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Abstract

This thesis examines first-order Bregman algorithms in a primal and a
primal-dual setting. The Bregman gradient descent algorithm is intro-
duced from a majorization-minimization perspective and as a gener-
alization of the gradient descent algorithm. Concepts such as relative
smoothness and Legendreness are defined and are shown to be natural
restrictions in order to show convergence results.

A special case of the NOFOB algorithm, proposed by Giselsson in
2021, with a Bregman setting is defined, which we call the Bregman
NOFOB algorithm. This algorithm works in a primal-dual setting and
consists of a nonlinear forward-backward splitting step followed by a
projection correction. Both of these components are discussed with
respect to the Bregman setting. The Bregman NOFOB framework
unifies multiple algorithms, one of which is the celebrated Bregman
Chambolle-Pock method. It also allows us to define novel Bregman
primal-dual algorithms. Under certain assumptions on the solution set
of the problem and on the projection steps, we show that the Bregman
NOFOB method converges in duality gap.

This Bregman NOFOB algorithm with asymmetric kernel is com-
pared with the Wolfe-Atwood (WA) algorithm on the D-optimal design
optimization problem. As confirmed by the theory of this thesis - in
the primal case - the two algorithms both converge by sequence and
by function value, with sublinear (Bregman NOFOB) and linear (WA)
rates. In the primal-dual case we experimentally show that the pro-
jection step sizes satisfy the duality gap convergence of the Bregman
NOFOB algorithm. Indeed, this duality gap convergence is also veri-
fied experimentally. No comparison with the WA algorithm is made in
the primal-dual case, since it is restricted to the primal setting.

3





Contents

1. Introduction 7
1.1 Preliminary Example . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Notation and Definitions . . . . . . . . . . . . . . . . . . . . 11

2. Bregman Primal Method 14
2.1 The Bregman Distance and Bregman Primal Method . . . . 14
2.2 Bregman Functions . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Symmetry of the Bregman Distance . . . . . . . . . . . . . . 28
2.4 The Proximal Gradient Bregman Method . . . . . . . . . . . 32

3. Bregman Primal-Dual Methods 35
3.1 The forward-backward Step . . . . . . . . . . . . . . . . . . 35
3.2 The Bregman Projection . . . . . . . . . . . . . . . . . . . . 37
3.3 The Bregman NOFOB Algorithm . . . . . . . . . . . . . . . 40

4. D-optimal Design 48
4.1 D-optimal Design and Minimum-Volume Ellipsoids . . . . . 48
4.2 NOFOB Bregman Method for D-optimal Design . . . . . . . 53
4.3 Comparing Bregman NOFOB with the WA algorithm . . . . 58

Bibliography 64

5





1
Introduction

1.1 Preliminary Example

Consider the minimization problem

minimize
x1,x2≥0

x1 + x2.

If we let f : R2 → R be defined by

f(x) = x1 + x2

for all x ∈ R2 then we can rewrite our problem as

minimize
x∈R2

f(x) + ιR2
+
(x),

see Section 1.4 for a definition of the indicator function ιR2
+
. It is immediate

that the problem has the unique solution x⋆ = 0. The function f is continu-
ously differentiable and convex. Furthermore, the function f is β-smooth (see
again Section 1.4 for the definition of β-smoothness) for each β ≥ 0. Naively,
one could apply the gradient descent algorithm to f in hope of solving the
minimization problem. The update step of the gradient descent method is
given by

xk+1 = xk − γ∇f(xk)
for some step-size γ > 0. But we will quickly run into trouble. As soon as one
of the coordinates of xk becomes negative, then we fall outside the effective
domain of f + ιR2

+
and the function values of f + ιR2

+
become infinite.

We must let the constraints of the problem be reflected in the chosen algo-
rithm in some way. One common algorithmic choice is the proximal gradient
method. The proximal gradient method consists of a forward and a backward
step. The update step of the proximal gradient method can be written as (see
[18, Section 2.7])

xk+1 = [I + γ∂ιR2
+
]−1[I − γ∇f ]xk.
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Chapter 1. Introduction

The forward step is the part

x+k := [I − γ∇f ]xk = xk − γ∇f(xk)

and corresponds to the update step of the gradient descent method. The
backward step is the part

[I + γ∂ιR2
+
]−1x+k .

In this case, the backward step projects x+k onto the set R2
+. Therefore, the

proximal gradient method has reflected the constraints of the problem by a
backward step.

In contrast, the Bregman gradient descent method incorporates the con-
straints in the forward step of its algorithm. The Bregman gradient descent
method will be the main focus of Chapter 2, but we will here briefly introduce
its main idea.

The reason that we cannot guarantee convergence of the gradient method
in our problem is that f + ιR2

+
is no longer β-smooth for any β > 0. In fact,

there exists no quadratic majorizers of f+ιR2
+
. The Bregman gradient descent

method asks the question if we can instead find some other type of majorizer
and from that majorizer define an update step analogous to the gradient
descent method. The type of function which defines this majorizer is what
we will call a Bregman function and we will often denote it by h. In this
particular case, the Bregman function

h(x) =

{
− log(x1)− log(x2) if x ∈ R2

++

∞ otherwise
(1.1)

suits our problem, but more on that in Chapter 2. Moreover, in Chapter
2 we will derive the update step of the Bregman gradient descent method
(see (2.13)). Note that the effective domain of h equals that of f + ιR2

+
. This

should indicate that we have captured some of the problem geometry with
our algorithm.

See Figure 1.1 of how the first five iterations of the proximal gradient
method compares with the first five iterations of the Bregman gradient de-
scent method.
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1.2 Background

a0 = b0

a1

a2

a3

a4 = a5

b1

b2

b3
b4b5

minimize
x∈R2

x1 + x2 + ιR2
+
(x)

Figure 1.1 Comparing the first five iterations of the proximal gradient de-
scent {ak}∞k=0 with the Bregman gradient descent {bk}∞k=0 on the objective func-
tion f(x) = x1 + x2 with the added constraint x ∈ R2

+. The Bregman function
h(x) = −

∑2
i=1 log(xi) was used in the Bregman gradient descent algorithm. In

this example, both algorithms are implemented with a constant step-size.

1.2 Background

First-order Bregman type methods date back to classical treatments, such as
[15], under the name of mirror descent. Since its introduction, it has inspired
a great number of researchers and laid the groundwork for multiple algo-
rithms. See for example [6] for a treatment of random Bregman projections
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Chapter 1. Introduction

and [7] for Bregman analysis in the context of monotone operator theory
in a general Banach space. Another example is a nonlinear proximal point
algorithm based on Bregman functions in [12].

Despite - or perhaps because of - the longevity of the research of Breg-
man functions, it is still an active theoretical and applied research area. A
new descent Lemma, with respect to Bregman distances, was developed in
[4] which led to a natural derivation of the proximal-gradient scheme with
Bregman distances with applications including solving the Poisson inverse
problem. Relative smoothness with respect to Bregman functions, and its
connection with convergence analysis, was introduced in [14], with interest-
ing applications such as solving the classical D-optimal design problem. A
stochastic first-order Bregman method was examined in [3] in the context of
overparameterized nonlinear models.

First-order Bregman type methods have recently had applications in a
primal-dual problem setting. In [10] the Chambolle-Pock method was in-
troduced and extended in [11] to a Bregman variant. A drawback of this
non-linear primal-dual algorithm is that it imposes some strong restrictions
on the utilized Bregman functions. For instance, the two Bregman functions
in the algorithm are both assumed to be 1-strongly convex. This restriction
excludes for example the Bregman function defined in (1.1).

We will in Section 3.3 propose a new method with inspiration from the
NOFOB algorithm [13] that tackles these limitations. We will call this method
the Bregman NOFOB algorithm (see Algorithm 1 in Section 3.3). In partic-
ular, we will see that the Bregman Chambolle-Pock method is a special case
of the Bregman NOFOB algorithm. We will in this thesis take the first steps
towards a complete convergence analysis of the Bregman NOFOB algorithm.

1.3 Outline

In Chapter 2 we will introduce the Bregman function from an intuitive stand-
point. We will in Section 2.1 follow the steps of the gradient descent conver-
gence analysis in a more general setting, with an undefined function Dh

called the Bregman distance. We will there see what properties we want our
undefined function Dh to have in order for the Bregman gradient descent
algorithm to converge. In Section 2.2 we properly define the Bregman func-
tion h and its associated distance Dh. We will also show what restriction we
need to put on the Bregman function in order for the convergence analysis
to hold. In Section 2.2 we introduce the symmetry measure αh of a Breg-
man function h and how it relates to the step-sizes of the Bregman gradient
descent. Lastly, in Section 2.4 we will extend the Bregman gradient descent
algorithm to include a proximal part.

In Chapter 3 we will change the setting to a primal-dual one. The algo-
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1.4 Notation and Definitions

rithm called nonlinear forward-backward splitting with projection correction
(NOFOB), introduced in [13], will be treated in a Bregman setting. The two
steps of the algorithm: the forward-backward and the projection correction
step, will be discussed in Section 3.1 and 3.2 respectively. In Section 3.3 these
steps will be combined and form the novel Bregman NOFOB algorithm. In
a primal-dual problem setting, it will be shown that the Bregman NOFOB
algorithm generalizes the Bregman Chambolle-Pock algorithm [11]. Further-
more, the Bregman NOFOB algorithm has a special case with asymmetric
updates, which yields a flexible choice of Bregman function.

This special case with asymmetric updates will in Chapter 4 be applied
to the D-optimal design problem. Section 4.1 introduces the D-optimal de-
sign problem from a statistical and geometrical viewpoint. In Section 4.2 we
compare the Bregman NOFOB algorithm with the Wolfe-Atwood algorithm
[19] on some numerical experiments.

1.4 Notation and Definitions

In this section, we will collect the most common notation and definitions
used in the upcoming chapters.

We will let R denote the real numbers and Rn
+ be the subset of Rn which

contains vectors with only nonnegative components

Rn
+ := {x ∈ Rn | xi ≥ 0 for all i = 1, . . . , n}.

The set Rn
++ is the subset of Rn which contains vectors with only strictly

positive components. The subsets Rn
− and Rn

−− are defined analogously. If
x, y ∈ Rn we let

[x, y] := {z ∈ Rn | z = θx+ (1− θ)y for some θ ∈ [0, 1]}.

Furthermore, we define R := R ∪ {∞}. We will let ⟨·, ·⟩ denote the ordinary
inner product on Rn, defined by

⟨x, y⟩ = xT y =

n∑
i=1

xiyi.

If A and B are two sets, we write A ⊂ B if A is a subset of B. The
power set of A is denoted by 2A. The interior, relative interior, closure, and
boundary of A are denoted by int(A), relint(A), A, and bd(A) respectively.
Recall that a function f : A→ B is called a homeomorphism if f is bijective
and both f and f−1 are continuous (with respect to some topologies defined
on A and B). We will let I : A → A equal the identity function and the set

11



Chapter 1. Introduction

A will be clear from the context. The indicator function of a set S ⊂ Rn is
denoted by ιS : Rn → R and defined as

ιS(x) =

{
0, x ∈ S

∞, x ̸∈ S.

Let f : Rn → R. We define the effective domain of f as

dom f := {x ∈ Rn | f(x) <∞}.

Recall that the function f is proper and closed if dom f ̸= ∅ and its epigraph
{(x, r) ∈ Rn ×R | f(x) ≤ r} is closed, respectively. As usual, ∂f : Rn → 2R

n

denotes the subdifferential of f defined by

∂f(x) = {s ∈ Rn | f(y) ≥ f(x) + ⟨s, y − x⟩ for all y ∈ Rn}

for each x ∈ Rn. The conjugate function f∗ : Rn → R is defined by

f∗(s) = sup
x∈Rn

[⟨s, x⟩ − f(x)]

for each s ∈ Rn. The level set of f at ξ ∈ R is defined by

levξ f := {x ∈ Rn | f(x) ≤ ξ}.

A differentiable function f with dom f = Rn is called β-smooth, for some
β ≥ 0, if

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ β

2
∥y − x∥22

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ − β

2
∥y − x∥22

hold for all x, y ∈ Rn.
Let the sequence {xk}∞k=0, with xk ∈ Rn, be defined by the iterates from

an algorithm, which seeks to minimize an objective function f : Rn → R.
Then we say that the algorithm converges by sequence if {xk}∞k=0 converges
to some solution x⋆ of the minimization problem. Furthermore, {xk}∞k=0 con-
verges by (function) value if {f(xk)}∞k=0 converges to the optimum value de-
noted by f⋆. Note that a sequence need not converge by sequence even if it
converges by value.

Let g : Rn → R be a function with minimizing value g⋆. We define

Argmin
x∈Rn

g(x) = {x ∈ Rn | g(x) = g⋆}.
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1.4 Notation and Definitions

The proximal operator of a function ϕ : Rn → R, denoted by proxϕ : Rn →
2R

n

, is defined as

proxϕ(z) := Argmin
x∈Rn

[
ϕ(x) +

1

2
∥x− z∥22

]
.

If ϕ is closed convex, then proxp hi is a single-valued mapping from Rn to
Rn.

An operator M : Rn → 2R
n

is monotone if for all x, y ∈ Rn and u ∈ Mx
and v ∈My if the following holds

⟨u− v, x− y⟩ ≥ 0.

The zero-set of M is defined by

Zer[M ] := {x ∈ Rn | 0 ∈Mx}

and the fixed-point set of M by

Fix[M ] := {x ∈ Rn | x ∈Mx}.

A single-valued operator C : Rn → Rn is called 1
β -cocoercive if for all x, y ∈

Rn the following holds

⟨Cx− Cy, x− y⟩ ≥ 1

β
∥Cx− Cy∥22 .

