cardiovascular diseases.

Increasing the prospects for the development of early detection systems,
electrocardiograms, or ECGs for short, have become increasingly used in car-
diovascular screening. Due to its simple and noninvasive nature, it enables
the detection of many cardiovascular abnormalities of the heart rhythm as it
records and analyzes the electrical signal of each heartbeat. Each heartbeat is
seen as a cardiac action potential waveform produced by cardiac cells during
the contraction and relaxation of the heart. Section 3.1 will provide a more
detailed description of electrocardiograms. The last couple of decades have
brought with them several attempts to produce automatic ECG-based heart-
beat classification methods [Siontis et al., 2021a; Ribeiro et al., 2020a]. How-
ever, limited access to high-quality labeled data hinders their performance and
restricts their usage to secondary diagnostic purposes. By combining the lat-
est development of deep learning with the availability of electrocardiograms,
there is hope for efficient and accurate detection systems to be developed.

Situation at present
As a result of deep learning, medical systems have improved considerably
in recent years. These models have learned to recognize patterns in large
amounts of carefully labelled data, and they have a proven track record of
performing extremely well on the task for which they have been trained. The
unprecedented progress in artificial intelligence, and especially deep learning,
has demonstrated the immense potential for automated, algorithmic detec-
tion and diagnosis of cardiovascular diseases. However, supervised learning
alone is not sufficient to advance machine-aided systems in this field. These
deep learning systems are challenging to train due to their inherent reliance
on large amounts of annotated data. The low availability of datasets with
high-quality labels is an omnipresent challenge in machine learning in general
but is especially pressing in the health domain. The medical labeling pro-
cess is particularly expensive and clinical ground truth is many times hard
to define. In addition, systems are further compromised by mismatches in
distribution due to differences in equipment, data collection procedures, and
local population and application environments.

In order to decouple deep learning progress from its dependence on large
amounts of annotated data, novel learning frameworks, such as self-supervised
learning, are being explored in current research. Self-supervised learning is
presented as a method that allows systems to "learn" using unlabelled data
but is applied in settings where a supervised model normally would be used.
In this respect, self-supervised learning may be a viable solution to the issue
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of data labeling as it permits a label-efficient approach to training [Spathis
et al., 2022].

1.2 Related Research

In this thesis, the focus is on self-supervised representation learning of elec-
trocardiogram signals. The following is a summary of related research that
has played an important role in the progress of this field.

Self-supervised learning
Many fields, including computer vision, natural language processing, and
speech processing, have in the past decades been able to witness a revolution-
ary development of specialized deep learning systems. However, as the success
of these learning models greatly depends on massive amounts of carefully la-
belled training data, advancements in certain domains are suppressed due to
the scarcity of qualitative data. Within the last years, even fields flourishing
with millions of publicly available data samples have seen progress hindered
by data shortages. This is partly due to the cumbersome data labeling process,
and labeling everything in the world is as unlikely as walking on the surface
of a black hole. To overcome this supervised learning bottleneck and to get
around the need for data labels, recent research is proposing a novel learning
framework. In this framework, deep learning systems obtain supervisory sig-
nals directly from the data itself, in contrast to the previously used human
annotations. Known as self-supervised learning [LeCun and Misra, 2021], it
was first introduced to the field of natural language processing, where self-
supervised trained models such as BERT, RoBERTa, and XLM-R [Devlin et
al., 2018; Liu et al., 2019; Conneau et al., 2019] entailed significant perfor-
mance improvements without the increasing need for labelled data.

The domain of computer vision was not far behind in adopting this novel
approach of using self-defined pseudo labels as supervision for learning gen-
eral representations applicable to several deep learning tasks. Specifically,
contrastive learning has recently become a dominant component in computer
vision with self-supervised learning methods such as PIRL, SwAV, SimCLR,
MoCo and CPC [Misra and Maaten, 2020; Caron et al., 2020; Chen et al.,
2020; He et al., 2020; Oord et al., 2018] being developed. This discriminative
approach aims at grouping feature representations of similar samples close
together in a latent space while diverse sample representations are placed far
from each other. To achieve this, the approaches require negative, nonsim-
ilar, samples to be explicitly defined – a task which is not always feasible.
SimCLR learns representations by maximizing agreement between differently
augmented views of the same data example via a contrastive loss in the latent
space. Other methods, like MoCo, utilize dynamic dictionaries of negative
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sample representations. Non-contrastive approaches include methods such as
BYOL, SiamSiam, Barlow Twins and VICReg [Grill et al., 2020; Chen and
He, 2021; Zbontar et al., 2021; Bardes et al., 2021]. Instead of explicitly defin-
ing negative samples, they introduce asymmetry in the network architecture
to solve the representation problem. BYOL uses two neural networks to learn,
the online and the target networks, while Barlow Twins and VICReg introduce
instance contrasting in their respective loss functions.

Machine learning in cardiovascular disease detection
The application of machine learning to the electrocardiogram is an example
of the ongoing transformative effect of artificial intelligence in cardiovascular
medicine. ECG signals can now be interpreted by machines with high accuracy
thanks to deep learning. With signals and patterns largely unrecognizable to
human interpreters being detectable by deep learning networks, the ECG be-
comes a powerful, non-invasive tool for disease detection [Raghunath et al.,
2020]. State-of-the-art solutions mainly follow convolutional neural network
based architectures trained in a supervised manner [Li et al., 2020; Muham-
mad et al., 2020b; He, 2020; Siontis et al., 2021b] and offer valuable insights
into cardiovascular health and disease detection. However, interpretation and
annotation of ECG signals require considerable human expertise, resulting
in costly, time-consuming, and at times, even infeasible labeling procedures.
Current systems are highly dependent on large amounts of labelled data and
further development of clinical AI-based ECG disease detection systems is
hindered by its scarcity.

Self-supervised representation learning in cardiovascular
disease detection
Given recent achievements of self-supervised learning in other fields, present
research in the domain of cardiovascular disease detection aims to apply self-
supervised learning methods to decouple system performance from the need
for excessive amounts of labelled data. Mehari and Strodthoff [Mehari and
Strodthoff, 2022] apply a selection of self-learning methods to 12-lead ECG
data and evaluate their representational performance in a multi-label classifi-
cation task setting. They find an adjusted version of the contrastive predictive
coding, CPC [Oord et al., 2018], and the SimCLR approach to show the high-
est performance results. Research presented by [Kiyasseh et al., 2021] also
considers BYOL and SimCLR approaches for ECG representation learning,
but used a very shallow encoder network architecture with only five convolu-
tional layers. Conclusively, work by [Liu et al., 2021] highlights the potential
for using self-supervised learning methods in ECG representation learning
by presenting a careful comparison of the effects of different self-supervised
learning methods on linear evaluation and fine-tuning evaluation. They con-
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clude that self-supervised learning methods relying on negative sample pairs
are able to achieve excellent results with only a small number of labelled data
samples, allowing for these methods to approach the disease detection level
of human experts with a greatly reduced need for labelled samples.

1.3 Aim of this thesis

This thesis examines the potential for self-supervised representation learning
of electrocardiogram signals for the detection of cardiac diseases. As a re-
sult, the objective of this thesis is to increase and improve the understanding
and knowledge of self-supervised learning methods within the medical field.
More specifically, this thesis will investigate whether self-supervised learning
methods can be applied to electrocardiogram signals to learn meaningful fea-
ture representations from a large set of unlabelled data that later helps boost
the performance of supervised models on downstream tasks with only a few
labelled examples. Building upon previous research, the instance-based self-
supervised learning methods SimCLR, BYOL, and VICReg are adapted and
directly compared. SimCLR and BYOL are investigated due to their demon-
strated potential in the work conducted by [Mehari and Strodthoff, 2022] and
[Liu et al., 2021], while the exploration of VICReg is motivated by its novelty,
simplicity, and theoretical transparency.

Research questions
Based on the thesis objective and the current status of research on self-
supervised representation learning for cardiovascular health assessments, two
research questions are formulated. Following the introductory chapter, the re-
maining chapters will examine, discuss, and attempt to answer the following
questions:

• Can self-supervised learning methods be utilized to create ECG signal
representations relevant to clinical downstream tasks?

• Can we improve upon previous self-supervised learning approaches to
present novel methods in the domain of medical ECG signal represen-
tation learning?

Embarking on a quest to answer our research questions, we seek to advance
the understanding of self-supervised representation learning in the context of
cardiovascular anomaly detection.

Delimitations
With the previous research questions in mind, it is worth exploring the de-
limitating choices made for the study at hand. In light of the results of recent
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and related research, this thesis concentrates on the branch of self-supervised
learning related to instance-based pretext tasks, as it has shown the most
promising results. Consequently, it will not investigate the performance of
pretext tasks based on methods such as clustering-, generative-, or adversarial-
based methods. More specifically, the following methods are those which will
be implemented and evaluated: SimCLR, BYOL, and VICReg. Architectural
constraints are imposed on the encoder network as all the aforementioned
methods are restricted to adopt a one-dimensional ResNet-50 architecture.
This is in agreement with earlier research where the choice of a ResNet-50
encoder network has yielded good results [Mehari and Strodthoff, 2022].
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2
Theoretical framework

In this chapter, the reader is introduced to the underpinning theories upon
which the concept of self-supervised learning is built. Descriptions of the cen-
tral theoretical- and conceptual frameworks are presented along with research
approaches related to the thesis. The chapter begins with an overview of in-
formation theory in the context of self-supervised learning, followed by a de-
scription of representational learning and transfer learning before concluding
with a discussion of the framework for self-supervised learning.

2.1 Information theory

Quantifying the amount of information present in a signal is the main focus of
the branch of mathematics called information theory [Thomas and Joy, 2006].
A field that is part of the fundamental theoretical framework of deep learning
and has made substantial contributions to its development. Deep learning
can be formulated as an information-theoretic trade-off between compression
and prediction. In supervised learning, the goal is to find a representation
T (x) of the input x that enables an accurate prediction of the output label y
[Thomas and Joy, 2006]. This is obtained by finding an efficient way to learn
the patterns from the unknown joint distribution P (X;Y ), while at the same
time retaining the ability to generalize. Formally, the mutual information
between two random variables X and Y is

I(X;Y ) = H(X)�H(X|Y ) = H(Y )�H(Y |X),

with H being the entropy H(X) = �
P

x p(x) log p(x); the average amount
of information needed to specify the state of a random variable. The mutual
information between X and Y can be understood as how much knowing X
reduces the uncertainty in Y, or vice versa. Given a function f that takes
x and y as its input, the goal of supervised training is to find parameters
of the function f that maximize I(x; y). As the input variable in most deep
learning cases is of a much higher dimensionality compared to the output
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variable, most of the entropy (information) of the input variable X is not
informative about Y , meaning that the features of X relevant for the task are
highly distributed and difficult to extract. The goal becomes to statistically
decouple input units and minimize information redundancy, without the loss
of relevant information. That is, remove the information irrelevant to the
prediction of Y while retaining only the most relevant information.

Information bottleneck theory
Following this definition, the information bottleneck theory [Tishby et al.,
2000] was introduced. It is an information-theoretic principle for extracting
the sought-for-task-relevant information an input random variable X 2 X
contains about the output random variable Y 2 Y. This random variable X
induces a probability distribution on Y that the neural network aims to learn.
Thus mathematically, the problem is that of estimating the values of the un-
known conditional probability PY |X(X) for all elements of the dataset. Given
their unknown joint distribution p(X;Y ), the relevant information is defined
as the mutual information I(X;Y ), where statistical dependence between X

and Y is assumed. Y implicitly determines which features in X are meaning-
ful, and an optimal representation of X would consist solely of the relevant
features. Consequently, compressing X by discarding irrelevant parts which
do not contribute to the prediction of Y . In statistical terms, the relevant
part of X with respect to Y , denoted by U , is a minimal sufficient statistic
of X with respect to Y . The problem of finding this representation U can be
written as the following Lagrangian optimization

min
PU|X

I(X,U)� sI(Y, U),

where I(· ; ·) denotes the mutual information and s is a Lagrange-type pa-
rameter controlling the trade-off between accuracy and regularization. When
s �! 0, the representation U is at its most compact form, |U | = 1. By gradu-
ally increasing the parameter s, the emphasis on the relevance term I(Y ;U)
increases, and at a critical value of s, the optimization focuses on not only the
compression but also the relevance term. Namely, it is the simplest mapping
of X that captures the mutual information I(X;Y ) [Tishby and Zaslavsky,
2015]. This formulation is closely related to that of Rate-Distortion Theory
[Equitz and Cover, 1991], with a distortion function that measures how well
Y is predicted from a compressed representation compared to its direct pre-
diction from X. This interpretation provides a general algorithm for solving
the information bottleneck trade-off and finding an optimal feature represen-
tation.
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2.2 Representation learning

In the context of self-supervised learning
There is no information available regarding the output label Y in self-
supervised learning. Thus, the information bottleneck problem cannot be for-
mulated on the input variable X and the output variable Y. Instead, X and
Y can be defined as two augmented versions, referred to as two views, of the
same data sample [Tsai et al., 2020]. These two views are mapped to a latent
embedding space by neural networks defined in the self-supervised learning
setup. In this latent space, the two views are represented by various features.
The aim of introducing an information bottleneck is to maximize the mutual
information between the features extracted from these multiple views of the
same data sample [Tschannen et al., 2019].

An analogy can be drawn to a child learning to represent observations
generated by a shared cause, e.g. the sights, scents, and sounds of baking.
This learning is driven by a desire to predict other related observations, e.g.
the taste of cookies. For a more concrete example, the shared context could
be an ECG recording. The multiple views of this context could be produced
by repeatedly applying data augmentations to the ECG signal. The main idea
is that maximizing mutual information between features extracted from these
multiple views forces the features to capture information about higher-level
factors that broadly affect the shared context. However, this formulation relies
on the core assumption that only the shared information between the input
and augmented views contributes to solving the task. In addition, the data
augmentations should not affect the true labels of input X. In section 2.4,
this topic is further elaborated.

2.2 Representation learning

The concept of representation learning within the context of self-supervised
learning is closely related to the maximization of mutual information between
multiple semantically similar views, as discussed in Section 2.1. In a broader
context, representation learning is a class of machine learning approaches
where the objective is to represent input data by a latent representation vec-
tor that contains the features required for solving a machine learning task
[Goodfellow et al., 2016]. Deep learning networks convert data into complex
mathematical representations, where each input is assigned a numerical posi-
tion within a high-dimensional space. These representations, also called em-
beddings or features, can be seen as a distilled summary of the unique char-
acteristics of the data input. For an ECG recording, the dimensions might
quantify minuscule patterns in the signal, the length of each heart cycle, or
information on the QRS duration. In representation learning, the goal is to
learn which traits distinguish one group of data from another. For example,
a question to answer might be what characteristics are always relevant for a
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Chapter 2. Theoretical framework

normal ECG recording. Or if a certain cardiovascular anomaly can be repre-
sented by a set of features extracted from the heart cycle? Extracting certain
features from an ECG signal might enable the network to map the QRS dura-
tion to various cardiovascular states. This might enable the network to learn
that a particular ECG signal should be considered to come from an unhealthy
heart. Being able to understand which features are relevant for representing
the input data is the essence of representation learning.

Shared representations are useful to handle multiple data modes or do-
mains, or to transfer learned parameters to tasks for which few or no ex-
amples are given. Feed-forward networks trained by self-supervised learning
methods can be seen as performing a kind of representation learning where
the pre-trained network learns representations assumed to be relevant for
solving the actual problem. Broadly speaking, a good representation from a
pre-trained network is one that makes a subsequent learning task easier. Thus,
how to define a useful representation will most often depend on the actual
problem to solve. Tying representation learning back to the information bot-
tleneck theory, a good representation in the self-supervised learning context
will maximize the mutual information between augmented views of a shared
context and can be used to perform a given task [Bengio et al., 2013].

2.3 Transfer learning

Transfer learning, domain adaptation, and pre-training make use of the idea
that network parameters learned in one setting (e.g. data distribution P1) can
be chosen as initial parameters for a neural network in another setting. In prin-
ciple, a model exploits the knowledge gained from one task and transfers it
to improve the performance of another. Pre-training allows for a significant
improvement of optimization and generalization capabilities in the new do-
main (e.g. data distribution P2), as the transferring of network parameters
initializes the model in a multidimensional latent state that otherwise might
be inaccessible. An example of an unreachable area could be a region on the
mathematical function the network is optimizing, that is surrounded by areas
where the cost function varies so much from one example to another that
mini-batches of data samples give only a very noisy estimate of the gradi-
ent. Or it could be a latent region reachable only with a larger amount of
sampled data than is available from P2, the setting in which we aim to de-
ploy the model. The fact that many of the features explaining variations in
P1 are also relevant for explaining variations in P2 then becomes a crucial
assumption. If there is no, or very little, data sampled from P2 while there
is an abundance of data sampled from the first domain P1, features that are
learned about this first set of data might be used to represent data coming
from the second setting. This allows for deep learning models to be used in
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2.4 Self-supervised learning

low-data regimes where these methods otherwise would not be applicable. In
conclusion, transfer learning, multitask learning, and domain adaptation can
all be obtained via representation learning when there are underlying factors
that are relevant to the various settings or tasks.

Although transfer learning has shown great success in a variety of deep
learning domains, there are fundamental differences in data, features, and
task specifications between datasets generally used for pre-training and those
stemming from the medical domain. The effects of transfer learning within
the domain of medical tasks are not widely researched and there is little un-
derstanding of the effects of transfer learning from fundamental models to
clinical applications [Raghu et al., 2019]. For example, features learned for
the classification of everyday objects like images of dogs or cars might be hin-
dering representation learning in the medical domain as the network might
have been trained to discard information later needed for the medical applica-
tion. Despite the impending widespread deployment of foundation models, the
current lack of clear understanding of their inner workings might furthermore
introduce unwanted model biases [Bommasani et al., 2021].

2.4 Self-supervised learning

Self-supervised learning is a strategy for learning feature representations, us-
ing only unlabelled data examples. By training models on unlabelled data,
self-supervised learning aims to learn general representations that are easily
adaptable for usage on other tasks. Before continuing, the reader should be
introduced to two key concepts: the pretext task and the downstream task.
A pretext task is a self-supervised learning problem in which the model con-
structs feature representations from unlabeled data inputs. The pretext task
is often followed by a downstream task. This downstream task is the primary
task to be solved and it often involves real-world applications and human an-
notations of the input data. Figure 2.1 presents an illustration of the learning
strategy and its two major phases: the unsupervised learning phase which
is followed by the supervised fine-tuning process [Zhai et al., 2019]. During
the unsupervised representation learning step, supervisory signals are formed
directly from the data, contrary to supervised representation learning where
explicit annotations or labels act as feedback signals. By forcing a model to
solve a deliberately designed pretext task it learns to extract task-agnostic
feature representations of the data. The feature vectors after this initial step
could in some cases be directly useful for the downstream task; this potential
usefulness is measured by the so-called linear evaluation procedure. However,
the self-supervised learning routine continues to improve the representations
by applying a second step; fine-tuning. Here the model weights are further up-
dated by supervised training on a few labelled data samples. This multi-step
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procedure allows for self-supervised learning to be seen as an evolved unifica-
tion of unsupervised learning, semi-supervised learning, and transfer learning.
Most importantly, it allows neural networks to learn useful representations of
a data modality that has no labelled examples.

Figure 2.1 Schematic image of the two major phases in self-supervised learning;
pre-training with unlabelled data and fine-tuning with labelled data.

Moving away from the need for massive amounts of labelled data, self-
supervised learning enables intelligent systems to utilize the abundance of
unlabelled data already available, but unusable, given supervised learning
techniques. This is a crucial step for the development of deep learning as it
seeks to understand more subtle patterns of our world [LeCun and Misra,
2021].

Pre-training and downstream task: The fundamental idea
In defining the pretext-, and downstream tasks much depends on the data
modality and the true task which must be completed. A common pretext
task in the domain of natural language, for example, is to randomly remove
words from a sentence and then let the network predict the missing words.
A similar pretext task could also be applied to the visual domain where pix-
els in an image are randomly masked out, only to have the network fill in
the blanked-out pixels based on surrounding pixel values. Other pretext tasks
in the visual domain can be constructed by applying transformations to an
image, such as rotations, and letting the network predict the degree of ro-
tation that has been applied to the image. Furthermore, [Oord et al., 2018]
presents a pretext task that is performed in the audio domain. Here, the aim
of the network is to predict latent feature representations of the audio samples
when given a sequence of past samples. Moreover, downstream tasks can be
any task that is regularly used in supervised learning. Typical problem for-
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mulations include classification-, detection-, recognition-, segmentation-, and
data-generation tasks.

