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1 Abstract

In this thesis, we explore the possibility to monitoring hyperkinesia in people
who suffer from Parkinson’s disease (PD) using sensors in mobile phones. This
is done by first collecting data from 25 patients diagnosed with PD by using
a sensor-recording smartphone in a bag attached to the stomach, and at the
same time let trained professionals make assessments of the degree of which
they show signs of hyperkinesia, on the clinical dyskinesia rating scale, CDRS.
Given the labels and the sensor data, a set of models has been trained. Both
models for binary classification, i.e., predicting the presence of hyperkinesia vs
no hyperkinesia, as well as models aiming to estimate the CDRS score were
investigated. As the available data is a mere 429 samples, a key part of the
work has been to self-engineer features descriptive to signs of hyperkinesia.
The proposed models are kernel support vector machines for both the binary
classification and for the regression. The proposed method provides results that
are in line with what can be expected of an assessment by a trained professional.

1.1 Keywords

Dyskinesia, hyperkinesia, Parkinson’s disease, support vector machine, SVM,
SVR, SVC, feature engineering, digital phenotyping, CDRS, smartphone, ac-
celerometer
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2 Glossary

2.1 Medical terms and abbreviations

Dyskinesia - ”Dys-mobility”: Bad mobility, either too high or too low.
Hyperkinesia - Hyper mobility. Subclass of dyskinesia.
Hypokinesia - Under mobility. Subclass of dyskinesia.
Tremor - Shaking movement
ET - Essential tremor
PD - Parkinson’s disease
PT - Physiological tremor
CDRS - Clinical dyskinesia rating scale, score of 0-4.
Precursor - Chemical that tightly relates to another, target chemical: When a
precursor of chemical A is introduced in the body, it quickly reacts so it becomes
chemical A with the help of natural processes in the body.
Levodopa - Drug; Precursor to dopamine.

2.2 Technical terms

SVM - Support vector machine
SVC - Support vector classification
SVR - Support vector regression
MSE - Mean squared error
MAE - Mean absolute error
ρ - Pearson correlation
NN - Neural network.
std - Estimate of standard deviation

2.3 Notation

|| · ||i - i:th vector norm. If i is not stated, 2-norm is assumed.
v - Vectors are denoted as bold lowercase letters.
A - Matrices are denoted as capital non-bold letters.
Lowercase ϕk(·, ...) - Self engineered feature k.
Uppercase Φ(·, ...) - Auto-generated feature.
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3 Introduction

In this thesis, we examine the possibility of using mobile phone sensors for clas-
sifying hyperkinesia in humans with Parkinson’s disease.

In an attempt to justify the subject, the following should be noted: In all
forms of healthcare, feedback is essential. In the short term, for determining
or tweaking treatments for individuals. In the longer term, to determine what
treatments or medications are most effective in general. Feedback is traditionally
collected by:

• Assessment by a doctor

• Questionnaire

• Self assessment

All means of collecting feedback have an associated cost, monetary, social or
both. To be assessed by a doctor, one would have to go to the hospital and
back, being both costly and time consuming. To fill in a questionnaire can be
boring, especially if the same questionnaire would have to be filled every day.
One might then refrain from doing the questionnaire, or simply forget. Further-
more, the feedback is often granular and rather subjective [1].

Given that smartphones are carried by almost everyone, it would be highly valu-
able if it was possible to use it to collect feedback passively. It would imply a
great cut of costs for collecting feedback, and the data available for decision
making could be greatly extended. In this thesis, we examine whether it is pos-
sible to evaluate hyperkinesia in Parkinson’s disease in this way using a phone.

3.1 Parkinson’s disease

The main cause of Parkinson’s disease is when neurons in the basal ganglia be-
come impaired or die. The basal ganglia is an area of the brain which controls
movement, and a key function of these cells is producing dopamine. When these
cells are impaired, a lack of dopamine occurs, and it is this lack of dopamine
that causes the main problems with the disease: tremors and hypokinesia (im-
mobility).

For some additional context, a few quick facts are presented below:

• In Sweden, there are about 20000 people diagnosed with PD, most of
whom are men[2].

• The disease commonly debutes in the ages 55-60 years [2].
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• The former student of Lund University, Prof. Arvid Carlsson was awarded
the Nobel prize in medicine in year 2000 for suggesting that lack of dopamine
caused the disease [3].

3.1.1 Treatment

Parkinson’s disease is most commonly treated with a drug called Levodopa,
a precursor to dopamine. This artificially increases the levels of dopamine to
counter the lack of dopamine in the patients. The approach, although effective,
poses some drawbacks:

• One of the most prominent side effects is hyperkinesia. This is porttrayed
in Figure 1.

• Taking the drug over a long period of time causes tolerance. In turn,
this is countered by increasing the dose, which also can lead to even more
hyperkinesia.

• A lot of the patients get a more or less standardised drug scheme, and
because the sensitivity to the drug is individual, some patients get too
large doses [1].

Each patient diagnosed with Parkinson’s disease follow up with a doctor with
an interval of approx 6 months, with a 30 minute session where they have an op-
portunity to be examined and discuss their medication and overall form. Ergo,
the doctor has a quite small sample size to make quite an important decision:
deciding the medication scheme. In fact, the time during which the patients
are examined is a mere 200 ppm of their time awake (60/(60 ∗ 16 ∗ 365) =
1/(16 ∗ 365) = 1/5840 ≈ 200ppm).

Furthermore, there is risk of getting a biased set of samples during the ex-
amination. How could the doctor know if the patient is showing symptoms
representative for their overall time awake? This problem is hard to address,
but is potentially addressable with the type of sensors smartphones posses.

3.2 Clinical study

In on ongoing study lead by Dr. Grigoriou et al., it is investigated whether
a combination of Levodopa and ropinirole can reduce the hyperkinesia that
sometimes comes with taking Levodopa alone. Levodopa is a replacement for
dopamine, while ropinirole instead is targeting the receptors in the synapse, ren-
dering them more sensitive. The goal is to see if they can measure a significant
difference in the degree of which the participants are affected by hyperkinesia,
by only altering their medication.

The study includes 25 patients diagnosed with PD in ages 48 - 81 and each of
whom were participating in measurements on two occasions: one where they

4



Figure 1: Taking the medication can cause the mobility to spike, and cause
hyperkinesia. However, it is often preferable to have hyperkinesia to some degree
rather than having the opposite, hypokinesia [1].

got the traditional Levodopa alone, while on the other occasion they received
a combination of Levodopa and ropinirole. Each of the patients was scheduled
to do 10 measurements on each occasion, but due to feeling ill, some of them
did not follow through on all their scheduled measurements. On average, the
patients did 17 measurements each, resulting in 429 samples being available in
total.

During each measurement, the patients were asked to do a set of 4 tasks. These
included sitting still, pretending to drink a glass of water, putting a lab coat on
and taking it off again, and walking around 10 meters. This took them a couple
of minutes, each time.
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Figure 2: The cell phone’s attachment to the participants’ stomach.

