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Abstract

A model is used to describe a system physically or mathematically and to give infor-
mation about changes in the system variables. Physical knowledge about the system
and its quantities can be useful to build a physical model obeying the laws of nature.
However, if the system is to be regarded as a black box with only input and output
signals, system identification can be used to fit a mathematical model to describe the
relation between the signals. The signals are usually physical quantities but the es-
timated model parameters do not necessarily reflect physical aspects of the system.
The goal of estimating a model is either to calculate the effect given the cause, such
models are called forward or direct models, or to calculate the cause given the effect,
which is the objective of this thesis. These models are called inverse models and are
widely used in heat conduction problems, e.g., estimating the heat flow rate at the
source given measured temperature at a point. In this thesis the goal is to estimate
the true heat flow rate from the hydration reaction in a cement sample when mixed
with water from heat rate measurements in the isothermal calorimeter I-Cal Flex.
The problem with such measurement is that it starts only after about 20-30 seconds,
which is the time it takes for mixing the water and cement in an ampoule and charg-
ing it in the calorimeter. Under that time the cement sample temperature rises due to
heat produced from the chemical reaction. The measurement process is automated
in a robot called PolabCal and the measurement signal could possibly be used to
control cement plants. The problem is that the measurement both includes the heat
rate from the over-temperature that sample gained prior charging in the calorimeter
and information about the dynamics of the instrument. There is therefore an interest
in the pure heat rate from the cement hydration reaction as it is believed to be more
informative than the measurement signal. Estimating the inverse model in this thesis
was made by evaluating three methods; to estimate a forward model then to invert
it, to estimate an inverse model directly from inputs and output measurements, and
lastly to build a physical forward model and then use it to calculate the input.
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Nomenclature

Symbols
SF Estimated forward model
S−1

F Inverse of the forward model
SI Estimated inverse model
SFI Estimated inverse model from input data and simulated

output from the forward model
Pin Electric power input
U Applied voltage
y1,u1 These appear in plots and refer to the input and output

signals of the system, the subscripts indicate that it is a SISO system
q Forward shift operator
Q Heat rate
c Specific heat capacity
m Mass
Ts Sample period
R Resistance
G(q) Input/output model
H(q) Noise model
ŷ Predicted output
θ Model parameters
ϕ Regressor vector
Bi Biot number
k Thermal conductivity
h Heat transfer coefficient
L Characteristic length
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Abbreviations
SITB System Identification Toolbox
FEM Finite Element Modelling
LHCM Lumped Heat Capacity Modelling
LTI Linear time-invariant
RSS The residuals of the squared sum
SNR Signal to Noise Ratio
RMS Root Mean Squared Error
SISO Single Input Single Output
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1
Introduction

Cement plants make use of isothermal calorimetry to control the production qual-
ity. An isothermal calorimeter can measure the heat rate in a cement sample when
it is mixed with water. The chemical reaction between the water and cement by
which heat is produced is called the hydration reaction and is characterized by its
pattern of heat release, which starts when the cement comes in contact with wa-
ter. Cement plant laboratories do have calorimeters, but they are mainly used in
product development and trouble-shooting, not for control of the daily operation.
However, ThyssenKrupp Industrial Solutions have developed an automated I-Cal
Ultra calorimeter that should give results within 20 min of measurements, with the
aim of extracting parameters from these measurements that should be useful to con-
trol the cement manufacturing process. Charging cement samples in the calorimeter
is done in a chamber with a regulated temperature. It is important that the cement
sample, after it is mixed with water is inserted in the instrument as soon as possible
to capture most of the heat rate. This measured signal from the calorimeter could be
used in process control, but it is a signal that contains information on both the ce-
ment hydration and the thermal inertia of the calorimeter. If it is possible to remove
the calorimeter information, to have only the cement hydration result, this would
improve the usefulness of the data.
The goal of this thesis is to try to reconstruct the original heat rate by means of us-
ing inverse modelling. While there is lots of literature and advancement in forward
modelling which is estimating a model that explains the relation from the input to
the output, inverse modelling is still a field that expands.
This thesis starts with a chapter on cement production, cement compounds, the hy-
dration reaction, PolabCal and isothermal calorimetry. In chapter 3, some methodol-
ogy on physical modelling and system identification will be introduced. This chap-
ter explains popular linear models used and discusses considerations around build-
ing a linear model. Lumped heat capacity modelling is also explained. Chapter 4 dis-
cusses the mathematical implementation of the forward model and its mathematical
inverse model using system identification. In the same chapter the inverse model is
directly estimated from data using two methods; classical linear models and IARX.
In chapter 5, the physical model is implemented using LHCM, the inverse is calcu-
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Chapter 1. Introduction

lated and the results are presented. The last chapter is a general discussion of the
results.
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2
Background

2.1 Portland cement

Cement is an essential compound to bond sand, stone and building blocks in build-
ing and civil engineering. The cement of interest in construction and making of
concrete is known as Portland cement and is made from limestone and clay that
are ground and mixed in certain proportions and then burned in rotating kilns at
temperatures around 1450 ◦C. At this temperature, clinker in the form of pebbles is
produced and it contains the four main compounds listed in table 2.1. However, the
clinker has to be rapidly cooled down to conserve the reactive compounds. Portland
cement is then made by grinding the clinker together with 2-3 % gypsum to regu-
late the setting time and control the reaction of C3A [9]. The final product is a fine
powder with a particle size of about 10 µm that can be mixed with water to form
a cement paste that within few hours starts to react to form a harden cement paste
that is the binder that holds together the sand and rocks in concrete.

Compound Oxide composition Abbreviation
Tricalcium silicate 3CaO·SiO2 C3S
Dicalcium silicate 2CaO·SiO2 C2S
Tricalcium aluminate 3CaO·Al2O3 C3A
Tetracalcium aluminoferrite 4CaO·Al2O3·Fe2O3 C4AF

Table 2.1 Main compounds of Portland Cement [3] .

