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Abstract

Enteric neuropathy describes a disease of the bowel caused by anomalies in the enteric
nervous system. Patients suffering from this disease have symptoms including nausea,
vomiting, diarrhea and pain. As enteric neuropathy is not well understood yet, its diag-
nosis is a non-trivial task.

Research on the enteric nervous system is needed in order to gain a better understand-
ing of this disease, making a correct diagnosis and targeted treatment possible. Thus, this
thesis presents the investigation of nervous cells in the bowel and different setups that can
be used for this purpose. More specifically, this involves the recording of high-resolution
3D images, with the ultimate aim to segment the ganglia, that are made up of neurons,
in the intestinal samples to determine their volumes and compare the ganglia volumes of
samples from healthy with those of diseased patients. In order to do this, X-ray tomog-
raphy based on absorption and phase contrast was performed.

This master thesis presents the comparison of two experimental setups, namely a lab
based micro-CT in Lund, Sweden and the TOMCAT beamline at the Paul-Scherrer-
Institut in Villigen, Switzerland, that were used to carry out these studies. It was con-
cluded that the setups could not be compared in terms of contrast-to-noise ratio, as
their determination was not successful. Regarding the resolution, it was found that the
micro-CT setup is appropriate to perform overview scans of the sample, but its overall
resolution is not high enough for the successful segmentation of the ganglia. In contrast,
the TOMCAT setup delivered a resolution sufficient for the ganglias’ segmentation. The
visibility of the ganglia could be significantly improved by applying phase retrieval, using
the Paganin algorithm, to the datasets before their reconstruction due to this procedure
enhancing the contrast. A reconstruction of the TOMCAT data with a self-developed
script was conducted and compared to the reconstruction that was done directly at the
beamline. It was found that the self-developed reconstruction was successful overall, but
not optimal when it came to applying the Paganin algorithm, leading to an ambiguous
separation between tissue and background. Furthermore, the optimal δ/β ratio for the
phase retrieval reconstruction at the micro-CT setup was confirmed to be 217.6. After
these preparations to find the optimal conditions for the segmentation of ganglia, the
volumes of the ganglia, remaining biological tissue and background were determined to
be 0.011 mm3, 0.44 mm3 and 0.067 mm3 in a 0.5 mm3 volume of one sample. The seg-
mentation and subsequent determination of the volumes of further ganglia will pave the
way for gaining a deeper knowledge of enteric neuropathy.
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1 Introduction

Gastrointestinal disorders are a common type of disease with a non-negligible impact
on the life quality of those affected [1]. Several clinical pictures are summarized under
the term ”gastrointestinal disorders”, which refers to dysfunctions of the gastrointestinal
tract. Symptoms may include abdominal pain, nausea, vomiting and diarrhea, with body
weight loss as a possible consequence. If no organic causes for the occurring symptoms are
found by standard examination methods, the diagnosis of irritable bowel syndrome (IBS)
is made. However, IBS might be a wrong diagnosis, as was shown by B. Ohlsson et al. [2]
on a specific case, which deals with a patient who was diagnosed with IBS at first. Due
to additional investigations of colon tissue of the patient, obtained by biopsy, a specific
reason for the patient’s symptoms was found: alterations within the enteric nervous system
(ENS) were observed, leading to the diagnosis of enteric neuropathy.

Figure 1: The location of the ENS between the circular (CM) and longitudinal (LM)
muscle layer in the bowel. Part of the ENS consists of ganglia (G), which are made up of
neurons (arrows). The size bar corresponds to 25µm [3].

A part of the ENS, i.e. a ganglion (G) which is made up of neurons (arrows), is located
between a circular (CM) and longitudinal (LM) muscle layer within the bowel, as can be
seen in Figure 1. The ENS controls the bowel’s movement and disturbances in these move-
ments due to alterations in the ENS can cause the symptoms described above [3]. As of
now, it can be assumed that a large number of cases of enteric neuropathy is unknown.
A better understanding of this disease and a correct diagnosis are important to provide
treatment. In order to improve the understanding of this disease, morphological studies
of the ENS of patients with and without its alterations are needed. More specifically, this
involves the comparison of the volumes of the ganglia of the different patients.