Each sample was labeled on the spot by a professional, and each occasion was
also filmed. The films were labeled by two other experienced physicians, that
unlike the doctor present at the measurement did not know about which med-
ication the patient had received. Only the two labels done with video data is
considered in this thesis. All labels were quite detailed with different scores
of the hyperkinesia over different parts of the body. Among other things, the
hyperkinesia in the torso was specifically assessed with a CDRS score. It is this
torso hyperkinesia that is further examined in this work.

3.3 Rating of hyperkinesia

To assess to which degree a person has dyskinesia (collective term for hyper- and
hypo- kinesia), the clinical dyskinesia rating scale or CDRS is used. It is defined
as in Table 1. The definition leaves room for interpretation, which sometimes
causes dubious assessments even from trained professionals.

CDRS Description
0 No dyskinesia
1 Questionable or mild dyskinesia
2 Moderate dyskinesia
3 Severe dyskinesia
4 Incapacitating dyskinesia

Table 1: Definition of CDRS. For the rest of this report, we will only assess
hyperkinesia.
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3.4 Aim

The aim of this work is to show that it is possible to utilise mobile sensors to
passively collect valuable medical feedback. To be able to deploy a system to the
real world and relying upon the outputs, one would need extensive testing of it.
The scope of this work is therefore not to show a complete system, but instead
to shine a light upon the possibility and perhaps encourage further research in
the subject area.

Furthermore, there are two levels at which this problem can be addressed:

• Estimate the CDRS, given that the person is sitting down.

• Estimate the CDRS, not knowing at all what the person is doing.

In the work leading up to this report, both these problems were addressed.
However, because the usability of a model that can address the problem at the
second level is much higher, this has been the main target, and is what will be
assessed for the main part in this report, although results for the both problems
are presented in the results section.

Level 1 Model trained on data truncated to when participants are sitting down
Level 2 Model trained on all data

3.5 Limitations of this report

In assessing the level of hyperkinesia in the participants, and getting a more
complete picture of the problem nature, the recorded videos have been of no-
Table importance. As access to these videos is restricted to personel working
with the study, these had to be omitted in the presented analysis.
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4 Previous work

Many studies have investigated similar problems although with slightly different
circumstances and goals. A lot of them has approximately the same amount
of data available, but the experiment setup and hence the data collection is
made in many different varieties. For example, it is common to use more than
one sensor [4, 5, 6]. A common method is also to utilise smartwatches [7, 8].
Further, the prior work is most commonly assessing the problem of determining
the degree of tremors, not dyskinesia, either in the case of PD or ET. Below
follows an overview of the two studies with most impact on this thesis.

4.1 Classification of hyperkinesia in Parkinson’s disease

4.1.1 Circumstances

In Erik Liljeroth’s thesis [9], a similar problem as in this thesis was addressed,
with part of the same data as is available at the time of this thesis. One notable
difference between the studies that during the work in [9], there was only one
label available per sample, while there were two available in this thesis.

4.1.2 Method

The methods used in [9] were mainly based on artificial neural networks, applied
in different constellations, for example a 1D-CNN. The results presented were
promising, but a main problem to this approach was the scarcity of data.

4.1.3 Takeaways

Artificial neural networks have been found to outperform other methods under
some circumstances. For example, 2D-convolutional networks are really good
at evaluating images. One of the reasons why they are so good, is that there
is a lot of local patterns that can be exploited. But when it is not certain that
these local patterns exist, or are very complex to decipher, another approach
might be more suiTable. Perhaps the most important reason as to why neu-
ral networks have become so popular is that they scale better with more data
than traditional learning methods, such as logistic regression or support vector
machines. But in a problem where data is scarce, this scaling property is not
utilizable. For example, in a study by Shultz MA et al. [10], they compared
the performance of a binary classification problem on brain images, for different
models, altering the amount of samples available for training. They found that
classical methods (such as logistic regression and support vector machines) out-
perform ANNs with datasets of sizes comparable to the one used in this study.
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4.2 Classification of essential tremor with fuzzy reasoning

In a study by Caro Fuchs et.al. [11], they tried to classify tremor severity on
patients suffering from ET. ET is a neurological disease that causes tremors
mainly in the extremities of the patient. The main difference in the symptoms
is that ET tremors only show up either in postural or transitional poses. Here,
postural means having a pose which requires energy to maintain, for example
holding out a hand straight in front of your body. By transitional, one implies
transitioning between poses, for example moving the hand from being sprawled
in front of the body to pointing at ones nose.

A main difference with the problem studied in [11] is that they in this study are
assessing tremors, which have distinct features in the frequency domain. In the
problem addressed in this thesis, the movement is more random.

4.2.1 Aim

The study intends to ”assess severity of tremor objectively, to be better able
to asses improvement in ET patients due to deep brain stimulation or other
treatments.”

4.2.2 Circumstances

Smart phones were strapped to the back of both wrists of the patients and
sampled accelerometer and gyroscope data at 100Hz. Ground truth was given
by a trained professional.

4.2.3 Results

They managed to get a mean absolute error of 1.75 on a scale of 0-84, on a
validation set of 25% of the patients.

4.2.4 Takeaways

The main take away from this study is the fact they used quite simple features
along with a quite simple model, in comparison with for example a deep neural
network, and got better results. The reason they mention as a means of success
is the fact that when using such a simple model, it is a lot easier to get a feel
for what features are really descriptive and what they are describing, as well as
how the model operates under the hood, which can be quite tricky with large
models.

5 Method

5.1 Overview

The following will be covered in this section:
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• Detailed circumstances under which the work is constrained.

• The embraced workflow.

• Detailed overview over how the final model works.

In the interest of conciseness of the report, the partial results presented in this
section are w.r.t. to the ”level 2” problem, i.e., not truncating the data to any
specific task. The final results for the ”level 1” problem is presented in the
results section, but unless explicitly stated, any results presented are w.r.t. the
harder ”level 2” problem.

5.2 Available data

An important aspect of this problem is the fact that the labels from different
persons differ, although their correlation is high. To visualize the correlation
between the different labels, the confusion matrix is suiTable,

C =


237 7 1 0
27 38 7 0
22 20 39 2
0 2 17 10

 ,

where the i:th row corresponds to expert A’s labels and the j:th column to ex-
pert B’s. A visualisation of the confusion matrix can be seen in Figure 3. The
confusion matrix testifies the fact that making this classification is hard even
for experienced professionals.

5.2.1 Ground truth

As the doctors’ assessments differ, we should ask ourselves what should be used
as ground truth for the construced model. Is it reasonable to use the mean, or
could some other method be applied?

ρ mean absolute difference
all samples 0.790 0.303
non zero 0.641 0.677

Table 2: Metrics to display how much the labels from different people differ for
all available data. When there is no hyperkinesia going on at all, the assessment
is easier, and to get a more complete picture, the metrics for nonzero examples
are also displayed.