2.2 Carbon Dioxide Emission

Cement production is a large contributor to climate change as a result of being
the most produced building material world wide. The production process involves
high emissions of carbon dioxide, 40% from the chemical calcination of limestone
and 50% from burning fossil fuel to heat the kilns. For every kg of Portland cement
produced about 0.9 kg of carbon dioxide is emitted. With more than 4 billion tonnes
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Chapter 2. Background

of cement produced every year cement production accounts for above 8% of global
carbon dioxide emission and it is predicted to increase to 5 billion tonnes over the
next 30 years. Therefore, for cement plants to be in line with the Paris Agreement
on climate change, the annual carbon dioxide emission must be reduced by 16% by
the year 2030 while the production increases. To reach this goal optimizing cement
production plays a key role and is demonstrated today in changing the fuels and in
using alternative materials to blend with the clinker such as fly ash and blast furnace
slag that also react as they are activated by the Portland cement [6]. Optimizing the
design of concrete structures to use a minimal amount of cement is also another
method. In the future carbon capture and storage techniques might also be used at
cement plants.

2.3 Hydration of Cement

The reaction of cement with water in which the hard mass of cement paste is formed
is called hydration. As all hydration reactions produce heat, measurement of heat
rate from the hydration reaction has been a popular method to visualize and analyse
cement reactions. The most common instrument for heat rate measurements in ce-
ment industry and cement research is isothermal calorimetry, see fig. 2.4. Hydration
is a multi-step process described schematically in fig. 2.2. It starts with the initial
reactions (I) of very high heat rate which then is followed by the induction period
(II) during which the concrete can be transported and cast at the construction site.

The main strength forming reaction (III) starts typically after 2 h. It accelerates,
peaks and then decays (IV). The hydration reactions continue as long as there are
unhydrated cement and water although at a slower and lower rate. The most reactive
clinker compound is C3A. It hydrates early — during phase (I) — together with the
sulfate to form the compound ettringite, which does not lead to the hardening of
cement. The hard product of hydration called C-S-H is mainly produced by the
reaction of the main compound, C3S in phase (III and IV). In the long term C-S-H
is also produced at a much slower rate from the reaction of C2S during phase (IV).
C4AF hydrates slowly and does not contribute much to the strength properties.[3]

2.4 Cement Plant Control

There are different measured parameters used to control a cement plant production:
measuring the amount of certain compounds and elements and the particle size dis-
tribution. These parameters are typically measured every hour in central automated
laboratories on production samples. None of the above metrics concerns the use of
cement, i.e., its hydration properties, which are tested by measuring the strength of
a standard mortar sample after 24 h of hydration.

In need of a faster way of assessing the reactivity of cement in real-time,
the exothermic heat rate of hydration is analysed in isothermal calorimeters. The
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2.4 Cement Plant Control

strength develops in the second peak (II) that starts after several hours from the
moment sand and water is mixed which is still a slow process that is difficult to
utilise to control the plant. However, it is believed that the first peak carries infor-
mation about the second peak. This is why ThyssenKrupp Industrial Solutions and
Calmetrix have developed an automated isothermal calorimeter, PolabCal, that can
be used in a cement plant laboratory to produce data on the reaction between ce-
ment and water quickly enough to be used for process control. In the PolabCal, a
robot quickly mixes cement and water in a plastic vial and places the vial in an
isothermal calorimeter that measures the heat flow from the sample in the vial. The
robot operates inside a chamber with a regulated temperature equal to that of the
calorimeter, see fig. 2.1. The PolabCal uses all 8 channels in the calorimeter and it
takes measurements hourly all year long.

Figure 2.1 PolabCal robot arm inside the chamber.
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Figure 2.2 Thermal power of hydration per sample (5.5g cement and 2.75 water).

2.5 The Calorimetric Measurement

The cement measurement is typically not more than 20 min long see fig. 2.2 (B).
A problem with this approach is that the calorimeter has a thermal inertia, so the
signal from the calorimeter (the heat flow) does not represent the true heat produc-
tion rate (thermal power) of the sample, but rather a sum of the true heat production
from the time the vial was charged in the calorimeter and heat rate due to the initial
temperature difference between the sample and calorimeter. The temperature differ-
ence is caused by the heat production of the hydration reaction prior charging into
the instrument. One can also measure solely the the heat rate due to temperature
difference between the calorimeter and a sample by using a sand and water sample.
If such sample is kept at a temperature higher than the calorimeter for a while and
than charged in the calorimeter one will observe a heat rate signal, see fig.2.3

Figure 2.3 Measurement from sand and water sample with an initial temperature higher
than the calorimeter).
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2.6 Isothermal Calorimetry

The aim of this project is therefore to develop a thermal model of the calorimeter
so that the measured heat flow can be recalculated to thermal power in the sample,
i.e., to remove the influence of the instrument from the result, so that the result
only includes information about the cement hydration process. Because of the initial
over-temperature the cement sample gains from the heat production, the temperature
of the sample, from the time of charging into the instrument, is also

2.6 Isothermal Calorimetry

As mentioned above, one means of monitoring cement hydration is measuring the
heat flow of the reaction using isothermal calorimetry. An isothermal calorimeter
is a tool which measures rate of the heat flow produced in a sample at constant
temperature, thus the term isothermal. The sample is charged into an ampoule that
in turn is inserted in an ampoule holder which is in contact with a heat sink at a
regulated temperature. Between the heat sink and the ampoule holder is a heat flow
sensor that measures heat flow according to the Seebeck principle. However, using
only this structure makes the system susceptible to noise, therefore all isothermal
calorimeters use the twin principle, i.e. they all use a reference sample of similar
thermal properties as the sample, especially heat capacity, except it does not produce
heat.

The heat flow from the reference is subtracted from the heat flow from the sam-
ple and noise is thereby canceled. The calorimetric instrument used in the Polab Cal
is called I-Cal Ultra and has 8 channels, see fig. 2.4.
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(a) I-Cal Ultra calorimeter by Cal-
metrix.