Let A,B ∈ Rm×n. The Hadamard product of A and B is denoted by
A ◦B ∈ Rm×n and is given by (A ◦B)ij = AijBij . Recall that a matrix C ∈
Rn×n is called skew-symmetric if CT = −C. Let u ∈ Rn then Diag(u) ∈ Rn×n

denotes the diagonal matrix with u as its diagonal. Conversely, if U ∈ Rn×n

then diag(U) ∈ Rn is the diagonal vector of U . If a matrix X ∈ Rn×n is
symmetric and positive definite we write X ≻ 0. The set Sn++ is the set of
n× n positive definite (and symmetric) matrices

Sn++ := {X ∈ Rn×n | X ≻ 0}.

We will as usual equip Sn++ with the standard inner product ⟨X,Y ⟩ =
tr(XY ).
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2
Bregman Primal Method

2.1 The Bregman Distance and Bregman Primal Method

Let f : Rn → R be some differentiable function and consider the standard
primal minimization problem

minimize
x∈Rn

f(x). (2.1)

Suppose further that f is β-smooth, which implies that for every x, y in Rn

we have a following inequality

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ β

2
||y − x||22. (2.2)

The following update step is the well-known gradient method update step

xk+1 = xk − γk∇f(xk)

with a positive step-size γk. This update step gives rise to an algorithm which
we hope will converge to some solution x⋆ of (2.1). In fact, the convergence
to some minimizer x⋆ occurs under certain stronger conditions on f and on
the step size γk. One such pair of conditions is that f is convex and that γk
lies in the interval [ε, 2

β − ε] for all k, for some positive ε.

Now suppose we have a bounded step-size 0 < γk <
1
β . In this case, the

gradient method update step can be viewed as an update step of a certain
majorization-minimization algorithm. There exists some function g : Rn → R
with g ≥ f such that

xk+1 = argmin
y∈Rn

g(y).

Take g(y) to equal the right hand side of (2.2) and insert x = xk. Minimizing
g then turns into a quadratic programming problem:

argmin
y∈Rn

g(y) = argmin
y∈Rn

⟨∇f(xk), y⟩+
β

2
||y − xk||22.
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2.1 The Bregman Distance and Bregman Primal Method

The right hand side is a minimization of a strongly convex and differentiable
function and by the first order optimality condition has a minimum xk+1

satisfying

0 = ∇f(xk) + β(xk+1 − xk) =⇒ xk+1 = xk − 1

β
∇f(xk).

By a simple modification of g and using that β < 1
γk

we can by an analogous
argument arrive at the general gradient method update step.

One part to generalize in the previous discussion is the part played by
the distance function D : Rn × Rn → R given by

D(y, x) =
1

2
∥y − x∥22 . (2.3)

Is there any way to generalize this convergence theory for some different
distance Dh : Rn × Rn → R depending on some function h : Rn → R?
The answer is yes and the function h is what we later will call a Bregman
function. How this function h determines Dh and what properties h should
have, will be described in Section 2.2.

Assume from now on that f is convex and assume that we have found a
Bregman distance Dh such that the descent condition

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ βDh(y, x) (2.4)

holds. Intuitively, we want Dh to capture some of the geometry of f .
We can then define a majorization-minimization algorithm for any step-

size γk ∈ (0, 1
β ) as

xk+1 = argmin
y∈Rn

f(xk) + ⟨∇f(xk), y − xk⟩+
1

γk
Dh(y, xk). (2.5)

If we for the moment we will suppose that such a minimization problem is
well defined, this update step gives rise to an algorithm, that we will call The
Bregman Primal method. Let us now prove its convergence.

Convergence of The Bregman Primal Method

The descent condition and the algorithm update imply that the algorithm
iterates satisfy

f(xk+1) ≤ f(xk) + ⟨∇f(xk), xk+1 − xk⟩+ βDh(xk+1, xk).

Here we use that

⟨∇f(xk), xk+1 − xk⟩ = ⟨∇f(xk), z − xk⟩+ ⟨−∇f(xk), z − xk+1⟩.
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Chapter 2. Bregman Primal Method

Continuing the standard convergence argument, we bound this last term. In
the normal gradient descent scheme, when Dh(y, x) =

1
2 ∥y − x∥22, we use the

fact that

⟨−∇f(xk), z − xk+1⟩ =
1

γk
⟨xk+1 − xk, z − xk+1⟩

and the identity

⟨x− y, z − x⟩ = 1

2

(
∥z − y∥22 − ∥z − x∥22 − ∥x− y∥22

)
(2.6)

for all x, y, z ∈ Rn to get that

⟨−∇f(xk), z − xk+1⟩ ≤
1

2γk

(
∥z − xk∥22 − ∥z − xk+1∥22 − ∥xk+1 − xk∥22

)
and proceed from there.

In the general case the equality in (2.6) can be relaxed to an inequality
which we will from now on assume holds:

⟨−∇f(xk), z − xk+1⟩ ≤
1

γk
(Dh(z, xk)−Dh(z, xk+1)−Dh(xk+1, xk)) (2.7)

for all z ∈ Rn such that Dh(z, xk) ̸= ∞. The convexity of f gives that

f(xk) + ⟨∇f(xk), x⋆ − xk⟩ ≤ f(x⋆)

when combined with (2.7) gives that

f(xk+1) ≤ f(xk) + ⟨∇f(xk), xk+1 − xk⟩+ βDh(xk+1, xk)

≤ f(xk) + ⟨∇f(xk), x⋆ − xk⟩

+
1

γk
(Dh(x

⋆, xk)−Dh(x
⋆, xk+1)) +

(
β − 1

γk

)
Dh(xk+1, xk)

≤ f(x⋆) +
1

γk
(Dh(x

⋆, xk)−Dh(x
⋆, xk+1)) +

(
β − 1

γk

)
Dh(xk+1, xk)

where we in the second inequality use z = x⋆ in (2.7) and in the third
inequality use the convexity assumption on f . We get the inequality:

Dh(x
⋆, xk+1) ≤ Dh(x

⋆, xk) + (βγk − 1)Dh(xk+1, xk)

− γk(f(xk+1)− f(x⋆)). (2.8)

This inequality is a Lyapunov inequality if we further assume that Dh ≥ 0.
Suppose now that Dh(x, x) = 0, which is a natural condition on some

function Dh satisfying the descent condition (2.4). Without using the con-
vexity of f and considering z = xk in (2.7) we can instead arrive at the
weaker Lyapunov inequality

16



2.1 The Bregman Distance and Bregman Primal Method

f(xk+1) ≤ f(xk)−
1

γk
Dh(xk, xk+1)−

(
1

γk
− β

)
Dh(xk+1, xk)

=⇒ f(xk+1)− f(xk) ≤ − 1

γk
Dh(xk, xk+1)︸ ︷︷ ︸

≥0

−
(

1

γk
− β

)
︸ ︷︷ ︸

>0

Dh(xk+1, xk)︸ ︷︷ ︸
≥0

≤ 0.

This implies that {f(xk)}∞k=0 is a nonincreasing sequence. From this weaker
Lyapunov inequality we can extract

1− βγk
γk

Dh(xk+1, xk) ≤ f(xk)− f(xk+1). (2.9)

In order to arrive at suitable telescoping sum, we need a lower bound of
(1−βγk)/γk that is independent of k. Suppose that the step-sizes γk are not
only strictly upper bounded by 1/β but uniformly bounded in the sense that

γk ≤ 1− ε

β
⇐⇒ 1− βγk ≥ ε

for some ε ∈ (0, 1). Then we have that

1− βγk
γk

≥ βε

1− ε
> 0.

Now we can telescope (2.9) and arrive at

βε

1− ε

n∑
k=0

Dh(xk+1, xk) ≤ f(x0)− f(xn+1) ≤ f(x0)− f(x⋆) <∞.

This implies that {Dh(xk+1, xk)}∞k=0 is summable and limk→∞Dh(xk+1, xk) =
0.

Let us return to the first Lyapunov inequality (2.8). Since βγk − 1 < 0,
telescoping summation gives that

n∑
k=0

γk(f(xk+1)− f(x⋆)) ≤ Dh(x
⋆, x0)−Dh(x

⋆, xn+1) ≤ Dh(x
⋆, x0). (2.10)

Since {f(xk)}∞k=0 is nonincreasining we get that

n∑
k=0

γk(f(xn+1)− f(xk+1)) ≤ 0.
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Chapter 2. Bregman Primal Method

Adding this to equation (2.10) we finally get

f(xn+1)− f(x⋆) ≤ Dh(x
⋆, x0)∑n

k=0 γk
.

If
∑∞

k=0 γk = ∞, we have function value convergence. For instance, if the
step-size is constant or if it is uniformly bounded below by some positive
number, we have sublinear O(1/k) convergence.

Also notice how (2.8) implies the important property:

0 ≤ Dh(x
⋆, xk+1) ≤ Dh(x

⋆, xk) (2.11)

which implies that {Dh(x
⋆, xk)}∞k=0 converges, but not necessarily to zero.

It is a quite subtle question whether or not these convergence properties
imply sequence convergence, i.e., limk→∞ xk converges to some solution of
the problem. This question will be discussed in the following section.

2.2 Bregman Functions

Let us now state the general definition of a Bregman distance.

Definition 2.2.1. Let h : Rn → R be proper, closed, convex, and differ-
entiable on the non-empty set int(domh), then its corresponding Bregman
Distance Dh : Rn × int(domh) → R, is given by

Dh(x, y) = h(x)− h(y)− ⟨∇h(y), x− y⟩.

Note that if h(x) = 1
2 ∥x∥

2
2 then Dh(x, y) =

1
2 ∥x− y∥22, which is the func-

tion from (2.3) we wanted to generalize. Also, saying that Dh a distance is in
many ways misguided. For instance it neither satisfies the triangle inequality
or respects symmetry about its arguments.

We note that Dh(·, y) is differentiable on int(domh) with gradient

∇Dh(·, y) = ∇h(·)−∇h(y).

Now let us move on with a formal discussion of Bregman functions. We
begin by restating the properties we want a Bregman function Dh to have,
according to the discussion of the previous section, in order to get a well-
defined and convergent Bregman primal method. The following properties
should hold for all x ∈ Rn, y ∈ int(domh), z ∈ domh, and a given objective
function f : Rn → R, which is assumed to be convex. Furthermore, f is
assumed to be differentiable on the non-empty set int(dom f). Since h is
supposed to capture the geometry of f it is natural to assume some properties
of their effective domains. We will from now on assume that domh ⊂ dom f .
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2.2 Bregman Functions

With this inclusion of the effective domains in mind, we find it natural to
suppose that the set

argmin{f(x) | x ∈ domh}

is non-empty. Lastly, we will also suppose that the descent condition (2.4)
holds for some β > 0 and that the step-size satisfies 0 < γk <

1
β .

These are the properties that we will prove to hold:

P1. Dh(y, y) = 0.

P2. Dh(x, y) ≥ 0.

P3. f(x) ≤ f(y) + ⟨∇f(y), x− y⟩+ βDh(x, y).

P4. For some fixed y the function x 7→ f(y) + ⟨∇f(y), x− y⟩+ 1
γk
Dh(x, y),

has a unique minimum for all k.

P5. xk ∈ int(domh) for all k ≥ 1 given that x0 ∈ int(domh).

P6. ⟨−γk∇f(xk), z − xk+1⟩ ≤ Dh(z, xk)−Dh(z, xk+1)−Dh(xk+1, xk).

P7. limk→∞ xk exists and the limit point is a solution of the problem (2.1).

P1, P2, and P3

Some of the basic properties from the previous section that we want from a
Bregman distance to uphold can now be stated.

Proposition 2.2.2. Let h : Rn → R be proper, closed, convex, and differ-
entiable on the non-empty set int(domh). Then its corresponding Bregman
distance Dh satisfies P1 and P2.

Proof. We see that

Dh(y, y) = h(y)− h(y)− ⟨∇h(y), y − y⟩ = 0.

From the fact that h is convex we get the first order condition

h(x) ≥ h(y) + ⟨∇h(y), x− y⟩

for all x ∈ Rn and y ∈ int(domh). Therefore, Dh(x, y) ≥ 0. ■

The property P3 is something that does not hold in general, since we
have no real constraints on f . In fact, this upper bound of f is captured by
the following definition, which we will from now on assume.

19



Chapter 2. Bregman Primal Method

Definition 2.2.3. Let f : Rn → R and Dh be a Bregman distance with
corresponding function h : Rn → R. We say that f is β-relatively smooth
with respect to h if for any x ∈ Rn and y ∈ int(domh) there is a β ∈ R+ for
which

f(x) ≤ f(y) + ⟨∇f(y), x− y⟩+ βDh(x, y).

Remark. After expanding Dh(x, y), we get that the condition for relative
smoothness is equivalent with

βh(y)− f(y) + ⟨β∇h(y)−∇f(y), x− y⟩ ≤ βh(x)− f(x).

Therefore, f being β-relatively smooth with respect to h is equivalent with
the function βh−f being convex. Also notice that if f is β-relatively smooth-
ness with respect to h = 1

2 ∥·∥
2
2 then f is β-smooth in the nominal sense.

P4 and P5

Proving properties P4, P5, and P7 turns out to be a much more subtle
matter. As we will see, P6 follows by the standard Three-Point Property
once we have shown in P4 and P5 that the iterations {xk}∞k=0 are well-
defined. These properties described in P4, P5, and P7 are closely related to
the concepts of essential smoothness, essential strict convexity, and Legendre.

Definition 2.2.4. Let h : Rn → R be proper, closed, and convex. Then h is
Essentially Smooth if it is differentiable on the non-empty set int(domh)
and if for all convergent sequences {xk}∞k=0 in int(domh) with limit point in
bd(domh), we have that

lim
k→∞

∥∇h(xk)∥2 = ∞.

The following proposition more than justifies the somewhat perhaps non-
intuitive of essential smoothness.

Proposition 2.2.5 ([17, Theorem 26.1]). Let h : Rn → R be proper, closed,
and convex with int(domh) ̸= ∅. Then h is essentially smooth if and only if

∂h(x) =

{
{∇h(x)} if x ∈ int(domh)

∅ otherwise.