A formal definition. Given a large set of unlabelled samples D = (xi)Ui=1,
and a small collection of labelled data samples, S = (xsi,yi)

L
i=1, with L⌧ U

and where S may be a subset of the dataset D, S ⇢ D. The goal of the
pretext task in a self-supervised learning algorithm  is to learn parameters
✓ of a function f✓ that maps a data sample x to vector representations in
a latent space. With a model architecture f , the parameters ✓ are therefore
learnt as ✓ =  f (D). Representations are fine-tuned and evaluated on various
supervised downstream tasks T = {(x̄1, y1), . . . , (x̄M , yM )}, where pairs of
labelled input data and output labels (xsi,yi) from the labelled dataset S is
used.

Self-Supervised representation learning. State-of-the-art self-supervised
learning methods form representations through joint-embedding architec-
tures. Using Siamese networks, representations are learned by maximizing
agreement between embeddings of different views of the same data example
via a loss function in the latent space [He et al., 2020; Caron et al., 2020;
He, 2020; Zbontar et al., 2021; Bardes et al., 2021]. In general, data views
are constructed by applying different augmentations to the input data. The
goal of Siamese networks is to learn an encoder f(·) that produces similar
vector embeddings for two views of the same data sample. Intuitively, the
encoder f is sufficient if f(xi) has kept all the information about f(xj) that
the learning objective requires, and symmetrically, if f(xj) has kept all the
significant information about f(xi), i.e. the encoding procedure is lossless
I(xi;xj) = I(f(xi); f(xj2)). Among the sufficient encoders, minimal en-
coders only extract information relevant to the learning objective and throw
away other irrelevant information. The sufficient encoder f of xi is minimal if
and only if I(f(xi);xi)  I(F (xi);xi), 8F that is sufficient. Given a minimal
sufficient encoder network f(·) and two augmented views xi and xj of a
data sample x, the encoder independently maps each view to a latent rep-
resentation vector zi and zj . The learning objective of the joint-embedding
network is to learn the minimal sufficient encoder that maximizes the similar-
ity between these augmented views while minimizing redundancy within the
representation vectors in order to become insensitive to differences between
views [Tsai et al., 2021].

Furthermore, an optimal representation will maintain the smallest com-
plexity, containing no other information about the input besides the one re-
quired for the downstream task. With a downstream task T whose goal is to
predict a semantic label y from the input data x, the optimal representation
z⇤ encoded from x is the minimal sufficient statistic with respect to y. Thus,
z⇤ = f(x) has all the information necessary to predict y as accurately as if
it were to access x. The objective of the self-supervised pretext task becomes
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Figure 2.2 Given two views xi and xj of a data sample x and a task label y, the
information captured in a representation will be optimal at the sweet spot, where
the only information shared between xi and xj is task-relevant.

to learn the optimal representation where the only information shared be-
tween the views xi and xj is task-relevant and there is no irrelevant noise,
I(xi; y) = I(xj ; y) = I(xi;xj) = I(x; y). Figure 2.2 presents a graphical illus-
tration of the trade-off between capturing too much information or too little
information in a representation.

Embedding collapse
Current self-supervised learning approaches map data to vector representa-
tions in a multidimensional embedding space. In this space, nearly identical
data should be represented in a very similar way, meaning that they should be
placed close to each other in this hyperspace. As the training process proceeds,
the aim is to create clusters of data representations, where data-sharing char-
acteristics are placed in the same cluster. Although this method has proven to
be highly successful in several domains, an improperly designed pretext task
might bring about a complete representation collapse in which all embedding
vectors are represented by a trivial solution at a single point. In other words,
if representation collapse is not prevented, models can create the exact same
vector representation for each input, and in the attempt to maximize the
likeness between similar representations the model ends up treating all data
samples as if they were the same. Another form of collapsing-problem is that
of dimensional collapse, whereby the embedding vectors end up spanning a
lower-dimensional subspace instead of the entire available embedding space.
Figure 2.3 presents a graphical illustration of the collapsing problems.
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Figure 2.3 Trivial collapse brings all embedding vectors to same point. For di-
mensional collapse, the embedding vectors only span a lower dimensional space.

Self-supervised learning methodologies
Several approaches have been suggested in an attempt to overcome these col-
lapsing problems. They can be divided into contrastive and non-contrastive
learning methods. Contrastive losses explicitly push away embeddings
of different samples while non-contrastive, e.g. the so-called asymmetric
approaches, introduce asymmetric network architectures to prevent col-
lapse, e.g., stop-gradient operations and a momentum encoder. Other non-
contrastive approaches try to decorrelate the vector components of the em-
bedding dimensions to minimize redundancy across samples.

Contrastive learning. Contrastive self-supervised learning methods are
based on the idea of instance discrimination. Instead of predicting the exact
class of a data sample, the objective is to predict whether pairs of inputs be-
long to the same or different classes. To formalize the process, multiple views
of the inputs are created via a data transformation process T , and their
representations are compared as either positive or negative pairs in a latent
embedding space [Jaiswal et al., 2021]. Given a data sample x, two views are
created by augmentation to form xi = Ti(x) and xj = Tj(x) and form a pos-
itive pair. One view, xi is chosen to be the anchor and is contrasted with its
positive pair x+

j . The anchor is also contrasted with negative samples, which
are views of other samples x̂ in the same batch, x̂�

i = Ti(x̂) and x̂�
j = Tj(x̂).

Theoretically, the positive pairs can be seen as coming from a joint distribu-
tion over views p(xi,x+

j ), and the negative pairs from a product of marginals
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p(xi)p(x�
j ). The objective is to minimize the distance in representation space

between positive sample pairs while maximizing the distance between nega-
tive sample pairs [Caron et al., 2020]. Figure 2.4 illustrates an example of a
joint-embedding network that applies a contrastive learning approach.

Figure 2.4 Overview of the SimCLR method which adopts a Siamese network
and a contrastive loss.

A commonly used contrastive loss function, InfoNCE [Oord et al., 2018]
learns statistical properties of a target distribution by comparing the positive
samples from the target distribution p(xi;xj) to the negative samples in the
batch. The negative samples are seen to be sampled from a noise distribution,
and thus, the method is known as negative sampling in some contexts. In
practice, given an anchor point xi, the InfoNCE loss is optimized to score
the correct positive x+

j ⇠ p(xj |xi) higher compared to a set of K distractors
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where the expectation is over K independent samples (xi,yi)
K
i=1 from the joint

distribution p(x,y) [Poole et al., 2019]. InfoNCE is in practice estimated using
Monte Carlo estimation by averaging over multiple batches of samples. The
function f will for each xi try to predict which of the K samples y1, . . . , yk it
was jointly drawn with, i.e. its positive pairing. This is done by assigning high
values to the jointly drawn sample, and low values to all other pairs. It has
been shown that minimizing the InfoNCE loss also maximizes a lower bound
on mutual information [Oord et al., 2018]. This approach is based on the idea
of the information bottleneck theory as described in Section 2.1, whereas the
objective of contrastive learning becomes to maximize the mutual information
between embeddings of the positive pairs.

In order to avoid the collapsed embedding problems, contrastive learning
methods require large quantities of negative samples so that the learning
objectives obtain the maximum similarity and have the minimum similarity
with negative samples. Representative contrastive learning methods such as
contrastive predicting coding (CPC) [Henaff, 2020], SimCLR [Chen et al.,
2020] and MoCo [He et al., 2020] have demonstrated that it is possible to
produce features that surpass the supervised feature representations on many
downstream computer vision tasks.

Non-contrastive learning. Non-contrastive learning methods, unlike con-
trastive methods, learns nontrivial representations using only positive sample
pairs. Representational collapse is prevented by introducing asymmetry in the
network architecture. For example, asymmetrical encoding for the two input
views [Grill et al., 2020] or minimizing redundancy via the cross-correlation
between features [Zbontar et al., 2021; Bardes et al., 2021]. See Figure 2.5 for
an illustration of an asymmetric network architecture. Although, it is not fully
understood how these methods avoid collapse, theoretical and empirical stud-
ies point to the crucial importance of batch-wise or feature-wise normalization
[Tian et al., 2021].

Another method building on the non-contrastive framework is VICReg
[Bardes et al., 2021]. Here, collapse is prevented by introducing to the loss
function a simple regularisation term on the variance of the embeddings along
each individual dimension. This term forces the embedding vectors of sam-
ples within a batch to be different, thus preventing each dimension from col-
lapsing to the same point. In addition to the variance term, a decorrelation
mechanism based on redundancy reduction and covariance regularisation is
introduced. This term attracts the covariances over a batch between every
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pair of embedding variables towards zero while decorrelating the variables of
each embedding and preventing them from being correlated. Decorrelation of
the covariance is also used in the Barlow Twins method [Zbontar et al., 2021],
where it prevents informational collapse caused by redundancy between the
embedding variables.

Figure 2.5 Overview of an asymmetrical Siamese network not using a contrastive
loss function. Stop gradients and exponential moving average updating of network
weights are for example used to prevent embedding collapse.

Common methods. Figure 2.6 illustrates the architecture of four state-
of-the-art methodologies for self-supervised learning. All of the methods are
Siamese networks that consist of two network arms, or branches, where the
input to each arm is one of the augmented versions xi or xj of the data
sample x. By feeding the two views xi and xj to an encoder f , embedding
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Figure 2.6 Schematic image comparing the architecture of four self-supervised
methods. In VICReg and Barlow Twins, module g is an expander network while
in SimCLR and BYOL g is a projector network. BNorm in the figure is short for
batch-wise normalized embeddings while FNorm stands for feature-wise normalized
embeddings. EMA is short for exponential moving average.

representations hi and hj are formed. These embeddings are further trans-
formed by a network g, where g can be a projector network that reduces the
dimensionality of the representations, or an expander network that increases
the dimensionality. The final embeddings zi and zj are used to minimize the
methods loss function L.

Further highlighting a few similarities and differences between the various
approaches we begin examining method (a), VICReg [Bardes et al., 2021].
The variance and covariance of each branch in VICReg are regulated in the
loss function by the regularizing terms v and c. These terms prevent represen-
tational embedding collapse and the distance between embeddings of the two
branches is minimized with a mean-squared error loss s. The Barlow Twins
method (b) [Zbontar et al., 2021] is closely related to the VICReg method
as they use similar mechanisms for decorrelating features of each embedding
vector in order to remove redundancy between the embedding variables. VI-
CReg penalizes the off-diagonal terms of the covariance matrix computed on
the embeddings from each network arm as the terms are attracted toward
zero. Barlow Twins instead uses the cross-correlation matrix where each ma-
trix entry is the computed cross-correlation between the two representation
vectors zi and zj . Furthermore, Barlow Twins applies the invariance loss i

that drives the diagonal elements of the cross-correlation matrix towards 1.
Thus, making the embeddings of the two augmented sample views invariant
to the applied augmentations. Another non-contrastive method is the method
(d), BYOL [Grill et al., 2020]. Instead of preventing embedding collapse by
introducing regularization terms to the loss function as VICReg and Barlow
Twins, BYOL introduces an asymmetric network architecture. The weights
of one arm are updated by applying an exponential moving average to the
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weights of the other arm. A stop gradient is also applied to one of the arms
to further prevent embedding collapse. Barlow Twins, VICReg, and BYOL
all use non-contrastive learning frameworks where no explicit negative sample
pairs are used in the formation of latent representations. Method (c), SimCLR
[Chen et al., 2020] in contrast uses negative samples in combination with the
contrastive loss InfoNCE to form latent representations of the input data.
Here, representations of positive pairs are brought close to each other in the
embedding space while representations of negative pairs are pushed far apart.

30



3
Data

In this chapter, we will introduce the data modality, datasets, and data trans-
formations that have been used for the experiments in this thesis. The data
consist of short-duration 12-lead ECG signals obtained from 6 publicly avail-
able datasets. In total, 49,662 unlabelled ECG signals are used for the pretext
task and 21,837 labelled signals are used for evaluation. In this chapter, the
reader is also provided with a comprehensive description of the ECG signals
and accompanying annotations. In addition, Section, 3.3, extends the previ-
ous section by describing the applied data augmentation techniques and their
role in the self-supervised learning framework.

3.1 Electrocardiogram

Analysis of an electrocardiogram (ECG) plays a significant role in the diag-
nosis and screening of cardiac diseases. By placing electrodes on the skin,
the heart’s electrical activity is recorded as an electrogram of voltage ver-
sus time, giving the ECG signal. The electrodes placed on the skin detect
small electrical changes present in each cardiac cycle, which are caused by the
cardiac muscle’s depolarization and repolarization process. Numerous cardiac
abnormalities such as cardiac rhythm disturbances (e.g. atrial fibrillation and
ventricular tachycardia), inadequate coronary artery blood flow (e.g. myocar-
dial ischemia and myocardial infarction) and electrolyte disturbances (e.g.
hypokalemia and hyperkalemia) can be seen in the ECG signal as deviations
from its normal pattern.

In a conventional ECG, 12 electrodes are used to measure the magnitude
of the heart’s electrical potential. Two electrodes are placed on the limbs
and the ten remaining are placed on the surface of the chest. Recorded over
a period of time, usually lasting around ten seconds, the overall magnitude
and direction of the heart’s electrical depolarization is then captured at each
moment throughout the cardiac cycle.
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Figure 3.1 Example of a 12-lead ECG with normal sinus rhythm recorded on an
adult human.

An ECG signal can be divided into three main sections based on the heart’s
electrical activity. The first is the P wave which represents the depolarization
of the atria. The second section represents the depolarization of the ventricles
and is referred to as the QRS complex. Lastly, the T wave represents the re-
polarization of the ventricles. Each waveform contains significant information
that can be used to understand the cardiac state of individuals.

Figure 3.2 ECG of a heart in normal sinus rhythm [Atkielski, n.d.]

3.2 Datasets

All ECG recordings used during this thesis have been obtained from publicly
accessible databases. Presented below is a detailed overview of the datasets,
their acquisition methods, relevant annotations, and a description of the ap-
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plied preprocessing. Moreover, Figure 3.3 presents a graphic summary of the
data that was utilized.

Figure 3.3 Graphic summary of the data used in this thesis.

All datasets consist of short-duration (7-10 seconds) standard 12-lead ECG
recordings in combination with patient-specific metadata e.g. age, gender,
weight, height, etc. During the experiments conducted throughout this thesis
work, only ECG recordings are used and the metadata is discarded. Further-
more, all ECG recordings and associated annotations are obtained from in-
clinic exams conducted by clinical cardiologists. Specific information relating
to each dataset is found in the respective subsections below.

Following the work of [Mehari and Strodthoff, 2022] and [Strodthoff et al.,
2020], the ECG recordings used throughout these experiments were restricted
to ECG data at a sampling rate of 100Hz. Although, the work of [Kwon et al.,
2018] suggests that 100 Hz ECG is sufficient for models operating in the time
domain, but recommends a higher sampling frequency for frequency domain-
based models. Experiments conducted by [Strodthoff et al., 2020] however
found no compelling evidence for this apprehension, as no significant gain
in performance in any diagnostic task was detectable when processing ECG
data with a sample rate of 500 Hz. Furthermore, using ECG data with a
higher sampling rate would introduce other more obvious issues affecting per-
formance, e.g. dealing with all sorts of artifacts and label noise, preprocessing
and more resilient and effective training procedures. Signals were segmented
into windows of length T , where T = 250 or T = 1000 depending on whether
the used signal length was 2.5 seconds or 10 seconds.
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We would like to emphasize that the annotations of the ECG recordings
used only for pre-training have not been described in this report. Due to the
fact that data label information in self-supervised pre-training is irrelevant
per definition, the label information in the datasets was discarded.

Table 3.1 Summery of the unlabelled data used for pre-training.

Dataset # recordings Length (s) fsample (Hz)

Ribeiro 827 7 or 10 500
Zheng 10646 10 500

Cinc2020 38189
CPSC & CPSC-Extra 10330 6-60 500

Incart 74 1800 257
PTB & PTB-XL 17441 10 1000/500

Georgia 10344 10 500

Total 49662
Total with length � 10s 49048

Datasplitting
A collection of three datasets were used for the pre-training process: Com-
puting in Cardiology Challenge 2020 (CinC2020), Ribeiro, and Zheng. They
are throughout this thesis denoted DPre�train. The evaluation procedure,
however, was carried out exclusively with the PTB-XL dataset, denoted as
DPTB . Notice that the dataset used for the CinC2020 itself is a compila-
tion of five different datasets. In particular, it includes the PTB-XL dataset
DPTB ⇢ DPre�train, where only the dataset’s suggested training data was
utilized for the pre-training process. The PTB-XL suggested validation and
test data were removed from the pre-training process and only incorporated
into the evaluation procedure. Table 3.1 presents a summary of the unlabelled
data DPre�train used for pre-training.

During pre-training, data were randomly split into stratified training and
validation sets, ensuring recordings sampled from the same patient were not
mixed between training and validation sets. 70% of the data were used for
training and the other 30% as validation data. For the evaluation phase, the
suggested training, validation, and test splits in the PTB-XL dataset were
used, combined with respective annotations. See Section 3.2 for a detailed
description of the evaluation dataset and Table 3.2 lists the number of ECG
signals in the different datasets.
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Table 3.2 Size of datasets used for pre-training and evaluation.

Pre-training # ECG recordings

Training set 34763
Validation set 14899

Evaluation

Training set 17441
Validation set 2193

Test set 2203

Computing in cardiology challenge 2020
The dataset used for the Computing in Cardiology Challenge 2020 [Alday et
al., 2020], here referred to as CinC2020, is a collection of data from multiple
sources. In total there are 20,740 recordings of which 74 are shorter than 10
seconds.

CPSC database and CPSC-extra database. The first source is the
public (CPSC Database) and unused data (CPSC-Extra Database) from the
China Physiological Signal Challenge in 2018 [Liu et al., 2018]. This dataset
consists of two sets of 6,877 (male: 3,699; female: 3,178) and 3,453 (male:
1,843; female: 1,610) 12-ECG recordings lasting from 6 seconds to 60 seconds.
Each recording was sampled at 500 Hz.

INCART database. The second source set is the public dataset from St
Petersburg INCART 12-lead Arrhythmia Database [Tihonenko et al., 2008].
This database consists of 74 annotated recordings (male: 17; female: 15
women) extracted from 32 Holter records. Each record is 30 minutes long
and contains 12 standard leads sampled at 257 Hz.

PTB and PTB-XL database. The third source from the Physikalisch
Technische Bundesanstalt (PTB) comprises two databases: the PTB Diag-
nostic ECG Database [Bousseljot et al., 1995] and the PTB-XL [Wagner et
al., 2020]. These are two large publicly available electrocardiography datasets.
The first PTB database contains 516 records (male: 377, female: 139). Each
recording was sampled at 1000 Hz. The PTB-XL contains 21,837 clinical
12-lead ECGs (male: 11,379 and female: 10,458) of 10-second length with a
sampling frequency of 500 Hz.

The Georgia 12-lead ECG challenge (G12EC) database. The fourth
source is a Georgia database which represents a unique demographic of the
Southeastern United States. This training set contains 10,344 12-lead ECGs
(male: 5,551, female: 4,793) of 10-second length with a sampling frequency of
500 Hz.
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Zheng
This dataset [Zheng et al., 2020] contains 12-lead ECGs of 10,646 patients
collected from Chapman University and Shaoxing People’s Hospital (Shaoxing
Hospital Zhejiang University School of Medicine) with a 500 Hz sampling rate.
It features 11 common rhythms and 67 additional cardiovascular conditions,
all labelled by professional experts. For each subject, a sample size of 10
seconds is available. The database consists of 10,646 ECG recordings of 10
seconds in length, including 5,956 males and 4,690 females. Among those
patients, 17% had normal sinus rhythm and 83% had at least one abnormality.

Ribeiro
The data in this database was collected from different patients of 811 counties
in the state of Minas Gerais/Brazil from the Telehealth Network of Minas
Gerais (TNMG) [Ribeiro et al., 2020b]. The data were obtained between 2010
and September 2018 and were sampled at 400 Hz. There are 827 recordings
of lengths of 7 or 10 seconds. In order to have the same size for all recordings,
the ECG signals are filled with zeros on both sizes i.e. zero-padded, resulting
in a signal with 4,096 samples for each lead. There is no available information
regarding the number of males and females from whom the ECG signals were
recorded.

Physikalisch-Technische Bundesanstalt
The PTB-XL [Wagner et al., 2020] ECG dataset is a large dataset of 21,837
clinical 12-lead ECGs from 18,885 patients of 10-second length, collected from
Schiller AG over the course of nearly seven years between October 1989 and
June 1996. Out of the 18,885 patients, 52% were male and 48% female with
ages covering the whole range from 0 to 95 years (median 62 and interquar-
tile range of 22). See Figure 3.4 for a graphical representation of data demo-
graphics. The value of the dataset results from the comprehensive collection
of many different co-occurring pathologies, combined with a large proportion
of healthy control samples. All are meticulously annotated by clinical cardi-
ologists.