(b) A single channel of I-Cal Ultra (28.3
× 6.35 cm)

Figure 2.4 I-Cal Ultra
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3
System Identification and
Modelling

A system is generally speaking an object whose properties is a subject of study. This
broad definition could then be applied to all reality around us, the solar system, an
airplane, a vehicle, food chain systems etc. For a food chain system in nature an
interesting question could be: how long would a certain herbivore species last if the
carnivore species number rises. Such a question could be answered experimentally,
through disturbing the system and observing it. In fact, experimentation has been
the main method of natural science to seek answers about system properties but it
has its limitations:

• It is expensive: e.g. changing one part of a production machine multiple times
leads to unusable products.

• It is dangerous: e.g. testing a vehicle brake system.

• The system does not exist yet: e.g. when designing an airplane one wants to
test the effects of different shapes on the aerodynamics.

Especially for the last point, models of a system are crucial to study the properties
of the system. A model of a system is thus a limited representation of a system that
helps study the system without carrying out experimentation. It is limited because it
does not give information about the whole system, but rather only a part of it which
is the subject of interest. For example, an aerodynamic model of an airplane might
not provide information about the aircraft fuel consumption. There are different
types of models; physical models and mathematical models, both of which will be
used for the calorimeter of study. With a physical model some physical properties
of the system are known and used as subsystems that follow the laws of nature;
e.g. when a resistor is connected to a voltage source, Ohm’s law is observed and
that gives information about the current. Mathematical models describe the system
through mathematical equations between quantities like temperature and heat flow.

19
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3.1 System Identification

System identification uses observation of the system in order to fit the model’s prop-
erties to those of the system. This method of modeling often complements the phys-
ical model. As mentioned above, physical models are based on laws of nature which
are mathematical models which once were observed. In order to introduce system
identification more distinctly as a method of model design one should view a system
as an object in which variables interact and produce a signal of interest called the
output. The system itself can be disturbed by the user through inputs to produce a
desirable output but also by undesirable signals that are called disturbances, that are
either directly measurable or observed through the output. An example of a system
viewed as interacting variables is a drone. Applying a varied current (input) to the
motors of the drone causes a varied altitude (output) which is also affected by dis-
turbances from the wind. To identify a model of a system it is assumed that the rela-
tionship between the signals of the system has a mathematical structure. The degree
of complexity of the mathematical model depends on the system and the intended
use of the system. The mathematical representation could be a system of differential
or difference equations that could be characterized as being linear/non-linear, time
continuous/time discrete and stochastic/deterministic etc. The first method adopted
to build a model is to break up the system into several physical subsystems whose
properties are understood from previous experimentation and empirical work. The
subsystems are then joined together to form the whole system either through a sys-
tem of differential equations or through element blocks according to a software.
The other method is experimental and therefore also data dependent. The input and
output data are then used to fit the pre-determined mathematical model through data
analysis software.

3.2 The cycle of identification

The identification process is a repeated procedure in which a model structure is
selected, the best model is estimated and finally validated. The common steps in
such procedure can be summarized as follows (see fig. 3.1):

• Experiment design to collect input/output data.

• Analyzing the data. Usually the data is firstly detrended and means are re-
moved. Sometimes even pre-filtering is applied to enhance certain frequen-
cies. Resampeling the data can also be useful.

• Selecting the model structure of which the parameters are estimated.

• According to a given criteria compute the best model in the set of models.

• Examining the model by analysing its model fit and correlation functions.

20



3.3 Models

• If the model meets the criteria stop, otherwise test a different model structure,
a different estimation method or even work with different design experiments.

Figure 3.1 System Identification cycle.

3.3 Models

As mentioned, models are used to give information about the relationship between
the system’s observed variables. They are not meant to simulate the true system
perfectly but rather give a decent description of certain aspects of interest. The data
recorded from system operation as input and outputs are key for the modeling pro-
cedure. However choosing a model structure that relates the input and output and
can be challenging. Prior physical and mathematical knowledge of the system is
essential to give an intuitive idea about the structure and can be usefully utilized at
this stage. Perhaps the most general model structure is the difference equation:

y(t)+a1y(t −1)+ . . .+anay(t −na)

= b1u(t −1)+ . . .+bnbu(t −nb)+ e(t) (3.1)

This expression can be interpreted as that the output depends on previous output and
input observations. How many past observations that are used determines the degree
of the difference equation and it is presented discretely as most data is collected by
sampling. Equation 3.1 can take the matrix form:

A(q)y(t) = B(q)u(t)+ e(t) (3.2)

G and H being:

G(q,θ) =
B(q)
A(q)

, H (q,θ) =
1

A(q)
(3.3)

The model structure represented by equation 3.1 is called an ARX-model (auto
regression with exogenous/extra inputs) as the model output depends on past output
and input values.
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Chapter 3. System Identification and Modelling

3.3.1 Linear models
If a system is believed to be linear and time-invariant there is a set of linear model
structures in which the search for a suitable model can start. A linear time-invariant
model is characterized by its impulse response and the spectrum of its disturbance
and stochastically maybe even the probability density function (PDF) of the distur-
bance. A model of such takes the form:

y(t) = G(q)u(t)+H (q)e(t) (3.4)

with

G(q) =
∞

∑
k=1

g(k)q−k, H (q) =
∞

∑
k=1

h(k)q−k (3.5)

Thus, a linear model is specified by the functions G and H (e is assumed to be Gaus-
sian). Each unique model from the set of models is characterized by the coefficients
that enter the function which are determined by the identification procedure. As
before these coefficients are denoted by θ and can be seen in the model predictor
form:

ŷ(t|θ) = H−1 (q,θ)G(q,θ)u(t)+
[
1−H−1 (q,θ)

]
y(t) (3.6)

As the predicted data is essentially calculated, one denotes the model output instead
with ŷ. From the basic model structure one notices two key vectors, the parameter
vector and the data vector ϕ (x) which is called the regression vector as the model
regresses to past signal values. Of course, the regressors can also take a non-linear
form, include disturbance vectors and can be extended to multiple inputs and out-
puts depending on the application. A common way of parametrizing G and H is to
represent them as rational functions and there is a family of such transfer functions
that are used in the field. Different transfer functions or structure setups empha-
size different characteristics of the system to be caught. If the error term is to be
considered insignificant the predictor term could thus be written as:

ŷ(t|θ) = θ
T

ϕ (t) = ϕ
T (t)θ (3.7)

ARMAX. One of the disadvantages of the ARX model is the inflexibility in de-
scribing the disturbance term e, i.e., the Gaussian noise enters the dynamics of the
systems only through the denominator. If instead the white noise is expressed as a
moving average (MA) the model becomes thus:

A(q)y(t) = B(q)u(t)+C (q)e(t) (3.8)

As in the previous model structures discussed above, the polynomial A is a com-
mon factor between the input and disturbance. To add more freedom to the model
both G and H could be parameterized independently.