Example 2.2.6. The function h1 : R → R given by

h1(x) =

{
1
2x

2 if x ≥ 0

∞ otherwise.

is proper, closed, convex, and differentiable on int(domh) = (0,∞) but not
essentially smooth. For example, one can see that ∂h1(0) = {0} and use
Proposition 2.2.5.
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2.2 Bregman Functions

From only essential smoothness of h we can show the following weaker
statement of P5. For this purpose, let us the define g : Rn → R for some
fixed y in int(domh) by

g(x) = f(y) + ⟨∇f(y), x− y⟩+ 1

γk
Dh(x, y). (2.12)

Lemma 2.2.7. Let h : Rn → R be proper, closed, convex, and essentially
smooth. Suppose that g in (2.12) is minimized for some x⋆ ∈ Rn. Then

x⋆ ∈ int(domh).

Proof. By Fermat’s rule we get the optimality condition

0 ∈ ∂g(x⋆)

⇐⇒ 0 ∈ γk∇f(x) + ∂h(x⋆)−∇h(x)
⇐⇒ ∇h(x)− γk∇f(x) ∈ ∂h(x⋆).

In the first equivalence, we have used that a constraint qualification trivially
holds. The last inclusion can only be true if ∂h(x⋆) is non-empty. By Propo-
sition 2.2.5 we get that x⋆ must lie in int(domh). ■

Definition 2.2.8. Let h : Rn → R be proper, closed, and convex. Then h is
Essentially Strictly Convex if it is strictly convex on every convex subset
of dom ∂h.

Remark. Essential strict convexity is a weaker condition than strict con-
vexity. In other words, there exists functions h that are essentially strictly
convex but are not strictly convex on the convex set domh. The following
example analyses such a function.

Example 2.2.9 ([17, Example in 26]). Consider the function h2 : R2 → R
given by

h2(x, y) =


y2

2x − 2
√
y if x > 0 and y ≥ 0

0 if x = y = 0

∞ otherwise.

It is proper and convex. Since it is zero at the origin it is also closed. The
function is clearly not strictly convex on domh since it is zero along the
positive x-axis. If one considers the partial derivative

∂

∂y
h2(x, y) =

y

x
− 1

√
y
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Chapter 2. Bregman Primal Method

for x, y > 0 then it is evident that for any fixed x > 0:

∂

∂y
h2(x, y) → −∞ as y → 0.

With a similar analysis for the origin we can conclude that dom ∂h2 = R++.
We can compute the Hessian of h2 on R++ as

∇2h2(x, y) =

[
y2

x3 − y
x2

− y
x2

1
x + 1

2y3/2

]

which has determinant
√
y

2x3 > 0 and so the Hessian is positive definite for all
x, y > 0. Therefore h2 is not strictly convex on domh but is strictly convex
on dom ∂h and essentially strictly convex.

By Proposition 2.2.5 we have also shown that h2 is essentially smooth.

Example 2.2.10. The function h1 from example 2.2.6 has conjugate func-
tion

h∗1(µ) =

{
1
2µ

2 if µ ≥ 0

0 otherwise,

which is not essentially strictly convex. We have here an example of a function
h1 which is not essentially smooth and has a conjugate that is not essentially
strictly convex. This is in fact is not a coincidence.

Proposition 2.2.11 ([17, Theorem 26.3]). Let h : Rn → R be proper, closed,
and convex. Then h is essentially strictly convex if and only if h∗ is essentially
smooth.

Now let us return to our main objective of proving existence and unique-
ness of potential minimizers of g given in (2.12). We start with the uniqueness,
which is where we need the extra assumption of essentially strict convexity
on the Bregman function. This pair of assumptions are so common they have
been given a name.

Definition 2.2.12. Let h : Rn → R be proper, closed, and convex. Then h
is Legendre if it is essentially smooth and essentially strictly convex.

See Figure 2.1 for some typical examples of Legendre Bregman functions.

Lemma 2.2.13. Let h : Rn → R be proper, closed, convex, and Legendre.
Suppose that g in (2.12) is minimized for some x⋆ ∈ Rn, then it is the unique
minimizer of g.
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2.2 Bregman Functions

(−1, 1) (1, 1)

h1(x) h2(x)

Figure 2.1 Two typical examples of Legendre Bregman functions. The function
h1 has a bounded and closed effective domain [−1, 1]. The function h2 has an
unbounded and open effective domain (0,∞). Explicitly, the functions are defined
by h1(x) = 1−

√
1− x2 and h2(x) = − log(x).

Proof. Suppose that g is also minimized by some y⋆ ∈ Rn. By Lemma
2.2.7 we have that both x⋆, y⋆ ∈ int(domh). In general, we have the following
inclusion [17, Theorem 23.4]

relint(domh) ⊂ dom ∂h.

In our case, we have the standing assumption that int(domh) ̸= ∅ which
implies that [8, Fact 6.14(iii)]

relint(domh) = int(domh)

and so x⋆, y⋆ ∈ dom ∂h. The fact that h is strictly convex on the convex
subset [x⋆, y⋆] ⊂ dom ∂h implies that x⋆ = y⋆. ■

To prove P4 and P5, it remains to show that a minimizer of g exists.
There are multiple different requirements on the problem or its associated
Bregman function that would imply this existence property. In many cases,
when we are working with a fixed problem and Bregman function, we can
show it directly in that special case.

It is quite striking that with all the demands we have put upon our
problem, such as Legendreness of the Bregman function, it is still not enough
to guarantee that g has a minimizer. There are many roads to choose from
here; each giving seemingly different constraints on seemingly different parts
of the problem. We choose a constraint on the solution set of the problem,
namely that

S = argmin{f(x) | x ∈ domh}

is non-empty and compact.
Recall the definition of a level set of a function, for some ξ ∈ R we define

levξ f = {x ∈ Rn | f(x) ≤ ξ}.
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Proposition 2.2.14. Suppose that

S = argmin{f(x) | x ∈ domh}

is non-empty and compact and that the function f is β-relatively smooth with
respect to the Bregman function h, with domh ⊂ dom f . Let γk ∈ (0, 1

β ) and

y ∈ int(domh) then the function

g(x) = f(y) + ⟨∇f(y), x− y⟩+ 1

γk
Dh(x, y)

has a minimizer over domh.

Proof. Note that the set S can be written as

S = argmin{(f + ιdomh)(x) | x ∈ Rn}.

Let x⋆ ∈ S and ξ = (f + ιdomh)(x
⋆). Then the level set levξ(f + ιdomh) = S

is non-empty and bounded. Since f + ιdomh is proper, closed, and convex
and we have found one level set S which is bounded, [8, Propositions 11.12,
11.13] gives that all level sets of f + ιdomh are bounded. Let x ∈ domh. Since
dom g = domh we have that g(x) < ∞ and levg(x)(f + ιdomh) is bounded.
Now we get that

f(x) ≤ g(x)

=⇒ (f + ιdomh)(x) ≤ g(x) + ιdomh(x) = g(x)

=⇒ x ∈ levg(x) g ⊂ levg(x)(f + ιdomh)

and so
levg(x) g = domh ∩ levg(x) g

is non-empty and bounded. By [8, Theorem 11.10] we have that g has a
minimizer over domh.

■

Theorem 2.2.15. Let h : Rn → R be proper, closed, convex and Legendre.
Suppose that

S = argmin{f(x) | x ∈ domh}
is non-empty and compact and that the function f is β-relatively smooth with
respect to h. Then P4 and P5 hold.

Proof. By our assumptions, Proposition 2.2.14 gives that a minimizer
x⋆ ∈ domh exists to the function g given in P4. By Lemma 2.2.13 x⋆ is
unique and so P4 holds. By Lemma 2.2.7, x1 ∈ int(domh) if x0 ∈ int(domh)
and so by induction over k we have that P5 holds and the update step in
the Bregman primal method is well-defined. ■
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xk

xk+1

∇h(xk)

∇h(xk+1)

−γk∇f(xk)

∇h

∇h∗

int(domh) int(domh∗)

Figure 2.2 A representation of the update step of the Bregman gradient descent.

P6 and P7

From the proof of Lemma 2.2.7 we can now see that the iteration update
rule of the Bregman primal method can be written as

∇h(xk+1) = ∇h(xk)− γk∇f(xk). (2.13)

See Figure 2.2 for a visualization.
This update step is by our theory well-defined. If h is Legendre then we

know from Proposition 2.2.11 that both h and h∗ are essentially smooth
which by Proposition 2.2.5 gives that ∂h is a bijective single-valued map
from int(domh) to int(domh∗) with (∂h)−1 = ∂h∗. If h is furthermore con-
tinuously differentiable, which is often common in practice, then ∇h is a
homeomorphism between the two open sets int(domh) and int(domh∗). This
implies that the update rule can be made explicit:

xk+1 = ∇h−1[∇h(xk)− γk∇f(xk)].

If we compare this update rule to the standard case when h(x) = 1
2 ∥x∥

2
2 we

fall back onto the standard gradient descent method

xk+1 = xk − γk∇f(xk).

We can now rewrite P6 as for all z ∈ domh then

⟨∇h(xk+1)−∇h(xk), z − xk+1⟩ ≤ Dh(z, xk)−Dh(z, xk+1)−Dh(xk+1, xk)

should hold. This follows directly from the three points identity of Bregman
functions with the fact that xk ∈ int(domh).

Proposition 2.2.16 (Three Points Identity). Let h : Rn → R be proper,
closed, and convex. Then for all x, y ∈ int(domh) and z ∈ domh we have
that

⟨∇h(x)−∇h(y), z − x⟩ = Dh(z, y)−Dh(z, x)−Dh(x, y).
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Proof. Evaluating the right hand side reveals that all pure h(·) terms cancel
and all that remains is

Dh(z, y)−Dh(z, x)−Dh(x, y) = ⟨−∇h(y), z − y⟩
+ ⟨∇h(x), z − x⟩+ ⟨∇h(y), x− y⟩

= ⟨−∇h(y), z − x⟩+ ⟨∇h(x), z − x⟩
= ⟨∇h(x)−∇h(y), z − x⟩.

■

Now let us turn to the final property P7, which is that concerning the
sequential convergence of {xk}∞k=0 to some solution of the problem. We must
further demand some properties on our Bregman distance which have not
been captured yet. This is summarized in the following Theorem 2.2.17.

Recall from the previous section (2.11) that if z ∈ S then

0 ≤ Dh(z, xk+1) ≤ Dh(z, xk)

holds for all k. We also derived the following function value convergence

lim
k→∞

f(xk) = f(z).

Theorem 2.2.17. Let h : Rn → R be proper, closed, convex, and Legendre.
Suppose that

S = argmin{f(x) | x ∈ domh} = argmin{f(x) | x ∈ domh}

is non-empty and compact and that the function f is β-relatively smooth
with respect to h. Suppose further that for all ξ ∈ R and x ∈ domh the
level set levξDh(x, ·) is bounded and that for all sequences {yk}∞k=0 with yk ∈
int(domh) for all k and all y ∈ domh we have the following equivalence

lim
k→∞

yk = y ⇐⇒ lim
k→∞

Dh(y, yk) = 0.

Then the sequence {xk}∞k=0 converges to some solution x⋆ ∈ S.

Proof. Let z ∈ S. Then we know that the sequence {D(z, xk)}∞k=0 con-
verges and is nonincreasing which implies that for ξ = D(z, x0) we have
that

xk ∈ levξDh(z, ·) for all k = 0, 1, . . .

and {xk}∞k=0 is bounded. Therefore there exists some subsequence {xkn}∞n=0

of {xk}∞k=0 which converges to some x⋆ ∈ domh. Furthermore, we know that
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2.2 Bregman Functions

x⋆ must lie in S and solve the problem, which implies that x⋆ ∈ domh. Since
limn→∞ xkn = x⋆ we have that

lim
n→∞

Dh(x
⋆, xkn

) = 0.

Now let ε > 0 and there is some N > 0 such that n ≥ N implies that

Dh(x
⋆, xkn) < ε.

Then for any k ≥ kN we must also have that Dh(x
⋆, xk) < ε and so

lim
k→∞

Dh(x
⋆, xk) = 0.

From our hypothesis, we know that this must imply convergence:

lim
k→∞

xk = x⋆.

■

There are two properties of importance in the hypothesis of this Theorem
2.2.17. First is that the level sets levξDh(x, ·) are bounded and second is that

lim
k→∞

yk = y ⇐⇒ lim
k→∞

Dh(y, yk) = 0

holds. Giving conditions that in turn would imply these two properties is
quite a complicated matter. For more details we refer to [6]. We will give an
instant of such constraints that are in particular relevant to the later sections
of this thesis.

Proposition 2.2.18. Let h : Rn → R be proper, closed, convex, and Legen-
dre. Suppose that both domh and domh∗ are open. Then for all ξ ∈ R and
x ∈ domh the level set levξDh(x, ·) is bounded and for all sequences {yk}∞k=0

with yk ∈ int(domh) for all k and all y ∈ domh we have the following
equivalence

lim
k→∞

yk = y ⇐⇒ lim
k→∞

Dh(y, yk) = 0.

Proof. The level sets levξDh(x, ·) are bounded by [6, Corollary 3.11]. The
right and left implications in the equivalence above follow from [6, Proposi-
tion 3.2] and [6, Theorem 3.9] respectively. ■

Remark. It is interesting how we have yet to use in our analysis the fact
that {Dh(xk+1, xk)}∞k=0 is summable. This property will enter the picture in
the next section, where we will relax the upper bound of the step-sizes γk to
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be larger than 1
β . We know from the standard gradient descent scheme that

we might relax up to γk ∈ (0, (2− ε)/β] for some ε ∈ (0, 2). We will see that
if the iterates are well-defined (P4 and P5) then an associated relaxation of
the Bregman primal method holds. In fact, we can let γk ∈ (0, (1+α− ε)/β]
for some ε ∈ (0, 1 + α) where the α is bounded inside [0, 1] and depends on
the symmetry of Dh.

2.3 Symmetry of the Bregman Distance

Let us first define the Symmetry Coefficient of a Bregman function.