So far, the standard procedure to examine the ENS is the combination of light mi-
croscopy with immunohistochemistry. The latter describes the process of visualizing cer-
tain parts of the sliced sample by using specific antibodies. More details on this procedure
can be found in [4]. The problem with this method is that the ENS is possibly spread over
several slices, motivating the need for 3D images. However, this is difficult to realize be-
cause the slices are likely to show artefacts due to imperfect slicing and the overall process
is very time-consuming. An alternative approach is given by the use of X-ray tomography,
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which has the advantage of directly delivering 3D images without the requirement of sec-
tioning the sample. The obtained 3D images can subsequently be segmented to determine
the volumes of the ganglia [2, 3].

In this master thesis, the whole chain of a tomographic experiment was performed:
The data was acquired with tomographic setups (micro-CT and synchrotron), followed
by the 3D reconstruction of the images using two contrast mechanisms: absorption and
phase contrast. The former takes into account the attenuation of light, whereas the latter
is caused by a shift in phase as light passes through the sample. The obtained images
were segmented in order to study different parts of the sample in detail.

This master thesis presents 3D images of intestine samples with the overall aim of
finding mandatory requirements to be able to visualize the ganglia. More specifically, this
involves addressing the question if synchrotron radiation is needed to resolve the gan-
glia with a resolution high enough to perform segmentation on the images and for what
purposes lab based X-ray sources can be used. Furthermore, the contrast-to-noise ratios
(CNRs) delivered by the two different setups are compared and the question if phase
contrast is needed for the ganglias’ visualization is being dealt with. This is followed
by discussing how the phase contrast can be optimized. Lastly, image segmentation was
performed in order to determine the volumes of the ganglia in one sample.

It was found that synchrotron radiation is no requirement but advantageous in terms
of lowering exposure time and hence radiation dose. However, what is needed is a setup
that delivers a resolution in the range of 4.875 µm. The lab based X-ray source can be
used to perform overview scans for the overall location of the ganglia within the sample,
but its resolution is not high enough to perform a sufficient segmentation of the ganglia.
The contrast-to-noise ratio (CNR) was significantly higher for the lab based X-ray source
in case of absorption contrast images, but its was concluded that the determined CNRs
are not reliable and should consequently not be used to compare the two setups (Sec-
tion 5.1). The phase contrast was found to be necessary to improve the contrast between
ganglia and surrounding tissue, making a segmentation less ambiguous (Section 5.2). In
addition to the reconstruction of the data acquired by the synchrotron directly at the
beamline, the acquired data was also reconstructed using a self-developed Python code.
This self-developed approach was evaluated to be working overall, but delivering less opti-
mal results than the direct reconstruction at the beamline when it came to separating the
biological tissue from the background (Section 5.3). The phase contrast of the lab based
X-ray source was optimized by changing the δ/β ratio and the value of 217.6 was found
to be best (Section 5.4). The volume of the ganglia was determined to be 0.011 mm3,
whereas the volumes of the remaining biological tissue and background were found to
be 0.44 mm3 and 0.067 mm3, respectively, and the impact of these results on medical
research was discussed (Section 5.5).
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2 Theoretical Background

2.1 X-Rays

X-rays can be used to obtain 3D images in a non-destructive way due to their energy,
motivating the main reason for their application. As they have a higher penetration depth
compared to photons with lower energies, it is possible to image the complete object of
question. That means that there is no need to section the object and it can be inves-
tigated in a non-destructive way. Furthermore, their short wavelengths lead to higher
spatial resolutions (i.e. resolutions in the order of their wavelength). Therefore, the
needed high-resolution images can be obtained using X-ray imaging techniques [5, 6].

Imaging techniques map the interactions between light and matter. Thus, to under-
stand their performance and limitations, these interactions should be understood first. In
the following lines, X-ray interactions with matter are described.

2.1.1 Interaction with Matter

The three interactions of X-rays with matter are elastic and inelastic scattering and ab-
sorption. Scattering takes place due to the fact that X-rays (and photons in general)
couple to charges. As a consequence, their electric field interacts with electrons in matter.
In the case of elastic scattering, no energy is transferred from the photon to the electron,
meaning that the photon (as an electromagnetic wave) is scattered by the electron with
the same wavelength as the incident one. For inelastic scattering this is not true anymore.
Part of the photon’s energy is transferred to the electron, hence accelerating it, with a
lower energy (larger wavelength) of the scattered photon as a consequence. Furthermore,
the incident and scattered wave have no phase relationship anymore, which is why this
process can also be referred to as incoherent scattering [7, 8].