Box-Jenkins Model (BJ). A Box-Jenkins model structure takes the form:

y(t) =
B(q)
F (q)

u(t)+
C (q)
D(q)

e(t) (3.9)
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3.4 Data Collection

General Model. A model structure that could generally describe all the previous
structures is:

A(q)y(t) =
B(q)
F (q)

u(t)+
C (q)
D(q)

e(t) (3.10)

Depending on which of the five polynomials that are used, one can construct 32
different model sets from equation (12). The output could also be delayed by several
samples when input is applied. Accounting for delay, equation 3.10 becomes:

A(q)y(t) = q−n B(q)
F (q)

u(t)+
C (q)
D(q)

e(t) (3.11)

IARX. Especially for inverse modelling IARX is a novel method [4] that uses both
past and future exogenous inputs to directly estimate the inverse model according
to:

u [k] =−
na

∑
i=1

aiu [k−1]+
nb−1

∑
i=0

biy [k−1]+
nc

∑
i=1

ciu [k+1] (3.12)

3.4 Data Collection

Data acquisition for system excitation is the first step and the most important step
in system identification. It is the quantity and quality of the data that decides how
much of the the dynamics is captured and in discrete time systems it is dependent on
three key factors: the type of the input, the type of the hold device, and the sampling
rate. Good input data is tied with the notion of identifiability and informative data.

3.4.1 Identifiability
The ability to identify a model precisely and uniquely is essentially dependent upon:

• The model: existence of a unique one-to-one mapping between the model and
parameters.

• The estimation method: the ability to estimate the "true" model if infinite
samples are available.

• The input experiment: if the input contains sufficient information to distin-
guish between two candidate models and if the SNR is high enough.

Luckily, for linear time-invariant systems, identifiability is guaranteed if the in-
put is persistently exciting[7]. This means that the input should contain almost all
frequencies but since that is not realizable, one seeks to cover as many frequencies
as possible at the region of operation. Such input is satisfied if it is quasi stationary
and if [1]:

γuu (ω)> 0, for almost all ω (3.13)
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Chapter 3. System Identification and Modelling

3.4.2 Signal to Noise Ratio (SNR)
SNR measures the relative contribution of deterministic and stochastic effects of a
signal, and it is explained mathematically in equation 3.14:

SNR =
σSignal

σNoise
(3.14)

Intuitively, a model should explain variations in the signal (true response). If
noise is heavily embedded in the signal it thereby contributes to the variations of
the output and as a result effects of the input is weakened. Therefore to estimate
the parameters of a model precisely the strength of the signal should be significant
relative to the noise.

3.5 Model Calculation

The model parameter can be calculated by different methods the most common of
which is the least squares method. The least squares calculates the parameters that
minimize the cost function:

θ̂N = argmin
θ

(
1
N

N

∑
t=1

(
y(t)−ϕ

T (t)θ
)2

(3.15)

3.6 Model Validation

The calculated model that has fit the observed data best according to the chosen
criterion must then be validated. Validation are tests to assess how well the model
describes the variable to its purpose which includes reconstructing the output well
enough from inputs with a different experiment than the one used to estimate the
model. This way, deficient models are rejected and models that perform well gain
a certain confidence, but it is worth noticing that no model represents the system
perfectly.

3.7 Physical Modelling

When modelling a thermal system the two physical quantities of importance are
heat transfer and temperature difference. In fact heat transfer is essentially driven
by temperature difference across a heat pathway which is a channel through which
heat flows. Across these channels heat flow encounters discontinuities in material
properties and depending on the physics of these discontinuities heat transfers in
different modes: conduction, convection and radiation. Both conduction and con-
vection follows the same mechanism, i.e., the same mathematical equation 3.17
describes both modes. Below are the definitions of each mode:
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3.7 Physical Modelling

• conduction is heat transfer by diffusion.

• convection is heat transfer by a moving fluid (gas or liquid).

• radiation is heat transfer between two solids that are exposed to each other
and exchange electromagnetic energy as governed by Stefan Boltzmann Law.

Similar to electrical circuits thermal systems can also be represented by thermal
circuits, i.e., the system can be modeled as thermal elements that interact by the
laws of thermodynamics. Below is a table of electrical elements and their thermal
counterparts:

Electrical component Electrical SI unit Thermal component Thermal SI unit
Resistance Ω Thermal resistance K/W
Capacitance F Heat capacity J/K
Voltage difference V Temperature difference K
Current A Thermal power W

Table 3.1 Electrical components and their thermal counterpart [5].

A heat capacity stores thermal energy at a temperature difference when the
stored energy at a reference temperature is set to zero. An example of a heat ca-
pacity is a block of aluminum between two different temperatures. In the same way
as electrical resistors provide a pathway for electrical charges, thermal resistors pro-
vide a pathway for heat flow also driven by temperature difference ,e.g, a boundary
between a solid and a fluid. A temperature source is a fixed temperature at a point
regardless of the heat flow rate, similar to batteries. An example of a temperature
source is a temperature regulator. Expectedly, thermal resistors in series or parallel
are summed in the same manner as electrical resistors.

3.7.1 Lumped capacity systems
The notion of heat capacity and thermal resistor assumes a degree of approximation
,e.g, when treating a block of a metal at a temperature difference as a heat capacity
the temperature would in reality vary across the block itself. However, assuming that
heat transfer across the block is much faster than across the boundary, the concept of
lumped capacity system can be introduced. This concept means that finite thermal
objects are considered at some average temperature although in practice temperature
variation exists across the object. Another concept that is closely related to lumped
capacity and in fact is a metric that decides the applicability of lumped capacity
is the Biot number. It gives information about the uniformity of heat transfer in a
lump, i.e, a low Biot number means that the thermal lump heats or cools uniformly
and consequently the object can be treated as a lumped capacity. The Biot number
is thus the ratio of the conductive to convective resistance.