Figure 3.4 Demographic overview of patients in PTB-XL [Wagner et al., 2020].
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All ECG recordings are provided at two sampling frequencies, the original
500 Hz and a down-sampled version of 100 Hz. The latter is the data used for
this thesis. In addition to the recordings, each ECG instance is paired with an
extensive description covering demographics data, infarction characteristics,
and likelihoods for diagnostic ECG statements as well as annotated signal
properties. To further facilitate the usage of machine learning algorithms, the
dataset is presented with a recommended 10-fold train-test split obtained via
stratified sampling. Respecting patient assignments, all records of a particular
patient were assigned to the same fold. To achieve not only a balanced label
distribution but also a balanced age and sex distribution, ECG labels, sex,
and age are considered for the stratification process. Data in folds 9 and 10
underwent at least one human evaluation and are therefore of particularly
high label quality. Therefore, fold 9 is proposed as a validation set and fold
10 as a test set. As a training set, folds 1-8 are recommended; a suggestion
that we chose to follow.

ECG annotations and labels
The following section presents a comprehensive overview of the ECG anno-
tations used for the evaluation of the downstream performance of the ECG
representations. Figure 3.5 presents an overview of SCP-ECG acronym de-
scriptions for the super- and subclasses present in the dataset.

Table 3.3 Distribution of diagnostic superclass labels in PTB-XL dataset.

#Records Superclass Description

9528 NORM Normal ECG
5486 MI Myocardial Infarction
5250 STTC ST/T Change
4907 CD Conduction Disturbance
2655 HYP Hypertrophy

At the most fine-grained level, the PTB-XL dataset includes 71 labels,
all of which are included in the multi-label classification problem proposed
in this thesis. These labels cover a wide variety of diagnostic, form, and
rhythm statements that can be used for a comprehensive evaluation of
ECG analysis algorithms. The 44 diagnostic statements can be categorized
in terms of five superclasses (normal/conduction disturbance/myocardial
infarction/hypertrophy/ST-T change), the 19 form statements relate to
mostly morphological changes in specific ECG segments such as an abnormal
QRS complex, and the 12 rhythm statements comprise statements character-
izing normal cardiac rhythms as well as arrhythmia. The raw waveform data
has been annotated by clinical cardiologists. In addition to the ECG record-
ings, the dataset is complemented by extensive metadata on demographics,
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Figure 3.5 SCP-ECG acronym descriptions for super- and subclasses [Wagner
et al., 2020].

infarction characteristics, and likelihoods for diagnostic ECG statements as
well as annotated signal properties. This metadata is however not used for
the thesis experiments. If for convenience, diagnostic statements are restricted
to their aggregated super-classes, the distribution of cardiovascular diagno-
sis present in the dataset is as presented in Table 3.3. Note that the sum of
statements exceeds the number of records as there might be multiple labels
associated with a single record. Figure 3.6 and Figure 3.7 present a graphical
summary of the dataset in terms of diagnostic superclasses and subclasses.
Figure 3.8 displays a plot of ECG signals of normal or abnormal character.

38



3.3 Data augmentations

Figure 3.6 Graphical summary of the PTB-XL dataset in terms of diagnostic
superclasses and subclasses, see Figure 3.5 for a definition of the used acronyms
[Wagner et al., 2020].

3.3 Data augmentations

In deep learning, data augmentation is typically used as a regularization tech-
nique to reduce overfitting. As a result of producing slightly altered copies of
existing data or creating synthetic data, the volume of available training data
increases. Although data augmentation has been widely applied in both su-
pervised and unsupervised representation learning [Krizhevsky et al., 2012;
Henaff, 2020; Bachman et al., 2019], it serves a different purpose in self-
supervised learning, where the composition of data augmentation operations
is crucial for achieving useful representations.

Data augmentation for self-supervised learning. In self-supervised
learning, the choice of views is what controls the information captured in
the representation. Self-supervised techniques encourage representations to
discard information regarding the augmentations applied to the input data,
thereby becoming invariant to the set of chosen augmentations. By, for exam-
ple, minimizing the mean squared error between two latent representations
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Figure 3.7 Distribution of diagnostic subclasses for given diagnostic superclasses
[Wagner et al., 2020].

of the augmented data samples, the model will be able to learn that “these
two representations are in fact just different views of the same thing”, and
that information that does not pertain to the semantics of the data can be
eliminated. Just as observing a dog from left to right, it remains the same
dog.

Augmentations in contrastive learning can be seen through the perspec-
tive of the information bottleneck theory described in Section 2.1. The aim of
the pretext task is to maximize the mutual information between features ex-
tracted from multiple views of a shared context. The pre-training phase serves
to decouple the correlations of irrelevant features between the representations
of positive samples. Whereby the neural networks will ignore the decoupled
features and learn from the similarities of features that are more resistant to
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Figure 3.8 Plots of normal and abnormal ECG signals present in the PTB-XL
dataset [Śmigiel et al., 2021].

data augmentations. Therefore, the representations become invariant under
the chosen augmentations. Formally, this translational symmetry is the in-
variance of a system under any translation [Agrawal et al., 2015; Cohen and
Welling, 2016]. Given a group of transformations G, Tg(x) for any g 2 G de-
notes the function with which g transforms an input signal x. E.g. if G is the
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group of time-out augmentations, Tg(x) will set a portion of the signal x to
zero. The encoder network f which maps the input signals to the latent rep-
resentation space, f(x) promotes the property of invariance under the given
translation group G. Formally stating f(Tg(x)) = f(x), which means that
the output representation f(x) does not vary with Tg.

Consequently, the choice of appropriate transformations for inducing two
semantically equivalent views on the original instance is crucial for the ef-
fectiveness of the method. In spite of this, there is not yet a well-defined
strategy for selecting data transformations that produce representations con-
taining just the information we require.

How to choose transformations. Naturally, the question becomes: to
what transformations should the ECG signal representations be insensitive
when used for multi-label classification of ECG characteristics? Recent re-
search, though not extensively studied, has shown that intuition for the ideal
transformations to use is indeed dependent on the downstream task [Tian
et al., 2020].

The design of augmentations, or the view-selection distribution ⌧ , is criti-
cal due to its influence on the representation invariances learned. For example,
aggressively adding additional noise as augmentation in ⌧ may lead to rep-
resentations invariant to certain parts of the signal. Therefore, the aim is to
create ⌧ which forms representations with enough invariance to be robust to
inconsequential variations but not so much as to discard information required
by the downstream task. Experiments carried out by [Chen et al., 2020] show
that self-supervised learning benefits from stronger data augmentation than
supervised learning.

Implementation. Throughout the experiments performed for this thesis
work, the view-selection distribution ⌧ is defined following the experiments
carried out by [Mehari and Strodthoff, 2022]. In order to find a suitable com-
bination of transformations during pre-training, they performed a grid search
based on six transformations. These were partly inspired by computer vision
and partly by time series analysis. These transformations were Gaussian noise,
Gaussian blur, channel resize, time out, random resized crop, and dynamic
time warp. The interested reader is referred to [Mehari and Strodthoff, 2022]
for detailed descriptions. Figure 3.9 depicts a heat map of the linear evalua-
tion performance measured in macro-AUC on the PTB-XL validation set of
a one-dimensional ResNet-50 after 500 epochs of pre-training using the Sim-
CLR framework. Diagonal entries correspond to a single transformation and
off-diagonal entries correspond to the sequential composition of two transfor-
mations. As can be seen in Figure 3.9, the combination of random resized crop
with time-out augmentation appears to be the most effective transformation
pair as it shows the highest evaluation performance. Based on these results,
the data transformation module ⌧ is constructed to sequentially apply ran-
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dom resized crop augmentation followed by time-out augmentation. The two
augmentation techniques are further described in the section below.

Figure 3.9 Heat-map illustrating linear evaluation performance measured in
macro-AUC when applying grid search over different data transformations [Mehari
and Strodthoff, 2022].

Random resized crop
Random resized crop cuts a random contiguous segment of the signal and
rescales it to its original size. A crop parameter p is sampled uniformly from
the range (l,m), where (l,m) are the parameters of the transformation. The
default values used in the experiments were (l,m) = (0.5, 1.0). This means
that the signal is cropped into portions between 50% and 100% percent and
then rescaled to 100 Hz. To give an intuition of the augmentation, applying
a random resize crop can be seen as “zooming in” on a random part of the
signal. Figure 3.10 shows an example of an original ECG signal and the same
transformed version.

Time out
The temporal specific transformation, timeout augmentation [DeVries and
Taylor, 2017] sets a random contiguous segment of the signal to zero. The
range of the cutout window is determined by the parameters (tl, tu), from
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Figure 3.10 Example of an original ECG signal and the same signal with random
resize crop augmentation and time-out augmentations applied.

which the timeout parameter t is uniformly sampled. The parameter describes
how much of the original signal will be set to zero. Throughout our exper-
iments, the default values used were set to (tl, tu) = [0.0, 0.5]. Thereby a
stochastically chosen window with a maximum length of 50% of the original
signal was set to zero. Figure 3.10 illustrates an example of an unaltered ECG
signal and the same time-out transformed version.
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4
Method and experimental
implementation

In the following chapter, we describe the experimental setup and implemen-
tation details. The chapter begins with Section 4.1, which introduces the
baseline implementation consisting of a supervised one-dimensional ResNet-
50 model. A comprehensive review of the various pretext tasks and self-
supervised methods used in this thesis is then discussed in Section 4.2. Having
reviewed the various pre-training methods, Section 4.3 introduces the real task
at hand, the downstream task, which involves a supervised multi-label classifi-
cation task with signal representations extracted from the pre-trained encoder
networks. Section 4.4 continues with a discussion of the evaluation methods
and metrics we used to assess the usefulness of the ECG representations on
the downstream task.

4.1 Supervised baseline

During the course of this thesis work, we compared the downstream perfor-
mance of the self-supervised representations with a 1-dimensional ResNet-50
model trained on labelled data using a standard binary cross-entropy loss. In
this section, we will provide a description of the model architecture, implemen-
tation details, and training approach used. As an illustrative point to note,
the model trained in this supervised manner is architecturally identical to the
encoder networks that were used for the various pretext tasks. Therefore, the
supervised performance can be viewed as a benchmark performance of “the
performance we will get if we do not pre-train with a self-supervised method”.
In fact, the architectural identity of the ResNet-50 model with the encoder
module is what has led us to use a 1D ResNet-50 model as a representative
of supervised learning performance. The pretext models consist of an encoder
part as well as an adaption for the network specific to the method, and the
pre-trained models are stripped down to consist only of this 1D ResNet-50

45



Chapter 4. Method and experimental implementation

model after pre-training. In Section 4.4, the self-supervised learning frame-
work will be fully described; however, it is briefly described here in order
to clarify the rationale for selecting a 1D ResNet-50 network to determine
baseline performance.

Figure 4.1 The input stem is the first part of the ResNet-50 model. The 12-lead
ECG signal is passed through three convolutional layers and one max pooling layer,
thus reducing the length of the input signal by a factor of four and increasing the
channel size to 64.

Figure 4.2 The figure presents an overview of the blocks in the ResNet-50 model.
It consists of one input stem, four stage blocks and one pooling block.

ResNet50 architecture
Adopting a convolutional residual network [He et al., 2016] with 50 layers
(ResNet-50), the network was adapted to fit the one-dimensional ECG record-
ings with its 12 channels and was trained from random initialization using the
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same procedure as for fine-tuning using the full PTB-XL training dataset, see
section 4.4.

The implemented ResNet network consisted of an input stem and four
subsequent stages followed by a final output layer. Figure 4.2 illustrates the
architecture. The input stem consisted of three 5x1 convolutions, shown in
Figure 4.1, where the first and second convolutions used 32 output channels.
Additionally, the first convolution used a stride of 1, and the second convo-
lution a stride of 2. Using a stride of 1, the last convolution layer gave an
output channel depth of 64. Following was a 3×1 max pooling layer which
used a stride of 2. The given input stem reduced the input length by 4 times
and increases its channel size to 64. Starting from stage 2, each stage began
with a downsampling block, followed by several residual blocks. The down-
sampling block consisted of two paths, A and B.

In path A there were three convolutions with kernel sizes are 1×1, 3×3, and
1×1, respectively. These layers were constructed so that a bottleneck structure
was formed. This was done by setting the stride of the first convolution to 2,
in order to halve the input length, and letting the output channels of the last
convolution be 4 times larger than the previous two. Path B instead used a
1×1 convolution with a stride of 2, transforming the input length to match the
output length of path A; allowing for the outputs of both paths to be summed
and outputted by the downsampling block. The residual block was similar to
the downsampling block, only differing in stride length, where this block only
used convolutions with a stride of 1. The final network layers consisted of a
1D adaptive average pooling layer and one 1D adaptive max pooling layer.

Implementation details
During training, a constant learning rate of 0.008 was used to optimize a
binary cross-entropy loss. AdamW optimizer was used in combination with
a weight decay regularization of 0.001 [Loshchilov and Hutter, 2017]. When
training the network using ECG recordings of 10 seconds in length, the batch
size was set to 512, whereas a batch size of 2048 was used for networks trained
with ECG recordings of length 2.5 seconds. Model performance was measured
using macro-AUC, computed from the 71 labels on the most fine-grained
level in PTB-XL [Wagner et al., 2020]. The selected model was the one that
during training obtained the highest macro-AUC score when evaluated using
validation data. Reported metrics are the respective test set score of this
selected model.

4.2 Self-supervised pretext task

As presented in Section 2.4, many self-supervised learning methods are based
on a joint-embedding architecture. That is also the case for the methods which
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were implemented during our experiments. All our adopted self-supervised
learning frameworks, regardless of whether they use contrastive or non-
contrastive learning approaches, share an architectural pipeline. The pipeline
begins with the data augmentation module, which samples transformations
T that will be applied to the data samples. The second module consists of
the encoder network, which maps the different views to a latent represen-
tation space. Following this step, the representation will either be projected
into a lower dimensional space or expanded into a higher dimensional space,
depending on the method employed. During the last step of the pipeline, a
loss function is minimized in this final representation space.

In the following subsections, the three self-supervised representation ap-
proaches that were implemented, trained, and evaluated during our thesis
research will be discussed in detail.

Figure 4.3 Schematic image of the self-supervised learning pipeline. The first
phase consists of four steps: 1) Transformation module 2) Encoder module 3)
Method-specific module (projection, projection+predictor, expander) 4) Loss func-
tion. The second phase is the evaluation process, where either linear evaluation or
fine-tuning is used.

Data transformation
The first phase of the learning pipeline consists of a stochastic data transfor-
mation module. This module randomly transforms any given data sample to
produce two correlated views of this same data instance. The two views are
here denoted as x̃i, x̃j , and make together up what is considered a positive
pair.

The module procedure follows as: Given a dataset D, an ECG signal x
is uniformly sampled as x ⇠ D. Two data transformations t and t

0 are then
sampled from the transformation distribution T . By applying respective data
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transformation t ⇠ T , t
0 ⇠ T to the ECG signal x, the two different sig-

nal views are produced as x̃i = t(x), x̃j = t
0(x). These transformations are

stochastic resizing crops of the signal, followed by setting a portion of the
signal to zero. The distribution T along with the augmentation details are
described in Section 3.3.

Encoder
Even though the self-supervised learning paradigm still is in its infancy, choos-
ing the convolutional residual network architecture, ResNet, [He et al., 2016;
Chen et al., 2020] as encoder module has already become a custom. One possi-
ble explanation for this is the neural architecture of the ResNet model. Deep
neural architectures are often associated with the vanishing gradient prob-
lem (the back-propagated gradient becomes so small that the weight stops
changing its value) and the degradation problem (adding too many layers to
a model will increase the training error). In order to mitigate these issues, the
ResNet model uses skip connections, which allow input from one layer to be
passed on to a layer further down in the network. With a ResNet model, it is
possible to train up to hundreds of layers while still achieving a high level of
performance [He et al., 2016].

Following current state-of-the-art methods [Mehari and Strodthoff, 2022]
the ResNet-50 architecture was here chosen as the encoder network for all
three self-supervised learning approaches implemented in this thesis work. Fol-
lowing the same architectural details as described in Section 4.1, the ResNet-
50 network acts as the second module of the representation learning pipeline,
succeeding the data transformation module.

Given the two sample views x̃i, x̃j received from the sample transforma-
tions applied in the data transformation module x̃i = t(x), x̃j = t

0(x), the
base encoder network denoted as f(·) extracts representation vectors from re-
spective data views as hi = f(x̃i) = ResNet(x̃i),hj = f(x̃j) = ResNet(x̃j).
The output from the last layer of the network is denoted as hi,hj 2 Rd and d

is the dimension of this output vector, here set to 512. Hence, signals are after
the encoder network represented by an embedding vector in a 512-dimensional
latent space. For the Siamese network architectures, as used in SimCLR and
VICReg, the encoders on both branches share the same set of weights, see
Figure 4.4 and 4.6, while BYOL updates the encoder weights of the target
branch according to a moving average of the online branch. A topic Section
4.2 will dive deeper into.

SimCLR
SimCLR [Chen et al., 2020] proposes a framework for contrastive learning
by employing a Siamese joint embedding network that learns representations
by maximizing the similarity between augmented views of the same data
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Figure 4.4 Illustration of the SimCLR framework [Chen et al., 2020].

samples in the latent space, using a contrastive cost function. The SimCLR
framework is illustrated in Figure 4.4. Given the Siamese network architec-
ture, the two branches are identical and the set of encoder- and subsequent
projection module weights, are shared between branches. In formal terms,
given two augmented views x̃i = t(x), x̃j = t

0(x) of the same ECG signal x, a
set of encoder weights ✓, and encoder network f✓, signal representations are
obtained by hi = f✓(x̃i) = ResNet(x̃i),hj = f✓(x̃j) = ResNet(x̃j).

The contrastive prediction task is defined on the pairs of augmented signals
randomly sampled to form a minibatch of N samples. As each sample x is rep-
resented by two views x̃i, x̃j each minibatch consist of 2N data points. The
contrastive learning approach requires explicit negative samples to be used
during the network’s learning phase, albeit negative signals are not deliber-
ately sampled. Instead, the negative samples are defined to be the remaining
2(N � 1) data points present in the minibatch when the positive pair is not
considered.

Projection head. Following the encoder network f✓, the 512-dimensional
signal representations hi and hj are passed through another neural network;
the projection head g(·), which projects the encoder embeddings to a 128-
dimensional latent space. This network module consists of two multilayer
perceptrons that map the signal representations to the latent space where
contrastive loss is applied. Using multilayer perceptrons with one hidden layer
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and � being a ReLU non-linearity, the final signal representations are obtained
by zi = g(hi) = W

(2)
�(W (1)hi) and zj = g(hj) = W

(2)
�(W (1)hj). Where

W
(i) is a matrix consisting of the weights and biases of layer i.

Loss function. Given a set of data points {xk} which includes the positive
pair of views xi and xj , the aim of the contrastive prediction task is to identify
xj in {xk}k 6=i for a given representation xi.

The contrastive loss function defined for the contrastive prediction task
in the SimCLR framework has previously shown success when adopted by
[Sohn, 2016; Wu et al., 2018; Oord et al., 2018]. This loss function is called,
NT-Xent, which is short for the normalized temperature-scaled cross-entropy
loss. Letting sim(u,v) = u>v/||u||||v|| denote the cosine similarity between
the vectors u and v, i.e. the dot product between `2 normalized vectors, the
loss function for a positive pair of samples (i, j) is then defined as in Equation
4.1

`i,j = � log
exp

�
sim(zi, zj

�
/⌧

P2N
k=1 1[k 6=i] exp

�
sim(zi, zk

�
/⌧

, (4.1)

where 1[k 6=i] is an indicator function evaluating to 1 iff k 6= i and ⌧ denotes a
temperature parameter set to 0.5 for our experiments, as suggested by [Chen
et al., 2020]. The final loss is computed across all positive pairs in a minibatch,
both (i, j) and (j, i).

Implementation details. The NT-Xent loss function described in the sec-
tion above was optimized using layer-wise adaptive rate scaling, LARS [You et
al., 2017], with a learning rate of 0.00229 which decayed with the cosine decay
schedule without restarts, as described in [Loshchilov and Hutter, 2016]. Fur-
thermore, pre-training was done using a weight decay regularization of 10�6,
loss function temperature set to 0.5, and training length of 2000 epochs. Due
to hardware memory constraints, a batch size of either 2048 or 512 was used
depending on ECG signal length. Additionally, 16-bit floating points were
used to reduce memory footprint during model training. The mentioned pa-
rameters were the default settings used for the majority of the experiments.
Deviating settings are described in chapter 5 for the respective experiments.

BYOL
BYOL [Grill et al., 2020] introduces a self-supervised learning framework
that does not require the utilization of explicit negative data pairs. Instead,
BYOL replaces the explicit negative samples with an architectural network
asymmetry consisting of two neural networks. This is in contrast to the Sim-
CLR method which depends on the explicit definition of positive and negative
pairs. As mentioned above, SimCLR forms data representations by reducing
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distances between representations of augmented views of the same data sam-
ples and increasing distances between representations of augmented views
from different data samples. BYOL instead uses two networks which are re-
ferred to as online and target networks. Feature representations are created
by letting the two networks interact and learn from each other. As in Sim-
CLR, two augmented views of a data sample are used as input data. However,
instead of optimizing for similarity between positive pairs and dissimilarity
between negative pairs, BYOL trains the online network to predict the rep-
resentation from the target network when each network respectively is given
one of the augmented views from the same positive data pair. At the same
time, the weights of the target network are updated with a slow-moving av-
erage of the weights of the online network. The BYOL learning framework is
illustrated in Figure 4.5.