Definition 2.3.1. Let h : Rn → R be proper, closed, convex, and Legendre.
The Symmetry Coefficient αh is the value

αh = inf

{
Dh(x, y)

Dh(y, x)
| x, y ∈ int(domh) and x ̸= y

}
.

Note that Dh ≥ 0, int(domh) ̸= ∅ by essential smoothness, and by the
essential strict convexity of h we can have Dh(x, y) = 0 only if x = y and so
αh is always well-defined. Also see that if for all x, y ∈ int(domh) we have
that

Dh(x, y)

Dh(y, x)
> 1 =⇒ Dh(y, x)

Dh(x, y)
< 1

which gives that αh ∈ [0, 1] for any Bregman function h. If h = 1
2 ∥·∥

2
2 then

Dh(x, y) =
1
2 ∥x− y∥22 is entirely symmetric and so

Dh(x, y) = Dh(y, x) =⇒ αh = 1.

It is natural to ask if there exists more examples of Bregman functions h such
that αh = 1. The answer is yes. If h : Rn → R is a strictly convex quadratic

h(x) =
1

2
⟨x,Ax⟩+ ⟨b, x⟩+ c

for any positive definite matrix A ∈ Sn++, b ∈ Rn and c ∈ R then

Dh(x, y) =
1

2
∥x− y∥2A =⇒ αh = 1.

Let us now the question: are there any strictly convex Bregman functions
h other than the strictly convex quadratics such that αh = 1. The answer
is no and it has been previously mentioned in for example [4]. It has been
proven in [5] in a weaker form, where h was assumed to be a one-dimensional
function h : R → R and twice differentiable. To the best of our knowledge,
the general proof given below has not been covered before in this manner.
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Proposition 2.3.2. Let h : Rn → R be proper, closed, convex, and Legendre.
Then αh = 1 if and only if h is a strictly convex quadratic function with
domh = Rn.

Proof. From the previous remark, it remains to show the ( =⇒ ) direction.
Therefore, suppose that αh = 1 holds from which we directly get that

Dh(x, y) = Dh(y, x) (2.14)

for all x, y ∈ int(domh).
We claim that without loss of generality we can assume that 0 ∈

int(domh), h(0) = 0 and ∇h(0) = 0. Since there exists some x0 ∈ int(domh)
we can consider the translation h ◦ Tx0 where Tx0(x) = x − x0. It is
easy to see that h ◦ Tx0

is also proper, closed, convex, and Legendre, with
0 ∈ int(domh ◦ Tx0

). Importantly also αh◦Tx0
= αh.

Now suppose that 0 ∈ int(domh) and set c = h(0) and b = ∇h(0).
Consider a linear perturbation of h given by ĥ(x) = h(x)− ⟨b, x⟩ − c. Again

we see that ĥ is proper, closed, convex, and Legendre with int(dom ĥ) =
int(domh). Furthermore, Dĥ = Dh and so αĥ = αh.

From now on, suppose therefore that 0 ∈ int(domh), h(0) = 0 and
∇h(0) = 0. We show that ∇h is a linear map on int(domh):

∇h(x) = Ax

for some matrix A ∈ Rn×n. This implies by essential smoothness that
int(domh) = Rn and so domh = Rn. By essential strict convexity we get
that A ∈ Sn++ and we are done.

Take y = 0 in (2.14) to get

h(x) = −h(x)− ⟨∇h(x),−x⟩

=⇒ h(x) =
1

2
⟨∇h(x), x⟩

which must hold for any x ∈ int(domh). Return to (2.14) for any x, y ∈
int(domh) with this in mind to get

h(x)− h(y)− ⟨∇h(y), x− y⟩ = h(y)− h(x)− ⟨∇h(x), y − x⟩
2h(x)− ⟨∇h(x), x⟩+ ⟨∇h(x), y⟩ = 2h(y)− ⟨∇h(y), y⟩+ ⟨∇h(y), x⟩

=⇒ ⟨∇h(x), y⟩ = ⟨∇h(y), x⟩.

Let C be the closed set C = bd(domh). We now show that C must be the
empty set. Assume, in hope of a contradiction, that C ̸= ∅ then the number

r := inf
x∈C

∥x∥∞
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exists, since the right hand side is an infimum of a non-empty set of non-
negative real numbers. Furthermore, r > 0 since 0 ∈ int(domh) and C is
closed. Again by C being closed and non-empty, we get that there exists
some xr ∈ C such that ∥xr∥∞ = r. Define U to be the open ball with center
0 and radius r/2 with respect to the infinity norm:

U =

{
x ∈ Rn | ∥x∥∞ <

r

2

}
.

Now let x1, x2 ∈ U which gives that x1 + x2 ∈ int(domh) and

⟨∇h(x1 + x2), y⟩ = ⟨∇h(y), x1 + x2⟩
= ⟨∇h(y), x1⟩+ ⟨∇h(y), x2⟩
= ⟨∇h(x1), y⟩+ ⟨∇h(x2), y⟩

holds for all y ∈ int(domh). In particular it holds for any scaled standard
basis vector y = λiei for small enough λi ∈ (0, 1). Then we have that

λi⟨∇h(x1 + x2), ei⟩ = λi(⟨∇h(x1), ei⟩+ ⟨∇h(x2), ei⟩)

which implies that

∇h(x1 + x2) = ∇h(x1) +∇h(x2).

Now consider the convergent sequence {xk}∞k=0 given by xk = µkxr where
µk = 1− 1/(k + 1). It follows that for all k ≥ 0 we have that xk/2 ∈ U and
so

∇h(xk) = ∇h
(xk
2

+
xk
2

)
= 2∇h

(xk
2

)
.

By essential smoothness of h and the fact that limk→∞ xk = xr ∈ bd(domh)
we have that

lim
k→∞

∥∥∥∇h(xk
2

)∥∥∥
2
= ∞

which contradicts the definition of r. Therefore, C = ∅ and

int(domh) = domh = Rn.

Similar to the method above, we can show that for all x, y ∈ Rn and c ∈ R:

⟨∇h(cx), y⟩ = c⟨∇h(x), y⟩ =⇒ ∇h(cx) = c∇h(x).

With the fact that additivity of ∇h also holds, ∇h must be linear:
∇h(x) = Ax for some A ∈ Rn×n. By essential strict convexity we must
have that A is positive definite and we are done. ■
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2.3 Symmetry of the Bregman Distance

Remark. If one were to skip the requirement of h being essentially smooth,
then it is of course easy to construct other Bregman functions h such that
αh = 1. Take for example h : R → R with

h(x) =
1

2
x2 + ι[−1,1](x).

An interesting observation is the equation

h(x) =
1

2
⟨∇h(x), x⟩

which we arrived at in the proof of Proposition 2.3.2. This is related to
the famous Euler’s homogeneous function theorem. If h is assumed to be
continuously differentiable with domh = Rn, then this equation is solved
precisely by functions h which are positively homogeneous of degree 2. In
other words, the functions such that

h(cx) = c2h(x)

holds for each x ∈ Rn and c > 0. It is easy to construct such a function h
which is not a strictly convex quadratic. Consider for example the proper,
closed, convex, and Legendre h : R2 → R given by

h(x1, x2) =
1

4

√
x41 + x42,

which is positively homogeneous of degree 2, but does not contradict Propo-
sition 2.3.2. In fact, after some laborious calculations, one can check that
Dh(x, y) = Dh(y, x) holds only when

(x1y1 − x2y2)(x1y2 − x2y1) = 0,

which equals the union of two closed cones in R4.

Now let us use the symmetry coefficient αh to perhaps relax the step-size
requirement we previously have used. Let us from now on suppose that the
update step is well-defined for step-sizes

γk ∈
(
0,

1 + α− ε

β

]
for some ε ∈ (0, 1 + α). First let us show that the sequence {f(xk)}∞k=0 is
nonincreasining. Recall from Section 2.1 how we ended up with the inequality

f(xk+1)− f(xk) ≤ − 1

γk
Dh(xk, xk+1)︸ ︷︷ ︸

≥0

−
(

1

γk
− β

)
︸ ︷︷ ︸

>0

Dh(xk+1, xk)︸ ︷︷ ︸
≥0

≤ 0.
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Chapter 2. Bregman Primal Method

Now this inequality still hold, but not for the same reason. Notice that we
can no longer claim that γ−1

k − β > 0. Instead we can use the symmetry
of the terms Dh(xk, xk+1) and Dh(xk+1, xk) with relation to the symmetry
coefficient. We have that

αDh(xk+1, xk) ≤ Dh(xk, xk+1)

and so

γk(f(xk+1)− f(xk)) ≤ −Dh(xk, xk+1)− (1− β)Dh(xk+1, xk)

≤ − (α+ 1− γkβ)︸ ︷︷ ︸
>ε

Dh(xk+1, xk) ≤ 0.

We have shown now that even in this relaxed case, {f(xk)}∞k=0 is nonin-
creasining.

With similar modifications, see [4], one can show that {Dh(xk+1, xk)}∞k=0

is summable and that we get a similar function value convergence:

f(xn+1)− f(x⋆) ≤ Dh(x
⋆, x0) + αW∑n
k=0 γk

where W =
∑∞

k=0Dh(xk+1, xk) <∞.

2.4 The Proximal Gradient Bregman Method

Similar to how the standard gradient descent method can be generalized to a
proximal-gradient method, we will see how a similar treatment can be applied
to our Bregman gradient method. Fortunately, most of our previous proofs
and arguments hold directly - or by some modification - in this new setting.

Let ϕ : Rn → R be some proper, closed, and convex function. Note that
we do not require ϕ to be differentiable. We consider the primal minimization
problem

minimize
x∈Rn

f(x) + ϕ(x). (2.15)

In the normal gradient descent method, where f is assumed to be β-relatively
smooth to the Bregman function h = 1

2 ∥·∥
2
2, we would extend our optimiza-

tion method to the proximal gradient descent with update step

xk+1 = proxγkϕ
[xk − γk∇f(xk)].

For a suitably small step-size γk ∈ (0, 1/β] this update step can be seen as a
majorization-minimization algorithm. We will now follow the same reasoning
and arguments to develop a proximal gradient Bregman algorithm.
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2.4 The Proximal Gradient Bregman Method

Let xk ∈ int(domh) and define similar as before g : Rn → R to be

g(x) = ϕ(x) + f(xk) + ⟨∇f(xk), x− xk⟩+
1

γk
Dh(x, xk).

If all our previous hypotheses hold concerning the differentiable function f ,
the Bregman function h, the step-size γk, and how they relate to each other,
then first of all g ≥ f + ϕ. We also know that the forward gradient step
x+k ∈ int(domh) is well-defined and given by (see Lemma 2.2.7)

x+k = ∇h∗(∇h(xk)− γk∇f(xk)).

Now consider the expression Dh(x, x
+
k ). After expanding this we get the

expression

Dh(x, x
+
k ) = h(x)− h(∇h∗(∇h(xk)− γk∇f(xk)))

− ⟨∇h ◦ ∇h∗︸ ︷︷ ︸
=I

(∇h(xk)− γk∇f(xk)), x−∇h∗(∇h(xk)− γk∇f(xk))⟩.

If we remove the terms that are independent of x, we get the expression

h(x)− ⟨∇h(xk)− γk∇f(xk), x⟩.

Lastly, after multiplying this expression by a constant γ−1
k and adding some

terms independent of x we arrive at

f(xk) + ⟨∇f(xk), x⟩+
1

γk
[h(x)− h(xk) + ⟨∇h(xk), x− xk⟩]

= f(xk) + ⟨∇f(xk), x⟩+
1

γk
Dh(x, xk).

What we end up with is that minimizing g is equivalent with minimizing the
function x 7→ ϕ(x) + 1

γk
Dh(x, x

+
k ). We notice that it makes sense to assume

at least that domϕ ∩ domh ̸= ∅. It is now natural to define a new type of
a proximal operator, which depends on the Bregman function h. We will let
proxhγkϕ

: int(domh) → 2R
n

be given by

proxhγkϕ
(y) = Argmin

x∈Rn

[
ϕ(x) +

1

γk
Dh(x, y)

]
.

This operator is at least single-valued when for instance the level sets of
ϕ are bounded (which naturally holds for example when ϕ is an indicator
function of a bounded set or a non-differentiable norm regularizer), by [8,
Corollary 11.16], sinceDh(·, y) ≥ 0 always holds. The Bregman prox-operator
is furthermore single-valued if h is assumed to be strictly convex. Recall that
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Chapter 2. Bregman Primal Method

strict convexity is a stronger condition than essential strict convexity by
Example 2.2.9.

It can very well happen that the single unique minimizer given by the
Bregman prox-operator lies on domh \ int(domh) which would make the
next iteration step in our algorithm invalid. Consider for example a Legendre
Bregman function h : R → R with domh = [−1, 1], h(−1) = h(1) = 1,
∇h(0) = 0, and ∇h(x) → ∞ if x → −1+ or x → 1−. If for some initial
value x0 ∈ (−1, 1) we have that x+0 = 0 we would be in trouble if ϕ(x) =
|x − 1| − C for large enough C > 0. Then proxhγkϕ

(x0) = 1 ̸∈ int(domh).
Furthermore, x1 = 1 might not even be a minimizer of the objective function
f + ϕ. Note that this type of problem will never occur if we assume that
domϕ ⊂ int(domh).

With small modifications of our discussion, function value convergence of
{ϕ(xk) + f(xk)}∞k=0 and sequence convergence of {xk}∞k=0 can be extended
in this prox-setting. See [4] for the complete story.

We will end off this chapter by showing how the update step of the prox-
imal Bregman method can be described by operators. This will lead us to
the framework of monotone inclusion problems, which is a theory that lets
use analyse and unify many optimization algorithms effectively. One of these
algorithms is the NOFOB algorithm [13], which the next chapter will concern
(of which the proximal Bregman method is a special case).

We have seen that the update step is given by

xk+1 = proxhγkϕ
(x+k )

where the forward step x+k satisfies

∇h(x+k ) = ∇h(xk)− γk∇f(xk).