Bi =
h
k

L (3.16)
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• k: thermal conductivity [W/(m K)]

• h: convective heat transfer coefficient [W/(m2K)]

• L: characteristic length [m]

When treating a thermal system according to the lumped capacity model the number
of nodes (lumped capacity objects) decides the degree of complexity one wants to
capture, i.e pouring hot water in a mug initially at room temperature and regarding
the mug-hot water system as one node will only capture the temperature data leading
to equilibrium of the whole system and will not give information about temperature
record of the mug and hot water separately. In contrast, if the mug and hot water
were to be regarded as two nodes one could record both the rising temperature of
the mug and the cooling of the water.

Simscape is a tool in Matlab that enables creating physical models from physical
components that interact with each other in a Simulink environment. Simscape has
a thermal library that includes all the thermal components in table 3.1 and they all
obey pre-programmed thermal laws:

Q =
∆T
R

(3.17)

and

Q = m · c · ∆T
Ts

(3.18)

R is either convective or conductive thermal resistance depending on the the
heat transfer across the thermal boundary. A schematic example illustrating all the
thermal components discussed as well as other ones can be seen in fig. 3.2. This is
a one node model, i.e there is only one thermal capacitance.

Figure 3.2 Simscape schematic of a heat power source applying thermal power by conduc-
tion/convection to a thermal capacitance through a thermal resistance.
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3.8 The Inverse

3.8 The Inverse

Three methods are adopted to acquire an inverse model of the calorimeter. Firstly, a
direct model SD is identified from the input/output data. This means that the electri-
cal signal generated in the sand ampoule is treated as input and the thermal power
measured is treated as output. The electrical signal is not sampled by the instru-
ment but rather constructed manually and noise-free in Matlab. Thus the input and
the output are not affected by the same noise source and noise is only detected on
the output. The set of models identified are mathematically inverted, given that an
inverse exists, to produce the inverse model S−1

D . The second method attempts to
estimate an inverse SI directly from the data. The measured power is now treated as
input and the electrical signal is treated as output. The last inverting method makes
use of the physical model and the inverse is calculated from the algebraic and dif-
ference equations from the output to the input. The three methods are summarized
in fig 3.3

Figure 3.3 Inverse systems of the three methods.

3.8.1 Difficulties with the inverse
A problem that arises when inverting an LTI system is when the inverse system is
unstable or uncausal. In control theory the system is characterized to be minimum
phase if both the system and its inverse are causal and stable. A system is minimum
phase if and only if the poles and zeros of the z-transform of the system are inside
the unit circle. It is thus apparent that the flexibility of choosing the zero placement
in the direct system SD is restricted to inside the unit circle. Such a condition makes
it difficult to estimate a forward model that meets high accuracy criterion to later be
inverted to model that might not be physically correct.
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4
Implementation of the
Forward Inverse Model and
the Estimated Inverse
Model

4.1 Collecting data

4.1.1 Design limitations
For the purpose of collecting measurement data for the identification procedure, the
ability to design the experiment, i.e., design and apply the desired input, is essen-
tial for a successful identification. The instrument at hand is equipped with a fixed
heater in the ampoule holder for calibration purposes, but it is disadvantaged with
the limitation that it is programmed to only send pulses at a fixed rate (which was
not available at the time of study) or signals that resemble a long term cement mea-
surement output . Another disadvantage is the location of the fixed heater which is
not in the sample. In a hydration reaction, heat is produced from within the sample
which is not the case with a fixed heater. A mobile heater however can be placed in
the reaction zone (in the sample) which is more accurate than a fixed heater [8]. The
mobile heater used is built of four 100±1 Ω resistors coupled in an arrangement de-
picted in fig. 4.1 This arrangement was implemented to try to dissipate heat evenly
in the sample so as to create the geometry of the cement reaction. Furthermore, the
instrument only allows sampling at a 5 s rate which may lead to down-sampling of
the fast dynamics of hydration when a cement ampoule is inserted. Consequently,
when exciting the system with an input pulse, one cannot be certain that there is not
a time delay between the input and output. It is assumed in this report that a delay
does not exist.
The input signal (thermal power, Pin)is restricted to pulses with amplitudes deter-
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4.1 Collecting data

Figure 4.1 Mobile heater made of resistors. Attention should only be payed to the arrange-
ment and not the resistor values (they do not depict the actual values).

mined by the a resistor circuit outside the calorimeter and a 20 V voltage U . Figure
4.2 represents the circuit:

Figure 4.2 Outer pulse generating circuit

The voltage applied to the heater is calculated according to equation 4.1:

Pin =

(
U

RHeater

R1 +R2 +RHeater

)2

RHeater
(4.1)

4.1.2 Designing the experiment
As mentioned above the input signal is not sampled in the calorimeter. Instead the
input pulses are created noise-free digitally in Matlab. Three types of input signals
were generated. The first one is a step signal in both directions that allows the output
measurement to reach steady state, the second are short duration pulses with differ-
ent rates that do not allow the output measurement to reach steady state, and the
last signal is in fact not electrical, but is a single pulse that is created by charging
an ampoule with a sand sample that has a temperature higher than the calorime-
ter. Examples of these signals and their output measurements are shown in fig. 4.3
below.

These graphs do not show the noise when change rate is low in measurement
signals. If one is to zoom in on the first step-signal in the output in (b) in fig. 4.3 one
can clearly see the signal is embedded in very low noise. Figure 4.4 illustrates this.
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Figure 4.3 From the left: a steady state stair signal, pulses with different rates and a sand
ampoule signal.
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Figure 4.4 Noise seen on steady states level.