Figure 4.5 Illustration of the BYOL framework [Grill et al., 2020].

In order to learn a representation y✓, BYOL will, as stated, use the two
neural networks: the online and target networks. The online network is de-
fined by a set of weights ✓ and consists of three stages: an encoder f✓, a
projector g✓, and a predictor q✓. The target network copies the architecture
of the online network but uses a different set of weights ⇠. The online net-
work is trained using the regression targets provided by the target network.
The target networks parameters ⇠ are an exponential moving average of the
online parameters ✓, and given a target decay rate ⌧ 2 [0, 1], the update in
⇠  ⌧⇠ + (1� ⌧)✓ is performed after each training step.

The BYOL learning framework begins in the same manner as that of
SimCLR. The data transformation module gives two augmented views x̃i =
t(x), x̃j = t

0(x) of the same ECG signal x. The online and target networks,
respectively, take one of the two views as input. From the first augmented view
x̃i, the online network ✓ firstly represents the ECG signal as a 512-dimension
embedding vector by passing it through the encoder module f✓, h✓ = f✓(x̃i) =
ResNet✓(x̃i). The target network ⇠ uses the second augmented view and its

52



4.2 Self-supervised pretext task

encoder module f⇠ to form the embedding vector h⇠ = f⇠(x̃j) = ResNet⇠(x̃j).

Projection and prediction. From the signal representations h✓ and h⇠,
the online and target projections are created through the projection modules
g✓ and g⇠, z✓ = g✓(h✓) and z⇠ = g⇠(h⇠) for the two networks. The projection
networks g✓ and g⇠ each consist of a multilayer perceptron that projects the
signal representations to a smaller latent space. The multilayer perceptron
consists of a linear layer followed by batch normalization [Ioffe and Szegedy,
2015] and a rectified linear unit, ReLU, before a final linear layer. This gives
the latent representations z✓ = g✓(h✓) = W

(2)
�(W (1)h✓) and z⇠ = g⇠(h⇠) =

W
(2)

�(W (1)h⇠).
Passing the latent representations z✓ through a prediction network q✓, the

online network further transforms the latent representation into a prediction
vector q✓(z✓) which is a prediction of the target representation z⇠. The predic-
tion network g✓ is architecturally identical to the projection module g✓. The
prediction q✓(z✓) and the target representation z⇠ are both `2-normalized to
q̄✓(z✓) = q✓(z✓)/||q✓(z✓)||2 and z̄⇠ = z⇠/||z⇠||2.

Loss function. The loss function of the BYOL framework is then defined
as the following mean squared error between the normalized predictions and
target projections, i.e.

L✓,⇠ = ||q̄✓(z✓)� z̄⇠||22 = 2� 2 ·
⌦
q✓(z✓), z⇠

↵

||q✓(z✓)||2 · ||z⇠||2
. (4.2)

The loss L✓,⇠ is symmetrized by subsequently separately feeding view x̃j to
the online network and x̃i to the target network to compute L̃✓,⇠. This forms
the final loss as LBYOL

✓,⇠ = L✓,⇠ + L̃✓,⇠, which is minimized at each training
step by performing a stochastic gradient optimization step with respect to ✓,
as illustrated by the stop-gradient for ⇠ in Figure 4.5. The learning dynamics
of the BYOL framework can then be summarized as

✓  optimizer(✓,r✓LBYOL

✓,⇠ , ⌘), ⇠  ⌧⇠ + (1� ⌧)✓, (4.3)

where optimizer is an optimizer and ⌘ is the learning rate.

Implementation details. The loss LBYOL

✓,⇠ was optimized using the LARS
optimizer [You et al., 2017] with a cosine learning rate decay schedule, without
restarts, over 2000 epochs, with a warm-up period of 10 epochs. A setup that
is identical to the optimization scheme for SimCLR.

The base learning rate was set to 0.2 and scaled linearly with the batch
size. Furthermore, a global weight decay parameter of 1.5 · 10�6 was used
for regularization, while excluding the biases and batch normalization pa-
rameters from both LARS adaptation and weight decay. Applying an ex-
ponential moving average parameter ⌧ which starts from ⌧base = 0.996
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and is then increased to one during training. More precisely, ⌧ is set to
⌧ = 1(1 � ⌧base · (cos(⇡k/K) + 1)/2, where k the current training step and
K the maximum number of training steps. As for SimCLR, a batch size of
either 2048 or 512 was used depending on ECG signal length. Additionally,
16-bit floating points were used to reduce memory footprint during model
training. The mentioned parameters were the default settings used for the
majority of the experiments. Deviating settings are described in Chapter 5
for the respective experiments.

VICReg
The final self-supervised learning framework used in this thesis was VICReg
[Bardes et al., 2021]. The VICReg framework is a self-supervised method
for training joint embedding architectures and is based on the principle of
preserving the information content of the embeddings. Similar to SimCLR,
VICReg learns representations by maximizing similarity in the latent space
between augmented views of the same data samples. In order to prevent a
representational collapse, VICReg introduces two regularization terms. Sepa-
rately applied to both embeddings of a positive data pair, the loss function in
addition to the similarity term introduces a term that maintains the variance
of each embedding dimension above a threshold combined with a term that
decorrelates each pair of embedding features. Although the VICReg frame-
work does not require a Siamese network, meaning the two branches are not
required to share the same parameters, architecture, or input modality, we
chose to use a Siamese network architecture. The two branches thereby share
network architecture and weights, as illustrated in Figure 4.6.

Figure 4.6 VICReg: joint embedding architecture with variance, invariance, and
covariance regularization [Bardes et al., 2021].

The main aspect of VICReg is the variance preservation term and the
covariance criterion. The variance preservation term explicitly prevents a col-
lapse due to a shrinkage of the embedding vectors towards zero, while the
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covariance criterion, borrowed from Barlow Twins [Zbontar et al., 2021], pre-
vents informational collapse caused by information redundancy between the
embedding features. With the introduction of these terms, VICReg forms a
loss function that aims to preserve the information content of the embeddings
of augmented views while keeping superfluous information over dimensions to
a minimum.

Sharing the data transformation module and base encoder network with
the methods of SimCLR and BYOL, VICReg defines two augmented views
of the same ECG recording x as x̃i = t(x), x̃j = t

0(x). Given the encoder
network f(·), representation vectors are extracted from respective data views
as hi = f(x̃i) = ResNet(x̃i),hj = f(x̃j) = ResNet(x̃j), as described in
Section 4.2.

Expander. Each Siamese branch ends with an expander module g� that
maps the signal representations outputted from the encoder networks to a con-
tinuous latent space where the loss function is computed. Introducing an ex-
pander network will eliminate the information differing between the two repre-
sentations as well as expand the dimensions in a non-linear fashion that decor-
relates the embedding variables and reduce the dependencies between the fea-
tures of the representation vector. Architecturally, the expander network con-
sists of two fully-connected layers with batch normalization [Ioffe and Szegedy,
2015] and ReLU activation �, and a third linear layer. The sizes of all 3 layers
were set to 2048, expanding the encoder space with a factor of 4. This gives the
final signal representations zi = g�(hi) = W

(3)
�
�
BN

�
W

(2)
�
�
BN(W (1)hi)

��

and zj = g�(hj) = W
(3)

�
�
BN

�
W

(2)
�
�
BN(W (1)hj)

��
. Here W

(i) is defined to
be the matrix consisting of the weights and biases of layer i.

Loss function. Given the two representations zi and zj given as the out-
put from the expander networks g� of the two branches, the loss function is
computed in this embedding space. VICReg uses a loss function consisting of
the following three terms:

• Invariance: learns invariance to data transformations by computing the
mean square distance between the embedding vectors.

• Variance: maintains the standard deviation (over a batch) of each em-
bedding feature above a given threshold by using a hinge loss. This term
forces the embedding vectors of samples within a batch to be different.

• Covariance: a term that decorrelates the features of each embedding
and prevents an informational collapse in which the variables would
vary together or be highly correlated. It attracts the covariances (over a
batch) between every pair of centered embedding features toward zero.

55



Chapter 4. Method and experimental implementation

VICReg’s objective function can be understood through the lens of infor-
mation theory and the information bottleneck objective described in Section
2.1. Applied to this self-supervised learning method, the information bottle-
neck objective consists in finding a representation that conserves as much
information about the sample as possible while being the least possible infor-
mation about the specific distortions applied to that sample by reducing the
information redundancy over feature dimensions.

Given a batch of samples, two augmented versions of the sample batch
are denoted as Z = [z1, . . . , zn] and Z0 = [z01, . . . , z0n] and are composed of n
embedding vectors of dimension d, taken as the output from the two branches
of the Siamese network. Denote zj to be the vector consisting of each value at
dimension j in all vectors in Z. The variance regularization term v is defined
as a hinge function on the standard deviation of the embeddings along the
batch dimension, as

v(Z) =
1

d

dX

j=1

max(0, � � S(zj , ✏)). (4.4)

Here � is a constant target value for the standard deviation, fixed to 1
as suggested by the VICReg authors [Bardes et al., 2021]. Furthermore, ✏ is
a small scalar preventing numerical instabilities and S(x, ✏) =

p
Var(x) + ✏

is the regularized standard deviation. Further defining the terms of the loss
function, the covariance regularization term c is defined to be the sum of the
squared off-diagonal coefficients of the covariance matrix of Z,

c(Z) =
1

d

X

i 6=j

⇥
C(Z)

⇤2
i,j
, (4.5)

where

C(Z) =
1

n� 1

nX

i=1

(zi � z̄)(zi � z̄)>, and z̄ =
1

n

nX

i=1

zi. (4.6)

Finally, the invariance criterion s is defined as

s(Z,Z0) =
1

n

X

i=1

||zi � z0i||22. (4.7)

Combining the tree terms, the overall loss function becomes a weighted aver-
age of the invariance, variance, and covariance terms

`(Z,Z0) = �s(Z,Z0) + µ
⇥
v(Z) + v(Z0)

⇤
+ �

⇥
c(Z) + c(Z0)

⇤
(4.8)

with �, µ, and � being hyper-parameters controlling the weighting of each
term in the loss. Following the original implementation of [Bardes et al., 2021],
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the hyper-parameters are set to � = 1,� = µ = 25. The overall loss function
evaluated over a full dataset D then becomes

L =
X

I2D

X

t,t0⇠⌧
`(ZB

,Z0B), (4.9)

where Z
B and Z

0B are the batches of vector representations corresponding to
the batch of data samples B transformed in the data transformation module
by t and t

0.

Implementation details. The VICReg network is pre-trained using the
same training protocol as for BYOL [Grill et al., 2020]. It is trained for 2000
epochs using LARS optimizer [You et al., 2017] with a weight decay of 10�6

and a learning rate with a cosine decay learning rate schedule with a base
learning rate set to 0.2, starting from 0 with 10 warmup epochs and with a
final value of 0.002. The loss functions hyper-parameters are set to the values
presented in the section above, with the additional ✏ = 0.0001 in equation
4.4. Batch sizes are chosen in accordance with the SimCLR and BYOL im-
plementations to be either 2048 or 512.

4.3 Downstream task

At the end of the day, self-supervised learning, and deep learning in general,
are used to solve a given problem. During the course of this thesis, the question
of representation learning is merely a minor barrier to overcome in the pursuit
of solving the final problem: the assertion of optimal cardiovascular health. As
a representative of this larger undertaking, a smaller, well-defined downstream
task is formulated. Within the scope of this thesis, the downstream task is
framed as a multi-label classification problem, allowing for the 71 labels on
the most fine-grained level in PTB-XL to be fully utilized [Wagner et al.,
2020]. In sum, the downstream task is intended to assess how well the signal
representation can solve the main problem presented in this thesis.

The training set for multi-label classification consists of data samples,
each associated with a set of labels. After training or fine-tuning a model
with the training data, the assumption is that the model should have learned
the mapping of inputs x to binary vectors y. That is, it assigns a value of
0 or 1 for each label in y, where 0 means that the label is not associated
with this input sample, and naturally, a value of 1 signals a positive label
association. The task is then to predict the label sets of unseen data samples.
Formulating the downstream task as a clinical multi-label ECG classification
problem, the PTB-XL dataset with its 71 annotation labels is adopted for the
evaluation process. See Section 3.3 for a detailed description of the dataset
and Figure 4.7 for a schematic image of the classification task. During the
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Figure 4.7 Schematic image of the downstream task. It is framed as a multi-label
classification problem, allowing for the 71 labels on the most fine-grained level in
PTB-XL to be fully utilized.

multi-label classification process, a binary cross-entropy loss is optimized. This
binary cross-entropy loss consists of a sigmoid activation function followed by
a computation of the cross-entropy loss

L = � 1

N

NX

i=1

yi · log ŷi + (1� yi) · log (1� ŷi) , (4.10)

where N is the number of labels, ŷi is the ith label in the output vector and
yi the corresponding target value. This loss is independent for each vector
component i.e. label, meaning that the loss computed for every output vec-
tor component is not affected by other component values. Hence, this is the
common choice when solving multi-label classification tasks.

Further discussion of how the ECG representations are evaluated is pro-
vided in the following section.

4.4 Evaluation

To validate the effectiveness of the learned signal representations, the model is
evaluated using the widely adopted evaluation approaches [Kolesnikov et al.,
2019; Wu et al., 2018; Oord et al., 2018; Bachman et al., 2019]:
(i) linear evaluation protocol, where the aim is to access the quality of the
learned representations through their linear separability.
(ii) fine-tuning protocol, in which the usefulness of the learned representa-
tions for downstream tasks will be investigated by evaluating the model per-
formance on clinically relevant classification- and anomaly detection tasks.

Following pre-training, the method-specific network adjustments are re-
moved, leaving only the ResNet-50 encoder network for use as a feature ex-
tractor. See Figure 4.8 for a graphical illustration of the adjustments made to
the learning framework as the pre-training phase passes over to evaluation.
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Figure 4.8 After the pre-training phase, all modules except the encoder network
are removed. The output from the encoder network is used as a latent representation
of the ECG signal.

The ECG signals are passed through the encoder network and the signal fea-
tures, or representations, outputted by the encoder network are evaluated. In
the evaluation process, an output layer containing multiple nodes is added at
the end of the network. Each node maps to a distinct ECG label and serves
the purpose of outputting a score for the probability that the given input
sample is associated with that node label.

Linear evaluation
The linear evaluation protocol aims to assess the quality of the learned repre-
sentations through their linear separability. To this end, the classification head
of the network is replaced by a single linear layer. All other layers, as well as
batch normalization statistics, are frozen before the linear classifier is trained
on top of the frozen base network. Figure 4.9 presents a schematic of linear
evaluation and fine-tuning. The linear layer is trained for 100 epochs with the
labelled PTB-XL training dataset. Using AdamW optimizer[Loshchilov and
Hutter, 2017], the learning rate is set at 0.008 with a weight decay regular-
ization of 0.001 as suggested by [Mehari and Strodthoff, 2022]. As a measure
of the quality of the representation and the usefulness of the signal represen-
tations in clinical tasks, the test macro-AUC score is used.
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Figure 4.9 Illustration of linear evaluation and fine-tuning procedures. The red
color indicates a frozen layer during training, while green represents a tunable layer.

Fine-tuning
Within the fine-tuning protocol, the usefulness of the signal representations
for downstream tasks is investigated. This evaluation protocol, in contrast
to linear evaluation, does not freeze the network layers but allows for a fine-
tuning of all the network weights. For this semi-supervised fine-tuning, the
classification head as well as all layers of the pre-trained model are unfrozen
and the model is trained now using the labelled data. Figure 4.9 presents a
schematic image of linear evaluation and fine-tuning.

Fine-tuning can be further divided into two procedures. One involves fine-
tuning the encoder based on the entire labelled training dataset, and the other
involves using only a subset of the labelled training dataset. This allows for
model performance to be measured as a function of data subset size, where the
subset consists of 1%, 10%, 25%, 50%, 70% and 100% of the labelled training
data, see Figure 4.10. As much of the motivation behind self-supervised learn-
ing lies in the improvement of model performance in the low-data regime, this
evaluation routine reflects the expectation that self-supervised learning will
represent data better than its supervised counterpart.

During fine-tuning, as with linear evaluation, binary cross-entropy is opti-
mized using AdamW optimizer [Loshchilov and Hutter, 2017] with a constant
learning rate of 0.008 and a weight decay regularization of 0.001. Performance
is measured using macro-AUC from 71 labels in PTB-XL [Wagner et al., 2020]
as with the fully supervised model and the linear evaluation protocol. The se-
lected model is the one that during training obtains the highest macro-AUC
score when evaluated on the validation data. The reported metrics are the
test results for this selected model.
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Figure 4.10 Fine-tuning is also performed with subsets of 1%, 10%, 25%, 50%,
70% and 100% of the labelled training data.

Multi-label classification metrics
Presented below are the metrics used to measure the performance on the
downstream task and a brief discussion of the multi-label classification metric
that was chosen.

In supervised learning, the generalization performance of the learning sys-
tem is evaluated using metrics such as accuracy, F-measure, area under the
ROC curve with the closely related AUC score, etc. However, performance
evaluation in multi-label learning is more challenging than in traditional
single-label settings, as each example can be associated with multiple labels
simultaneously. Consequently, conventional metrics cannot be used as a means
of measuring performance. Instead, a number of evaluation metrics specific
to multi-label learning have been proposed. Figure 4.11 displays a simplified
schematic of the taxonomy of multi-label metrics, where example-based met-
rics [Ghamrawi and McCallum, 2005] and label-based metrics [Tsoumakas
and Vlahavas, 2007] compromise the major groups. The common approach
for evaluating the performance of tasks of this sort is to treat each label as its
own binary task; n possible labels can be seen as n binary classifiers [Zhang
and Zhou, 2013], but the groups differ in the subsequent computational al-
gorithms. Where example-based metrics work by evaluating performance on
each test example separately and then returning the mean value across the
whole test set, label-based metrics instead evaluate a model’s performance
on each class label separately, before returning the macro-/micro-averaged
value across all class labels. The latter approach is used in this thesis, and
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macro-AUC serves as the evaluation metric.

Figure 4.11 Summary of major multi-label evaluation metrics.

The use of a metric based on raw classifier outputs allows a better un-
derstanding of the discriminatory power of the classification model. As no
thresholding is applied, the selection of an appropriate classifier is disentan-
gled from the issue of threshold optimization. A process that is highly depen-
dent on the clinical application context in which the model will be deployed.
Therefore, macro-AUC is used as a performance measure in this thesis. A
choice further motivated by its compensation for the discrepancy between the
distribution of pathologies in the dataset and the natural distribution of the
population. Macro-averaging takes into consideration the expected dataset
label imbalance and hence, the score is not dominated by a few, from a statis-
tical perspective, exceedingly large classes resulting from the data collection
process. Averaging label-wise AUC scores over all 71 labels in the PTB-XL
dataset gives the term centric macro-AUC; the metric used as the primary
evaluation metric.

4.5 Defining positive pairs

The topic of how to define the two context views remains open for debate.
Not only is the issue of which augmentations to apply and how, but also that
of how to select the positive contrastive pair. So far, these choices have been
mostly driven by intuition, with little formal understanding of why certain
choices may be preferable, and how these choices can be generalized [Patrick
et al., 2021].

Recall that the role of positive pairs in self-supervised learning is to de-
fine multiple views of a shared context, from which the mutual information
between the feature representations of every positive pair is maximized. Max-
imizing mutual information between features extracted from these views re-
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quires capturing information about high-level factors whose influence spans
multiple views. The usefulness of the feature representations is thereby de-
pendent on the information present in each view of a positive pair.

Current state-of-the-art approaches define a positive pair as two aug-
mented copies x̃i and x̃j of a data sample x [Chen et al., 2020; Grill et al.,
2020; Bardes et al., 2021; Zbontar et al., 2021; He et al., 2020]. Throughout
our experiments, the default approach for defining a positive pair was to apply
the sampled transformations t and t

0 to a signal x, creating two augmenting
copies of the same signal, x̃i = t(x), x̃j = t

0(x). The two augmented views
were then considered a positive pair (x̃i, x̃j). However, for some of the exper-
iments, positive pairs were defined such that one augmented copy x̃i = t(x)
was paired with the original signal x, giving a positive pair as (x̃i,x).
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5
Experiments and results

This chapter presents experimental motivations in combination with the most
important results and evaluations of the implemented self-supervised repre-
sentation learning methods. Initially, the chapter presents the experiments
that have been conducted in order to establish a benchmark score for how
well a non-pre-trained model may perform. In the next experiment, we aim
to evaluate whether the performance of the models can be improved through
self-supervised pre-training. Following, we conduct another experiment that
investigates how performance varies as feature representations are extracted
from different stages of the network. Next, the performance of self-supervised
pre-trained and non-pre-trained models is evaluated when fine-tuned using
smaller subsets of the labelled data. The last experiments investigated how
alterations to the learning framework affect model performance when they
are fine-tuned on both the full labelled dataset and smaller subsets of the
data. To this end, 10-second ECG signals, stronger augmentation strategies,
and a redefinition of the positive contrastive pairs are investigated. Lastly, a
one-sided Welch’s test is performed to analyze the statistical significance of
the performance improvements resulting from these framework alterations.