If a photon is absorbed by an atom, a core electron (photo electron) will be ejected
and the photon will not transmit any further through the matter as a consequence. This
leaves the atom in an unstable state, which is why the created hole is refilled by another
electron from a shell further outside. The energy that is released in this process leads to
either the emission of characteristic X-rays or an Auger electron [8].

Which interaction is dominant depends on what atoms the matter is made of and the
photon’s energy. In general, absorption is dominant for lower energies (up to approx-
imately 10 keV for carbon), whereas inelastic scattering becomes dominant for higher
energies [8].

Absorption and scattering both contribute to the so called refraction, which is a for-
malism describing the deflection of light from its original direction when it passes through
different kinds of matter. That is because each medium has a specific refractive index n
that is defined in Equation (1) [9].

n = nR + inI = 1− δ + iβ (1)

From this expression it can be seen that the real part nR (imaginary part nI) is defined as
1-δ (β). The parameter δ is proportional to the electron density, describes the scattering
properties of a specific material and is called refractive-index decrement, whereas β is the
absorption index. Both, the contributions from β and δ can be used to make contrast in
imaging visible, as will be described in Section 2.1.2 [9, 10].

The refractive-index decrement and absorption index both depend on the photon energy
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E: δ (β) scales as E−2 (E−4). That means that β decreases much faster when increasing
the energy compared to δ. This can be seen for the example of C12H53O18 (biological
sample) in Figure 2 [6].

Figure 2: Values of refractive-index decrement δ, absorption index β and transmission
Tr for energies ranging from 5 to 30 keV for a 1 mm thick sample of flesh (C12H53O18) [6].

The blue (red) curve shows the decrease of δ (β) with increasing energies. It can be
seen that the decrease of β is much steeper, making the contributions of δ more dominant.
At the same time the transmission (yellow) increases because of the decreasing absorption.
That means that the deposited dose, which is defined as absorbed energy per mass, will
decrease for higher energies, making radiation damage less probable, as will be discussed
in Section 2.1.3 [6, 11].

2.1.2 Contrast Mechanisms

In order to make objects and their internal structures visible, a contrast mechanism is
needed. Contrast enables mapping the interactions between X-rays and matter in order
to image the physical world. Considering for example absorption contrast, one can detect
the intensity of the attenuated beam after it passed through a sample. This attenuation
is described by the Beer-Lambert law, as shown in Equation (2) [8].

I = I0 · exp(−µz) (2)

Here, I, I0, µ and z refer to the attenuated intensity, initial intensity, absorption coeffi-
cient and sample thickness, respectively. The absorption coefficient µ is connected to the
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absorption index β via Equation (3) with the wave vector k = 2π/λ [9].

µ = 2βk =
4π

λ
β (3)

The absorption of light, i.e. its attenuation while passing through a sample, becomes
apparent in the amplitude of the lights’ wave function. As light consists of electromagnetic
waves, it can be described as propagating through matter as einkz = e−βkzei(1−δ)kz [10].
The first exponential term contains the absorption index and describes the attenuation of
the wave’s amplitude. This attenuation can be seen in Figure 3 as a wave passes through
medium [9].

Figure 3: A wave passes through a medium of thickness z, leading to a decrease in its
amplitude and intensity due to absorption and increase in wavelength due to phase shift
in δ [9].

What is detected in imaging experiments in the end is the intensity of the light, which
is proportional to the wave’s amplitude squared and the decrease in intensity due to
absorption is shown in the graph on the bottom in Figure 3 [9].

The main problem with absorption contrast is that it is low for low Z materials or
materials that have similar absorption properties, such as biological tissue. To overcome
this problem, one can use lower photon energies because the absorption is dominant in
that regime as was shown in Figure 2. However, as was discussed in Section 2.1.1, this
will increase the radiation damage [6].