4.1.3 Selecting first model structure
As discussed in section 3.3.1 there are several standard model structures that tend
to be enough to describe most linear systems. Many of them are found in SITB and
can be used with different orders and different input/output delays. There are even
models that can include non-linearity descriptions such as Non Linear ARX mod-
els. With so many structures and degrees of freedom, in terms of model order and
delay samples, to choose from it is difficult to decide what model structure to start
at. Luckily there are several books, for example [2] that provide some guidelines
for the repetitive identification approach. A common first approach is to start with
estimating several combinations of ARX models. This is a feature available for both
ARX and state space structures. The SITB then returns a histogram of the the mod-
els’ ratio of prediction error variance to the output variance. The lower the ratio the
more accurate the model is in explaining the dynamics. The fit percentage is com-
puted with regard to a validation data that differs from the estimation data. Usually
models with unexplained prediction variance values close to the best model are also
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4.1 Collecting data

worth to examine. Once models are picked they are further examined by looking at
their frequency response, transient response, noise spectrum and model residuals.
These function can give insight into the model dynamics such as the order of the
system, the time delay that are exploited to further develop the model or try new
structures. Two important functions to examine in order to acquire good models are
the model fit percentage and the model residuals.

Output fit. Computes the root of the mean square value of the difference between
measured and simulated output. High percentages indicates high model fit for the
validation data but does not necessarily mean that the model is good enough and
would score the same value on different data. Therefore it is also as important to
analyze the residuals.

The residuals. An arbitrary linear model can be written as

y(t) = G(q)u(t)+H (q)e(t) (4.2)

In a perfect model, the noise e(t) represents the part, residuals, that the model could
not reproduce from the input. Thus, a good model should not display dependency
between the input and residuals (cross correlation), also the residuals should be mu-
tually independent (auto correlation). Both tests should consequently be done to
ensure that these correlation functions are within or at least not significantly outside
the confidence interval. A rule of thumb when trying to optimize the model to meet
the correlation conditions is if the cross correlation varies slowly outside the con-
fidence interval which indicates few poles in the model, while sharp peaks means
few zeros or delays.

ARX. As suggested earlier different experiments will be tested to estimate the
model, it is therefore natural to validate each estimated model on the remaining
data sets fig. 4.3. In this example we do not consider inevitability of the model but
only try to answer the question which data set is most suitable for direct-model es-
timation. An ARX with three poles and two zeros was used as it was the lowest
order that captured the low order dynamics. Model arx320step is estimated on 4.3
(a), model arx320pulses is estimated on 4.3 (b) and model arx320sand is estimated
on 4.3 (c). Figure 4.5 shows the responses of ARX320 to the input signals in 4.3.
Clearly the sand pulse data is not informative enough to capture higher order dy-
namics. The ARX model estimated on this data fails to simulate the measurements
of both the stair signal and the short pulses. It is therefore disregarded for estimation
and can only be used for validation. The other two data sets seem to perform almost
equally well and will be used henceforth for estimation and validation.

31



Chapter 4. Implementation of the Forward Inverse Model and the Estimated
Inverse Model

200 400 600 800 1000 1200 1400 1600 1800 2000 2200

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

y
1

sand measurement (y1)

arx320sand: 98.88%

arx320pulses: 92.92%

arx320step: 90.34%

Time (seconds)

P
 (

W
)

(a) ARX320 model response to a sand pulse.
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(b) ARX320 model response to a step.
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(c) ARX320 model response to short pulses.

Figure 4.5 Model fits of the same model (ARX320) but estimated on different data sets.

4.1.4 Developing the Model
The first step gave an intuitive idea of the model order and which estimation is the
most informative. The next step is to include a more flexible noise model utilizing

32
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a BJ or ARMAX structure and analyse both the auto correlation and cross corre-
lation functions. At first, the main approach was to acquire a good direct model
that satisfies a high fit percentage and passes the whiteness and independence test
within the confidence intervals. However, some models, as good as they are, might
not have an inverse or they have an unstable inverse. Therefore, the forward models
in fig. 4.6 are estimated on the cost of first satisfying invertibility and then stability.
The BJ11040 model was estimated on the first half of the short pulses in fig. 4.3 and
AMX4110 was estimated on the four step signal in the same figure. When analysing
the residuals it is important not to validate on data sets with too many samples and
little input excitation, i.e., the sand pulse measurement is originally 1000 samples
and is only excited on a pulse of one sample length. Validating on the whole data
set will give bad confidence unless the data set is reduced. As mentioned above,
to enable invertibility the correlation functions are allowed to cross the confidence
interval as seen in fig. 4.7
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(a) Direct models response to a step signal.
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(b) Direct models response to pulses.
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(c) Direct models response to sand pulse.

Figure 4.6 Direct model response to different validation sets.

(a) AMX4110 auto correlation and cross correlation analysis.

(b) ARX412 auto correlation and cross correlation analysis.

Figure 4.7 Residual analysis of the direct models.
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4.1.5 Inverting the Forward Models
The two direct models are then inverted mathematically. To evaluate the inverse
models one can validate them against some validation data sets. However, one can
not conclude from, i.e., the normalized root means squared error (NRMSE) value
if these models are good enough. One can instead use measurement data as input
to the inverse models and examine if the original input is reconstructed. In the case
of the measurement of the cement sample the input is sought and the only way to
validate the models is to feed the measurement signal to a cascade coupling of the
forward and inverse model and examine the output fits the measurement signal. The
method is shown in fig. 4.8 . For visualisation purposes the response of the two
inverse models to the measurement data was filtered in fig. 4.9. The filter used i a
Savitzky-Golay filter of order one and a 7 samples window.

Figure 4.8 Cascade coupling of the direct and inverse models.
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(a) Response of BJ11040 model inverse.
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Figure 4.9 Inverse models response.
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The reconstructed input signal from the inverse model response to the cement
measurement can be seen in fig. 4.10 and 4.11. It is clear that these signals can not
represent the original hydration reaction although feeding each response to its re-
spective forward model does recreate the measurement to about 99%. However if
signals were fed to another forward model they do not reconstruct the measurement
as seen in 4.12. If the first 100 seconds are disregarded on can observe an expo-
nential decrease in the signal which can represent the heat rate from the hydration
reaction.
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Figure 4.10 Input signal reconstructed from inverse models inverted from forward models.
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Figure 4.11 First 100 unfiltered seconds of the estimated inverse models response to a
cement measurement.
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Figure 4.12 Reconstructed output from the cascade coupling of inverse models then for-
ward models.