As the labels are perturbed, we next evaluate whether using the mean of the
two available labels is a reasonable choice of ground truth. Let

yest = ytrue + ϵ+ b, (1)
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Figure 3: Confusion matrix over all the labels by the different experienced physi-
cians. Although there is strong correlation between the two, it is clear that the
correlation is not perfect.

for some random noise variable ϵ ∈ N(0, σ) and a bias term, b ∈ R. The model
here is that depending on who is making the assessment, the estimation can be
biased, and at the same time contain Gaussian noise. The fact that the under-
lying property is hard to estimate accurately even for trained humans has an
interesting implication: If a model can align with each of the different sets of
labels as good as or better than they align with each other, the model is of value.

Further assessing the model of the underlying true property, ytrue, the mean is
formed as

ygt =
yest1 + yest2

2
= ytrue +

ϵ1 + ϵ2 + b1 + b2
2

. (2)

. The error is then distributed as (assuming yest1 and yest2 are independent)

ϵ1 + ϵ2 + b1 + b2
2

∈ N

(
b1 + b2

2
,

√
ϵ21 + ϵ22
2

)
. (3)

The biases are hard to address, and there is no reason to believe any bias would
be stronger than the other. Further, the new standard deviation,

√
ϵ21 + ϵ22/2,

in the case of ϵ1 ≈ ϵ2 implies a smaller standard deviation by approximately a
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factor of
√
2. Since there is no reason to believe any b or ϵ is larger than any

other, the mean is a reasonable way forward. This will be referred to as the
label for the rest of this report.

5.2.2 Splitting up the available data

The data is first split into two chunks. One chunk is for training, which is used
for both training and validating the models during development, and one chunk
for testing, that is kept separate and untouched, to get an as honest as possible
estimation of the model’s accuracy. To determine a suitable test set, we should
first have a look at the labels.

Figure 4: Individual label distribution for the doctors, respectively. We can see
that the label 0 by far is the most common one, and that there are no samples
for which the CDRS is 4.
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Figure 5: Distribution over the average of the two doctors’ labels.

The most prominent observation is that the data set is imbalanced. There are
a number of measures that can be taken to counter this, for example SMOTE
[17]. The most important aspect is that inaccurate estimates of the model
performance can be retrieved, especially since the training and validation splits
are chosen at individual level, not at the sample level. For example, the number
of individuals with severe hyperkinesia (2 or more) is a mere 5. If the training/
validation split is then chosen such that all individuals with severe hyperkinesia
is put into one of the chunks, the estimate of the model performance will become
unreliable.
The available data is split in the following way:

1. The data is split into two chunks, for training and testing, with approxi-
mate proportions 3

4 and 1
4 , respectively. The testing data is not used for

any validation until the final model is validated in a last step. It is made
sure that no patient in the testing data is in the training data, to better be
able to make conclusions about generalisation when validating the mod-
els. Further, to make sure the training data is somewhat representative
of the testing data, a small stratification scheme was employed: When
having sorted the patients w.r.t. amount of average labels of 2 or above,
traversing this list in a descending order, every fourth patient was chosen
for the test set. The remaining patients (that did not have any average
labels of 2 or above) were split at random with the given proportions.
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2. The training data from the previous step is then used to train a set of
models. The split within this data is done in the same manner as the
training- and testing data was picked from the entire data set.

With the test set chosen, we can evaluate whether it seems representative of the
training set. As seen in Tables 3 and 4, the correlation between the different
assessments is lower in the test set than on the training set. This should be
taken into account when assessing the models.

ρ mean absolute difference
all samples 0.818 0.301
non zero 0.606 0.697

Table 3: The two experts’ assessments correlation and mean absolute difference
for the training/validation data set.

ρ mean absolute difference
all samples 0.686 0.309
non zero 0.605 0.633

Table 4: The two experts’ assessments correlation and mean absolute difference
for the testing data set.

5.2.3 Data scarcity comments

Lastly, if putting the problem into a machine learning perspective, and com-
paring it to other problems, it can be noted that the cost of each sample is
quite high. For example, sourcing vast amounts of images and annotating them
can be done at reasonable cost. An image takes perhaps 30 seconds to label
with negligible peripheral costs. In contrast, to collect one data sample in this
case takes 20 minutes, and has a lot of peripheral costs associated to it, such
as planning and coordinating patient visits, recording the video of the patient,
synchronizing the time between the sensor and the video camera, structuring
the video data, getting different doctor’s assessments of the video, i.e. This is
an important aspect to keep in mind while thinking about future prospects of
the subject area. Part of the problem nature is that data is highly expensive.

5.3 Modelling methodology

The predictor by Fuchs et al. worked with quite a small set of features and
a relatively simple model [11]. Is this true for determining hyperkinesia under
our circumstances as well? Hyperkinesia is a measure of how much a person is
moving involuntarily. But what is a good abstraction for this property, what are
good features for describing it? When this question has been answered, there is
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also the problem of choosing a good training scheme.

By and large, the work has been conducted in the following way:

1. Find good features.

2. Find a good model to best utilize the features.

To determine what features are good, a bottom up strategy has been employed.
By bottom up, it is meant that each feature has been more or less handcrafted
and then investigated individually to see if it is descriptive and should be in-
cluded in the final model. This is in contrast to the most common way of doing
things: Throwing in all features available and later removing the less descrip-
tive ones with different regularization techniques. The reason for the bottom-up
approach can be motivated by the following:

• Making a model with a large set of features and weights gives room for
overfitting. If a model can be made with only a small set of features, the
risk of overtraining is made smaller [12].

• The problem is potentially solvable with only a small set of features: the
problem of determining hyperkinesia should not be as hard as, for example,
predicting the weather.

• In comparison with many deep learning problems, the amount of available
data is low. For example, the classic MNIST dataset has 70000 samples
[14], while we have a mere 429 in our case. This means that overfitting
is a big risk that needs to be assessed in choosing the approach. Recall
that overfitting can be done at an architectural or hyperparameter level
and not just in the parameter space, so while hunting a small validation
error by tuning hyperparameters and tweaking the architecture, there is
an induced risk of overtraining.

Given the bottom-up approach, the largest part of the work has been to craft
suitable features from the available data. The way this work has been conducted
is by using linear regression on the investigated features and examine the loss.
A big advantage with such a simple model is that the behaviour of the model
can be easily understood by looking at the weights.