Since we have assumed before the relevant constraint qualifications, we can
freely distribute the subdifferental operator. We arrive at the optimality con-
dition

0 ∈ ∂ϕ(xk+1) +
1

γk
∇h(xk+1)−

1

γk
∇h(x+k )

⇐⇒
xk+1 ∈ [∇h+ γk∂ϕ]

−1∇h(x+)
= [∇h+ γk∂ϕ]

−1[∇h− γk∇f ]xk.

By our theory, the xk+1 is uniquely determined:

xk+1 = [∇h+ γk∂ϕ]
−1[∇h− γk∇f ]xk,

which exactly generalizes the proximal gradient update step when ∇h = I.
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3
Bregman Primal-Dual
Methods

In this chapter our goal is to introduce the NOFOB algorithm [13] and show
how our Bregman theory can be viewed in this framework. The NOFOB
algorithm consists of two steps. First a forward-backward map and then a
projection onto a hyperplane. The first two sections of this chapter will deal
with each of these steps respectively, in a Bregman theory setting. In the third
section, we will introduce a primal-dual problem and the NOFOB algorithm
in a Bregman setting.

3.1 The forward-backward Step

We will begin by describing the general NOFOB setting. Consider the inclu-
sion problem

0 ∈ [A+ C]x

for some operators A,C. In order to coincide with previous results it is
appropriate to suppose that A : Rn → 2R

n

is maximally monotone and
C : Rn → Rn is 1

β -cocoercive. We wish to find some x ∈ Rn that satisfies

x ∈ Zer[A+ C] ̸= ∅.

The forward-backward step is defined by an operator Tk : Rn → 2R
n

which
in turn is defined by some operator Mk : Rn → Rn by

Tk = [Mk +A]−1[Mk − C].

We then define the forward-backward step by

xk+1 ∈ Tkxk

35



Chapter 3. Bregman Primal-Dual Methods

and the initial x0 can be chosen arbitrary. If we for the moment assume that
this update step is well defined, we can see that

x ∈ FixTk ⇐⇒ x ∈ Tkx

⇐⇒ x ∈ [Mk +A]−1[Mk − C]x

⇐⇒ Mkx− Cx ∈Mkx+Ax

⇐⇒ 0 ∈ [A+ C]x ⇐⇒ x ∈ Zer[A+ C].

Which means that FixTk = Zer[A+ C].
At this point it is very tempting to compare this update step with the

previously seen proximal gradient update step

xk+1 =

[
1

γk
∇h+ ∂ϕ

]−1[
1

γk
∇h−∇f

]
.

With this line of thought we would let A represent the proximal, proper,
closed, convex, and non-smooth ∂ϕ and C represent the proper, closed, con-
vex, and smooth ∇f . Furthermore, Mk would represent the Bregman part
γ−1
k ∇h. But there are multiple problems with this approach. First let us

describe the problems and then how we can remedy them.
First of all, setting C = ∇f makes no sense, since we have previously

assumed f : Rn → R to allow dom f ̸= Rn. Therefore, ∇f is certainly not
in general 1

β -cocoercive or β-Lipschitz continuous, since f may not be β-
smooth. This is not a fault in our chosen problem setting, but a strength. It
allows our method to be more flexible. We have introduced theory of f being
β-relatively smooth with respect to a Bregman function h which we want to
represent in this NOFOB setting.

But the problems do not end there. Similarly to the previous issue, we
cannot simply set Mk = γ−1

k ∇h because of discrepancies with its domain
domh which might not equal the entire Rn. A deeper issue arises when
examining what properties Mk should have in order to guarantee that the
forward-backward step is well-defined and the convergence of the complete
NOFOB algorithm. In [13], it is described that Mk should at least be 1-
strongly monotone and we have nowhere assumed any strong convexity of h
before.

Our remedy is the following. Let A instead represent the whole sum

A = ∂ϕ+∇f,

which is certainly maximally monotone. This forces C = 0 which is certainly
cocoercive. The forward part of Tk is now only an explicit Mk step, which
inspires us to set

Mk =
1

γk
∇h−∇f.
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3.2 The Bregman Projection

Note that Mk is now maximally monotone, which follows directly from f
being β-relatively smooth with respect to h and γk ∈ (0, 1

β ). It also follows
that indeed

Tk = [∇h+ γk∂ϕ]
−1[∇h− γk∇f ].

From the theory of the previous chapter, if h is assumed further to be
Legendre, ϕ has appropriate domain, and xk ∈ int(domh), then the do-
main of Tk contains int(domh) and is single valued on int(domh) with
Tkxk ∈ int(domh).

3.2 The Bregman Projection

Let xk ∈ int(domh) and x̂k = Tkxk. Consider the half-spaceHk ⊂ Rn defined
by xk and x̂k given by

Hk = {z ∈ Rn | ⟨Mkxk −Mkx̂k, z − x̂k⟩ ≤ 0}. (3.1)

There are some basic properties that we can extract from this definition.
First of all x̂k ∈ bd(Hk) follows directly. If Mk is strictly monotone, which
for instance happens when γk ∈ (0, 1

β ) we get that xk ̸∈ Hk if and only if

xk ̸= x̂k, which happens if and only if xk ̸∈ Zer[A+ C] = Zer[A].
Suppose that x⋆ ∈ Zer[A]. Can we relate this condition to Hk? First,

since

x̂k ∈ [Mk +A]−1Mkxk

Mkxk −Mkx̂k ∈ Ax̂k,

and the fact that 0 ∈ Ax⋆ we can use that A is monotone with respect to x⋆

and xk to get

⟨0− (Mkxk −Mkx̂k), x
⋆ − x̂k⟩ ≥ 0.

This is equivalent with x⋆ ∈ Hk. We summarize our findings in the following
proposition.

Proposition 3.2.1. Suppose that xk ∈ int(domh), Mk is strictly monotone
and that x̂k = Tkxk is well-defined. Then x̂k ∈ Hk and if xk /∈ Zer[A] then
the hyper-plane bd(Hk) strictly separates Zer[A] and the singleton {xk}. If
xk ∈ Zer[A] then also xk ∈ Hk.

We can now fully write out the second step of the NOFOB algorithm. It
is of the form of a projection of xk onto Hk with respect to the geometry
induced by h:

xk+1 = Πh
Hk

(xk) := argmin
x∈Hk

Dh(x, xk).
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Chapter 3. Bregman Primal-Dual Methods

There are some non-subtle and subtle details that we need to face. First of
all, we need the minimizing point of Dh(x, xk) in Hk to exist and be unique.
Furthermore, we must demand that xk+1 ∈ int(domh) in order to have a
well-defined next step of the algorithm.

One might fear that these three desired properties regarding this partic-
ular Bregman projection will require new constraints on h. Beautifully, this
is not the case. Every such desired property follows from the update steps of
the algorithm and the Legendreness of h.

Theorem 3.2.2. Suppose that h : Rn → R is proper, closed, convex, and
Legendre. Let y ∈ int(domh). If C is some closed convex set satisfying the
constraint qualification C ∩ int(domh) ̸= ∅ then

Πh
C(y) = argmin

x∈C
Dh(x, y)

is well-defined, single valued, and contained in int(domh).

Proof. We begin by showing that such a minimizer of Dh(·, y) exists over
C. Since C is closed and convex with C ∩ dom f ̸= ∅ then by [8, Proposition
11.15] such a minimizer exists if the level set levξDh(·, y) is bounded for all
ξ ∈ R. This is not the type of level sets that have appeared in the previous
chapter, which were of the type levξDh(x, ·). Since

Dh(x, y) = h(x)− h(y)− ⟨∇h(y), x− y⟩
= h(x)− ⟨∇h(y), x⟩ − h(y) + ⟨∇h(y), y⟩︸ ︷︷ ︸

independent of x

we can instead show that the level sets levξ[h(·)−⟨∇h(y), ·⟩] are bounded. Re-
call that the map ∇h is a homeomorphism between the open sets int(domh)
and int(domh∗) which implies that ∇h(y) ∈ int(domh∗). By [8, Theorem
14.17] we have precisely that the level sets levξ[h(·)−⟨∇h(y), ·⟩] are bounded.
Therefore, Dh(·, y) has a minimizer over C.

Now let us show that the set K = Argminx∈C Dh(x, y) is contained in
int(domh). Suppose, in hope of a contradiction, that there exists some x ∈
K \ int(domh). It is clear that x must be an element of domh, otherwise
Dh(x, y) would be infinite. This implies that x ∈ bd(h) ∩ domh. By the
constraint qualification, we can also find some z ∈ C ∩ int(domh). The line
segment [x, z] ⊂ C and furthermore [x, z] ⊂ K. Let the function l : [0, 1] → K
trace out this line segment:

l(t) = tx+ (1− t)z

and consider the function d : [0, 1] → R given by d(t) = Dh(l(t), y). By the
chain rule, d is differentiable on (0, 1) with derivative

d′(t) = ⟨∇h ◦ l(t), x− z⟩ − ⟨∇h(y), x− z⟩.
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3.2 The Bregman Projection

The limit as t→ 0+ of the first of these two terms is the directional derivative
of h at the point x with respect to the direction x− z. Since h is essentially
smooth, we have that ∂h(x) = ∅ and it follows that

lim
t→0+

⟨∇h ◦ l(t), x− z⟩ = −∞ =⇒ lim
t→0+

d′(t) = −∞.

This is a clear contradiction to the fact that [x, z] ⊂ K, since by continuity
we can find some small enough t ∈ (0, 1) such that d(t) < d(0). Therefore,
K ⊂ int(domh).

Now it is straightforward to see that K must be a singleton. In fact, we
have that

K ⊂ int(domh) = dom ∂h

and by essential strict convexity of h, h is strictly convex on K. ■

Note that in the setting of the NOFOB algorithm, the constraint quali-
fication Hk ∩ int(domh) ̸= ∅ follows for free. By Proposition 3.2.1 we have
that x̂k ∈ Hk and we also know that x̂k ∈ int(domh).

Furthermore, if xk /∈ Zer[A] then the projection xk+1 lies on the boundary
of Hk. The argument is simple. Suppose that xk ∈ int(Hk). Since int(Hk) is
open, the necessary first-order condition of optimality says that

∇Dh(·, xk) |xk+1
= ∇h(xk+1)−∇h(xk) = 0.

From h being Legendre we know that ∇h is injective and so xk+1 = xk. This
is a contradiction by Proposition 3.2.1. We summarize this in the following
proposition.

Proposition 3.2.3. Suppose that h : Rn → R is proper, closed, convex, and
Legendre. Suppose that xk ∈ int(domh), Mk is strictly convex, and x̂k =
Tkxk is well-defined. Let Hk be defined as in (3.1). Then Πh

Hk
(xk) is well-

defined, single-valued, contained in int(domh), and satisfies

Πh
Hk

(xk) = Πh
bdHk

(xk).

Note that the optimization problem given by Πh
bdHk

(xk) has the following
Lagrange optimality condition{

∇h(xk+1) = ∇h(xk)− λk(Mkxk −Mkx̂k)

0 = ⟨Mkxk −Mkx̂k, xk+1 − x̂k⟩
(3.2)

solved by some unique Lagrange multiplier λk ∈ R. These unique values
λk will be called the projection steps of the coming Bregman NOFOB
algorithm (see Section 3.3).
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Chapter 3. Bregman Primal-Dual Methods

Remark. Recall the primal proximal Bregman setting from the previous
chapter with backward step

xk+1 = argmin
x∈Rn

[
ϕ(x) +

1

γk
Dh(x, x

+
k )

]
.

Consider the special case when ϕ is some proximal indicator function ϕ =
ιC for some convex set C. Then this backward step reduces to a standard
Bregman projection

xk+1 = Πh
C(x

+
k ).

The theory of this section can thus be utilized, if we impose the natural
constraint qualification of C and h, to show that the backward step is well-
defined, single valued. Also xk+1 ∈ int(domh) and so the algorithm may
continue in the next update step.

3.3 The Bregman NOFOB Algorithm

Now we will combine a forward-backward step of a possibly nonlinear ker-
nel Mk : Rp → Rp followed by a projection correction onto a half-space
Hk, separating Zer[A] and the singleton {xk}, with respect to some Breg-
man function h : Rp → R. In particular, we will from now focus on solving
monotone inclusion problems 0 ∈ Az where A : Rp → 2R

p

has a particular
form:

A = ∂F +K.

Here F : Rp → R is some proper, closed, and convex function with subdif-
ferential ∂F : Rp → 2R

p

and K : Rp → Rp is some linear skew-symmetric
operator. Soon we will see why this form of A naturally occurs in a primal-
dual setting, see (3.3).

We propose a kernel Mk : Rp → 2R
p

of a special form:

Mk = ∂ψk + K̃.

The function ψk : Rp → R is assumed to be proper, closed, convex, and
differentiable on the nonempty set int(domψ). In some sense the part of ψk

will capture a possible Bregman structure of the inclusion problem. On the
other hand, the operator K̃ : Rp → Rp will capture the linear skew-symmetric
part. In fact, K̃ will be assumed to be linear skew-symmetric and take the
form

K̃ = KM −K.

Once more KM : Rp → Rp is assumed to be linear skew-symmetric. Note
that for zk ∈ int(domMk) we have that the setMkzk is a singleton and (with
some abuse of notation) equals

Mkzk = ∇ψk(zk) +KMzk −Kzk.
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3.3 The Bregman NOFOB Algorithm

Algorithm 1: Bregman NOFOB

Let : Mk = ∂ψk + K̃, Legendre Bregman function h
Input : z0 ∈ int(domMk)

1 for k = 0, 1, . . . do
2 ẑk := [Mk +A]−1Mkzk = [∇ψk +KM + ∂F ]−1[∇ψk +KM −K]zk
3 Hk := {z ∈ Rp | ⟨Mkzk −Mkẑk, z − ẑk⟩ ≤ 0}
4 zk+1 := Πh

Hk
(zk)

5 end

z0

ẑ0

z1
z⋆

H0

M0z0 −M0ẑ0

Zer[A]

Figure 3.1 A representation of the first iteration of the Bregman NOFOB algo-
rithm.