4.1.6 Direct estimation of the Inverse Model
In this section, the inverse is estimated using the same approach as estimating the
forward model. The measurement will be regarded as inputs and the inputs will
be regarded as outputs. In addition to classical linear models discussed in chapter
3 the IARX model structure will also be tested. Figure 4.13 and 4.14 shows the
reconstructed input from estimated inverse models.
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Figure 4.13 Input signal reconstructed from directly estimated inverse models (filtered).
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Figure 4.14 Input signal reconstructed from directly estimated inverse models (first 100
unfiltered seconds).
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Figure 4.15 Response of AMX4110 to input reconstructed from OE300 and IARX040.
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Figure 4.16 Response from all the inverse models (filtered).

Model OE300 was estimated on the short pulses data, see 4.3 and when using
this model in a cascade coupling with the forward model AMX4110, which is es-
timated on the step data, it did not reconstruct the cement measurement well. One
can also see in fig. 4.16 that OE300 is the only model that had a slower decrease.
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All the other inverse models had approximately the same decrease rate.

To conclude, estimating the inverse directly from the data or from the forward
model did not succeed in explaining the temperature difference that the cement
sample had prior charging in the instrument. However, most of the inverse models
showed a similar decrease heat rate after 100 s and this could represent the true
heat rate from the hydration reaction. The choice of the estimation data was also
important when the inverse model was estimated directly from the data. When the
short pulses data was used to estimate an inverse, the response from the model did
not agree with the rest of the estimated inverse models.
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5
Physical Modelling
Implementation

Knowledge of the physics and geometry of the I-Cal Ultra calorimeters allows to
use physical modelling. The geometry of the profiles of our instrument, and even
the electrical specification of the components used, are well known. However, per-
fect modelling is still not feasible. The difficulty arises because of the numerous
heat pathways and heat transfer modes in the system. It is indeed possible to make
an FEM-model of the system with tools such as COMSOL but these complex mod-
els are not suited to be integrated in evaluation software for PolabCal. The better
alternative is to use LHCM as explained in 3.7.1.

5.1 Nodal Models

The model structure in LHCM is defined by the number of nodes N. Our approach is
to select the nodes in a fashion that the first nodes start at the input and successively
model the system heat capacities as nodes along a pathway that ends at the output
(calorimeter measurement). This way we are mostly accounting for heat transfer
from the input to the output and ignoring heat losses in the rest of the pathways.
Three models with three, four and five nodes respectively will be simulated and
they are depicted in fig. 5.1. As expected the number of parameters is 2 · N as
between each two nodes there has to be a thermal channel represented by a thermal
resistance. Table 5.1 explains the parameter labels in fig. 5.1.

Label Physical part Label Physical
S The sample A Thermal resistance between S and A
A Ampoule AX Thermal resistance between A and X
X Ampoule holder XH Thermal resistance between the X and H
H Heat sink HR Thermal resistance between H and R
R The reference H0 Thermal resistance between H and the ref. temperature

Table 5.1 Parameter labels and their representation in I-Cal Flex.

40



5.2 4-nodes Model

Figure 5.1 Simscape lumped heat capacity models of 3, 4 and 5 nodes.

5.2 4-nodes Model

The initial guess of the model parameter values was calculated based on knowledge
of material property and the dimensions of the geometric parts (not given here).
Of course one needs an experiment to validate the model and for this purpose a
drop of an ampoule with sand mixed with water an with initial temperature differ-
ent from the temperature of the calorimeter will be our main experiment in physical
modelling. Simscape offers a variety of useful boxes and features for this kind of
experiment, e.g., in the 4-nodes model one can set the initial temperature of the
sample node to that of the experiment and examine how well the simulated output
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signal matches the measurement. Figure 5.2 shows the simulated output from the
initial parameter values and the measured signal of a sand mixed with water sample
of 2.72 K over-temperature. The simulated output from the 4-nodes model does not
match the measurement at all and this is quite expected when the model was solely
based on hand calculation and approximation of heat pathways and capacities. At
this point applying a grey box optimization technique will result in heavy processor
calculation that may or may not converge to a minimum. Rather, analysing the sen-
sitivity of the parameters could save some computing power and give insight into
which parameters influence the output of the model most.
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Figure 5.2 Simulated output (4-nodes) and measurement of a sand mixed with water sam-
ple with over temperature of 2.72 K.

5.2.1 Sensitivity Analysis
The initial parameter values could be used as means to normal distribution with user
defined variance to generate parameter sets for the sensitivity analysis. However, we
choose a uniform distribution instead to examine if the initial parameter guess is ro-
bust enough. The number of parameter sets is set to 10 ·N resulting in 80 parameter
sets. For each parameter set the value of the cost function, signal matching, is cal-
culated and correlation is computed. Figures 5.3 and 5.4 illustrate the results. Both
graphs show that parameters S, X, SX and XH are of greatest influence. Note that a
higher SignalMatching value means higher violation of the requirement.

Parameter optimization can now be conducted only on these parameters and the
simulated response of the same experiments after optimization is shown in fig. 5.5.

Visually, one can see good signal matching and therefore optimizing now on all
parameters could most probably converge to a minimum. Figure 5.6 displays the
final optimization results. The parameter values at each step are listed in table 5.2.
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Figure 5.3 A scatter plot of all parameter sets and the requirement value. The line fitted
represents the correlation. The histogram graph displays the probability distribution of the
signal matching values
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Figure 5.4 A tornado graph of parameter influence on signal matching.

Initial guess After sensitivity analysis Final optimization
S 21 19.65 19.78
X 30 8.02 8.22

SX 7 6.41 6.34
XH 9 4.5 4.5
H 700 Unchanged 465.5
R 21 Unchanged 16.54

H0 17 Unchanged 10.1
HR 7 Unchanged 7.8

Table 5.2 Parameter estimation.
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Figure 5.5 Measurement and simulation (4-nodes model) after optimizing on S, X, SX and
XH.
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Figure 5.6 Measurement and simulation (4-nodes model) after optimizing on the most sen-
sitive parameters and then on all parameters.