Looking at raw accelerometer data is not sufficient. The acceleration data it
will be strongly affected by the presence of gravity which will be substantially
larger than any of the variations we are interested in, such that

atot = alin + g, (4)

where it is reasonable to assume that ||g|| >> ||alin|| almost always. The first
step is hence to filter out the influence of gravity.
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5.3.1 Filtering out gravity

To do this rigorously is quite hard because there is no easy way to acquire ground
truth for such data, i.e., which part of the signal is truly gravity and what part
is linear acceleration. What can be noticed however, is that Apple does this
in their Core Motion package, they utilize the gyroscope and accelerometer to
get a good estimate of gravity, and then being able to subtract it from the raw
data [15]. Assuming their estimate is good, we can try and mimic the same
performance with our own method, since integrating core motion in our own
code base would be tedious.

To make use of core motion package, the free iPhone application ”Tremor12”
[16] was used to collect four test cases. This inherently uses the package and
directly outputs a direction of gravity as well as an estimate of the linear accel-
eration. The key point is that it has split the actually measured accelerometer
signal into two parts. Unfortunately, the raw accelerometer signal is not pro-
vided, but can be simulated by rescaling the (already normalized) gravity vector
and adding the linear acceleration. The goal here is to, given this simulated to-
tal signal, separate it again to gravity and linear acceleration.

To employ this approach, a measure of proximity to the Apple solution is needed.
Here, the average square distance between the modeled approximation and Ap-
ple’s approximation of the gravity is used,

d = ||gapple − gapprox||22. (5)

As a global loss for a sequence of testing data, the average of the above defined
loss is formed, such that

L =
1

N

N∑
i=1

di. (6)

Further, to develop an intuition for the problem, the behaviour of the different
methods was animated, and samples of these animations are linked on youtube
throughout the text below.

In a first approximation, a simple causal moving average of 20 samples was
applied to estimate gravity, forming

g = C(z)x, (7)

where g is the estimate of gravity, x is the simulated raw data, and C(z) is
given by

C(z) =
1

20

(
1 + z−1 + z−2 + ...+ z−19

)
. (8)

An animation of the approximation can be viewed here: https://youtu.be/

LkgDNcUC75k
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Test case Causal moving average loss Non causal moving average loss
1 0.00357 0.00012
2 0.00271 0.00029
3 0.00796 0.00028
4 0.01952 0.00038

Table 5: Losses for different test cases.

In contrast to real time applications, one may for this application also utilize a
non causal filter, i.e., making benefit of the hindsight that we have here. So in
a second approximation, a non-causal moving average was employed, with the
corresponding transfer function,

C(z) =
1

40

(
z−19 + z−18 + ...+ z−1 + 1 + 1 + z + z2 + ...+ z19

)
. (9)

An animation of this method can be viewed here: https://youtu.be/kvpjzAunvJI.
As can be seen in the video, this approach works well compared to the previous
attempt.

With these results we can move on with confidence that the method of
separating gravity from linear acceleration is working well. Worth mentioning
is that the gravity vector itself is quite informative: It tells us how the sensor
is oriented, and this orientation could be used to craft features.

5.3.2 Evaluation

As we here examine models making binary classification as well as making re-
gressions, we need ways to evaluate the models in these two cases.

For the binary predictor, the metrics accuracy, precision, recall, and f1-score are
used. The definition of them are

accuracy =
number of correct predictions

number of incorrect predictions
,

precision =
true positives

true positives + false positives
,

recall =
true positives

true positives + false negatives
,

f1-score =2
precision× recall

precision + recall
.

(10)

Precision can be interpreted as an estimate of the probability that a sample
predicted as true is really true, and recall can similarly be interpreted as an es-
timate of the probability that a true sample is detected or ”recalled”. F1-score
is the harmonic mean of the two and is a widely used metric for evaluating
classification models.
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As metrics for evaluating a regression model, mean square error (MSE), the
mean absolute error (MAE), max absolute error, and the Pearson correlation
(ρ) are commonly used. The Pearson correlation is not such a common choice
as a metric for evaluating model performance, but is a measure many medical
professionals prefer. These metrics are evaluated for the training and validation
data separately. The Pearson correlation coefficient is defined by

ρX,Y =
C(X,Y )

σXσY
. (11)

Due to the fact that a model is a function of both its training data and the ar-
chitecture, it is vital to choose the training samples with care, ensuring that one
does not introduce any biases to seemingly get better results, while in reality
one is just losing generalization. A key part of the work has therefore been to
evaluate models thoroughly, and partial results have played an important role
in deciding the direction of the work. Therefore, partial results will be shown in
the method section, as they are an important part of the feedback loop that is
machine learning engineering. All results shown in the method section are to be
regarded as indications of achievable performance that were received through-
out the work, while the final results on the untouched testing data is saved for
the results section.

5.3.3 Naive model

To determine what features are good or not, it is good to have a baseline of
what a naive model is capable of. As a naive model, a simple mean of all the
labels is taken as prediction, regardless of the input data. This is the baseline
that all models, both simple and complex models should beat.

MSE training MSE validataion MAE validataion Max AE val
mean 0.64 0.64 0.618 2.511
std 0.108 0.108 0.073 0.163

Table 6: Compact form of how the evaluation metrics are distributed over differ-
ent training / validation splits. Because the correlation coefficient is not defined
for the naive model, whose output has standard deviation 0, it is left out.

5.4 Feature extraction and selection

In this section, it will follow a detailed overview of the methodology that has
been applied in the search for descriptive features. The main objective is to find
a model that both performs well, and with high probability is not overtrained
to our small dataset. As a means of minimizing the risk of overtraining, a lot of
energy has been put into finding a small set of features that are still descriptive
enough to solve the problem. An empirical trial and error approach is used,
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where the only thing we alter are the features, and the models are evaluated
with high regard to signs of overtraining. The hope is that the reader after this
discussion is able to either extrapolate the methodology to other problems, or
provide critique and feedback on how it may be improved.

To determine whether a feature or a set of features are efficient in describing
the observed data, a linear model is applied,

y = wTx+ b, (12)

where x denotes the features for a sample. To be clear, x is not the raw data,
but the raw data for a sample, mapped to a feature (or set of features) by some
function that is to be determined.

For completeness and thanks to the fact that this model is easily optimized in
a least squares sense, the solution to obtaining a least-squares optimal solution
will be detailed.

The LS estimate is formed by minimizing the MSE, i.e.,

min
w,b

1

2

N∑
i=1

(
xT
i w+ b− yi

)2

, (13)

where xi is the feature vector for sample i and yi is the label for sample i.

This function is strongly convex under weak conditions and may therefore be
minimized efficiently. Let

f(w, b) =
1

2

N∑
i=1

(
xT
i w+ b− yi

)2

. (14)

Then, differentiate w.r.t. b:

0 =
∂f

∂b
= Nb+

N∑
i=1

(
xT
i w− yi

)
=⇒ b = ȳ −wT x̄, (15)

where ȳ is the mean of all the elements in the label vector and x̄ is the mean of
all the feature vectors in the training set. Inserting b in to (14) yields

f(w, b) =
1

2

N∑
i=1

(
xT
i w + b − yi

)2

=
1

2

N∑
i=1

(
wT (xi − x̄) − (yi − ȳ)

)2

. (16)

Now, let x̃i = xi − x̄ and ỹi = y − ȳ and reformulate the problem as

min
w

1

2

N∑
i=1

(
wT x̃i − ỹ

)2

. (17)
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Form the matrix X, where the i:th row contains x̃i, and also form the vector Y
where the i:th element contains ỹi. Then, the objective function can expressed
as

f(w) =
1

2
||Xw−Y||22. (18)

Taking the gradient and setting it to zero yields, assuming X has full column
rank,

∂f

∂w
= XT

(
Xw−Y

)
= 0 =⇒ w = (XTX)−1XTY. (19)

Assuming X has full column rank is reasonable, as we have much more samples
than features.