An alternative approach is to use phase contrast, which is a contrast mechanism based
on δ. When an electromagnetic wave passes through medium, a phase shift in δ takes
place. This phase shift is induced when a wave passes through different types of media
because each medium has a different refractive index n. What happens in detail is that
the phase velocity (vp in Equation (4) [9]) of the wave in the medium increases, leading
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to a larger wavelength as can be seen in Figure 3. The phase velocity is the velocity of
the peaks and troughs of the individual wave, not to be confused with the group velocity
vg, which is the velocity of the overall wave (its envelope) [6, 9].

vp =
c

n
(4)

As n < 1 for X-rays (n is energy dependent), vp will be greater than the speed of light c,
leading to a phase shift as described above [6]. This does not contradict special relativity,
as vg is still smaller than c [9].

In addition to this, the wave is deflected horizontally and/or vertically from its original
path by an angle α, which is connected to the phase ϕ(x, y) as [5]:

αx =
λ

2π

∂ϕ(x, y)

∂x
(5)

and

αy =
λ

2π

∂ϕ(x, y)

∂y
. (6)

Behind the medium, the wave will interfere constructively or destructively with the
reference wave, creating fringes due to the different phase velocities and deflection angles.
Depending on the Fresnel number F0 (Equation (7) [6]) there will be more or less fringes
present and it can be distinguished between different regimes. The regime in which the
experiment takes place is determined by the sample-detector distance z, scattering object
dimension a and wavelength λ [5, 6].

F0 =
a2

zλ
(7)

The different regimes are illustrated in Figure 4. Whereas the left hand side shows
the information obtained by the attenuation of the light, the right hand side shows that
the shapes of the sample’s features are lost and the information of the original image has
to be recovered by using phase retrieval, as will be discussed in Section 3.3.1.
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Figure 4: Different diffraction regimes depending on the Fresnel number F0. The pa-
rameters a and b refer to the diameter of the scattering object and the length of the
area over which the scattering objects are distributed, respectively. In the contact region
(F0 = ∞) the object is still visible, purely based on absorption. In the Fresnel regime
(F0 ≈ 1) fringes at the edges become visible due to interference. In the Fraunhofer regime
(F0 << 1) only the diffraction pattern can be seen with the phase information encoded
in it [6].

If F0 → ∞ one is in the contact region and only the absorption contrast is visible.
With increasing propagation distance, more and more fringes become visible. If F0 ≈ 1
one talks about Fresnel diffraction in the near-field, where the absorption contrast, but
also some fringes resulting from the phase contrast are visible. These fringes, caused by
the interference of the refracted and diffracted waves, enhance the edges of features in the
sample. F0 << 1 refers to Fraunhofer diffraction in the far-field. Here, only the diffraction
pattern can be seen. The experiment at the synchrotron in this thesis was performed in
the Fresnel diffraction regime [6].

In order to make the phase shift, and hence phase contrast, visible, it would be easiest
if the phase could be directly measured. However, a direct detection is impossible because
no detector can measure the fast frequencies of ∼ 1015 Hz of electromagnetic waves. Only
the intensities can be detected, which is enough to retrieve phase information and recover
the original object as will be explained in Section 3.3.1 [12].

For measuring phase contrast, the so called propagation based imaging can be used,
where the freely propagating beam is detected. One possibility to retrieve the phase
information is to measure the deflection of the waves. That means that the beam is
detected without a sample first, followed by a measurement with sample. The detected
intensities show the deflection and, as shown in Equation (5) and (6), this is proportional
to the change in phase, which in turn is proportional to the change in δ. The varying
values of δ can then be used to build up an image [5].

The method for phase retrieval that was used in this thesis is based on the assumption
of having a thin and homogeneous sample, meaning that δ is constant. In that case, the
Paganin algorithm [13], which is based on the transport-of-intensity equation (TIE) and
will be introduced in Section 3.3.1, can be used to reconstruct the original object.

To conclude this section, the advantages of phase contrast imaging based on free-space
propagation are listed: This freely propagating method does not require the use of lenses,
so no aberrations can be induced by them. Applying phase contrast delivers the possibility
to distinguish easier between different features of a sample because of a better contrast
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(edge enhancement), which is also the case for materials with similar absorption properties
such as biological tissue. Lastly, the radiation dose and hence radiation damage can be
decreased, as was pointed out earlier [13].

2.1.3 Resolution and Dose

The radiation dose D has the unit Gray (Gy) and is the deposited energy per mass [11].
In order to detect a signal in imaging, one needs a minimum required surface dose, shown
in Equation (8) [14].