5.1 Supervised baseline results

To begin, we trained a randomly initialized ResNet-50 model in a supervised
manner in order to obtain a performance benchmark. This supervised perfor-
mance can be thought of as the obtainable performance score of a ResNet-50
model without any prior self-supervised training. Figure 5.1 presents training
loss and macro-AUC on test data for each of the total 500 training epochs.
The model was trained using the full training dataset of PTB-XL, DPTB ,
and the task was formulated as a multi-label classification task using the 71
labels. Macro-AUC was evaluated on the test dataset. Observing Figure 5.1b
we see that the highest macro-AUC is obtained after ⇠20 training epochs.
After that, performance diminishes.
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5.1 Supervised baseline results

(a) Training loss vs epoch. (b) macro-AUC on testdata vs. epoch.

Figure 5.1 Loss and test metrics as a function of training epoch for a ResNet-50
model trained on the full PTB-XL dataset in a supervised manner.

These findings led us to train another model with fewer training epochs.
The same setting was used as for the previous experiment, but this time we
only let the model’s weights be updated for 20 epochs. Its performance was
evaluated using linear evaluation and fine-tuning and the results are presented
as the first row in Table 5.1. In this supervised setting where no pre-training
has been conducted, linear evaluation means that the network is as usual
randomly initialized, but its weights are then directly frozen. The linear clas-
sification layer added for the linear evaluation procedure is then the only
layer for which weights are updated. Fine-tuning in this supervised setting is
performed as regular supervised training of a model. Table 5.1 displays that
a model trained with all the available labelled data at its highest reaches a
macro-AUC of 0.9157.

We then carried out a second baseline experiment. This time, a ResNet-50
model was trained using longer ECG signals. This new model was trained
with the same setting and hyper-parameters as for the previous baseline ex-
periment. Only this time, the model was trained with 10-second long ECG
signals instead of the previous length of 2.5 seconds. The performance results
after 20 training epochs are presented as the second row in Table 5.1. It can
be seen that performance is improved both in the linear and fine-tuning eval-
uation settings. When performing two identical model fittings with the only
variable being the length of the ECG signals, performance is improved by 2.97
percentage points for linear cases and by 8h per mill for fine-tuning cases.

The premise of self-supervised learning is to find representations of unla-
belled data that can be effectively applied to various prediction tasks with no,
or little adjustments to the feature representations. This framework is mostly
used when the availability of labelled data is scarce. Therefore, it is of interest
to investigate how a supervised model performs when very few labelled exam-
ples are available. This would indicate how well a model is able to perform in
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Table 5.1 Supervised ResNet-50 macro-AUC on testdata. Evaluated using linear
evaluation and fine-tuning.

Signal length (s) Linear evaluation Fine-tuning

2.5 0.6606(.0019) 0.9157(.0037)
10 0.6903(.0018) 0.9165(.0032)

that setting without any prior self-supervised training. To simulate this sce-
nario, a ResNet-50 model was trained on 1% of the initial, full dataset. Given
the training dataset’s original size of 17,441 samples, we this time trained
the model using only 174 labelled examples. The chosen recordings were uni-
formly sampled from the full training dataset at the beginning of the training
procedure. Meanwhile, validation and test datasets remained at their original
sizes. Figure 5.2 displays training loss and test macro-AUC for each of the 500
training epochs. If we compare Figure 5.2a to Figure 5.1a, it is evident that
training loss is minimized after fewer training epochs when available training
data is less. However, model performance measured in macro-AUC in Figure
5.2b remains at a more constant level than in Figure 5.1b, although with
a higher fluctuation. Given the plots in Figure 5.2, a reasonable trade-off
between macro-AUC performance and model generalizability is found after
20-50 training epochs.

(a) Training loss vs. training epoch. (b) Macro-AUC on testdata vs. training
epoch.

Figure 5.2 Loss and test metrics as a function of training epoch for ResNet-50
model trained in a supervised manner on 1% of the dataset.

Our last benchmark experiment examined the performance of the super-
vised model in relation to the number of labelled examples. To this end, a
randomly initialized ResNet-50 model was trained multiple times, each time
using an increasing number of data samples. As such, model performance is
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given as a function of data availability. The plot in Figure 5.3 shows macro-
AUC performance on test data for a model trained on a given % of the full
training dataset. Using only 1% of the dataset, a macro-AUC of 0.6980 was
reached with 20 epochs of training.

Figure 5.3 Performance of supervised ResNet-50 model as function of % labelled
training data.

5.2 Reproducibility and VICReg implementation

Following the initial benchmarking experiments, a second experiment was
conducted to determine if self-supervised pre-training would result in higher
downstream performance compared to the non-pre-trained supervised model.
In particular, the experiment examined the potential of self-supervised learn-
ing methods in the context of ECG signals. To this end, and to validate the
results obtained by [Mehari and Strodthoff, 2022], we began by implementing
the two learning frameworks SimCLR [Chen et al., 2020] and BYOL [Grill
et al., 2020]. They were adapted to the one-dimensional ECG data, as out-
lined in Section 4.2. Both the SimCLR and BYOL models were pre-trained
for 2000 epochs using the full unlabelled dataset DPre�train. Section 3.2 de-
scribes the dataset in detail. The only difference in the setup between [Mehari
and Strodthoff, 2022] and ours was the training batch size. The reason for this
was due to the smaller RAM memory provided by our GPUs.

The pre-trained models were then evaluated using the linear evaluation
and fine-tuning protocols. For each evaluation process, the unfrozen layers of
the pre-trained encoder network were tuned for 100 training epochs. For the
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evaluation setting, we used the labelled PTB-XL training data, DPTB . Please
refer to Section 4.4 for detailed information regarding evaluation procedures.

Table 5.2 and 5.3 presents mean macro-AUC on the test data over 10
evaluation runs for models selected by either the lowest pre-training validation
loss or by the last training epoch. Despite the smaller batch sizes, we see that
performance of our implemented models is in accordance with the results
and conclusions provided by [Mehari and Strodthoff, 2022]. Thus, confirming
the applicability of self-supervised learning methods in the ECG domain.
Nevertheless, since supervised learning yields similar results to those of pre-
trained methods, self-supervised pre-training with the current setup does not
provide any significant advantage.

Table 5.2 Model selected by lowest validation score. Mean and standard deviation
of test macro-AUC over 10 evaluation runs.

Method Linear evaluation Fine-tuning

SimCLR 0.8852(.0112) 0.9105(.0159)
BYOL 0.8715(.0163) 0.9107(.0125)

VICReg 4x 0.8731(.0116) 0.9068(.0120)
VICReg 2x 0.8802(.0086) 0.9040(.0096)

VICReg 1.5x 0.8818(.0120) 0.9091(.0109)

Table 5.3 Model selection by last epoch. Mean and standard deviation of test
macro-AUC over 10 evaluation runs.

Method Linear evaluation Fine-tuning

SimCLR 0.8828(.0032) 0.9148(.0035)
BYOL 0.8659(.0010) 0.9158(.0033)

VICReg 4x 0.8690(.0019) 0.9095(.0056)
VICReg 2x 0.8719(.0025) 0.9130(.0047)

VICReg 1.5x 0.8791(.0063) 0.9107(.0027)

Our next experiment was inspired by the recent success of the self-
supervised learning method VICReg [Bardes et al., 2021]. In addition to
the previously used SimCLR and BYOL methods, we now also implemented
the VICReg framework. This was done in order to investigate whether self-
supervised pre-training using the VICReg framework would result in improved
downstream performance. In this regard, an ECG-compatible modification of
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the original network was implemented and trained following the same spec-
ifications as for the SimCLR and BYOL methods. That is, 2,000 epochs of
training using the unlabelled dataset DPre�train. This model referred to as VI-
CReg 4x, introduces a dimensional expansion of factor 4 between the encoded
representation and the expander network described in Section 4.2. From each
pre-training round, we chose to save and evaluate two different models. These
were selected as the model with the lowest pre-training validation loss and the
model at training epoch 2,000. Table 5.2 and 5.3 presents the mean macro-
AUC score on the test data after 10 evaluation runs in the linear evaluation
and fine-tuning settings.

As previously mentioned, the VICReg method expands the latent space by,
after the encoder, introducing the expansion module. To determine whether a
different expanding factor would perform better given our current context, we
implemented two additional VICReg versions where we varied the expansion
dimensions. The latent dimensions were expanded by a factor of 2 or 1.5
resulting in the names VICReg 2x and VICReg 1.5x. Their respective linear
evaluation and fine-tuning performances are also found in Table 5.2 and 5.3.

Based on the evaluation of the initial method implementations, no sub-
stantial improvements in performance are observed as a result of self-
supervised pre-training. Choosing a BYOL model from the last training epoch
gives us a mean macro-AUC of 0.9158, only 1h better than using a self-
supervised approach. With the current setup, self-supervised pre-training does
not provide any meaningful advantages over supervised training alone.

5.3 Extracting feature representations

The presented and implemented methods discard their projector, or expander,
networks after pre-training, leaving the encoder network as a feature represen-
tation extractor. Adding a classification layer on top of this encoder network,
the models are then adapted to solve the downstream task of interest. The
ability to perform pre-training with module-based network designs by varying
the architectural choices has resulted in highly useful data representations for
a variety of tasks. There is, however, a limited understanding of how network
architecture influences representation formation in self-supervised learning.
More specifically, how does the choice of network modules affect the final
learned representations? Do these varying architectures also learn different
intermediate hidden layer features with discernible differences in the repre-
sentations?

This experiment was conducted in order to gain a better understanding of
how feature representations were formed. The experiment assessed the down-
stream performance of feature representations extracted from different stages
of the ResNet-50 encoder network. In the previous experiment, representa-
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tion vectors were obtained from the last layer of the ResNet-50 model. The
last layers of a convolutional neural network are likely to contain task-specific
features, as convolutional neural networks acquire complex feature representa-
tions by a layer-hierarchical process. Each layer forms a feature representation
that builds upon the feature representation from the previous layer. In our
setting, these feature representations are shaped by the pretext task we choose
to employ. Thus, one can speculate that the feature representations most use-
ful for our given downstream task may not necessarily be extracted from the
last ResNet layer. With the last layers perhaps being too biased and adjusted
towards the pretext task, the earliest layers will extract more task-agnostic
features.

Therefore, for our next experiment, we pre-trained the models as we did in
the previous experiment. After pre-training their projector/expander modules
were discarded, leaving only their encoder networks to be used for feature
extraction. Following the routine linear evaluation and fine-tuning procedures,
the full ResNet model was employed as an encoder network by placing a
classification layer at the end. This meant that feature representations from
the last stage of the network were used for the downstream task. Figure
4.2 displays the different stages of the ResNet model. If, however, we place
the classification layer after a layer in the earlier parts of the network, the
feature representations from this stage are used for the downstream task.
Table 5.4-5.7 present test macro-AUC over 10 evaluation runs using feature
representations from varying stages of the network. In the result tables, “stage
2+3” is a concatenated feature vector where feature vectors from network
stage 2 and 3 are extracted and concatenated to form a single feature vector
of 1024 dimensions. Similarly for the entry “stage 3+4”.

Table 5.4 Model selection by lowest validation score. Mean and standard devi-
ation of macro-AUC on test data over 10 evaluation runs. Evaluated using linear
evaluation.

Method Stage 4 Stage 3 Stage 2 Stage 1 Stage 3+4 Stage 2+3

SimCLR 0.8852(.0112) 0.8913(.0024) 0.8789(.0021) 0.8652(.0027) 0.8849(.0032) 0.8886(.0023)
BYOL 0.8715(.0163) 0.8739(.0011) 0.8590(.0016) 0.8473(.0020) 0.8671(.0021) 0.8618(.0030)
VICReg 4x 0.8731(.0116) 0.8856(.0017) 0.8789(.0027) 0.8577(.0025) 0.8712(.0043) 0.8788(.0032)
VICReg 2x 0.8802(.0086) 0.8856(.0017) 0.8744(.0024) 0.8536(.0030) 0.8784(.0035) 0.8775(.0047)

Results from Tables 5.4-5.7 show that linear evaluation performance for all
methods is improved when using representations extracted from earlier parts
of the network. In the regular linear evaluation setting with representations
from stage 4, the macro-AUC of 0.8852 obtained by SimCLR was the highest
score. By instead extracting representations from stage 3, macro-AUC per-
formance is elevated to 0.8991. Furthermore, linear evaluation performance is
increased for all methods when using representations from stage 3 rather than
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Table 5.5 Model selection by last epoch. Mean and standard deviation of macro-
AUC on test data over 10 evaluation runs. Evaluated using linear evaluation.

Method Stage 4 Stage 3 Stage 2 Stage 1 Stage 3+4 Stage 2+3

SimCLR 0.8828(.0032) 0.8991(.0018) 0.8869(.0022) 0.8651(.0020) 0.8916(.0023) 0.8988(.0018)
BYOL 0.8659(.0010) 0.8671(.0013) 0.8596(.0016) 0.8378(.0015) 0.8670(.0014) 0.8625(.0020)
VICReg 4x 0.8690(.0019) 0.8815(.0026) 0.8800(.0027) 0.8614(.0031) 0.8736(.0031) 0.8757(.0049)
VICReg 2x 0.8719(.0025) 0.8884(.0025) 0.8775(.0027) 0.8523(.0028) 0.8792(.0035) 0.8851(.0026)

Table 5.6 Model selection by lowest validation score. Mean and standard devia-
tion of macro-AUC on test data over 10 evaluation runs. Evaluated using fine-tuning.

Method Stage 4 Stage 3 Stage 2 Stage 1 Stage 3+4 Stage 2+3

SimCLR 0.9105(.0159) 0.9139(.0028) 0.9144(.0032) 0.9139(.0038) 0.9133(.0045) 0.9154(.0030)
BYOL 0.9107(.0125) 0.9152(.0026) 0.9138(.0032) 0.9123(.0040) 0.9168(.0017) 0.9171(.0030)
VICReg 4x 0.9068(.0120) 0.9074(.0019) 0.9098(.0028) 0.9108(.0043) 0.9112(.0024) 0.9101(.0027)
VICReg 2x 0.9040(.0096) 0.9107(.0031) 0.9097(.0020) 0.9114(.0039) 0.9123(.0040) 0.9110(.0046)

Table 5.7 Model selection by last epoch. Mean and standard deviation of macro-
AUC on test data over 10 evaluation runs. Evaluated using fine-tuning.

Method Stage 4 Stage 3 Stage 2 Stage 1 Stage 3+4 Stage 2+3

SimCLR 0.9148(.0035) 0.9141(.0022) 0.9142(.0041) 0.9140(.0036) 0.9145(.0028) 0.9156(.0029)
BYOL 0.9158(.0033) 0.9146(.0024) 0.9124(.0040) 0.9147(.0058) 0.9179(.0044) 0.9155(.0036)
VICReg 4x 0.9095(.0056) 0.9076(.0028) 0.9119(.0033) 0.9087(.0028) 0.9104(.0035) 0.9132(.0030)
VICReg 2x 0.9130(.0047) 0.9088(.0016) 0.9085(.0036) 0.9129(.0028) 0.9135(.0039) 0.9128(.0044)

from stage 4. In the fine-tuning setting, all methods are not benefited from
earlier feature extraction, but the highest achieved macro-AUC is increased.
Previously, using representations from stage 4, BYOL obtained a macro-AUC
of 0.9158. Instead, with a concatenated representation of feature vectors from
stages 3 and 4, a macro-AUC of 0.9179 is reached.

5.4 Fine-tuning with subsets of labelled data

As Section 5.1 points out; the goal of self-supervised learning is to construct
meaningful feature representations of the input data without using data labels.
In order to investigate how our self-supervised models perform when there are
very few labelled examples available for fine-tuning, we chose to carry out the
following experiments.

Using a modified version of the simulated scenario presented for the su-
pervised experiment, the pre-trained models were fine-tuned with a smaller
amount of labelled training data than that used for the previous fine-tuning
evaluations. This meant that after pre-training models with SimCLR, BYOL,
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or VICReg approaches, the respective encoder networks were fine-tuning
on smaller subsets of the original, full dataset DPTB . Data samples were
uniformly sampled from the full training dataset at the beginning of the
training procedure. Validation and test sets remained at their original sizes.
Pre-training, however, was still performed on the entire unlabelled dataset
DPre�train, as this experiment assumed access to a larger set of unlabelled
data while labelled examples were scarce. After pre-training models for 2000
epochs, the last model was extracted and fine-tuned for 20 epochs using either
1%, 10%, 25%, 50%, 70% or 100% of the full training PTB-XL dataset. Mean
test macro-AUC after 5 evaluation runs are presented.

Figure 5.4 Performance of models as function of % labelled fine-tuning data.
Fine-tuned for 20 epochs. Mean over 5 evaluation runs.

Table 5.8 Model from last epoch. Mean macro-AUC on test data over 5 evaluation
runs. Fine-tuned for 20 epochs with varying % subset of labelled data.

% of full dataset used for fine-tuning
Method 1% 10% 25% 50% 70% 100%

Supervised 0.6980(.0128) 0.8358(.0047) 0.8743(.0025) 0.8914(.0088)) 0.8894(.0056) 0.8996(.0033)
SimCLR 0.7203(.0143) 0.8482(.0127) 0.8666(.0060) 0.8910(.0029) 0.8932(.0026) 0.8946(.0053)
BYOL 0.7131(.0106) 0.8338(.0045) 0.8721(.0056) 0.8885(.0026) 0.8888(.0034) 0.8946(.0026)
VICReg 4x 0.6926(.0156) 0.8278(.0032) 0.8663(.0067) 0.8854(.0027) 0.8901(.0019) 0.8918(.0029)
VICReg 2x 0.6915(.0135) 0.8314(.0103) 0.8670(.0083) 0.8844(.0047) 0.8922(.0054) 0.8954(.0017)
VICReg 1.5x 0.6822(.0181) 0.8285(.0050) 0.8696(.0098) 0.8868(.0035) 0.8917(.0040) 0.8982(.0019)

In Figure 5.4, performance results are displayed for all models when per-
formance is evaluated as a function of available data. Figure 5.5 shows per-
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(a) SimCLR (b) BYOL

(c) VICReg 4x (d) VICReg 2x

(e) VICReg 1.5x

Figure 5.5 Performance as function of % labelled data, fine-tuned for 20 epochs.
Results are mean macro-AUC and standard deviation over 5 evaluation runs on test
data.

formance plots for all methods and compares them to the supervised model
performance. Table 5.8 presents a detailed table view of the plot in Figure
5.4. Over every data subset size, the supervised model performs better than
any pre-trained method.
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We then investigated the topic further by letting the fine-tuning training
last for 100 epochs instead of the aforementioned 20. The supervised model in
Figure 5.2 displayed a loss close to zero and highly fluctuating macro-AUC at
this training epoch. Although this might be an indication of overfitting to the
training data and thereby a lack of generalization, a performance comparison
between supervised and pre-trained models in the low-labelled example setting
was still carried out. Adopting the same procedure as before, we fine-tuned
the pre-trained models for 100 epochs using varying sizes of the training data.
As before, the mean test macro-AUC after 5 evaluation runs are reported.
Figure 5.6 displays performance as a function of dataset size for all methods,
while Figure 5.7 presents individual plots of all methods when compared to
the supervised model performance. Table 5.9 displays the detailed table view
of the plot in Figure 5.6. In spite of the additional fine-tuning epochs, none
of the pre-trained methods were able to adjust their representations to the
downstream task any better than the supervised model. Consequently, in
this low-labeled data setting, no self-supervised pre-training approach proved
effective for improving downstream performance.

Figure 5.6 Performance by varying pre-training methods as a function of % la-
belled fine-tuning data. Fine-tuned for 100 epochs. Model selected by last epoch.
Mean and standard deviation over 5 evaluation runs.

5.5 Increasing length of ECG signals

For a healthy heart with a typical heart rate of 70 to 75 beats per minute, each
cardiac cycle, or heartbeat, lasts for more or less 0.8 seconds [Gersh, 2000].
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Table 5.9 Model from last epoch. Mean macro-AUC on test data over 5 evaluation
runs. Fine-tuned for 100 epochs with varying % subset of labelled data.