See Figure 3.1 for a graphical representation of the first iteration of the
Bregman NOFOB algorithm.

The following standard proposition describes how many desirable prop-
erties of ψk carry over to its associated kernel Mk irrespective of how K̃
behaves.

Proposition 3.3.1. Let Mk = ∂ψk + K̃ where K̃ is linear skew-symmetric.
Then

(i) If ∂ψk is monotone then Mk is monotone.

(ii) If ∂ψk is strictly monotone then Mk is strictly monotone.

(iii) If ∂ψk is maximally monotone then Mk is maximally monotone.

Proof. Let u ∈Mkx, v ∈Mky then

⟨u− v, x− y⟩ = ⟨(u− K̃x)− (v − K̃y), x− y⟩+ ⟨K̃(x−)y, x− y⟩
≥ ⟨K̃x− K̃y, x− y⟩ = 0.
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Chapter 3. Bregman Primal-Dual Methods

The first inequality follows from ∂ψk being monotone and is replaced by a
strict inequality in case of ∂ψk being strictly monotone. The second equality
follows from K̃ being skew-symmetric. Therefore, both (i) and (ii) follows.
The maximal part of (iii) is immediate. ■

Let us consider the standard primal optimization problem on composite
form

minimize
x∈Rn

f(x) + g(Lx)

with f : Rn → R, L ∈ Rm×n and g : Rm → R. If both f and g are proper,
closed, and convex and the constraint qualification Ldom f ∩ int(dom g) ̸= ∅
holds then strong duality holds between the above primal problem and the
Fenchel-Rockafellar dual problem

minimize
y∈Rm

−f∗(−LT y)− g∗(y).

Let p = m + n. The Lagrangian L : Rp → R ∪ {±∞}, which generates the
primal problem, is given by

L(x, y) = f(x)− g∗(y) + ⟨y, Lx⟩.

The Lagrangian has the saddle subdifferential (see for reference [17, Example
2.2.3])

A := ∂L :=

[
∂xL
∂y−L

]
=

[
∂f
∂g∗

]
︸ ︷︷ ︸

∂F

+

[
0 LT

−L 0

]
︸ ︷︷ ︸

K

(3.3)

which fits our setting. Here we have implicitly defined F as F = (f, g∗). We
will find a solution z⋆ = (x⋆, y⋆) ∈ Rd to the inclusion problem

0 ∈ Az = ∂Lz

by applying the Bregman NOFOB algorithm to this primal-dual setting. In
other words, the point z⋆ is a saddle point of L.

We will from now on restrict the type of kernel Mk that we will consider.
First of all, the linear skew-symmetric operator KM will be of the form

KM =

[
0 LT

M

−LM 0

]
,

with LM ∈ Rm×n. Furthermore, we will restrict the function ψk to the kind
which satisfies for some functions ψxx, ψyx : Rn → R and ψxy, ψyy : Rm → R:

∂ψk =

[
∂ψxx ∂ψxy

∂ψyx ∂ψyy

]
.
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3.3 The Bregman NOFOB Algorithm

This implies that

∇ψk

[
x
y

]
=

[
∇ψxx(x) +∇ψxy(y)
∇ψyx(x) +∇ψyy(y)

]
holds for all (x, y) ∈ int(domψ). Note that we have dropped the iteration
index k on the right hand sides for the sake of readability.

Duality-Gap Convergence

Before we show our convergence results, we define a partial duality gap func-
tion Gz⋆ : Rp → R ∪ {±∞} for some fixed z⋆ = (x⋆, y⋆) ∈ Rp by

Gz⋆(x, y) = L(x, y⋆)− L(x⋆, y). (3.4)

It is an elementary result that Gz⋆(z) ≥ 0 for all z ∈ Rp if z⋆ is a saddle point
of L, see for example [18].

Let the operator Tk : Rp → 2R
p

be defined by

Tk = [Mk +A]−1Mk

and h : Rp → R the Legendre Bregman function referenced in Algorithm 1.
We will from now in this section assume thatMk is strictly convex and that Tk
is non-empty, single-valued, and maps int(domh) in int(domh). By Propo-
sition 3.2.3, the Bregman projection in Algorithm1 is well-defined, single-
valued, and contained in int(domh). Therefore, if Algorithm 1 is well-defined
up to iteration k then it is also well-defined at iteration k + 1.

The question remains of what properties of Mk are needed in order for
this assumption on Tk to hold. The answer to this question is outside the
scope of this thesis.

Lemma 3.3.2. Let {zk}∞k=0 and {ẑk}∞k=0 be the iterates given by Algorithm
1. Let z = (x, y) ∈ Rp be arbitrary. Then we have that

0 ≥ Gz(ẑk) + ⟨Mkzk −Mkẑk, z − ẑk⟩.

Proof. The algorithmic forward-backward step is given byMkzk−Mkẑk ∈
Aẑk. If we expand this expression we get that{
∂f(x̂k) ∋ ∇ψxxxk +∇ψxyyk − (∇ψxxx̂k +∇ψxy ŷk) + LT

M (yk − ŷk)− LT yk

∂g∗(ŷk) ∋ ∇ψyxxk +∇ψyyyk − (∇ψyxx̂k +∇ψyy ŷk)− LM (xk − x̂k) + Lxk.

Let us define the two vectors vk and wk by{
vk = ∇ψxxxk +∇ψxyyk − (∇ψxxx̂k +∇ψxy ŷk) + LT

M (yk − ŷk)

wk = ∇ψyxxk +∇ψyyyk − (∇ψyxx̂k +∇ψyy ŷk)− LM (xk − x̂k)
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Chapter 3. Bregman Primal-Dual Methods

so that vk − LT yk ∈ ∂f(x̂k) and wk + Lxk ∈ ∂g∗(ŷk). By the definition of
the subdifferential operator we have that{

0 ≥ f(x̂k)− f(x) + ⟨vk − LT yk, x− x̂k⟩
0 ≥ g∗(ŷk)− g∗(y) + ⟨wk + Lxk, y − ŷk⟩.

If we add these two inequalities we get

0 ≥ [f(x̂k)− g∗(y) + ⟨y, Lx̂k⟩]− [f(x)− g∗(ŷk) + ⟨LT ŷk, x⟩]
+ ⟨vk − LT (yk − ŷk), x− x̂k⟩+ ⟨wk + L(xk − x̂k), y − ŷk⟩
+ ⟨LT ŷk, x̂k⟩ − ⟨ŷk, Lx̂k⟩︸ ︷︷ ︸

=0

= Gz(ẑk) + ⟨Mkzk −Mkẑk, z − ẑk⟩.

■

Proposition 3.3.3. Let {zk}∞k=0 and {ẑk}∞k=0 be the iterates given by Al-
gorithm 1. Suppose that domh ∩ Zer[A] ̸= ∅. If the sequence of projection
step lengths {λk}∞k=0 (defined by (3.2)) is uniformly bounded from below by
a positive number, i.e.,

lim inf
k→∞

λk = ε > 0

then the sequence {ẑk}∞k=0 converges in duality gap, i.e.,

lim
k→∞

Gz⋆(ẑk) = 0

holds for all z⋆ ∈ domh ∩ Zer[A].

Proof. Let z⋆ ∈ domh ∩ Zer[A]. Recall that Gz⋆(ẑk) ≥ 0. By the three
points identity of Bregman functions (Proposition 2.7) we have that

Dh(z
⋆, zk+1) = Dh(z

⋆, zk)−Dh(zk+1, zk)− ⟨∇h(zk+1)−∇h(zk), z⋆ − zk+1⟩
= Dh(z

⋆, zk)−Dh(zk+1, zk)− λk⟨Mkẑk −Mkzk, z
⋆ − zk+1⟩

= Dh(z
⋆, zk)−Dh(zk+1, zk)− λk⟨Mkẑk −Mkzk, z

⋆ − ẑk + ẑk − zk+1⟩
= Dh(z

⋆, zk)−Dh(zk+1, zk)− λk⟨Mkẑk −Mkzk, z
⋆ − ẑk⟩

≤ Dh(z
⋆, zk)−Dh(zk+1, zk)− λkGz⋆(ẑk).

The second equality is the definition of the projection step from (3.2). The
fourth equality follows from Proposition 3.2.3 and that zk+1 ∈ bd(Hk). The
inequality is Lemma 3.3.2.
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3.3 The Bregman NOFOB Algorithm

Now we telescope the inequality above from k = 0, . . . , N and get that

0 ≤
N∑

k=0

λkGz⋆(ẑk) ≤ Dh(z
⋆, z0)−Dh(z

⋆, zN+1)−
N∑

k=0

Dh(zk+1, zk)

=⇒ 0 ≤ ε

N∑
k=0

Gz⋆(ẑk) ≤ Dh(z
⋆, z0) =⇒ lim

k→∞
Gz⋆(ẑk) = 0.

■

Special Cases

Here we will give some examples of how to choose Mk = ∂ψk +KM −K and
how these choices relate to other algorithms.

Standard Setting: ψk = hk and KM = K.

Let ψk equal some Legendre Bregman function hk for each k and KM = K.
The kernel takes the form

Mk =

[
∂ψxx ∂ψxy

∂ψyx ∂ψyy

]
.

We get the forward-backward step

ẑk = [∇ψk +K + ∂F ]−1∇ψk(zk).

If we expand the forward-backward step we get{
∂f(x̂k) ∋ ∇ψxxxk +∇ψxyyk − (∇ψxxx̂k +∇ψxy ŷk)− LT ŷk

∂g∗(ŷk) ∋ ∇ψyxxk +∇ψxyyk − (∇ψyxx̂k +∇ψyy ŷk) + Lx̂k.
(3.5)

The Bregman projection has optimality condition (see (3.2)){
∇hk(zk+1) = ∇hk(zk)− λk(∇hk(zk)−∇hk(ẑk))
0 = ⟨∇h(zk)−∇h(ẑk), zk+1 − ẑk⟩

.

The unique solution of the Bregman projection can in this case be determined
directly. In fact, the system of equations are satisfied by λk = 1 and zk+1 =
ẑk. In other words, the Bregman projection step is redundant and

zk+1 = [∇ψk +A]−1∇ψk(zk).

Therefore, the Bregman NOFOB update step reduces to a non-linear resol-
vent with kernel ∇ψk.
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Chapter 3. Bregman Primal-Dual Methods

Bregman Chambolle-Pock: ψk = hk, KM = K, ∇ψxy = −LT and
∇ψyx = −L.

The Chambolle-Pock primal-dual method was introduced in [10]. Later it was
extended into the Bregman Chambolle-Pock method in [11]. We will see that
the Bregman Chambolle-Pock method is a special case of the standard setting
of the Bregman NOFOB algorithm. If we fix ∇ψxy = −LT and ∇ψyx = −L,
which are the gradients of the function (x, y) 7→ −⟨Lx, y⟩ with respect to x
and y respectively, then the kernel takes the form

Mk =

[
∂ψxx −LT

−L ∂ψyy

]
.

Using (3.5) we expand the forward-backward step and get{
∂f(x̂k) ∋ ∇ψxxxk −∇ψxxx̂k − LT yk

∂g∗(ŷk) ∋ ∇ψyyyk −∇ψyy ŷk − L(xk − 2x̂k).
(3.6)

Since this is a special case of the Standard Setting the Bregman projection
step is yet again redundant. This is exactly the Bregman Chambolle-Pock
algorithm considered in [11] with the added restriction that the gradients of
the Bregman functions ψxx and ψyy can be written as{

∂ψxx = σ−1I + ∂ψ̂xx

∂ψyy = τ−1I + ∂ψ̂yy

for some Bregman functions ψ̂xx, ψ̂yy. Then we can form

Mk =

[
∂ψ̂xx 0

0 ∂ψ̂yy

]
+

[
σ−1I −LT

−L τ−1I

]
where the second operator is strictly monotone if στ < 1

∥L∥2 . This is exactly

the convergence requirement of Theorem 1 in [11] which guarantees con-
vergence of {zk}∞k=0 in duality gap. Note that the original Chambolle-Pock

algorithm in [10] is retrieved from the case when ψ̂xx = ψ̂yy = 0.

Asymmetric Updates: ψxy = ψyx = 0 and KM = 0.

This novel algorithm will be the main focus during Chapter 4 and will be
implemented on a nontrivial problem, see Section (4.2). In this case we get
the kernel

Mk = ∇ψ −K =

[
∇ψxx 0
0 ∇ψyy

]
−

[
0 LT

−L 0

]
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3.3 The Bregman NOFOB Algorithm

with expanded forward-backward step{
∂f(x̂k) ∋ ∇ψxxxk −∇ψxxx̂k − LT yk

∂g∗(ŷk) ∋ ∇ψyyyk −∇ψyy ŷk + Lxk.
(3.7)

Comparing this with the Bregman Chambolle-Pock (3.6) we see that Mk is
no longer symmetrical, which implies that the Bregman projection step is no
longer trivial in the sense that zk+1 = ẑk no longer holds. On the other hand,
the expanded form shows that the coupling between x̂k and ŷk is removed,
i.e., (3.7) can be implemented in parallel.

By Proposition 3.3.1 we have that Mk is here monotone if both ψxx

and ψyy are convex. This contrasts the strong constraints on ψxx and ψyy

imposed by the Bregman Chambolle-Pock algorithm. Note that we are yet
to provide the connection between ψ and some Bregman function. In fact,
we have great flexibility in this choice. Suppose for instance that f = f̂ + ϕ
where f̂, ϕ : Rn → R are proper, closed, and convex. Suppose also that f̂
is differentiable on int(dom f̂). We can then use the theory of Chapter 2
and utilize relative smoothness. To that end, suppose that h : Rn → R is
β-relatively smooth with respect to f̂ . We can let ψxx = βh− f̂ which is then
convex. The first part of (3.7) becomes

β∇h(x̂k) + ∂ϕ(x̂k) ∋ β∇h(xk)−∇f̂(xk)− LT yk

=⇒ x̂k = proxhβ−1ϕ(x
+
k )

where
x+k = ∇h∗(β∇h(xk)−∇f̂(xk)− LT yk).