D =
µN0hν

ϵ
∝ d−4 (8)

The parameters µ, N0, hν, ϵ and d are defined as the absorption coefficient, incident num-
ber of photons per unit area, photon energy, density of the material and resolution [14].

From Equation (8) it can be learnt that D scales as d−4, i.e. a higher dose leads to
a better resolution. Therefore, in order to achieve a higher resolution by increasing the
dose, a higher number of incident photons per unit area N0 on the sample is needed.
This can be fulfilled by either increasing the exposure time or by having a higher fluence
[11, 15]. In addition, one should be able to distinguish between signal and noise in an
image. Thus, the signal-to-noise ratio (SNR) has to be considered. As the SNR depends
on the number of incident photons per unit area, a higher SNR leads to the need of a
higher dose. It was found that a SNR of five is sufficient to distinguish between signal
and noise. This requirement on the SNR is called Rose criterion [14].

On the other side, a higher dose leads to radiation damage, meaning the breaking
of chemical bonds due to irradiation and possible subsequent reaction of the sample’s
fragments as a consequence. The occurrence of radiation damage is the major limitation
when it comes to X-ray imaging of biological samples. Consequently, there is a maximum
tolerable dose that should not be exceeded in order to avoid radiation damage when per-
forming such experiments. The required and maximum tolerable dose for a protein are
illustrated in Figure 5 [14, 16].

Figure 5: Required and maximum tolerable dose for a protein (H50C30N9O10S1) as a
function of resolution (nm) with water as background. The lower line (higher line) refers
to an X-ray energy of 1 keV (10 keV). The blue triangle shows the area that is suitable
for imaging experiments [14].

8



Here, the dependency between dose and resolution is illustrated. In principle, a higher
dose leads to a better resolution, as can be seen by the line of the required dose for
imaging. However, this comes with the cost of inducing and increasing radiation damage,
requiring the need to stay below the maximum tolerable dose. Therefore, only the right
triangle (blue) with an overlap between maximum tolerable dose and required dose is
suitable for imaging [14].

As stated earlier, the limitation given by radiation damage can be drastically improved
by looking at phase contrast, as the absorption process becomes less dominant at higher
photon energies (hard X-rays). These phase contrast techniques are also known as co-
herent imaging techniques. As the name suggests, their implementation requires using
coherent X-rays, whose generation is described in Section 2.1.4 [11].

2.1.4 X-Ray Sources

To understand the requirement of a coherent beam, the term ”coherence” is defined first.
In short, coherence describes the phase relation between two waves. Here, it has to be
distinguished between temporal and spatial coherence. Temporal coherence describes the
property of two waves having the same phase at two different times. The higher the
monochromaticity of the beam, the more time it takes for the waves to get out of phase.
In case of spatial coherence, the waves are assumed to have the same wavelength, but
slightly different propagation directions. This is determined by the size of the source and
divergence of the beam. Spatial coherence describes the two waves having the same phase
at two different locations in space (independent of time) [17].

For phase contrast imaging, spatial coherence is of importance. That is because the
fringes created by the interference between the waves that pass through the sample and
those that do not (i.e. reference waves) are only clearly visible when the source size is
small enough [6].

A measure for the coherence of the beam is given by its brightness B. This is defined
as follows (Equation (9)) [17]:

B =
photons/s

mm2 mrad2 0.1 % BW
(9)

That means that the higher the brightness, the higher the coherence. The bright-
ness for different kinds of X-rays sources is shown in Figure 6 [18]. The brightness of
synchrotron light sources using undulators, which consist of several magnets, is approxi-
mately 10 orders of magnitudes greater than that provided by X-ray tubes in a laboratory.
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Figure 6: Brightness for different X-ray sources and their historical development from
1960 to 2020 [18].

The easiest and oldest way to generate X-rays is to use laboratory X-ray sources. An
example of a laboratory X-ray source is shown in Figure 7, where a cathode filament is
heated to a temperature that is high enough to overcome the electrons’ work function
energy and hence free some of the electrons. Subsequently, the electrons are accelerated
towards an anode and hit a metal target (tungsten). Most of the converted energy is
transferred into heat. However, bremsstrahlung and characteristic X-rays are created,
too [18, 19].