5.3 5-nodes Model

Similarly, we apply the same steps as for the 4-nodes model: initial guess, sensitivity
analysis, optimization on the most sensitive parameters and a final optimization on
all parameters. The results for the middle steps are similar and will not be presented
only the final optimization is shown in fig. 5.7.

44



5.4 3-nodes Model

0 200 400 600 800 1000 1200

Time (s)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

P
 (

W
)

Simulated

Measured

Figure 5.7 Measurement and simulation (5-nodes model) after optimizing on all parame-
ters.

5.4 3-nodes Model

The 3-nodes model is essentially a 3 heat capacities of which, based on our experi-
ment, heat from over temperature in the sample flows through a resistance directly
into the heat sink hence the absence of the initial rise in thermal power seen in the
simulation output in fig. 5.8. As a result a minimum of two nodes before the heat
sink is needed to capture the simplest dynamics of the system.
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Figure 5.8 Measurement and simulation (3-nodes model) after optimizing on all parame-
ters.
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5.5 Comparison

Figures 5.6 and 5.7 looks much alike and it is difficult to distinguish visually which
model is more accurate, but they both show a significantly better fit than fig. 5.8.
The RSS of each model output and measurement in table 5.3.

RSS
3-nodes 0.0748
4-nodes 4.8 ·10−5

5-nodes 2.38 ·10−5

Table 5.3 RSS of all three physical models.

5.6 Calculating the Inverse

The RSS of the 4-nodes model is 4.8·10−5 which is only slightly higher than the
5-nodes model and has 2 parameters less. It will thus be used to calculate the input.
This method is essentially equivalent to inverting a model mathematically with the
difference that one can observe the rest of the variables in the system such as tem-
perature. For instance, in fig. 3.2 if the temperature rise in the heat capacity at the
first step is known one can through equations 3.17 and 3.18 compute the heat rate
that caused the temperature rise. Adopting this procedure, the heat rate developed
in a cement sample can be calculated through the 4-nodes model. This is useful to
also acquire the initial temperature of the cement sample when dropped in the in-
strument. To make calculation easier, the reference node R together with thermal
resistance HR will be ignored without significant change in parameter values when
re-estimated, see table 5.4. Figure 5.9 shows the calculated inverse response to both
a sand and cement measurement. The same figure is divided into fig. 5.10 and 5.11,
that show the first 100 seconds and the time span 40-600 s respectively. This is to
emphasise the exponential behaviour of the cement signal that cannot be seen in
figure 5.9. Furthermore, to remove the periodic spikes from the signals in 5.10 a
Savitzky-Golay filter of window-size 35 s (7 samples) is applied, see fig. 5.12. It
is important to use the filter only on the second part of the signal (40-600 seconds)
with the periodic behaviour because otherwise the first samples of the signal would
be underestimated. One can see the distinction between the recalculated inputs of
sand and cement measurements in figures 5.9-5.12. The sand input resembles a
pulse while the cement input starts as a pulse but then decays quiet sharply.
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5.6 Calculating the Inverse

Optimized parameters w/o reference
H 579.99

H0 12.968
S 20.395

SX 6.668
X 9.5364

XH 4.1915

Table 5.4 Parameter values of 4-nodes model w/o reference.
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Figure 5.9 Calculated inverse response to a sand measurement and a cement measurement
(unfiltered).
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Figure 5.10 Calculated inverse response to a sand measurement and a cement measurement
(first 100 unfiltered seconds).
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Figure 5.11 Calculated inverse response to a sand measurement and a cement measurement
(unfiltered).
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Figure 5.12 Calculated inverse response to a sand measurement and a cement measurement
(filtered).
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6
Discussion

The goal of the project was to find the original heat rate of the hydration reac-
tion of cement with water. The interest was in extracting more information from
the reconstructed input signal through inverse modelling. This means that neither
the forward model nor the inverse model was intended to be implemented in some
control policy and therefore the output from the inverse model should reflect some
physical information. The two principal methods adopted were to build an inverse
model through first, implementing a forward model with system identification and
physical modelling and then to invert them, and the second method was to estimate
the inverse directly by system identification. Although much work was done to col-
lect informative data to estimate a good forward model, the results showed that the
inverse of the forward model did not reconstruct the input in a physical manner.
However, the forward models were useful, albeit only in validation in the cascade
coupling. Estimating the inverse model directly was more successful and the results
showed a more realistic heat rate curve that starts with high value and then decays.
The IARX new feature of using future exogenous output was not exploited as the
best model estimated did only use past outputs. It is also worth to notice that the
inverse models estimated did not use any past inputs and can thus be regarded as
impulse response models. The inverse models estimated with system identification
gave indications of the true heat rate, at least after 100 s as most of them agreed
approximately on the decrease of the true heat rate. The importance of the physical
model was demonstrated in tracking where the source of the periodic spikes of the
reconstructed input, see fig. ??, regardless from the method used. When the phys-
ical model was fed with a cement measurement one could track the calculation of
the input from the output and follow all other quantities at each node and thermal
pathway.
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Appendix

Forward Model Parameter Values
arx320sand
A(q) = 1−1.412q−1 +0.1564q−2 +0.262q−3

B(q) = 0

arx320step
A(q) = 1−2.011q−1 +1.129q−2 −0.1155q−3

B(q) = 2.081 ·10−5 +0.001822q−1

arx320pulses
A(q) = 1−2.4q−1 +1.876q−2 −0.4751q−3

B(q) =−5.108 ·10−6 +0.001225q−1

bj11040
B(q) = 0.001154
C (q) = 1+0.9316q−1

F (q) = 1−1.8q−1 +0.08628q−2 +1.297q−3 −0.5824q−4

amx4110
A(q) = 1−2.76q−1 +2.714q−2 −1.108q−3 +0.1549q−4

B(q) = 0.0006621
C (q) = 1−0.08796q−1

oe300
B(q) = 210.6−397.4q−1 +187.8q−2

iarx040
B(q) = 99.93−113.7.4q−1 +18.31q−2 +33.05q−3
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