% of full dataset used for fine-tuning
Method 1% 10% 25% 50% 70% 100%

Supervised 0.7309(.0086) 0.8552(.0062) 0.8842(.0077) 0.8953(.0045) 0.9043(.0041) 0.9157(.0037)
SimCLR 0.7335(.0114) 0.8553(.0061) 0.8870(.0074) 0.8937(.0054) 0.9059(.0038) 0.9148(.0035)
BYOL 0.7305(.0091) 0.8474(.0068) 0.8850(.0081) 0.8963(.0045) 0.8996(.0023) 0.9158(.0033)
VICReg 4x 0.7296(.0129) 0.8430(.0075) 0.8875(.0065) 0.8980(.0054) 0.9078(.0018) 0.9095(.0056)
VICReg 2x 0.7284(.0137) 0.8444(.0065) 0.8851(.0048) 0.8975(.0045) 0.9053(.0048) 0.9130(.0047)
VICReg 1.5x 0.7263(.0096) 0.8492(.0064) 0.8873(.0046) 0.8960(.0054) 0.9042(.0039) 0.9107(.0027)

(a) SimCLR (b) BYOL

(c) VICReg 4x (d) VICReg 2x

(e) VICReg 1.5x

Figure 5.7 Performance as function of % labelled data, fine-tuned for 100 epochs.
Results are mean macro-AUC over 5 evaluation runs on test data.

Therefore, 2.5 seconds of an ECG signal entails about three complete cardiac
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cycles. It may not be sufficient information to train a classifier on three full
cardiac cycles, given that some cardiovascular diseases, such as arrhythmia,
can only be detected sporadically.

To investigate how the length of the ECG signals affects model perfor-
mance, we set out to redo the previous experiments. This time, using 10-
second long ECG signals for each of the specified self-supervised learning
methods. Following the implementation details presented in Section 4.2, we
pre-trained the models for 2000 epochs following the already described learn-
ing approaches of SimCLR, BYOL, and VICReg 4x. For these experiments,
pre-training was performed solely on the training data of the PTB-XL dataset.
However, without the use of any data labels. This was primarily done to
shorten the training time and allow for more experiments to be conducted.
As in previous experiments, we evaluated the models using the fine-tuning
evaluation protocol. Fine-tuning was performed for 20 epochs using varying
percentages of the full labelled dataset DPTB . Table 5.10 presents the mean
model performance on test data over 5 evaluation runs, on models pre-trained
with 2.5-seconds or 10-seconds ECG signals. Additionally, the effect of the
number of pre-training epochs on performance was investigated by extracting
models after 250, 500, 1000, 1500, and 2000 epochs of pre-training. These
models were fine-tuned given the previous explanation, and the results are
presented in Table 5.10.

Table 5.10 Mean and std macro-AUC on test data over 5 evaluation runs. Fine-
tuned for 20 epochs with 1% of training data. Models extracted after varying num-
bers of pre-training epochs.

250 epochs 500 epochs 1000 epochs 1500 epochs 2000 epochs

2.5s 10s 2.5s 10s 2.5s 10s 2.5s 10s 2.5s 10s

SimCLR 0.7169(.0172) 0.7189(.0127) 0.7053(.0267) 0.7150(.0199) 0.7043(.0152) 0.7050(.0110) 0.7027(.0196) 0.7031(.0107) 0.7061(.0097) 0.7090(.0120)
BYOL 0.7016(.0106) 0.7130(.0052) 0.7022(.0097) 0.7106(.0074) 0.7007(.0098) 0.7056(.0031) 0.7020(.0211) 0.7087(.0108) 0.6979(.0128) 0.7040(.0077)
VICReg4x 0.6867(.0285) 0.6945(.0175) 0.6919(.0127) 0.6971(.0171) 0.6917(.0136) 0.7012(.0084) 0.6829(.0199) 0.6870 (.0191) 0.6816(.0179) 0.7015(.0073)

Recall that the performance of the supervised model in the setting of
1% training data was 0.6906 macro-AUC after 20 epochs. Additionally, the
highest test macro-AUC obtained by pre-trained models using 2.5-second sig-
nals was 0.7169. By only changing the length of the signals, SimCLR in-
stead reached a macro-AUC of 0.7189. Furthermore, the performance of all
extracted models independent of the pre-training method, was higher after
fine-tuning on 1% on training data when pre-trained on 10-second signals
rather than 2.5-second signals, as seen in Table 5.10.

As we increase the size of the labelled fine-tuning dataset, we obtain the
results shown in Figure 5.8, where model performance is plotted as a function
of available labelled data. We compared the performance of pre-trained models
with supervised models in settings with varying amounts of data available.

We pre-trained SimCLR, BYOL, and VICReg models for 1000 epochs with
either 2.5-second or 10-second ECG signals from the PTB-XL dataset. The
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(a) SimCLR. (b) BYOL.

(c) VICReg4x.

Figure 5.8 Performance as function of % labelled fine-tuning data, using 2.5 and
10-second ECG signals. Fine-tuned for 20 epochs. Results are mean macro-AUC
over 5 evaluation runs on test data.

models were then fine-tuned for 20 epochs using 1%, 10%, 25%, 50%, 70%, or
100% of the PTB-XL labelled training dataset. In the previous scenario where
performance was investigated as a function of % available labelled examples,
no pre-trained model showed better results than the supervised model over
any subset size. With the 10-second ECG signals and the BYOL pre-training
method, however, we were able to obtain higher macro-AUC scores for all
sizes of labelled datasets than they would be with a supervised model alone.

Finally, we sought to test and evaluate the models when fine-tuned on
the entire labelled dataset of 10-second signals. To this end, each pre-trained
model was fine-tuned for 100 epochs using the full labelled PTB-XL dataset
DPTB . Table 5.11 presents mean macro-AUC on test data over 5 evaluation
runs for the various methods. It is presented both the results of training with
2.5-second and 10-second ECG signals. Using 10-second signals improves the
performance of all methods, although the VICReg approach only sees an
increase of 1h.

5.6 Rethinking contrastive pairs

In pursuit of an optimal signal representation, the mutual information be-
tween the latent representations of different sample views is maximized. This
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Table 5.11 Mean and std macro-AUC on test data over 5 evaluation runs. Fine-
tuned for 100 epochs.

Signal length

2.5s 10s

Supervised 0.9157(.0037) 0.9165(.0032)
SimCLR 0.9150(.0035) 0.9224(.0050)
BYOL 0.9219(.0047) 0.9263(.0037)
VICReg 4x 0.9163(.0033) 0.9164(.0035)

allows for view-invariant representations to be learned, and consequently, the
choice of views controls what information is captured in the representation.
As the learning framework results in representations that focus on the shared
information between different transformed versions of the same ECG signal,
the definition of a contrastive pair becomes central to the representation’s
usefulness. While this is of significant importance, the question of viewing
conditions to be invariant to still remains an important question in need of
an answer. As previous research on self-supervised learning in the ECG do-
main has defined positive contrastive pairs as two augmented versions of a
given data sample, described in Section 4.5, this experiment was conducted
to investigate how different formulations of positive pairs affect the learned
representations. We now deviate from the double augmented pairing, where
two augmented versions of the original data samples are defined to form a
positive pair by applying respective data transformation t ⇠ T , t

0 ⇠ T to the
ECG signal x. This results in the two views x̃i = t(x), x̃j = t

0(x), forming
the positive pair (x̃i, x̃j). Instead, one augmented view is paired up with an
identity mapping of the original data sample to define the contrastive pair
(x̃i, x), here referred to as single augmentation.

We begin the experiments by pre-training models based on the SimCLR,
BYOL, and VICReg frameworks. They are pre-trained using this updated def-
inition of positive pairs and then fine-tuned with 1% of the labelled evaluation
data. Table 5.12 presents the results of models pre-trained on the unlabelled
PTB-XL training dataset, using varying signal lengths and different defini-
tions of contrastive pairs. During pre-training, models are extracted after 250,
500, 1000, 1500, and 2000 pre-training epochs and fine-tuned for 20 epochs
on 1% of the full training dataset DPTB . Mean macro-AUC results after 5
fine-tuning evaluation runs are reported.

Our results are presented in Table 5.12, which shows that the SimCLR
model pre-trained using single augmentation and 10-second ECG signals ob-
tained the highest macro-AUC. This value of 0.7264 is an improvement of 3.58
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percentage points over the corresponding supervised model performance. As
a result of using the single augmentation strategy rather than the double
augmentation formulation, all the models demonstrate an increase in perfor-
mance.

Table 5.12 Mean and std macro-AUC on test data over 5 evaluation runs. Fine-
tuned for 20 epochs with 1% of training data. Models extracted after varying num-
bers of pre-training epochs.

SimCLR BYOL VICReg 4x Supervised

Epoch Augment. 2.5s 10s 2.5s 10s 2.5s 10s 2.5s 10s

0.6879(.0161) 0.6906(.0076)
250 Single 0.7179(.0262) 0.7264(.0132) 0.7103(.0076) 0.7136(.0129) 0.6970(.0224) 0.6978(.0112)

Double 0.7169(.0172) 0.7189(.0127) 0.7016(.0106) 0.7130(.0052) 0.6867(.0285) 0.6945(.0175)
500 Single 0.7101(.0063) 0.7170(.0106) 0.7080(.0120) 0.7113(.0125) 0.6967(.0018) 0.7063(.0141)

Double 0.7053(.0267) 0.7150(.0199) 0.7022(.0097) 0.7106(.0074) 0.6919(.0127) 0.6971(.0171)
1000 Single 0.7072(.0147) 0.7132(.0111) 0.7053(.0095) 0.7068(.0077) 0.6968(.0215) 0.7072(.0123)

Double 0.7043(.0152) 0.7050(.0110) 0.7007(.0098) 0.7056(.0031) 0.6917(.0136) 0.7012(.0084)
1500 Single 0.7053(.0194) 0.7175(.0096) 0.7029(.0134) 0.7090(.0105) 0.6973(.0220) 0.7023(.0185)

Double 0.7027(.0196) 0.7031(.0107) 0.7020(.0211) 0.7087(.0108) 0.6829(.0199) 0.6870(.0191)
2000 Single 0.7084(.0173) 0.7099(.0180) 0.7050(.0043) 0.7047(.0116) 0.6913(.0177) 0.7091(.0082)

Double 0.7061(.0097) 0.7090(.0120) 0.6979(.0128) 0.7040(.0077) 0.6816(.0179) 0.7015(.0073)

Further extending the investigation of performance in the low labelled data
regime, we pre-trained models for 1000 epochs using unlabelled training PTB-
XL data and fine-tuned them using an increasing number of labelled samples.
Models were pre-trained using 2.5-second or 10-second ECG signals. To form
contrastive pairs, single or double augmentation strategies were applied. As
in previous experiments following a similar evaluation set-up, the pre-trained
models were fine-tuned for 20 epochs with 1%, 25%, 50%, 70% or 100% of the
PTB-XL dataset DPTB . Figure 5.9 presents plots of model performance given
different subsets of the training data. As seen, all methods showed improved
performance when single augmentation pairs were used. Compared with the
original pair definition, only a slight performance improvement was observed
with the BYOL model trained with the single augmentation strategy; how-
ever, both 10-second ECG models performed well above the supervised base-
line.

For the next experiment, we pre-trained models for 1000 epochs using the
unlabelled PTB-XL training data. We also used the same combinations of
signal length and contrastive pair formulations as described for previous ex-
periments. These models were then fine-tuned for 100 epochs using the full
labelled PTB-XL dataset, DPTB . Mean test macro-AUC over 5 evaluation
runs are reported in Table 5.13. In accordance with findings in the aforemen-
tioned experiments, our most recent results from applying single augmenta-
tion strategies present consistent performance increases across all methods.
For example, a BYOL model pre-trained with the single augmentation strat-
egy and 10-second ECG signals was able to obtain a macro-AUC of 0.9270.
When compared to its supervised counterpart, the supervised model reaches
a macro-AUC of 0.9165.
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(a) SimCLR 2.5s (b) SimCLR 10s

(c) BYOL 2.5s (d) BYOL 10s

(e) VICReg4x 2.5s (f) VICReg4x 10s

Figure 5.9 Performance as a function of % labelled fine-tuning data, using 2.5
and 10-second ECG signals. Pre-trained with single or double augmentation. Fine-
tuned for 20 epochs. Results are mean macro-AUC over 5 evaluation runs on test
data.

Table 5.13 Methods pre-trained with 2.5 or 10-second signals and with single or
double augmentations. Mean and std macro-AUC on test data over 5 evaluation
runs. Fine-tuned for 100 epochs with the full dataset.

SimCLR BYOL VICReg 4x Supervised

Augment. 2.5s 10s 2.5s 10s 2.5s 10s 2.5s 10s

0.9157(.0037) 0.9165(.0032)
Single 0.9175(.0047) 0.9246(.0021) 0.9262(.0019) 0.9270(.0050) 0.9195(.0022) 0.9168(.0023)
Double 0.9150(.0035) 0.9224(.0030) 0.9219(.0047) 0.9263(.0037) 0.9163(.0033) 0.9154(.0035)

5.7 Increasing augmentation strength

Data augmentation has been widely used in neural network representation
learning. However, it has not been considered a systematic way to define the
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contrastive prediction task. Experiments conducted by [Chen et al., 2020]
show that unsupervised contrastive learning benefits from stronger data aug-
mentation than supervised learning. Moreover, data augmentation that does
not yield accuracy benefits for supervised learning can still help considerably
with contrastive learning and the definition of contrastive pairs. Following
this line of reasoning, our next experiments were designed to investigate the
effect on performance when applying stronger data augmentations.

The default augmentation described in Section 3.3, sets the random resize
cropping parameter to (l,m) = (0.5, 1.0), and the time out parameters to
(tl, tu) = [0.0, 0.5]. This augmentation strength is referred to as RRC 50-
100% TO 0-50%. Given the context, an increase in augmentation strength
specifically means an increase in the permitted cropping window. The default
augmentation randomly cuts a contiguous segment of the signal, with the
largest allowed cropping window being half of the original signal. Thereafter,
a stochastically chosen window with a maximum length of 50% of the original
signal is set to zero. Additional augmentation strengths used for the following
experiments allowed cropping windows of size 30-100% for the random resize
crop and time-out windows of 0-80% or 20-60% of the original signal. These
augmentation strengths are referred to as RRC 50-100% TO 0-80% and RRC
30-100% TO 20-60%.

We once again pre-trained models on the unlabelled data and fine-tuned
the models with the labelled data. The models were pre-trained with different
combinations of hyper-parameter settings. Either 2.5 or 10-second ECG sig-
nals were used. Stronger or “default” augmentation strength was applied and
finally, positive pairs were defined using either the single or double augmen-
tation strategy. As in the previous experiments, pre-training was conducted
with the unlabelled PTB-XL training data.

To get a better estimate of the effect of augmentation, models were ex-
tracted after 250, 500, 1000, 1500, and 2000 epochs of pre-training. Fine-
tuning these models for 20 epochs with 1% of the PTB-XL training dataset,
mean test macro-AUC over 5 evaluation runs are presented in Table 5.14, 5.15
and 5.16. To simplify the table views, results for each pre-training method are
split into their own tables. As seen, the highest performance score for each self-
supervised framework was achieved when using the strongest augmentation
strategy. Additionally, all methods when evaluated in the 1% labelled data
setting achieve test macro-AUC results higher than the supervised model. As
can be seen in the table, the supervised model reaches a macro-AUC of 0.6906,
while the SimCLR model obtains a macro-AUC of 0.7217. It is thus possible
to improve performance in the low-labelled data regime by first pre-training
the models on available unlabelled data.

Following up on the previous experiment where 1% of the full dataset was
used for fine-tuning, we continued by investigating model performance as a
function of % available data. Models were pre-trained for 1000 epochs and with

81



Chapter 5. Experiments and results

Table 5.14 Methods pre-trained with 2.5 or 10-second signals, single or double
augmentations and with varying augmentation strength. Mean and std macro-AUC
on test data over 5 evaluation runs. Fine-tuned for 20 epochs with 1% of test dataset.

SimCLR RRC 50-100% TO 0-50% RRC 30-100% TO 20-60% Supervised

Epoch Augment. 2.5s 10s 2.5s 10s 2.5s 10s

0.6879(.0161) 0.6906(.0076)
250 Single 0.7079(.0262) 0.7264(.0132) 0.7160(.0147) 0.7250(.0075)

Double 0.7169(.0172) 0.7089(.0127) 0.7144(.0059) 0.7162(.0090)
500 Single 0.7101(.0063) 0.7170(.0106) 0.7118(.0117) 0.7163(.0084)

Double 0.7053(.0267) 0.7150(.0199) 0.7063(.0126) 0.7153(.0091)
1000 Single 0.7072(.0147) 0.7132(.0111) 0.7093(.0157) 0.7168(.0133)

Double 0.7043(.0152) 0.7050(.0110) 0.7059(.0212) 0.7155(.0102)
1500 Single 0.7053(.0194) 0.7175(.0096) 0.7091(.0104) 0.7217(.0099)

Double 0.7027(.0196) 0.7031(.0107) 0.7066(.0136) 0.7076(.0085)
2000 Single 0.7084(.0173) 0.7099(.0180) 0.7058(.0225) 0.7157(.0050)

Double 0.7061(.0097) 0.7090(.0120) 0.7022(.0179) 0.7149(.0152)

Table 5.15 Methods pre-trained with 2.5 or 10-second signals, single or double
augmentations, and with varying augmentation strength. Mean and std macro-AUC
on test data over 5 evaluation runs. Fine-tuned for 20 epochs with 1% of the test
dataset.

BYOL RRC 50-100% TO 0-50% RRC 30-100% TO 20-60% Supervised

Epoch Augment. 2.5s 10s 2.5s 10s 2.5s 10s

0.6879(.0161) 0.6906(.0076)
250 Single 0.7103(.0076) 0.7136(.0129) 0.7105(.0036) 0.7143(.0091)

Double 0.7016(.0106) 0.7130(.0052) 0.7091(.0134) 0.7135(.0061)
500 Single 0.7080(.0120) 0.7113(.0125) 0.7164(.0086) 0.7179(.0075)

Double 0.7022(.0097) 0.7106(.0074) 0.7041(.0080) 0.7115(.0091)
1000 Single 0.7053(.0095) 0.7068(.0077) 0.7068(.0072) 0.7076(.0107)

Double 0.7007(.0098) 0.7056(.0031) 0.7041(.0173) 0.7061(.0118)
1500 Single 0.7029(.0134) 0.7090(.0105) 0.7070(.0080) 0.7097(.0109)

Double 0.7020(.0211) 0.7087(.0108) 0.7023(.0057) 0.7094(.0142)
2000 Single 0.7050(.0043) 0.7047(.0116) 0.7069(.0109) 0.7092(.0114)

Double 0.6979(.0128) 0.7040(.0077) 0.7037(.0137) 0.7077(.0074)

Table 5.16 Methods pre-trained with 2.5 or 10-second signals, single or double
augmentations, and with varying augmentation strength. Mean and std macro-AUC
on test data over 5 evaluation runs. Fine-tuned for 20 epochs with 1% of the test
dataset.

VICReg 4x RRC 50-100% TO 0-50% RRC 50-100% TO 50-80% RRC 30-100% TO 20-60% Supervised

Epoch Augment. 2.5s 10s 2.5s 10s 2.5s 10s 2.5s 10s

0.6879(.0161) 0.6906(.0076)
250 Single 0.6970(.0224) 0.6978(.0112) 0.6983(.0127) 0.7042(.0146) 0.6988(.0168) 0.7105(.0058)

Double 0.6867(.0285) 0.6945(.0175) 0.6894(.0142) 0.7016(.0169) 0.6889(.0079) 0.7024(.0132)
500 Single 0.6967(.0018) 0.7063(.0141) 0.7030(.0139) 0.7066(.0095) 0.7091(.0128) 0.7127(.0035)

Double 0.6919(.0127) 0.6971(.0171) 0.6908(.0117) 0.7051(.0118) 0.6914(.0127) 0.7119(.0023)
1000 Single 0.6968(.0215) 0.7072(.0123) 0.6997(.0119) 0.7104(.0078) 0.7089(.0075) 0.7121(.0143)

Double 0.6917(.0136) 0.7012(.0084) 0.6986(.0061) 0.7066(.0125) 0.7005(.0073) 0.7116(.0075)
1500 Single 0.6973(.0220) 0.7023(.0185) 0.6904(.0079) 0.7081(.0154) 0.7068(.0077) 0.7134(.0097)

Double 0.6829(.0199) 0.6870(.0191) 0.6853(.0143) 0.7064(.0137) 0.6890(.0161) 0.7042(.0070)
2000 Single 0.6913(.0177) 0.7091(.0082) 0.7041(.0087) 0.7110(.0099) 0.7088(.0110) 0.7120(.0106)

Double 0.6816(.0179) 0.7015(.0073) 0.6894(.0095) 0.7064(.0066) 0.6998(.0131) 0.7102(.0195)
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the same specification as described for the previous experiment. After pre-
training the models were fine-tuned for 20 epochs using 1%, 25%, 50%, 70%
or 100% of the PTB-XL dataset DPTB . Figure 5.10, 5.11, and 5.12 presents
plots of the models’ performance. For ease of comparison, the performance
of the supervised model is also included. It has already been demonstrated
that BYOL pre-trained with 10-second ECG signals performs better than the
supervised model, but this performance gain is even more pronounced when
pre-training with the stronger augmentation strategy. In addition, when mod-
els are pre-trained on 10-second ECG signals, with stronger augmentations
and a single augmentation strategy in the contrastive pair, the performance
of all self-supervised frameworks is superior to that of the supervised model.