Figure 7: Generation of X-rays using a laboratory X-ray source. Electrons are freed
from a cathode by heating and accelerated towards an anode. They hit a tungsten target,
leading to the creation of X-rays [19].
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Another source that generates X-rays is a synchrotron light source. The typical con-
struction of a synchrotron is illustrated in Figure 8 [17]. Electrons are generated by an
electron gun (in a similar way as described for the laboratory X-ray source). These elec-
trons are then accelerated by a linear accelerator (LINAC) and injected into a booster
ring, where further acceleration takes place. When they reach the energy of the electrons
in the storage ring (velocity close to the speed of light), they are injected into it and kept
at a constant energy [17].

In the curved sections of the storage rings the so called bend achromats are placed.
They consist of dipole, quadrupole and sextupole magnets. The dipoles deflect the elec-
trons in order to maintain their path. The quadrupoles focus the electron beam and the
sextupoles take care of correcting chromatic aberrations [17]. The insertion devices (IDs)
are positioned in the straight sections of the storage rings. This is where the synchrotron
radiation is created. The IDs contain several dipoles with alternating magnetic field ori-
entations. This causes the electrons to be deflected up and down several times, leading
to the generation of synchrotron radiation. Depending on how much the electrons are
deflected from their original path, one distinguishes between wigglers and undulators. In
wigglers the electrons deviate from their path in a way that the produced radiation does
not interfere, i.e. the angular excursion is large compared to the one from undulators.
In undulators, the deviation of the electrons is smaller, leading to an interference of the
radiation. The consequence is that the produced radiation has different characteristics.
The spectrum of radiation generated by wigglers is continuous and of lower brightness
compared to that of undulators. The reason for the undulator spectrum being discrete
and reaching higher brightness values is given by the interference that was mentioned
before [17].

Due to the generation of synchrotron radiation, an energy loss of the electron beam
takes place. In order to keep the beam at a constant energy, a radio frequency (RF) cavity
is used. Whenever the electrons pass through the cavity, they will either be accelerated
or decelerated, depending on their velocity. This leads to the formation of bunches [17].

Since the generated synchrotron radiation is uncharged, it is not influenced by the bend-
ing magnets and leaves the storage ring by entering the beamline. A beamline consists
of an optical hutch, where the X-rays’ temporal and phase-space properties are modified,
and experimental hutch [17].

11



Figure 8: The design of a synchrotron, including an electron gun, LINAC, booster
ring, storage ring, RF cavity, insertion device, magnets and beamline with optical and
experimental hutches [17].

As soon as the X-rays are generated, the actual experiments can be performed, as
described in Section 2.2.

2.2 Tomography

As discussed earlier, X-rays are of non-destructive and deeply penetrating nature. This
is advantageous when it comes to tomography, where 3D images of samples are recorded.
Tomography is originally a Greek word consisting of ”tomos” (”to slice”) and ”graph”
(”image”). The main idea is to get 2D images of many slices of the sample and put these
images together afterwards to obtain a 3D image. Thus, this technique makes it possible
to visualize the internal structures of the sample’s volume in a non-destructive manner.
An exemplary working principle of tomography is shown in Figure 9 [6].

Figure 9: Working principle of tomography. X-rays are used to illuminate a sample,
which is rotated. The transmitted X-rays are converted to visible light by a scintillator
and the signal is magnified by a microscope objective afterwards. The signal is detected
by a CCD camera, where one row of pixels corresponds to one slice of the sample. For
each slice a sinogram is generated, which is used to reconstruct the 2D slice [6].
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In the example of Figure 9, a sample is illuminated with X-rays and the transmitted
photons hit a scintillator, where they are converted into visible light. This signal is then
magnified by a microscope objective and detected by a CCD camera afterwards. Each
pixel row on the CCD camera corresponds to one slice of the sample (i.e. the resolution is
limited by the pixel size). As the sample is rotated during this procedure, signals at several
angles are obtained. The angles range from 0◦ to 180◦. This is enough to reconstruct
the overall sample in the end, as the angles ranging from 181◦ to 360◦ contain the same
information, just the other way around [6, 20].