Using this optimization scheme, one may quickly get a sense for what features
are descriptive, both by looking at the loss and also by looking at the weights
that correspond to each feature.

5.4.1 Magnitude of linear acceleration

The first feature that was investigated was the average magnitude of the linear
acceleration:

ϕ1(A) =
1

N

N∑
t=1

||at||22, (20)

where A can be viewed as a matrix of size 3 × Nsamples, and at as the three-
dimensional linear acceleration vector at time t, or in other words the t:th col-
umn of A.
If this feature is large, it should mean a lot of involuntary movement, although
it may be so for other reasons as well. Nevertheless, the least squares method
described above was applied and the results can be found in Table ??.

training MSE validation MSE ρ training ρ val MAE Max AE
mean 0.617 0.644 0.165 0.145 0.612 2.565
std 0.098 0.028 0.089 0.075 0.023 0.076

Sadly, the results are not significantly better than the naive model.

5.4.2 Mean of absolute values of the linear acceleration

If one instead keeps each dimension separate and extract three features, namely
the mean of the absolute value of the linear acceleration in each direction, such
that

ϕ2(A) =
1

N

( N∑
t=1

|a(t)x |,
N∑
t=1

|a(t)y |,
N∑
t=1

|a(t)z |
)T

=
1

N

(
||ax||1, ||ay||1, ||az||1

)T

,

(21)
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might we improve our results? Here, more features are introduced, which gives
the model more freedom to potentially overtrain, but also potential to find some-
what more complex relationships in the data.

training MSE validation MSE ρ training ρ val MAE Max AE
mean 0.461 0.51 0.519 0.482 0.523 2.374
std 0.074 0.028 0.066 0.024 0.022 0.105

Table 7: Summary of the distribution over the evaluation metrics. A large
improvement is observed in terms of correlation with the ground truth.

5.4.3 Moving average of linear acceleration

A next natural step is to instead look at moving averages of the linear acceler-
ation. A possible feature is:

ϕ3(x, nC) = ||C(z)x||1, (22)

where C(z) is the filter 1
nC

(z−nC+1 + z−nC+2 + ... + z−1 + 1). This feature
applied to the linear acceleration in the three directions, with nC of 10, 20 and
30 yields the results in Table 8.

training MSE validation MSE ρ training ρ val MAE Max AE
mean 0.207 0.276 0.818 0.769 0.391 2.196
std 0.04 0.026 0.041 0.02 0.02 0.265

Table 8: Evaluation metrics for ϕ3(·, nC) applied to linear acceleration in three
dimensions, for all nC ∈ {10, 20, 30}, which makes for 9 features in total. The
results are quite promising, beating all previous attempts.

5.4.4 Direction of gravity

Proceeding, we examine a feature that examines the direction of gravity changes,
is proposed. Because the direction of gravity at any time can be parameter-
ized by two angles, instead of three cartesian components, the coordinates are
mapped by first normalizing it to length one and then applying the function

f(gt) = (arccos(g2) arctan(
g1
g3

))T . (23)

With the way the order of the components has been chosen, the two angles, for
the rest of this report are named θ and φ, and interpreted as follows: θ is the
latitudinal and φ is the longitudinal angle in a spherical coordinate frame of
reference. Hence, θ is a measure of the pitch of the torso, and φ is a measure
of roll. An example of this is shown in Figure 6. The linear acceleration is also
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Figure 6: As seen in the Figure, there are no clear patterns in this example.
What can be observed, is that even though both the low and high label samples
have a lot of high frequency movement over all, the degree of movement in the θ
angle is much lower in the lower-labeled case than in the high-labeled example.

plotted for comparison.

A further refined feature may be formed by dividing the sample in segments
of size L, with stride S and for each of those segments calculate the variance
of the signal within the window. The stride here is the step size used when
segments are chosen. For example, having a sequence of 500 samples, subsample
length L = 250, and a stride of S = 50, one might create (500 − L)/S +
1 = 6 subsamples. The proportion of segments that have a variance above a
predetermined threshold may then be used as a feature:

ϕ4(x, T, L, S) =
number of subsamples with variance below threshold

number of subsamples
, (24)

where x is a one-dimensional series of data, T is the threshold, L is the subsam-
ple length, and S is the stride used to create the subsamples. Extracting this
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feature from θ alone yields a model with the performance summarized Table 9.

training MSE Validation MSE ρ training ρ val MAE Max AE
mean 0.301 0.319 0.723 0.722 0.442 1.739
std 0.044 0.016 0.034 0.008 0.013 0.134

Table 9: Evaluation metrics when using only the feature ϕ4(x, T = 0.1, L =
200, S = 100) applied to θ.

training MSE validation MSE ρ training ρ validation MAE max AE
mean 0.286 0.306 0.74 0.736 0.43 1.701
std 0.042 0.015 0.032 0.008 0.013 0.129

Table 10: Evaluation metrics for the case where the feature ϕ4(x, T = 0.1, L =
200, S = 100) is applied to θ and φ. MAE and max AE metrics are for the
validation data.

As the performance using ϕ4 seems promising, the following features on the
same theme were investigated:

ϕ5(x, L, S) = standard deviation of subsample variances,

ϕ6(x, L, S) = mean of subsample variances
(25)

The results using this set of features on the angles of gravity are displayed below

training MSE validation MSE ρ training ρ validation MAE max AE
mean 0.198 0.255 0.827 0.789 0.371 2.382
std 0.034 0.061 0.035 0.04 0.016 1.132

Table 11: Evaluation metrics for the case where features ϕ4(x, T, L, S),
ϕ5(x, L, S), and ϕ6(x, L, S) applied to θ, for T = 0.1, L = 200 and S = 100.
Here, we see that we start getting quite good results but also that we get more
sensitive to overtraining as we add more features.