Note that in this example we have not yet mentioned any properties of
ψyy and g∗. This means that a similar approach, as for ψxx and f , may
be implemented there. In some ways, we have decomposed a primal-dual
problem into two independent Bregman type methods.

Also note that if the dual part of the primal-dual problem is ignored, i.e.,
that m = 0 and L = 0, then this algorithm reduces to the proximal Bregman
gradient from Section 2.4.
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4
D-optimal Design

In this chapter, we will begin by introducing two seemingly different opti-
mization problems. The first problem is a geometrical one, which finds the
minimum-volume ellipsoid that covers some reasonable finite subset of Rn.
The second problem has its roots in statistical optimality design and has
for example applications within machine learning. We will show that these
problems are dual to one another, with no duality gap. We refer to [19] for a
full treatment.

The second section will connect the theory from Chapter 2 with the al-
gorithms of Chapter 3 and solve this aforementioned optimization problem.
Furthermore, it will be solved in a primal-dual setting, with an added 1-norm
δ ∥Lx− b∥1 regularizer for chosen L ∈ Rm×d, b ∈ Rd, and δ ∈ R+.

4.1 D-optimal Design and Minimum-Volume Ellipsoids

Consider some set of points {xi}mi=1 where xi ∈ Rn and construct the data
matrix

X =

1 xT1
...

...
1 xTm

 ∈ Rm×(n+1).

We will consider the supervised learning task of regression. To that end, let
{yi}mi=1 where yi ∈ R be corresponding labels and we seek to find some model
m : Rn → R such that

yi ≈ m(xi).

In the method of least squares, we consider an affine modelmθ(x) = ⟨θ, (1, x)⟩
where θ ∈ Rn+1. Note that the bias of the model is incorporated by the
leading 1 in the (1, x) vector. If we incorporate noise into our model and
suppose appropriate independence, we get the standard regression

Y = Xθ + ε,
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4.1 D-optimal Design and Minimum-Volume Ellipsoids

where ε is a random variable with normal distribution ε ∼ N (0, σ2I) and
σ ≥ 0. In the least squares problem setting we want to solve the minimization
problem

minimize
θ∈Rn+1

1

2
∥Xθ − Y ∥22 ,

where

Y =

 y1...
ym

 .
Let the columns of X be given by Xi ∈ Rm for i = 1, . . . , (n + 1) which we
will call the features of X. In order for our least squares problem to have a
unique solution, we suppose that X has full column rank. This is equivalent
with the features being linearly independent and m > n. In that case, the
matrix XTX is invertible and the optimal θ⋆ is given explicitly by

θ⋆ = (XTX)−1XTY.

Let ∆m−1 ⊂ Rm be the ordinary (m− 1)-dimensional simplex

∆m−1 =

{
u ∈ Rm

+ |
m∑
i=1

ui = 1

}
.

Let u ∈ ∆m−1 and consider the Diagonal matrix U = Diag(u) ∈ Rm×m. If
we let X = ∪m

i=1{xi} ⊂ Rn then we can associate for each such u ∈ ∆m−1

a probability measure ξ : X → R+ given by ξ(xi) = ui. In optimal design
literature, such as [1], the measure ξ is called a design and from such a
design we can define an information matrix M(ξ) ∈ R(n+1)×(n+1) by

M(ξ) =

∫
x∈X

xxTdξ(x).

In our case, where X is finite, we simply get that

M(ξ) = XTUX

and we will from now on denote the right hand side by M(U), for any U =
Diag(u) such that u ∈ ∆m−1. In optimal design, a measure ξ is called D-
optimal if it solves the following optimization problem

minimize
ξ

[detM(ξ)−1].

Minimizing ξ 7→ detM(ξ)−1 is the same as minimizing ξ 7→ log detM(ξ)−1

and so we arrive at the D-optimal design problem:

minimize
u∈∆m−1

− log(detXTUX) (4.1)
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where as before U = Diag(u).
The information matrix also appears in the weighted least squares model.

Let us return to the linear regression model from before. If we transform the
model by

Y ′ =
√
UY, X ′ =

√
UX, ε′ =

√
Uε,

and assume that X ′ still has full column rank. This is for example true when
u ∈ Rm

++. We once again get the standard regression

Y ′ = X ′θ + ε′

with ε′ ∼ N (0, σ2U) and unique solution

θ⋆ = ((X ′)TX ′)−1(X ′)TY ′

= (XTUX)−1XTUY.

We have abused some notation above. Indeed, Y is a random variable and
θ⋆ is a point estimator of the random variable

Θ⋆ = ((X ′)TX ′)−1(X ′)TY ′

= (XTUX)−1XTU(Xθ⋆ + ε)

= θ⋆ + (XTUX)−1XTUε

=⇒ E[Θ⋆] = θ⋆.

Therefore, the point estimate θ⋆ is unbiased and has variance

Var[Θ⋆] = E[Θ⋆ − θ⋆][Θ⋆ − θ⋆]T

= E[(XTUX)−1XTUε][(XTUX)−1XTUε]T

= (XTUX)−1XTUE[εεT ]UX(XTUX)−1

= σ2ZTZ

where
Z =

√
UX[M(U)]−1.

If we supposed that the variance of the error of the original relationship
Y ≈ Xθ varied between observations, in the form of ε ∼ N (0, σ2U−1), we
end up with

Var[Θ⋆] = (XTUX)−1XT
√
UE[ε′(ε′)T ]

√
UX(XTUX)−1

= σ2[M(U)]−1.

This could for instance occur when each observation xi is not a single mea-
surement, but is in fact an average of Ni > 0 measurements each with the
same variance σ2. This would correspond to the error variances

Var[εi] =
σ2

Ni
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and weight matrix U = Diag(N1, . . . , Nm).

Minimum-Volume Ellipsoids

Now let us turn to something seemingly different: the problem of finding the
minimum-volume ellipsoid containing the set of points {xi}mi=1 where each
xi ∈ Rn. We will begin by describing how one can find the minimum-volume
ellipsoid centered around the origin which includes the set X = ∪m

i=1{xi}. For
that reason, it is natural to assume that the span of X equals Rn. Otherwise,
the minimum-volume ellipsoid would be of volume 0 and lie in some subspace
of Rn homeomorphic to Rp where p < n.

Let X̃ ∈ Rm×n be defined by

X̃ =

x
T
1
...
xTm

 ∈ Rm×n,

which is assumed to have rank n which implies that m ≥ n. Let Bn be
the closed unit sphere in Rn with respect to the 2-norm. Let L : Rn → Rn

be some invertible map and consider the image set L−1Bn. We have that
y ∈ L−1Bn if and only if Ly ∈ Bn and

∥Ly∥22 ≤ 1

yTLTLy ≤ 1

yTHy ≤ 1

for some positive definite H = LTL ∈ Sn++. Conversely, starting with a
positive definite map H ∈ Sn++ we can by a Cholesky factorization obtain an
invertible map L : Rn → Rn such that yTHy ≤ 1 implies that y ∈ L−1Bn.
What we have shown is that the ellipsoids centered around the origin in Rn

are precisely described by positive definite matrices and are of the form

E(H) = {y ∈ Rn | yTHy ≤ 1}.

The volume of E(H) is now given directly by

vol(E(H)) = det(L−1)vol(Bn) = (detH)−1/2vol(Bn).

Therefore, the task of minimizing the volume of E(H), where E(H) is some
ellipsoid centered around the origin and covering X , is equivalent with max-
imizing the determinant of H. We now arrive at the minimum-volume en-
closing ellipsoid problem:

minimize
H∈C∩Sn++

− log(detH),
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where C is the convex set

C = {H ∈ Rn×n | xTi Hxi ≤ n holds for all i = 1, . . . ,m}.

Note that the change of xTi Hxi ≤ n is nothing but a scaling of H and does
not change the geometrical arguments above in any substantial way.

In [19, Theorem 2.2] it was shown that the two problems

maximize
u∈∆m−1

log(det X̃TUX̃) and minimize
H∈C∩Sn++

− log(detH)

are dual problems to each other and if X has full column rank, then strong
duality holds. Furthermore, by [19, Proposition 2.5], given solutions U⋆ =
Diag(u), u ∈ ∆m−1 and H⋆ ∈ Rn×n of the two problems, respectively, they
are related by

[X̃TU⋆X̃]−1 = H⋆

with H⋆ being unique.
Lastly, let us consider the problem of finding the minimum-volume ellip-

soid including the set X , without any restriction on the center of the ellipsoid.
In order to avoid degenerate ellipsoid solutions of volume 0, we suppose that
the affine hull of X equals Rn. This means that for any x ∈ Rn there exists
λi such that x =

∑m
i=1 λixi where

∑m
i=1 λi = 1. This is equivalent to the

span of the set {(1, xi)}mi=1 containing the subset {1} × Rn ⊂ Rn+1. This is
again equivalent to the span of the set {(1, xi)}mi=1 equaling the entire Rn+1

and X from (4.1) has full column rank and m ≥ n+ 1.
As it turns out, by [19, Theorem 2.10], if we instead solve the D-

optimal design problem (4.1), then the n × n lower right submatrix of
H⋆ = [XTU⋆X]−1, call it H̃, determines this minimum-volume ellipsoid.
In fact, it is given by the ellipsoid

E(H̃, x̄) = {x ∈ Rn | (x− x̄)T H̃(x− x̄) ≤ n}.

The center x̄ is given by the (n× 1) trailing part of (X̃)T diag(U⋆).

The Wolfe-Atwood Algorithm

Here we will review the Wolfe-Atwood (WA) algorithm, its rate of conver-
gence and its time complexity. The WA algorithm is specifically designed
to solve the D-optimal design problem. It is based on a coordinate-ascent
framework. The ascent part comes from this particular implementation which
instead maximizes and solves the just as difficult problem

maximize
u∈∆m−1

log(detXTUX).

We will in this thesis not go into detail on the correctness of the algorithm,
but it is included for completeness (see Algorithm 2). For a full treatment,
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Algorithm 2: The WA Algorithm

Let : X ∈ Rm×n with full column rank,
f(u) := log(detXT Diag(u)X)

Input : u0 ∈ ∆m−1

Compute: ω0 := ∇f(u0)
1 for k = 0, 1, . . . do
2 i := argmax

r=1,...,m
[ωk]r

3 j := argmin
r=1,...,m:[uk]r>0

[ωk]r

4 ε+ := ([ωk]i − n)/n
5 ε− := (n− [ωk]j)/n
6 if ε+ > ε− then
7 λ⋆ := ([ωk]i − n)/((n− 1)[ωk]i)
8 uk+1 := (1 + λ⋆)−1(uk + λ⋆ei)

9 else
10 λ⋆ := ([ωk]j − n)/((n− 1)[ωk]j)
11 λ := max{−[uk]j , λ

⋆}
12 uk+1 := (1 + λ)−1(uk + λei)

13 end
Compute: ωk+1

14 end

see [19] and [2]. In [19, Chapter 3] it is shown that the WA algorithm satisfies
local linear convergence.

The computation step ω0 := ∇f(u0) in Algorithm 2 is computationally
expensive. As we will see in the next Section, see (4.2), this involves inverting
the (n × n) matrix XT Diag(u)X, which in of itself might be numerically
demanding for large enough n. Even worse, this is repeated at every iteration
when computing ωk+1. In order to avoid this expensive O(n3) complexity at
every iteration, we can approximate each ωk+1 by a Cholesky factorization
LLT = XT Diag(u)X, see [19] for the details. The Cholesky factorization is
generally still O(n3). We solve this issue by performing rank-1 updates of the
Cholesky factorization at each step. After this optimization, we arrive at an
algorithm with complexity O(mn) at each iteration.

4.2 NOFOB Bregman Method for D-optimal Design

From now on, let f : Rm → R denote the objective function of the D-optimal
Design Problem

f(u) = − log(detXT Diag(u)X)
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for some matrix X ∈ Rm×n with full column rank and m > n. Of course,
we interpret that if the determinant of XT Diag(u)X is non-positive then
f(u) = ∞. Let ϕ : Rm → R equal the indicator function ι∆m−1

. Let g : Rd →
R be defined by

g(y) = δ ∥y − b∥1
where b ∈ Rd and δ ∈ R+ are assumed to be fixed. Furthermore, let the
matrix L ∈ Rm×d be fixed. We will from now on mainly consider the following
regularized D-optimal design optimization problem

minimize
u∈Rm

f(u) + ϕ(u) + g(Lu).

Let us begin by analyzing f and finding a suitable Bregman function rela-
tively smooth to it.

First we quickly derive the standard expressions for the gradient and the
Hessian of f . Consider the function f̂ : Rm×m → R defined by

f̂(A) = − log(detA).

It is a standard result (see for example [9]) that for any small ∆A ∈ Rm×m

such that A+∆A ∈ Sm++ it follows that

f̂(A+∆A) ≈ f̂(A) + tr(−A−1∆A)

from which it follows that ∇f̂(A) = −A−1. Consider the composite function

f̂X : Rm×m → R given by

f̂X(A) = f̂(XTAX).

From the chain rule, we have that

∇f̂X(A) = −X(XTAX)−1XT .

In order to compute ∇f(u) we consider only points A and directions ∆A
which are diagonal matrices: A = Diag(u) and ∆A = Diag(v) for u, v ∈ Rm

++.
Let the matrix C ∈ Rm×m be given by

C = X(XT Diag(u)X)−1XT .

Note that if we assume that X has full column rank and u ∈ Rm
++, then C is

positive semi-definite. It is then a standard check to see that

tr(−C∆A) = ⟨diag(−C), v⟩,

where ⟨·, ·⟩ is the normal inner product of Rm. Moreover, this implies that

∇f(u) = diag(−C). (4.2)
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We proceed similarly with the Hessian and use the standard result

f̂X(A+∆A) ≈ f̂X(A) + tr(−C∆A) + 1

2
tr(C∆AC∆A).