(a) SimCLR: 2.5s RRC 50-100% TO 0-
50%

(b) SimCLR: 10s RRC 50-100% TO 0-
50%

(c) SimCLR: 2.5s RRC 30-100% TO 20-
60%

(d) SimCLR: 10s RRC 30-100% TO 20-
60%

Figure 5.10 Performance as a function of % labelled fine-tuning data, using 2.5
and 10-second ECG signals. Pre-trained with single or double augmentation. Fine-
tuned for 20 epochs. Results are mean macro-AUC over 5 evaluation runs on test
data.

As a final experiment, we set out to investigate model performance when
we utilized the full labelled dataset for fine-tuning. Applying the same pre-
training setting as aforementioned, we fine-tuned the models for 100 epochs
using the whole DPTB dataset. Test macro-AUC over 5 evaluation runs are
presented in Table 5.17.
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(a) BYOL: 2.5s RRC 50-100% TO 0-50% (b) BYOL: 10s RRC 50-100% TO 0-50%

(c) BYOL: 2.5s RRC 30-100% TO 20-
60%

(d) BYOL: 10s RRC 30-100% TO 20-
60%

Figure 5.11 Performance as a function of % labelled fine-tuning data, using 2.5
and 10-second ECG signals. Pre-trained with single or double augmentation. Fine-
tuned for 20 epochs. Results are mean macro-AUC over 5 evaluation runs on test
data.

Table 5.17 Methods pre-trained with 2.5 or 10-second signals, single or double
augmentations, and with varying augmentation strength. Mean and std macro-AUC
on test data over 5 evaluation runs. Fine-tuned for 100 epochs with the full test
dataset.

RRC 50-100% TO 0-50% RRC 50-100% TO 50-80% RRC 30-100% TO 20-60% Supervised

Method Augment. 2.5s 10s 2.5s 10s 2.5s 10s 2.5s 10s

0.9157(.0037) 0.9165(.0032)
SimCLR Single 0.9175(.0047) 0.9246(.0021) - - 0.9198(.0055) 0.9258(.0081)

Double 0.9150(.0035) 0.9224(.0030) - - 0.9184(.0053) 0.9254(.0032)
BYOL Single 0.9162(.0019) 0.9270(.0050) - - 0.9270(.0015) 0.9304(.0063)

Double 0.9139(.0047) 0.9263(.0037) - - 0.9257(.0022) 0.9269(.0036)
VICReg 4x Single 0.9195(.0022) 0.9168(.0023) 0.9160(.0053) 0.9162(.0061) 0.9179(.0067) 0.9263(.0025)

Double 0.9153(.0033) 0.9154(.0035) 0.9150(.0045) 0.9152(.0029) 0.9152(.0097) 0.9186(.0037)

5.8 Statistical significance

Although we have fewer observations of each model’s performance than cus-
tom advice for conducting a statistical analysis of their significance, we nev-
ertheless undertake an analysis. As we have computed the mean value and
standard deviation of each model after performing the fine-tuning and test
evaluation steps five times (see 4.4 for a description of the fine-tuning eval-
uation procedure) we can evaluate if the true mean of the model before our
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(a) VICReg 4x: 2.5s RRC 50-100% TO
0-50%

(b) VICReg 4x: 10s RRC 50-100% TO
0-50%

(c) VICReg 4x: 2.5s RRC 50-100% TO
50-80%

(d) VICReg 4x: 10s RRC 50-100% TO
50-80%

(e) VICReg 4x: 2.5s RRC 30-100% TO
20-60%

(f) VICReg 4x: 10s RRC 30-100% TO
20-60%

Figure 5.12 Performance as a function of % labelled fine-tuning data, using 2.5
and 10-second ECG signals. Pre-trained with single or double augmentation. Fine-
tuned for 20 epochs. Results are mean macro-AUC over 5 evaluation runs on test
data.

adjustments is smaller than the true mean of the model after our adjust-
ments. To this end, we performed a one-tailed Welch’s t-test, assuming that
the performance means being compared between two models are normally
distributed.

We performed the Welch’s t-test between the performance measured in
macro-AUC of the models using 2.5-second ECG signals and the RRC 50-
100% TO 0-50% augmentation strength on both network arms, and the mod-
els using 10-second ECG signals and RRC 30-100% TO 20-60% augmentation
strength on only one network arm. The Welch’s t-test was performed with the
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results presented in Table 5.17, where the values are also summarized in Table
5.18. The null hypothesis was formulated as the difference between the mean
performance of the first model and the mean performance of the adjusted
model was less than or equal to zero µ2 � µ1  0. It was tested against the
alternative hypothesis stating that the mean difference was greater than zero,
µ2 � µ1 > 0, or in other words, that the mean performance of the adjusted
model (µ2) was greater than the mean performance of the "original" model
(µ1). Performing a right-tailed Welch’s t-test with a sample size of five for each
model respectively (as each model was fine-tuned and evaluated five times)
and at a significance level ↵ = 0.05 we obtained the results summarized in
Table 5.18.

In light of the computed p-values, there is evidence for rejecting the null
hypothesis and stating that the true mean values of the two model versions are
different for all three frameworks. Nonetheless, considering the small sample
size used to obtain these p-values, these results may better be viewed as an
indication to reject the null hypothesis rather than strong evidence.

Table 5.18 Summary of the values used to perform a one-tailed Welch’s t-test
and the obtained t-, and p-values. The null-hypothesis µ2 � µ1  0 was tested
against the alternative hypothesis µ2 > µ1.

Method µ1 µ2 �1 �2 t-value p-value

SimCLR 0.9150 0.9258 0.0035 0.0081 2.7369 0.01872
BYOL 0.9139 0.9304 0.0047 0.0063 4.6940 0.00096

VICReg 4x 0.9153 0.9263 0.0033 0.0025 5.9412 0.00022
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6
Discussion

The purpose of this chapter is to discuss the findings presented in the previous
chapters in a more in-depth manner.

6.1 Research question 1

Can self-supervised learning methods be utilized to create ECG
signal representations relevant for clinical downstream tasks?

Through our conducted experiments, the feasibility of extracting discrim-
inative representations from ECG data via self-supervised learning stands
proven. Performing linear evaluation on pre-trained models using default
implementations of the SimCLR, BYOL, and VICReg methods we obtain
macro-AUC scores of 0.8882, 0.8715, and 0.8731, see experiment 5.2. If we,
however, stochastically initialize a ResNet network and perform linear evalu-
ation, meaning that the network layers are immediately frozen, and only the
linear classification layer is trained, a macro-AUC score of 0.6606 is obtained,
see experiment 5.1. This shows that self-supervised pre-training on unlabelled
data can extract ECG representations that are more useful in a clinical setting
than if we were to use a random representation.

However, the performance of fine-tuned models that are pre-trained fol-
lowing the implementations of previous research does not surpass that of a su-
pervised model. After fine-tuning, SimCLR, BYOL, and VICReg models pre-
trained using the suggested hyper-parameters e.g., augmentation strength,
and framework choices, e.g. positive pair construction, obtain macro-AUC
scores of 0.9148, 0.9158, and 0.9095. See Tables 5.2 and 5.3. Compared to the
supervised performance of 0.9158, see Table 5.1, self-supervised pre-training
does not add any performance advantage. On the contrary, the pre-training
step would introduce additional and unnecessary computational costs. More-
over, even in the low label regime supervised models show overall higher per-
formance when measured as a function on % available labelled data. See the
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experiment and results presented in Section 5.4. With a macro-AUC perfor-
mance of 0.6980 after supervised training on 1% of the labelled data, the mod-
els pre-trained using the SimCLR and BYOL frameworks performed slightly
better with macro-AUC scores of 0.7203 and 0.7131. VICReg however only
scores 0.6926. However, when increasing the size of the labelled training data,
the supervised model obtains better results, as seen in the previous chapter.

Although these results establish that it is possible to obtain feature repre-
sentations useful for clinical downstream representations, methods previously
presented in research do not perform better than a supervised model when
applied in the context of ECG signals.

6.2 Research question 2

Can we improve upon previous self-supervised learning approaches
to present novel methods in the domain of medical ECG signal
representation learning?

Given the results obtained after implementing SimCLR, BYOL, and VI-
CReg methods using the frameworks presented in their original paper, or as
presented in relevant research [Mehari and Strodthoff, 2022], we set out to
investigate how the pre-training phase could be improved. As the premise
of self-supervised learning is to find task-agnostic representations that will
be feasible for downstream tasks, a few changes to the pre-training routines
were introduced. By only changing the length of the ECG signal, fine-tuning
performance as a function of labelled data was improved for all pre-trained
methods. BYOL method even showed results better than the supervised coun-
terpart for all sizes of labelled data. As a result, self-supervised pre-training
was helpful. See experiment 5.5. Additionally, when fine-tuning using the full
evaluation dataset, model performance rose up to 0.9224, 0.9219, and 0.9164
for SimCLR, BYOL, and VICReg, respectively. The supervised performance
increased to a macro-AUC of 0.9165, as presented in Table 5.11. Increasing
ECG signal length, thus adding additional heart cycles to each input sam-
ple, shows improved performance in all evaluation procedures. Due to the
additional cardiac cycles, the ECG signal may contain additional information
that is relevant to the classification. Certain cardiac abnormalities are not
present in every cardiac cycle and choosing a too narrow segment might ex-
clude relevant information or incidentally a particularly noisy segment might
be selected.

Further experiments investigating how augmentation strength and defi-
nition of positive pairs affect performance prove alteration of these factors
increased pre-trained model performance. Results presented in Sections 5.6
and 5.7 show that pre-training using SimCLR, BYOL or VICReg methods
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adds performance improvements over the supervised model in all evaluation
settings. Given 1% labelled training data, the supervised model reached a
macro-AUC of 0.6906. SimCLR, by contrast, showed a macro-AUC of 0.7217
with BYOL and VICReg obtaining 0.7179 and 0.7134 macro-AUC, respec-
tively. Additionally, even with larger subsets of training data, the pre-trained
models outperform the supervised model, as seen in Figures 5.10d, 5.11d, and
5.12f. Although pre-trained models in the first experiments gave no perfor-
mance advantage over supervised models, applying stronger augmentations to
only one of the contrastive views yielded performance results now triumph-
ing those of supervised training. Training a ResNet-50 model using the whole
labelled dataset and 10-second ECG signals, a supervised model at best ob-
tained a macro-AUC of 0.9165. If however, a network were pre-trained on the
unlabelled data using the BYOL method, the model after being fine-tuned
with the full dataset, reached a macro-AUC of 0.9304. Models pre-trained
with SimCLR reach a macro-AUC of 0.9258 and pre-training with VICReg, a
macro-AUC of 0.9263. Thus, by changing the signal length and augmentation
strategies, all implemented pre-training approaches display performance ad-
vantages over supervised training when evaluated on the chosen downstream
task. In addition, Figure 5.11d demonstrates that the improvements achieved
through pre-training directly translate into improved label efficiency, as the
pre-trained model outperforms the supervised model using only half of the
data. Sections below present further discussion based on these results.

6.3 Evaluation methods

The given evaluation procedures of linear evaluation and fine-tuning are only
two ways of measuring representation performance. We introduce a multi-
label classification task to act as a proxy for evaluating the representations’
clinical relevancy. Although this task incorporates the widely comprehensive
set of ECG labels, the classification performance might not be enough to mea-
sure the clinical applicability of a model. Therefore, the choice of evaluation
procedures and metrics becomes of high significance. If an evaluation task
does not cover the full scope of clinical usage, it may produce good results in
theory while failing to actually save any lives in practice.

Although our experiments demonstrate high classification performance,
additional evaluation methods would further improve the qualitative assess-
ment. For example, distance-based methods acting in the latent embedding
space could investigate the model’s abilities to approximate signal distribu-
tions. Given a network that models the multi-dimensional distribution of ECG
signals recorded on normal cardiac cycles, an anomaly detection task could
be introduced to enhance the evaluation of clinical relevance.
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6.4 How to extract ECG representations

There is no general approach for choosing from which network layer represen-
tations ought to be extracted. The common procedure in recent self-supervised
learning methods is to use embedding vectors taken from the last stage of the
encoder network. In our experiments, the classification performance of rep-
resentations obtained from this last layer, stage 4 of the ResNet50 model, is
competitive with the supervised model. However, in the linear evaluation set-
ting, all pre-trained models show that extracting feature vectors from stage
3 gives the highest performance on the downstream task. Furthermore, after
evaluation of all pre-trained models in the fine-tuning setting, the concate-
nated feature representations from earlier stages are the representations that
perform best on the downstream task.

Previous research on the transferability of features in deep neural net-
works reports that first-layer features appear not to be specific to a particular
dataset or task but are general in that they are applicable to many problem
formulations. The finding of general features in the first layers seems to occur
regardless of the exact cost function and dataset. In contrast, the features
computed by the last layer of a trained network are heavily dependent upon
the dataset being used and the cost function being optimized [Yosinski et
al., 2014; Kornblith et al., 2019]. Thus, feature representations from the last
stages of a network are specific to the pre-training task. Moreover, [Yosinski
et al., 2014] examines the transferability of features in deep neural networks
and investigates the generality versus specificity of neurons in each layer of
a deep convolutional neural network. Their findings show that the specializa-
tion of higher-layer neurons to their original task decreases performance on
the downstream task after fine-tuning.

In light of the findings of the last network layer’s pretext-specific features,
as well as the discrepancy between pretext- and downstream tasks, it is not
surprising that downstream tasks better adopt feature representations from
earlier stages of the network. The lower abstraction level of features in later
layers might have discarded information needed for the multi-label classifica-
tion task, as it was not deemed relevant for the pretext task. Consequently,
performance is improved when using feature vectors of greater generality that
still contain relevant information about the input signal.

Due to the fact that self-supervised learning problem formulations depend
heavily on the downstream task and the particular practical use case, it is
difficult to suggest a general technique for extracting representations. Our
experimental results, however, raise the issue for discussion and suggest that
some representing vectors can be selected to enhance the performance of self-
supervised learning.
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6.5 The role and importance of data augmentation

The definition of positive pairs (xi,x+
j ) is central to the self-supervised learn-

ing framework. They are defined as the multiple views generated from each
data sample x by the various transformation functions t 2 T . The applied
transformations become a crucial component in the network’s ability to form
representations deployable in a downstream task. Given the encoder function
g(x) defined on domain X , a representation is said to be invariant to a trans-
formation t : X ! X if g(t(x)) = g(x), as the similarity between the view’s
embedding vectors is maximized. Here we assume the encoder network to be
sufficient in the contrastive learning framework, meaning that the amount of
information in xi about xj , and vice versa, is lossless during the encoding
procedure I(xi;xj) = I(g(xi); g(xj)). Thus, representations include all the
information the objective of the pretext task requires. This process allows for
the formation of a latent embedding space where positive samples are placed
close to each other while the distance from the anchor view to the negative
samples is maximized. The transformation invariance is thus introduced as
the network learns to map all augmented samples of an instance to the same
embedding vector. Meaningful compositions of transformations encode valu-
able invariance and distinctiveness that we want our representations to learn.
However, some transformations might hinder performance by introducing rep-
resentation invariance under a given transformation if features significant for
the downstream task are discarded. It then becomes very important to ask
ourselves which transformations the ECG representations ought to be invari-
ant to.

A hint of augmentation types
Figure 3.9 created by [Mehari and Strodthoff, 2022] displays the perfor-
mance of different augmentation compositions. Based on these results, we
find that augmentations that do not alter the relative sample values perform
best. Time-out augmentation for example will set portions of the signal to
zero, thus creating a reconstruction problem as portions of the signal become
“masked” without changing the value of the samples. Additionally, the ran-
dom resize crop neither changes the relation between signal samples as the
transformation merely “zooms in” on a section of the signal. The application
of Gaussian blur and Gaussian noise however will alter sample values and may
thereby distort the distribution of the ECG intervals. Additionally, [Mehari
and Strodthoff, 2022] introduces ECG-specific physiological noise transforma-
tions but finds that these transformations degrade downstream performance.
Finding a suitable transformation protocol is the difference between state-of-
the-art performance and poor performance for various tasks. Based on our
experimental findings, we suggest an exploration of transformation protocols
for self-supervised learning in the context of ECG signals. It is our hope that
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these discussions will provide an indication of the transformation invariances
that are optimal for ECG signals.

Stronger transformations
When our experiment introduces stronger augmentations, the contrastive pre-
diction task becomes more challenging. As embedding vectors are constrained
by greater transformation invariance, the mutual information between latent
representations of the multiple views decreases [Tian et al., 2020]. When max-
imizing mutual information between embedding vectors, the representation is
forced to encode solely the underlying shared information. Consequently, lo-
cal low-level information, noise, and transformation-specific information are
discarded, leaving representations to consist of only task-relevant features.
Stronger augmentation results in reduced mutual information between views,
thereby allowing for complex representations that improve downstream per-
formance. We hypothesize that the performance gains observed when intro-
ducing stronger augmentations are a result of this reasoning. In concurrence,
[Chen et al., 2020] reports that stronger augmentations in the image domain
improve the representational quality of the SimCLR framework. Additionally,
learning frameworks such as Barlow Twins and VICReg [Zbontar et al., 2021;
Bardes et al., 2021] puts great emphasis on minimizing redundancy between
dimensions of the embedding vectors. In these methods, they introduce a
regularization term that decorrelates the variables of each embedding. This
prevents an informational collapse in which the embeddings store redundant
information and features would vary together or be highly correlated.

Time out as signal masking
Our experimental results furthermore show that the application of strong
augmentations to only one of the views gives the highest downstream perfor-
mance. Applying time-out augmentation to one view can be seen as masking
a signal section, framing the pretext task as a reconstruction task in the la-
tent space. This is similar to the workings of masked auto-encoders, where
representations are learned by reconstructing randomly masked patches from
an input. Optimizing a reconstruction loss in ambient space requires mod-
eling low-level signal details that are not necessary for classification tasks.
As a consequence, a significant distinction is made, since the time-out trans-
formation defines the reconstruction task in latent feature space rather than
on the full signal. The reconstruction problem will drive the two embedding
vectors to be similar, performing a denoising step to ensure that the global
representation of the noisy view matches that of the unmasked view. That
way, representations encode as much information as possible about the input
signal. However, maximizing mutual information is only useful as long as the
information in the embedding vectors is task-relevant. Beyond that point, rep-
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resentations will increase in complexity by storing redundant information that
decreases downstream performance. Consequently, the framework of mutual
information maximization is only applicable when the available mutual infor-
mation between embedding vectors is first minimized. [Tian et al., 2020] argue
that the introduction of strong augmentations is what reduces the available
quantity of mutual information. It is, therefore, speculated that the transfor-
mation pipeline must apply both random resize crop and time-out. Random
resize crop augmentation will reduce the available amount of mutual informa-
tion while time-out augmentation introduces the latent reconstruction task.
As a prominent line of work in the formulation of self-supervised pretext tasks
follows the framework of latent denoising [Devlin et al., 2018; Baevski et al.,
2022; He et al., 2022; Wei et al., 2022; Assran et al., 2022; Caron et al., 2021],
we further hypothesize that the performance improvements seen by the larger
signal masking can be explained by the increased emphasis on the pretext
task as a latent reconstruction problem.

6.6 Discarded metadata

ECG signals, human annotations, and patient-, and demographic-related
metadata were all included in the public datasets from which we obtained
the ECG signals. However, the documented patient-specific metadata was
not included in our experiments. In our studies, we chose to disregard this
information and examine the applicability of self-supervised representation
learning in settings where only a single, unlabeled data mode was introduced.
Using patient metadata in conjunction with ECG signals can facilitate the
formation of latent representations by expanding model input. These repre-
sentations are not only based on extracted signal features but are further
enhanced by demographic-related features which provide additional informa-
tion for the classification task. In this manner, classification is performed by
using a latent representation conditioned on a demographic cohort. For a
more intuitive example, certain characteristics present in the heart cycle of
an old woman might be expected as a result of her age. Nevertheless, similar
features in a young girl’s heart cycle may be an indication of heart problems.
Without the information about age, a classification algorithm would not be
able to predict differently for the two heart cycles.