Because in this linear regression scheme, every feature has an associated weight,
one may examine the weights to see how influential each feature is. This step
may be regarded as a sanity check of the system, and a way to gain further
understanding of the problem nature. Firstly, it can be noted that the parame-
ters are expected to be positive or negative depending on how the features are
engineered.
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ϕ4 negative
ϕ5 unclear
ϕ6 positive

Table 12: Because the feature ϕ4 is the proportion of subsamples with variance
below a threshold, a high output of ϕ4 should correspond to a low estimate of
CDRS. Hence, this parameter should be negative. The feature ϕ5 is harder to
interpret, and a high value is unclear to indicate a higher or lower CDRS. The
feature ϕ6 is a measure of how much the person is moving, with a positive value
being expected.

w1 corresponds to ϕ4(·, 0.1, 200, 100) -0.38
w2 corresponds to ϕ5(·, 200, 100) -0.27
w3 corresponds to ϕ6(·, 200, 100) 0.61

Table 13: Average of the model parameters from the same model as in Table
11, trained with N=500 different training/validation splits. The parameters are
what is to be expected.

Finally the following results were found using only a subset of 2 features.

training MSE validation MSE ρ training ρ validation MAE Max AE
mean 0.215 0.265 0.853 0.848 0.409 1.33
std 0.021 0.06 0.027 0.067 0.049 0.197

Table 14: Evaluation metrics for linear regression when using features
ϕ4(·, 1, 200, 100) and ϕ4(·, 0.3, 200, 100) applied to θ alone. Although the vali-
dation MSE is about the same, the max absolute error is greatly reduced.

w1 corresponds to ϕ4(·, 1, 200, 100) -0.69
w2 corresponds to ϕ4(·, 0.3, 200, 100) -0.10

Table 15: The observations are in line with what is to be expected: Parameters
corresponding to ϕ4 are negative. We can now conclude with more confidence
that the features are suitable for further use.

For further reference of the most promising sets of features above, the following
feature maps below are introduced.

ϕ4 ϕ5 ϕ6

T 0.1 - -
L 200 200 200
S 100 100 100

Table 16: Feature map 1.
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ϕ4 ϕ4 ϕ4 ϕ5 ϕ5 ϕ5 ϕ6 ϕ6 ϕ6

T 0.1 0.1 3 - - - - - -
L 100 200 400 100 200 400 100 200 400
S 50 100 200 50 100 200 50 100 200

Table 17: Feature map 2.

ϕ3 ϕ3 ϕ3

nC 10 20 30

Table 18: Feature map 3.

ϕ4 ϕ4

T 1 0.3
L 200 200
S 100 100

Table 19: Feature map 4.

5.4.5 Features that did not work well

As previously stressed, a lot of the work has consisted of investigating different
features of choice. In the sections above, only a small selection of the features
that did not work out are shown, while all that are used in the final model
are presented. For example, there are a lot of frequency domain features that
could potentially be of value. While considering those, and engineering features
around for example the estimate of the power spectral density, it became clear
that these exhibit no evident pattern. While looking at the recordings of the
patients, this is the conclusion as well: The movement we are looking for is quite
random, and as far as could be concluded, there could be no distinct frequency
observed.

5.5 Choosing a model architecture

Armed with understanding of what features are descriptive to address the prob-
lem, it is time to choose model architecture. From Figure 5, it can be seen that
approximately half of the labels are 0 while the other half is higher than 0. This
makes up a balanced data set for a binary classification problem that can be
utilized. The proposed inference pipeline is therefore:

1. Make binary prediction, whether the sample contains hyperkinesia at all
or not.

2. Estimate CDRS score.
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The idea is also that an ensemble of the two models above can help build con-
fidence in the system. If the models disagree, the result should perhaps not be
trusted. If they disagree a lot of the time, a doctor can easily reject the mea-
surements. Presented with just an estimation of CDRS, it is harder to make
any conclusion of the quality of the measurement.

A natural first approach is to use a support vector classification, SVC, scheme
for the binary classification and its regression sibling, support vector regression,
to make a prediction of the CDRS score. Support vector machines are suitable
here because they provide easily tuneable hyperparameters to counter overtrain-
ing. Next, the main concepts for the variations of support vector machines will
be covered.

5.5.1 Kernel support vector machines

The support vector machines in this work are ones that use a kernel to implicitly
define a mapping of the self engineered input features to a higher dimensional
feature space. The point is that the primal objective has a dual form with a con-
vex objective function, from which it is possible to extract an optimal solution
to the problem in its primal form. This enables us to define a kernel in its dual
formulation, which corresponds to a feature mapping in the primal form. This
feature mapping, which in this report is denoted Φ, is usually not retrievable,
and we have only an implicit notion of it, to connect the primal to the dual form.

The kernel used in this report is a Gaussian one,

K(x, y) = e−
||x−y||22

2σ2 , (26)

which is widely used. Further details on kernel support vector machines can be
found in the work of Schollköpf et.al. [18].

5.5.2 Support vector machine for binary classification

The objective for an SVC in its primal form is given by

min
w,ζ

||w||22 + C

N∑
i=1

ζi,

subject to yi(w
TΦ(xi) + b) ≥ 1− ζi

ζi ≥ 0 ∀ i ∈ {1, ..., N}

(27)

The goal is to find a separating hyperplane in the feature space defined by the
kernel, and maximise the margin to any data points. Ideally, yi(w

TΦ(xi)+b) ≥
1 for all samples, which would imply full separability, but since this most times is
not possible (at least while keeping ||w||22 reasonably small), we allow for points
to be at a distance ζi on the wrong side of the plane, while we at the same time
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minimise the total distance of data points from their corresponding ”right” side
of the hyper plane. This optimisation is solved in its Fenchel-dual form, and
given a solution, we are able to extract a model that solves the problem in its
primal form. This optimisation scheme and recovery of a model from the dual
form is left out.

The here used hyper parameter C is such that a large C imposes a greater loss
for data points on the wrong side of the hyper plane. This means that we fit
better to the training data, at the cost of getting a large ||w||22. A large C, can
therefore affect regularization properties of the model, and is therefore impor-
tant to investigate.

Results on validation data; Fixed hyperparameters
Here, the most important part-results are showcased. First, the dependence
of the feature selection is showcased for a fixed C=2. Second, dependence of
C is displayed for a few examples. All Tables presented in this section is a
representation of the distribution retrieved when training the model on N=500
training/ validation splits.

training accuracy val accuracy training precision val precision training recall val recall val f1
mean 0.953 0.934 0.978 0.946 0.85 0.811 0.872
std 0.018 0.014 0.031 0.031 0.055 0.052 0.032

Table 20: ”Val” is short for validation. Results for SVC using feature map 1,
applied to θ alone, with C = 2.

training accuracy val accuracy training precision val precision training recall val recall val f1
mean 0.955 0.932 0.979 0.948 0.852 0.802 0.868
std 0.018 0.009 0.03 0.039 0.054 0.025 0.016

Table 21: Results for SVC using feature map 1, applied to both θ and φ. Ac-
cording to these results, φ is better to leave out.

training accuracy val accuracy training precision val precision training recall val recall val f1
mean 0.955 0.936 0.982 0.946 0.854 0.819 0.877
std 0.02 0.014 0.024 0.044 0.07 0.034 0.026

Table 22: Results for SVC using feature map 4 applied to θ and feature map 3
applied to linear acceleration. We observe small improvements in the validation
metrics.
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Evaluating hyperparameters
As can be seen in figures 7 and 8, there is not a large dependence upon C for
C ≥ 1.