The detected projections at all angles are used to generate the so called sinogram.
Projection means here the line integral along the propagation direction for each pixel,
i.e. the summed up intensities. Mathematically the projection is described by the Radon
transform, which is a function of the position at the detector and angle [5], and the
interested reader is referred to [21] to find out more about it. The sinogram displays the
detected intensities for all pixels/detector positions of one slice for the different rotation
angles. Its name originates from the fact that features within a sample follow a sinusoidal
shape when the sample is rotated. Since the sinogram contains the information of the
projections, it can then be used to generate the image of one slice [5].

In order to determine the needed size of each rotation step and hence the number of
projections Nθ, the Crowther criterion can be applied. It is described by Equation (10)
for the case of a 180◦ measurement with the number of the slice’s pixels Nx′ (in case of
360◦ Nx′ is only multiplied with π) [21]:

Nθ =
π

2
Nx′ (10)

There are several approaches that can be used to reconstruct the individual slices, one
of them being introduced in Section 2.2.2. All slices can then be combined afterwards
to obtain the whole 3D image. In order to understand the reconstruction process, the
Fourier slice theorem is introduced first in Section 2.2.1.

2.2.1 Fourier Slice Theorem

The approach that was used for the image reconstruction in this thesis is based on the
Fourier slice theorem. It can be understood in the following way: One slice of the sample
is described by a 2D function f(x, y) with its Fourier transform (FT) F (qx, qy) (Equa-
tion (11)).

F (qx, qy) =

∫ ∫
f(x, y)ei(qxx+qyy)dxdy (11)

When considering one slice through the FT (qy = 0), this leads to:

F (qx, qy = 0) =

∫ [ ∫
f(x, y)dy

]
eiqxxdx (12)

When one looks at one projection, i.e. integrates f(x, y) along the y-axis, the resulting
function p(x) of the projection only depends on one coordinate (see Equation (13)).

p(x) =

∫
f(x, y)dy (13)
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With applying the FT to p(x), one gets:

P (qx) =

∫
p(x)eiqxxdx (14)

The Equations (11) to (14) can be combined to obtain:

F (qx, qy = 0) =

∫
p(x)eiqxxdx = P (qx) (15)

From Equation (15) it can be learnt that one slice through the FT of the original function
f(x, y) equals the FT of one projection p(x) [5, 21].

2.2.2 Filtered Backprojection

The filtered backprojection (FBP) is a method for image reconstruction that is based on
the Fourier slice theorem. The idea is to combine all the FTs P (qx) of the individual
projections of one slice (at all angles) to form the FT F (qx, qy) of the overall slice. By
applying the inverse FT afterwards, the slice f(x, y) can be reconstructed. However,
before applying the inverse FT, there are several factors that need to be considered:

1. Different amount of information at different frequencies. At low frequencies, there
is a higher overlap of the projections’ information.

2. Noise at higher spatial frequencies.

3. Regridding from the polar grid (Fourier space) to the Cartesian coordinate system
(spatial domain).

In order to take into account 1, the data has to be weighted before the inverse FT, which
is done by applying a filter that suppresses lower frequencies. Additional filters can be
applied to suppress higher frequency noise to compensate for 2. The regridding process 3
can be performed by simple interpolation, which can introduce non-negligible errors, or,
more commonly, by convolving the FTs of the individual slices with the FT of a specific
window function W (x, y). Afterwards, the inverse FT is applied and the contribution of
W (x, y) is removed by dividing the obtained image byW (x, y) [21]. This overall procedure
can be performed by the so called gridrec algorithm [22].

2.2.3 Corrections

When the transmitted photons are detected by the detector, one has to consider two
factors: The inherent noise of the detector’s electronics and a not perfectly homogeneous
beam. To correct the former, a dark image is recorded first, where sample and beam
are absent. For the latter, one records the flat-field, i.e. the beam is turned on, but the
sample is removed from the beam. The intensities of these signals have to be taken into
account to get rid of varying detector responses by performing the flat-field correction
(Equation (16)) [6, 23].

Inormalized =
Iraw − Idark
Iflat − Idark

(16)

Here, Inormalized, Iraw, Idark and Iflat refer to the intensities of the normalized data, raw
data, dark and flat-field, respectively.
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3 Methods

X-ray tomography was performed on samples of the bowel at a micro-CT setup in Lund in
Sweden and at the TOMCAT beamline of the synchrotron at the Paul-Scherrer-Institut
(PSI) in Switzerland. The obtained images were based on absorption or phase contrast.
For the latter, the phase information was retrieved for all projections to generate the
sinograms, following the procedure described in Section 2.2.