Furthermore, introducing patient metadata could facilitate the usage of
interpretability methods, as each prediction could be traced back to identify
which features lead to these predictions. By gaining a better understanding
of key features associated with certain heart conditions, preventative and
proactive measures can be taken.
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6.7 A word on statistical significance

As part of our experimental methodology, we aimed at exploring a larger
portion of the experimental space. This was to get a glimpse of performance for
various parameter settings, rather than performing each experiment several
times. This decision was driven by the limiting nature of the computational
time required to train a model. To give the reader an idea of the needed
training time, it takes around 23 hours to pre-train a BYOL model with the
full unlabelled dataset of 10-second ECG signals. Thus, we chose to conduct
many experiments rather than obtaining many performance observations of
the same parameter settings, i.e. training and evaluating the same model
setup several times. Consequently, the number of observations obtained of
each model’s performance will be fewer than custom advice. This is worth
remembering when examining the statistical significance presented in Section
5.8, as the low sample size results in a larger margin of error.
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7
Conclusions and future
work

The purpose of this chapter is to outline the research presented and conducted
in this thesis. Various self-supervised learning methods were implemented in
the experiments for the representation learning of ECG signals. The conclud-
ing results of these experiments are discussed here, as well as possible future
work.

7.1 Conclusions

In this study, we present an assessment of self-supervised representation learn-
ing on 12-lead clinical ECG data. Although self-supervised algorithms have
been applied successfully in other data domains, the ECG signal is of a differ-
ent data modality on which the applications of self-supervised learning have
not been extensively examined. We implement and analyze three of the major
self-supervised learning methods: SimCLR, BYOL, and VICReg. In doing so,
we find that self-supervised learning can be used to learn meaningful repre-
sentations of ECG signals. However, when following each method’s suggested
implementation protocol the performance results are no better than if we
were to use a supervised model, indicating that self-supervised pre-training
offers no additional benefits to downstream tasks. Among the many insights
obtained, the most crucial led to further insights into the importance of signal
length and data augmentation. By increasing the length of the ECG signal,
performance results were improved for all methods in all evaluation settings.
Combining increased signal length with an adjusted data augmentation strat-
egy, self-supervised pre-trained models outperformed their supervised coun-
terparts in all evaluation settings. In the light of our experiments, we learn
that for many ways of generating data views there is a sweet spot in terms of
downstream performance. This sweet spot is where the mutual information
between embedded views is neither too high nor too low. Data augmentation
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is one way to reduce this mutual information and finding a suitable augmen-
tation protocol is crucial for high downstream classification performance.

Conclusively, with the sparse amount of research conducted on self-
supervised learning in the domain of ECG signals, it comes as no surprise
that the formulation of this optimal augmentation policy has not been ex-
tensively explored. Published experiments mostly follow the frameworks pre-
sented in the computer vision domain, though direct policy adoption could
lead to weaker generalization on the downstream task. Our experimental re-
sults report performance improvements stemming from the strengthening of
augmentation and redefinition of positive pairs. Hopefully, this study’s find-
ings add valuable insights to the formulation of an optimal strategy for self-
supervised ECG representation learning.

7.2 Future work

Beyond our conducted experiments and discoveries, we plant seeds of thought
that we hope will give rise to a variety of future research activities. Below are
a few suggestions on possible research quests upon which one could embark.

• Exploring augmentation protocols. There are many ways of defin-
ing the augmentation protocol and constructing the positive pairs. Fur-
ther research could investigate: which transformations and transforma-
tional invariances are optimal, or harmful, for ECG representations.
Then, with what strength should these transformations be carried out?
Should they be applied to one, or both of the views? Should the same
transformations be applied to both views or can we define a separate
protocol for each view?

• How representations are chosen. Our experiments demonstrate that
how we choose to extract feature representations will affect downstream
performance. Future research is suggested to examine the optimal fea-
ture representation given an ECG context. At which stage of the net-
work are representations extracted, or should features be concatenated?
Additionally, are there other encoder networks that are better suited to
form meaningful ECG representations? If so, how are representations
defined for these?

• Evaluation of performance. As discussed in Section 6.3, there ex-
ists a myriad of ways for assessing the performance of a self-supervised
neural network. Defining the downstream task as a multi-label classifi-
cation task is only one way, and further research could investigate model
performance in the context of anomaly detection in latent space. How
would a model pre-trained in a self-supervised manner perform when
applied as an anomaly detector?
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• Available information. Exploring how representation learning is af-
fected when ECG signals are of different lengths and sampled with
higher sample frequency. These choices will impact the amount of infor-
mation present in the input signal and an increase in available input in-
formation might improve model performance. Additionally, pairing ECG
signals with patient and demographics metadata, if available, could be
investigated to further improve model performance.

• Exploring other self-supervised learning methods. There are
many more suggestions for self-supervised learning methods proposed by
research than those applied in this study. Methods based on predictive
pretext tasks have shown substantial success in other signal contexts and
their applicability to the ECG domain would be of interest to investi-
gate. Furthermore, an exploration of the self-supervised generative-, and
adversarial-based models is encouraged. Generative models approximat-
ing the original data distribution could be used for generating synthetic
ECG signals or revisiting the application of anomaly detection.

97



Bibliography

Agrawal, P., J. Carreira, and J. Malik (2015). “Learning to see by moving”.
In: Proceedings of the IEEE international conference on computer vision,
pp. 37–45.

Alday, E. A. P., A. Gu, A. J. Shah, C. Robichaux, A.-K. I. Wong, C. Liu, F.
Liu, A. B. Rad, A. Elola, S. Seyedi, et al. (2020). “Classification of 12-lead
ecgs: the physionet/computing in cardiology challenge 2020”. Physiological
measurement 41:12, p. 124003.

Assran, M., M. Caron, I. Misra, P. Bojanowski, F. Bordes, P. Vincent, A.
Joulin, M. Rabbat, and N. Ballas (2022). “Masked siamese networks for
label-efficient learning”. arXiv preprint arXiv:2204.07141.

Atkielski, A. (n.d.). SinusRhythmLabels. url: https://commons.wikimedia.
org/w/index.php?curid=1560893.

Bachman, P., R. D. Hjelm, and W. Buchwalter (2019). “Learning representa-
tions by maximizing mutual information across views”. Advances in neural
information processing systems 32.

Baevski, A., W.-N. Hsu, Q. Xu, A. Babu, J. Gu, and M. Auli (2022).
“Data2vec: a general framework for self-supervised learning in speech, vi-
sion and language”. arXiv preprint arXiv:2202.03555.

Bardes, A., J. Ponce, and Y. LeCun (2021). “Vicreg: variance-invariance-
covariance regularization for self-supervised learning”. arXiv preprint
arXiv:2105.04906.

Bengio, Y., A. Courville, and P. Vincent (2013). “Representation learning: a
review and new perspectives”. IEEE transactions on pattern analysis and
machine intelligence 35:8, pp. 1798–1828.

Bommasani, R., D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von
Arx, M. S. Bernstein, J. Bohg, A. Bosselut, E. Brunskill, et al. (2021).
“On the opportunities and risks of foundation models”. arXiv preprint
arXiv:2108.07258.

98



Bibliography

Bousseljot, R., D. Kreiseler, and A. Schnabel (1995). “Nutzung der ekg-
signaldatenbank cardiodat der ptb über das internet”.

Caron, M., I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and A. Joulin (2020).
“Unsupervised learning of visual features by contrasting cluster assign-
ments”. Advances in Neural Information Processing Systems 33, pp. 9912–
9924.

Caron, M., H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and A.
Joulin (2021). “Emerging properties in self-supervised vision transform-
ers”. In: Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, pp. 9650–9660.

Chen, T., S. Kornblith, M. Norouzi, and G. Hinton (2020). “A simple frame-
work for contrastive learning of visual representations”. In: International
conference on machine learning. PMLR, pp. 1597–1607.

Chen, X. and K. He (2021). “Exploring simple siamese representation learn-
ing”. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 15750–15758.

Cohen, T. and M. Welling (2016). “Group equivariant convolutional
networks”. In: International conference on machine learning. PMLR,
pp. 2990–2999.

Conneau, A., K. Khandelwal, N. Goyal, V. Chaudhary, G. Wenzek, F.
Guzmán, E. Grave, M. Ott, L. Zettlemoyer, and V. Stoyanov (2019). “Un-
supervised cross-lingual representation learning at scale”. arXiv preprint
arXiv:1911.02116.

Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova (2018). “Bert: pre-
training of deep bidirectional transformers for language understanding”.
arXiv preprint arXiv:1810.04805.

DeVries, T. and G. W. Taylor (2017). “Improved regularization of convolu-
tional neural networks with cutout”. arXiv preprint arXiv:1708.04552.

Equitz, W. H. and T. M. Cover (1991). “Successive refinement of information”.
IEEE Transactions on Information Theory 37:2, pp. 269–275.

Gersh, B. J. (2000). In: Mayo Clinic Heart Book: The ultimate guide to heart
health. W. Morrow, pp. 6–8.

Ghamrawi, N. and A. McCallum (2005). “Collective multi-label classification”.
In: Proceedings of the 14th ACM international conference on Information
and knowledge management, pp. 195–200.

Goodfellow, I., Y. Bengio, and A. Courville (2016). Deep Learning. http:
//www.deeplearningbook.org. MIT Press.

99



Bibliography

Grill, J.-B., F. Strub, F. Altché, C. Tallec, P. Richemond, E. Buchatskaya,
C. Doersch, B. Avila Pires, Z. Guo, M. Gheshlaghi Azar, et al. (2020).
“Bootstrap your own latent-a new approach to self-supervised learning”.
Advances in Neural Information Processing Systems 33, pp. 21271–21284.

He, J. (2020). Automated Heart Arrhythmia Detection from Electrocardio-
graphic Data. PhD thesis. Victoria University.

He, K., X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick (2022). “Masked au-
toencoders are scalable vision learners”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 16000–
16009.

He, K., H. Fan, Y. Wu, S. Xie, and R. Girshick (2020). “Momentum con-
trast for unsupervised visual representation learning”. In: Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition,
pp. 9729–9738.

He, K., X. Zhang, S. Ren, and J. Sun (2016). “Deep residual learning for
image recognition”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 770–778.

Henaff, O. (2020). “Data-efficient image recognition with contrastive predic-
tive coding”. In: International Conference on Machine Learning. PMLR,
pp. 4182–4192.

Ioffe, S. and C. Szegedy (2015). “Batch normalization: accelerating deep net-
work training by reducing internal covariate shift”. In: International con-
ference on machine learning. PMLR, pp. 448–456.

Jaiswal, A., A. R. Babu, M. Z. Zadeh, D. Banerjee, and F. Makedon (2021).
“A survey on contrastive self-supervised learning”. Technologies 9:1, p. 2.

Kiyasseh, D., T. Zhu, and D. A. Clifton (2021). “Clocs: contrastive learn-
ing of cardiac signals across space, time, and patients”. In: International
Conference on Machine Learning. PMLR, pp. 5606–5615.

Kolesnikov, A., X. Zhai, and L. Beyer (2019). “Revisiting self-supervised visual
representation learning”. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 1920–1929.

Kornblith, S., J. Shlens, and Q. V. Le (2019). “Do better imagenet models
transfer better?” In: Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pp. 2661–2671.

Krizhevsky, A., I. Sutskever, and G. E. Hinton (2012). “Imagenet classification
with deep convolutional neural networks”. Advances in neural information
processing systems 25.

Kwon, O., J. Jeong, H. B. Kim, I. H. Kwon, S. Y. Park, J. E. Kim, and
Y. Choi (2018). “Electrocardiogram sampling frequency range acceptable
for heart rate variability analysis”. Healthcare informatics research 24:3,
pp. 198–206.

100



Bibliography

LeCun, Y. and I. Misra (2021). Self-supervised learning: the dark matter of
intelligence. url: https://ai.facebook.com/blog/self-supervised-
learning-the-dark-matter-of-intelligence/.

Li, Z., D. Zhou, L. Wan, J. Li, and W. Mou (2020). “Heartbeat classification
using deep residual convolutional neural network from 2-lead electrocar-
diogram”. Journal of Electrocardiology 58, pp. 105–112.

Liu, F., C. Liu, L. Zhao, X. Zhang, X. Wu, X. Xu, Y. Liu, C. Ma, S. Wei, Z.
He, et al. (2018). “An open access database for evaluating the algorithms of
electrocardiogram rhythm and morphology abnormality detection”. Jour-
nal of Medical Imaging and Health Informatics 8:7, pp. 1368–1373.

Liu, H., Z. Zhao, and Q. She (2021). “Self-supervised ecg pre-training”.
Biomedical Signal Processing and Control 70, p. 103010.

Liu, Y., M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov (2019). “Roberta: a robustly optimized
bert pretraining approach”. arXiv preprint arXiv:1907.11692.

Loshchilov, I. and F. Hutter (2016). “Sgdr: stochastic gradient descent with
warm restarts”. arXiv preprint arXiv:1608.03983.

Loshchilov, I. and F. Hutter (2017). “Decoupled weight decay regularization”.
arXiv preprint arXiv:1711.05101.

Mehari, T. and N. Strodthoff (2022). “Self-supervised representation learn-
ing from 12-lead ecg data”. Computers in Biology and Medicine 141,
p. 105114.

Mendis, S., P. Puska, B. Norrving, W. H. Organization, et al. (2011). Global
atlas on cardiovascular disease prevention and control. World Health Or-
ganization.

Misra, I. and L. v. d. Maaten (2020). “Self-supervised learning of pretext-
invariant representations”. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 6707–6717.

Muhammad, Y., M. Tahir, M. Hayat, and K. T. Chong (2020a). “Early and
accurate detection and diagnosis of heart disease using intelligent compu-
tational model”. Scientific reports 10:1, pp. 1–17.

Muhammad, Y., M. Tahir, M. Hayat, and K. T. Chong (2020b). “Early and
accurate detection and diagnosis of heart disease using intelligent compu-
tational model”. Scientific reports 10:1, pp. 1–17.

Oord, A. v. d., Y. Li, and O. Vinyals (2018). “Representation learning with
contrastive predictive coding”. arXiv preprint arXiv:1807.03748.

Patrick, M., Y. M. Asano, P. Kuznetsova, R. Fong, J. F. Henriques, G. Zweig,
and A. Vedaldi (2021). “On compositions of transformations in contrastive
self-supervised learning”. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 9577–9587.

101



Bibliography

Poole, B., S. Ozair, A. Van Den Oord, A. Alemi, and G. Tucker (2019). “On
variational bounds of mutual information”. In: International Conference
on Machine Learning. PMLR, pp. 5171–5180.

Raghu, M., C. Zhang, J. Kleinberg, and S. Bengio (2019). “Transfusion: un-
derstanding transfer learning for medical imaging”. Advances in neural
information processing systems 32.

Raghunath, S., A. E. Ulloa Cerna, L. Jing, D. P. VanMaanen, J. Stough,
D. N. Hartzel, J. B. Leader, H. L. Kirchner, M. C. Stumpe, A. Hafez, et
al. (2020). “Prediction of mortality from 12-lead electrocardiogram voltage
data using a deep neural network”. Nature medicine 26:6, pp. 886–891.

Ribeiro, A. H., M. H. Ribeiro, G. M. Paixão, D. M. Oliveira, P. R. Gomes,
J. A. Canazart, M. P. Ferreira, C. R. Andersson, P. W. Macfarlane, W.
Meira Jr, et al. (2020a). “Automatic diagnosis of the 12-lead ecg using a
deep neural network”. Nature communications 11:1, pp. 1–9.

Ribeiro, A. H., M. H. Ribeiro, G. M. Paixão, D. M. Oliveira, P. R. Gomes,
J. A. Canazart, M. P. Ferreira, C. R. Andersson, P. W. Macfarlane, W.
Meira Jr, et al. (2020b). “Automatic diagnosis of the 12-lead ecg using a
deep neural network”. Nature communications 11:1, pp. 1–9.

Siontis, K. C., P. A. Noseworthy, Z. I. Attia, and P. A. Friedman (2021a). “Ar-
tificial intelligence-enhanced electrocardiography in cardiovascular disease
management”. Nature Reviews Cardiology 18:7, pp. 465–478.

Siontis, K. C., P. A. Noseworthy, Z. I. Attia, and P. A. Friedman (2021b). “Ar-
tificial intelligence-enhanced electrocardiography in cardiovascular disease
management”. Nature Reviews Cardiology 18:7, pp. 465–478.

Śmigiel, S., K. Pałczyński, and D. Ledziński (2021). “Ecg signal classification
using deep learning techniques based on the ptb-xl dataset”. Entropy 23:9.
issn: 1099-4300. doi: 10.3390/e23091121. url: https://www.mdpi.com/
1099-4300/23/9/1121.

Sohn, K. (2016). “Improved deep metric learning with multi-class n-pair loss
objective”. Advances in neural information processing systems 29.

Spathis, D., I. Perez-Pozuelo, L. Marques-Fernandez, and C. Mascolo (2022).
“Breaking away from labels: the promise of self-supervised machine learn-
ing in intelligent health”. Patterns 3:2, p. 100410.

Strodthoff, N., P. Wagner, T. Schaeffter, and W. Samek (2020). “Deep learning
for ecg analysis: benchmarks and insights from ptb-xl”. IEEE Journal of
Biomedical and Health Informatics 25:5, pp. 1519–1528.

Thomas, M. and A. T. Joy (2006). Elements of information theory. Wiley-
Interscience.

Tian, Y., C. Sun, B. Poole, D. Krishnan, C. Schmid, and P. Isola (2020).
“What makes for good views for contrastive learning?” Advances in Neural
Information Processing Systems 33, pp. 6827–6839.

102



Bibliography

Tian, Y., X. Chen, and S. Ganguli (2021). “Understanding self-supervised
learning dynamics without contrastive pairs”. In: International Conference
on Machine Learning. PMLR, pp. 10268–10278.

Tihonenko, V., A. Khaustov, S. Ivanov, A. Rivin, and E. Yakushenko (2008).
“St petersburg incart 12-lead arrhythmia database”. PhysioBank Phys-
ioToolkit and PhysioNet.

Tishby, N., F. C. Pereira, and W. Bialek (2000). “The information bottleneck
method”. arXiv preprint physics/0004057.

Tishby, N. and N. Zaslavsky (2015). “Deep learning and the information bot-
tleneck principle”. In: 2015 ieee information theory workshop (itw). IEEE,
pp. 1–5.

Tsai, Y.-H. H., S. Bai, L.-P. Morency, and R. Salakhutdinov (2021). “A note on
connecting barlow twins with negative-sample-free contrastive learning”.
arXiv preprint arXiv:2104.13712.

Tsai, Y.-H. H., Y. Wu, R. Salakhutdinov, and L.-P. Morency (2020).
“Self-supervised learning from a multi-view perspective”. arXiv preprint
arXiv:2006.05576.

Tschannen, M., J. Djolonga, P. K. Rubenstein, S. Gelly, and M. Lucic (2019).
“On mutual information maximization for representation learning”. arXiv
preprint arXiv:1907.13625.

Tsoumakas, G. and I. Vlahavas (2007). “Random k-labelsets: an ensemble
method for multilabel classification”. In: European conference on machine
learning. Springer, pp. 406–417.

Wagner, P., N. Strodthoff, R.-D. Bousseljot, D. Kreiseler, F. I. Lunze, W.
Samek, and T. Schaeffter (2020). “Ptb-xl, a large publicly available elec-
trocardiography dataset”. Scientific data 7:1, pp. 1–15.

Wei, C., H. Fan, S. Xie, C.-Y. Wu, A. Yuille, and C. Feichtenhofer (2022).
“Masked feature prediction for self-supervised visual pre-training”. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 14668–14678.

WHO (2021). The world health report 2001. url: http://www.who.int/whr/
2001/en/index.html.

Wu, Z., Y. Xiong, S. X. Yu, and D. Lin (2018). “Unsupervised feature learning
via non-parametric instance discrimination”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 3733–3742.

Yosinski, J., J. Clune, Y. Bengio, and H. Lipson (2014). “How transferable
are features in deep neural networks?” Advances in neural information
processing systems 27.

You, Y., I. Gitman, and B. Ginsburg (2017). “Large batch training of convo-
lutional networks”. arXiv preprint arXiv:1708.03888.

103



Bibliography

Zbontar, J., L. Jing, I. Misra, Y. LeCun, and S. Deny (2021). “Barlow twins:
self-supervised learning via redundancy reduction”. In: International Con-
ference on Machine Learning. PMLR, pp. 12310–12320.

Zhai, X., A. Oliver, A. Kolesnikov, and L. Beyer (2019). “S4l: self-supervised
semi-supervised learning”. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 1476–1485.

Zhang, M.-L. and Z.-H. Zhou (2013). “A review on multi-label learning al-
gorithms”. IEEE transactions on knowledge and data engineering 26:8,
pp. 1819–1837.

Zheng, J., J. Zhang, S. Danioko, H. Yao, H. Guo, and C. Rakovski (2020).
“A 12-lead electrocardiogram database for arrhythmia research covering
more than 10,000 patients”. Scientific Data 7:1, pp. 1–8.

104