Figure 7: Dependence on C for feature map 1 applied to θ alone.

Figure 8: Dependence on C for feature map 2 applied to θ and φ and feature
map 3 applied to linear acceleration.
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5.5.3 Support vector regression, SVR

A widely used support vector machine used for regression is what is called
epsilon-SVR, or ϵ-SVR. Epsilon is here interpreted as the margin which the pre-
dictions can be within without contributing to the loss. All the samples that lie
outside a distance of ϵ from the target value penalizes the objective function by
a value of ζi for samples above and ζ∗i for samples below the target interval.

The primal problem is formed as in equation (28), and Φ is again the feature
mapping that is implicitly defined by the kernel.

min
w,ζ

||w||22 + C

N∑
i=1

(ζi + ζ∗i ),

subject to yi −wTΦ(xi)− b ≤ ϵ− ζi

wTΦ(xi) + b− yi ≤ ϵ− ζ∗i ,

ζi, ζ
∗
i ≥ 0 ∀ i ∈ {1, ..., N}

(28)

Here, there is yet another hyper parameter to determine, namely ϵ. Choosing
this, one would have to consider the problem nature and what prediction error
is accepTable. But it is also possible that a tighter or looser ϵ than actually
needed might generate better results.

Results on validation data; Fixed hyperparameters

ρ ρ nonzero MSE MSE monzero MAE MAE nonzero worst
mean 0.837 0.566 0.26 0.533 0.316 0.599 1.686
std 0.08 0.228 0.079 0.169 0.057 0.107 0.313

Table 23: Evaluation metrics, feature map 1 applied to θ, for a set of N=500
training/ validation data splits.

ρ ρ nonzero MSE MSE monzero MAE MAE nonzero worst
mean 0.86 0.645 0.227 0.465 0.305 0.583 1.47
std 0.07 0.17 0.056 0.11 0.047 0.075 0.265

Table 24: Evaluation metrics, feature map 4 applied to θ, for a set of N=500
training/ validation data splits.

Evaluation of hyperparameters
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Figure 9: Feature map 2 applied to θ for C = 2 and different ϵ ∈ [0, 1]. We see
that the mean absolute error is heavily dependent on the choice of ϵ. Further, it
can be seen, that while optimising for a low mean between worst case absolute
error and MAE, an ϵ of 0.1 is optimal.

Figure 10: Feature map 2 applied to θ alone, while feature map 3 is applied to
linear acceleration in their three dimensions, for C = 2 and different ϵ ∈ [0, 1].

As seen in figures 9 and 10, the correlation with the ground truth is close to
0.9 regardless of the choice of ϵ. Because the mean absolute error is the lowest
with a small value of ϵ, everything else same, this is a natural choice for the
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hyperparameter.

5.5.4 Final models

The final models used for binary classification and regression, backed up with
the experiments described in this section, and with a more complete picture
with the Tables and pictures in appendix A, are the following:

Binary classification
The model with best f1-score is the one using feature map 2 applied to θ alone,
with C = 2.

Regression on CDRS
Although the best overall performance was reached while using feature map 4
on θ (leaving out φ) along with feature map 3 on the linear acceleration, with
ϵ = 0.05 and C = 2, it might be a good idea to value the simplicity of the
model quite high. The model using feature map 4 on θ is therefore also highly
interesting, as it is a significantly simpler model. Both these models will be
tested on the testing data set.

• Proposal 1: Feature map 2 on θ and feature map 3 on linear acceleration.
ϵ = 0.05 and C = 2.

• Proposal 2: Feature map 4 on θ. ϵ = 0.05 and C = 2.

5.6 Code remarks

The code used for all the work in this report is written in python with a set
of packages, the most prominent being Sklearn [13]. The code is available on
github: https://github.com/Cryhouse/hyperkinesia
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6 Results and discussion

In this section, the results of the models on the unseen testing data is presented,
as well as some discussion around them.

6.1 Binary predictor: Support vector classification

Because the level 2 predictor is the most important part of the results, it will
be presented first, followed by the level 1 predictor. Recall that the level 2
predictor is the one that uses the entire signal, whereas the level 1 predictor is
only fed data that is truncated to when the person is sitting. As this section is
only evaluating model performance, training loss metrics are left out.

6.1.1 Level 2 predictor

accuracy precision recall f1 score
0.79 0.97 0.58 0.73

Table 25: Results for proposed model on the testing data set of 6 patients with
a total of 123 samples.

The results are to be compared with those in Table 22, where an accuracy of
0.932, precision of 0.946, recall of 0.802 and F1-score of 0.877 were reached for
the validation data. The only metric that improved over experiments is the
precision, with only one false positive in the entire testing data set.
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Figure 11: Distribution of the samples that were falsely predicted as not con-
taining any hyperkinesia on the original testing data set.

Because these results are dependent on how the testing data is chosen, a set of
tests were also conducted, to see how much the choice of testing data can affect
the results. To test this sensitivity, the same method as when splitting up the
train data to a training/ validation data was applied to the entire data set.
When doing the above described resampling of training/ testing data, a number
of N=500 times, the following results were achieved:

accuracy precision recall f1 score
mean 0.873 0.886 0.814 0.841
std 0.059 0.069 0.123 0.075

Table 26: Binary classification results with resampling of training/ testing data
with stratification.

It can be seen in Table 26 that all the performance metrics go up when resam-
pling the training- and testing patients. This hints that the original testing data
is not representative of the original training/ validation data.

6.1.2 Level 1 problem

In the same way, and for the same reasons as discussed earlier, the results for
this model will be presented in three parts where it is evaluated on the origi-
nal testing data, randomly sampled testing data, and stratified sampled testing
data.
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accuracy precision recall f1 score
0.854 0.889 0.800 0.842

Table 27: Results on the original testing data.

accuracy precision recall f1 score
mean 0.897 0.921 0.827 0.867
std 0.045 0.065 0.103 0.070

Table 28: Results for level 1 binary predictor for a set of 100 training/testing
splits selected at random.

accuracy precision recall f1 score
mean 0.894 0.913 0.828 0.864
std 0.044 0.070 0.104 0.070

Table 29: Results for level 1 binary predictor for a set of 100 training/testing
splits selected with stratification.

Only a small improvement is observed. Although the truncated data is likely less
noisy, there is also less data to make the inference on. It is therefore reasonable
that the performance is not increasing much.