The quadratic term has the following identity when ∆A = Diag(v) for v ∈
Rm

++:

tr(C∆AC∆A) = vT (C ◦ C)v

and so

∇2f(u) = C ◦ C

which by the Schur product theorem is positive semi-definite, since C is
positive semi-definite. We have shown that f is convex on its domain and
that Rm

++ ⊂ dom f . Now let us determine some appropriate Bregman function

h : Rm → R with domh = Rm
++. When considering the case of X equaling

some identity matrix, we get that C = U−1 and that ∇2f(u) = U−2 which
puts some restrictions on the Bregman function. Namely, we must have that

U−2 ⪯ ∇h2(u).

We claim that ∇2h(u) = U−2 is a valid choice for which f is 1-relatively
smooth. We have the natural choice of h being the logarithmic barrier func-
tion

h(u) = −
m∑
i=1

log ui.

It can be verified that h is Legendre and that it has conjugate function

h∗(s) = −m−
m∑
i=1

log(−si)

with domain domh∗ = Rm
−−. Hence both h and h∗ have open domain and

the conclusion of Proposition 2.2.18 holds.
First we will show that

C ⪯ U−1 ⇐⇒ P :=
√
UC

√
U ⪯ I.

Note that P is symmetric and P 2 = P holds. It follows that the mapping P is
idempotent and only has eigenvalues that equal 0 or 1. Therefore, C ⪯ U−1

holds.
By the Schur product theorem once more we have that both C◦(U−1−C)

and (U−1 − C) ◦ U−1 are positive definite, which is just to say that

∇2f(u) = C ◦ C ⪯ C ◦ U−1 ⪯ U−1 ◦ U−1 = ∇2h(u).
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We have shown that f is 1-relatively smooth with respect to h on domh =
Rm

++.
Let us compute the symmetry coefficient αh. Consider the two points

1m, (x,1m−1) ∈ Rm
++ where 1m = (1, 1, . . . , 1) ∈ Rm is the vector consisting

of m 1s. We then have that

Dh(1m, (x,1m−1)) =
1

x
(x log x− x+ 1)

Dh((x,1m−1),1m) = − log x+ x− 1

=⇒ lim
x→∞

Dh(1m, (x,1m−1))

Dh((x,1m−1),1m)
= lim

x→∞

x log x− x+ 1

x2 − x− x log x
= 0 ≥ αh.

Since also αh ≥ 0 we have that αh = 0.
Recall the function g : Rd → R given by

g(y) = δ ∥y − b∥1 .

A property of g is that its conjugate is proximal (or Bregman proximal with

respect to the Bregman function h(·) = 1
2 ∥·∥

2
2). This is a desired property in

our primal-dual setting, since g∗ will appear and serve the dual part of the
algorithm. Evaluating proxγkg∗(y) is a standard procedure and treated in for
instance [16]. In fact, it takes the easily computed form of

proxγkg∗(y) =

[
δ(yi − γkbi)

max{δ, |yi − γkbi|}

]
i

.

We are now ready to fully write out how the regularized D-optimal design
problem can be solved with asymmetric Bregman forward-backward splitting
with projection correction. We will solve the primal-dual inclusion problem
of the form

0 ∈ Az

for z = (x, y) ∈ Rm × Rd where

A =

[
∂(f + ι∆m−1

) 0
0 ∂g∗

]
+

[
0 LT

−L 0

]
.

The full operator Mk : Rm
++ × Rd → R will be chosen as

Mk =

[
βk∇h−∇f 0

0 1
γk
I

]
−
[

0 LT

−L 0

]
.
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Note that for all step-sizes βk > 1 and γk > 0 the operator Mk is monotone.
The forward-backward step for any zk = (uk, yk) ∈ Rm

++ × Rd is given by

ẑk = [Mk +A]−1Mkz

=

[
βk∇h+ ∂ι∆m−1 0

0 1
γk
I + ∂g∗

]−1 [
βk∇h(uk)−∇f(uk)− LT yk

Luk + 1
γk
yk

]
=

[
∇h+ 1

βk
∂ι∆m−1

I + γk∂g
∗

]−1 [∇h(uk)− 1
βk

(∇f(uk)− LT yk)

γkLuk + yk

]
⇐⇒

{
0 ∈ 1

βk
∂ι∆m−1

(ûk) +∇h(ûk)− (∇h(uk)− 1
βk

(∇f(uk)− LT yk))

ŷk = proxγkg∗(γkLuk + yk)

⇐⇒

ûk = argmin
u∈∆m−1

h(u) + ⟨c, u⟩, with c = −(∇h(uk)− 1
βk

(∇f(uk)− LT yk))

ŷk = proxγkg∗(γkLuk + yk).

The subproblem
ûk = argmin

u∈∆m−1

h(u) + ⟨c, u⟩

does not have a closed form solution, but can be solved by a 1-dimensional
line search. To see this, note an optimality condition of this subproblem is

c− diag(U−1) + θ1m = 0

and so

ui =
1

ci + θ
> 0 =⇒ θi > −ci.

We end up determining the θ such that

m∑
i=1

1

ci + θ
− 1 = 0, on θ ∈ (−min{ci}mi=1,∞).

The function

d(θ) =

m∑
i=1

1

ci + θ
− 1

is strictly decreasing and limθ→(−min{ci})− d(θ) = ∞ and limθ→∞ d(θ) = −1
and so a unique zero of d exists on the chosen interval. In our implementation,
we solved this one dimensional problem with Newton’s method with initial
guess θ0 = −min{ci}+ 1.

Let us now move on to the second step of the algorithm, which is the
Bregman projection part. Let h′ : Rm × Rd → R be given by

h′(u, y) = βkh(u) +
1

γk
∥y∥22 .
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The Bregman projection step is

ẑk+1 = argmin
z∈Hk

Dh′(z, zk) (4.3)

where the hyperplane Hk is given by

Hk = {z ∈ Rm × Rd | ⟨Mkzk −Mkẑk, z − ẑk⟩ = 0}.

Note how Hk is now defined as a hyperplane instead of a half-space, as in
(3.1). By Proposition 3.2.3 this difference does not change the algorithm. The
optimality condition from the Lagrangian function of this subproblem (4.3)
is given by

∇h′(zk+1)−∇h′(zk)− λk(Mkzk −Mkẑk) = 0

⟨Mkzk −Mkẑk, z − ẑk⟩ = 0

for some λk ∈ R. We can apply similar methods as we did when determin-
ing bounds on θ above. The first m components of this equation give some
restrictions. Specifically, we need

[∇h(xk)]i − λk[Mkzk −Mkẑk]i < 0 for all i = 1, . . . ,m

in order for the optimality condition to make sense. This leads us to restrict
λk to some interval (ak, bk) where the zero of the following function is unique:

λk 7→ ⟨Mkzk −Mkẑk, (∇h′)−1(∇h′(zk)− λk(Mkzk −Mkẑk))− ẑk⟩.

Precomputing the appropriate vectors above leads to a problem which can
be efficiently solved by some 1-dimensional method. In our implementation
we used a bisection method.

4.3 Comparing Bregman NOFOB with the WA algorithm

Let us now consider five different instances of D-optimal design, represented
by Figures 4.1 to 4.5. Throughout all of the following examples, the step-sizes
βk = 1.1 and γk = 1 were used. For more information about each instance,
we refer to the appropriate figure caption.

In Figure 4.1 we see a visual representation of the D-optimal design prob-
lem over R3. In this and the next case, we have chosen d = 0. The dual part
of the primal-dual algorithm is ignored in this simplified setting. The reason
for this is that we cannot apply the WA algorithm in the primal-dual setting.
In this small toy example, it is evident that the solution set Zer[A] lies in
the boundary of the relative interior of ∆2. Both the Bregman NOFOB and
the WA algorithm converge to a solution, but with seemingly different speed
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and qualitative trajectory. Note how the iterates in Figure 4.1a contrast the
jagged nature of the WA iterates in Figure 4.1b. This is to be expected since
the WA algorithm is of a coordinate-descent type.

In Figure 4.2 we see an instance with the same dimensions as in Figure
4.1 but with some different behaviour. For one, the solution set is infinite
and at least parts of it lies in the relative interior of ∆2. Furthermore, both
the Bregman NOFOB (Figure 4.2a) and the WA algorithms (Figure 4.2b)
converge to points in the relative interior of ∆2. Since these points are dif-
ferent, it is not possible to compare algorithm convergence in this case w.r.t
one particular solution u⋆.

In Figure 4.3, we have increased the dimensions to m = 100 and n = 50
in the same D-optimal design problem.”Due to the higher dimension, we here
compare function value suboptimality and distance to solution vs iteration
in Figure 4.3. The point u⋆ was simply defined as the iterate from either
of the two algorithms (during the 104 iterations) which achieved the lowest
value f(u⋆) := f⋆. With the discussion in mind from the last paragraph, one
is right to feel suspicious about Figure 4.3a and 4.3b. These plots are simply
included to strongly indicate sequential convergence of the two algorithms.
Furthermore, they show what kind of convergence can be expected. We have
previously shown that the Bregman NOFOB (in this primal setting) has a
sublinear O(1/k) convergence. We have also stated that the WA algorithm
has been shown to achieve local linear convergence. Both of these results are
exemplified here, in sequential and function value form, see Figures 4.3c and
4.3d.

Recall that the WA algorithm, with rank-1 updates to the Cholesky fac-
torization, achieves a O(mn) computational complexity per iteration. The
Bregman NOFOB algorithm suffers greatly from the problem of evaluating
∇f(·) multiple times each iteration. At a minimum, we need one evaluation
of ∇f(uk) during the forward-backward step and one evaluation of ∇f(ûk)
during the Bregman projection step, because of the inverse in the gradient
expression (4.2). This leads to a substantially worse O(n3) computational
complexity per iteration. It would be very useful and interesting if there was
a way to approximate these gradients in the Bregman NOFOB case as it was
done in the WA algorithm.

Now let us increase the dimensionality of the problem and enter the
primal-dual setting. In this case the WA algorithm cannot be applied. But
the Bregman NOFOB method converges, with similar sublinear sequential
and function value convergence as in Figure 4.3. Figure 4.4 shows two related
plots during the first 104 iterates. Figure 4.4b shows the magnitude of the
projection step-sizes λk. As we have hoped, given the theory of Chapter 3.3,
they are uniformly bounded below by some positive number

lim inf
k→∞

λk > 0.
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By Proposition 3.3.3, the duality gap given in (3.4) will converge to 0. This
fact is demonstrated in Figure 4.4a.

Lastly, Figure 4.5 connects the primal D-optimal design problem to its
dual minimum-volume ellipsoid problem. Figure 4.5a and 4.5b show two ex-
amples of this problem with 10 and 50 data-points xi respectively. At the
four iterate time points, of the Bregman NOFOB algorithm, k = 0, 1, 10, and
1000, we recovered the primal variable and plotted its corresponding ellip-
soid. As expected, when dealing with more data-points, see Figure 4.5b, more
iterations are needed. It is clearly visible that the 1000th ellipsoid does not
yet contain all data. Indeed, it seems like that if the initial ellipsoid does not
cover its data, then the ellipsoid iterates probably never will. This kind of
behaviour is common in dual problems when recovering the primal iterates
from the dual iterates.
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(a) The Bregman NOFOB Algorithm. (b) The WA Algorithm.

Figure 4.1 The first N = 1000 iterations of the Bregman NOFOB and the WA
algorithm on a simple instance of the D-optimal design problem. The dimensions
for this problem are m = 3, n = 2, and d = 0. Each individual element of the
matrix X ∈ R3×2 was sampled independently from a uniform distribution U[0,1).
The initial value u0 was chosen as u0 = 1

3
(1, 1, 1). The black dots are plotted by the

sequence {uk}Nk=0. The triangular region should be graphically interpreted as a 2-
dimensional representation of ∆2 ∈ R3. The three corners correspond to the points
(1, 0, 0), (0, 1, 0), (0, 0, 1) ∈ R3 and u0 corresponds to the center of the triangle. The
function values plotted in the heat-map are in fact u 7→ − log(f(u)− f⋆) in order
for the heat-map to be more readable.

(a) The Bregman NOFOB Algorithm. (b) The WA Algorithm.

Figure 4.2 The first 30 iterations of the Bregman NOFOB and the WA algorithm
on a simple instance of the D-optimal design problem. The dimensions for this
problem are m = 3, n = 2, and d = 0. The matrix X was explicitly chosen as

X =

1 0
0 1
0 1

 .

The initial value u0 was chosen as u0 = (0.15, 0.15, 0.7).
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(a) Sequential convergence of Bregman NOFOB. (b) Sequential convergence of the WA algorithm.

(c) Value convergence of Bregman NOFOB. (d) Value convergence of the WA algorithm.

Figure 4.3 The first 104 iterations of the Bregman NOFOB and the WA algo-
rithm on a more complex instance of theD-optimal design problem. The dimensions
of this problem were m = 100, n = 50, and d = 0. The matrix X and the initial
u0 was chosen as in Figure 4.1. Note that the plots are in log-linear scale and that
the scales of the plots differ.
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(a) The duality gap iterations (defined in
(3.4)) of Bregman NOFOB.

(b) The projection steps λk of Bregman
NOFOB.

Figure 4.4 The first 104 iterations of the Bregman NOFOB on a more complex
instance of the D-optimal design problem. The dimensions for this problem are
m = 100, n = 50, and d = 100. The matrix X and the initial u0 was chosen as
in Figure 4.1. The vector b was chosen in a similarly random manner and we fixed
δ = 1.

(a) Iterates of minimum-volume ellip-
soids with 10 data points.

(b) Iterates of minimum-volume ellip-
soids with 50 data points.

Figure 4.5 The first 1000 iterations of the Bregman NOFOB algorithm on some
simple instance of the D-optimal design problem, visualized in the dual-value set-
ting. At four specific iterations we draw the corresponding ellipsoids described by
the theory of Section 4.1.
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