6.2 Regression problem: ϵ-SVR

6.2.1 Level 2 problem

ρ ρ non zero MSE MSE nonzero MAE MAE nonzero worst absolute error
0.80 0.66 0.20 0.35 0.32 0.51 1.18

Table 30: Results for proposal 1 on the testing data set. When looking at these
results, one should consider Table 4, where the correlation between the two doc-
tors’ labels is presented. The correlation between the two doctors’ labels is 0.686
for all samples and 0.605 those labeled as nonzero. These results are therefore
in line with what could be expected of an assessment by a third doctor.

ρ ρ non zero MSE MSE nonzero MAE MAE nonzero worst absolute error
0.79 0.70 0.25 0.52 0.31 0.61 1.47

Table 31: Results for proposal 2 on the testing data set. Slight improvement in
nonzero correlation, but worse performance on the other metrics than proposal 1.
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ρ ρ nonzero MSE MSE monzero MAE MAE nonzero worst
mean 0.840 0.615 0.204 0.375 0.318 0.510 1.415
std 0.060 0.152 0.065 0.131 0.058 0.098 0.305

Table 33: Results for proposal 1, resampled testing data.

ρ ρ nonzero MSE MSE monzero MAE MAE nonzero worst
mean 0.844 0.669 0.218 0.43 0.301 0.555 1.448
std 0.068 0.15 0.056 0.088 0.053 0.065 0.221

Table 34: Results for proposal 2, resampled testing data.

It is also interesting to see the correlation of the model with both of the indi-
vidual doctors’ assessments.

ρ expert A ρ expert B
0.57 0.87

Table 32: Correlation of model output with individual doctors’ assessments, on
the testing data set. Here, we see very strong correlation with one of the doctors’
assessments, while the other is weaker. Still, both these numbers are in the same
ballpark as the doctors’ correlation with each other, as presented in Table 4.

Because the results here are also dependent on how the test set is chosen, the
same method of resampling testing data was applied to this problem.

Figure 12: CDRS prediction error distribution for proposal 1 on the original
testing data set.
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6.2.2 Level 1 problem

Here, results for regression on data truncated to when the patients are sitting
down, is presented. The same set of features, i.e., feature map 2 on θ and feature
map 3 on linear acceleration are used, and the same model architecture is used
as in the level 2 problem.

ρ ρ nonzero MSE MSE monzero MAE MAE nonzero worst
0.827 0.552 0.188 0.278 0.296 0.443 1.430

Table 35: Results for proposal 1 on original testing data. The results are similar
to the level 2 predictor.

ρ ρ nonzero MSE MSE monzero MAE MAE nonzero worst
0.784 0.623 0.227 0.448 0.290 0.515 1.463

Table 36: Results for proposal 2 on original testing data.

Because the features and model was optimised for the level 2 problem, it is
highly likely that the level 1 model would perform better with a specialized
set of features. There is room for a lot less noise in the signal if the person
wearing the sensor is sitting down. This is also backed by the fact that the
more complex model (proposal 1) is performing better. Now to checking the
results on resampled testing data.

ρ ρ nonzero MSE MSE monzero MAE MAE nonzero worst
mean 0.837 0.594 0.217 0.415 0.301 0.527 1.506
std 0.076 0.173 0.081 0.152 0.067 0.109 0.194

Table 37: Results for proposal 1 with resampled testing data.

ρ ρ nonzero MSE MSE monzero MAE MAE nonzero worst
mean 0.810 0.609 0.243 0.526 0.313 0.602 1.720
std 0.081 0.163 0.055 0.126 0.046 0.086 0.270

Table 38: Results for proposal 2 with resampled testing data.

The level 2 predictor seems to perform better than the level 1 predictor in this
case.

6.3 Comparison to previous work

Because the models made by Liljeroth were set up as classification models and
not regression models, there is no obvious way of comparing the results. Further,
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because the resolution of the annotations is double when taking the average of
two doctors’ labels, the corresponding classification problem would have twice
as many classes, and not be opt for comparison. To get around this, two models
were trained, one for each of the doctors’ labels and rounded the result to get a
surrogate for a classification. Further, in [9], each sample was split up to a set of
subsamples where each label had the ”global” label. In order for the comparison
to be opt, the confusion matrices presented below are normalized so that the
sum of all elements is 100. For conciseness, only the best model is presented,
which is proposal 2, level 2. The true label is corresponding to the i:th row and
the prediction is corresponding to the j:th column.

61 7 1 0
5 7 2 0
1 4 7 1
0 0 3 0

Table 39: Level 2, proposal 2 for model trained on expert A’s annotations. Ac-
curacy was 76%.

56 2 1 0
8 4 5 0
2 3 12 1
0 0 3 3

Table 40: Level 2, proposal 2 for model trained on expert B’s annotations. Ac-
curacy was 75%.

0 23 1 0
0 24 11 2
0 4 14 5
0 0 9 6

Table 41: Confusion matrix presented in previous work [9]. Accuracy was 44%.

It seems like the models proposed in this thesis are competitive with previous
models. It should however be stressed that the prior models might still be
competitive, but as the code for training the same system was not available at
the time of this report, the prior models could not be retrained with the new
data.
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7 Future work

There is a lot of potential for models to become better. This includes both
collecting more data, but also improving the models. First, the data aspect of
the problem can formulated as follows:

• Given the data available in this study, we have no way of knowing whether
the samples are representative for a day in real life for the participants.
Wearing the sensor throughout a day might not be a representative mix
of activities as the case in this study. Ergo, we have no way of knowing if
the models proposed in this thesis are as good as when applied to the real
world. The solution is to collect more data over larger time spans where
the participants are going about their daily businesses.

• A key part to continuing this work is to source more data, preferably with
labels. To source more data, one might have an app that both collects
data, and also prompts the person to do self assessments and perhaps a
set of tasks. Although the self assessment is not always reliable, it would
be a means of collecting a lot more data to validate the models.

Further, the following ways to make the models themselves better should be
proposed:

• It is possible that more data is fit for use in the model. For example, age,
sex or BMI. Because this data is available, there is no reason for it not to
be tried.

• Make individual models for each patient.

Further, it should be stressed that the approach in this thesis is chosen with
high regard to the small number of available samples. Self-engineered features
is essentially a way of applying biases to the problem at hand. Without much
data however, biases are needed to be able to get any predicting power. When
getting more data, the strive should be to eliminate as much as possible of the
biases, and let the data explain itself.
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8 Conclusion

The aim of this thesis has been to show that it is possible to utilize mobile
sensors to collect valuable feedback from people who suffers from PD, w.r.t.
hyperkinesia. This has been investigated mainly on an entire data sequence,
which contains a set of 4 different tasks as well as noise that would be present in
the real world. When considering the results by measures of Pearson correlation
and mean absolute error, it is similar to what could be expected of an assessment
by a third doctor. The following can therefore be concluded:

• It is possible to collect valuable feedback with smartphones, and the mod-
els proposed in this thesis are hands-on examples of this.

• To gain confidence with the models and develop them further, more work
is needed. It includes both collecting more data as well putting in more
work on the models themselves to retrieve a pipeline that can be trusted.
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