3.1 Sample

The studied samples were tissue of the bowel (colon and/or ileum) of patients of different
ages and genders. Control samples of healthy patients were investigated, too. All data has
been made anonymous and the studies were conducted with consent of the patients. The
samples were obtained by surgery and embedded in paraffin. In this thesis, the sample of
one diseased patient was studied particularly.

3.2 Data Acquisition

This section presents the process of data acquisition. For this purpose, the setups are
introduced first, followed by the used parameters. The details about the micro-CT and
synchrotron experiment are described in Section 3.2.1 and Section 3.2.2, respectively.

3.2.1 Micro-CT

One setup that was used for the investigation of the samples is a micro-CT (Figure 10).The
X-rays are generated by an Excillum prototype tungsten anode microfocus X-ray source
and illuminate the sample. The transmitted and refracted photons are detected by a
DECTRIS EIGER2 R 500K detector [24], which is a single photon counting detector
[25]. This type of detector works by having a sensor material (here silicon), in which
electrical charges are created when the X-rays impinge on it. The charges move towards
an electrode due to the presence of an electric field and induce a signal that is proportional
to the number of photons and their energy [26].

Incoming	X-ray	beam

Sample	mounted	
on	sample	stage

Eiger	detector

Figure 10: The overall experimental setup of the micro-CT. The X-rays are generated by
an Excillum lab based source and illuminate the sample. The refracted and transmitted
photons are detected by the EIGER detector [27].
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The parameters of the setup are listed in Table 1. A scan with 4 × magnification
was performed. The magnification was chosen by adapting the source-sample and source-
detector distance.

Table 1: Used parameters at the micro-CT setup.

Photon energy polychromatic bremsstrahlung with
70 kV acceleration voltage and tung-
sten target

Effective photon energy [keV] 14.035
Beam geometry cone
Physical pixel size [µm] 75
Effective pixel size [µm] 18.75
Number of projections 2000
Recorded angles [degrees] 0-360
Source-sample distance [m] 0.25
Source-detector distance [m] 1
Field of view (FoV) [pixels] 1028 × 512
Exposure time [s] 10

3.2.2 TOMCAT Beamline

The samples were also examined at TOMCAT, which is a beamline at the Swiss Light
Source (SLS). It delivers a photon flux in the order of 1014 photons/s, a photon source size
of 140µm (horizontally) × 45 µm (vertically) and a photon source divergence of 2 mrad
(horizontally) × 0.6 mrad (vertically). The energy of the beam is selected by a double
crystal multilayer monochromator and ranges from 8 to 45 keV with a bandwidth in the
order of 10−2 [20].

The experimental station is shown in Figure 11. The sample is positioned in the desired
way by moving the sample stage and irradiated by the incoming X-ray beam (left). The
transmitted and refracted photons are then detected by the detector system [20].

In comparison to the micro-CT system, the detector here consists of a scintillator,
optical microscope and visible light camera (right). The scintillator converts the X-rays
to visible light. Afterwards, the light is deflected by a mirror onto an optical microscope,
where the image is magnified. Different optical magnifications (i.e. different optical
microscopes) are available at TOMCAT. Finally, the image is detected by a scientific
CMOS camera [20].
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Incoming	X-ray	beam

Sample	mounted	
on	sample	stage

Detector	system
Visible	light	
camera

Optical	
microscope

Scintillator

Figure 11: The overall experimental setup at TOMCAT (left) and the components of
the detector system (right). The sample can be positioned precisely by moving the sample
stage and is illuminated with X-rays. The transmitted and refracted photons are then
converted into visible light. The signal is magnified by an optical microscope and detected
by a camera.

The tomographic measurements were performed in different stages. First, a low-
resolution 3D image (1 × magnification) was recorded for each sample. This overview
scan was used to determine the regions with the ENS. In most cases, the regions of inter-
est (ROIs) could be identified just by looking at the absorption contrast images. This is
advantageous as the phase retrieval takes additional time. However, sometimes additional
phase retrieval was performed to resolve more details and be able to select the ROIs. Af-
terwards, high-resolution 3D images (4 × magnification) of the ROIs were recorded and
phase retrieval was performed on all of them. The final results were 3D images of the
ROIs with high resolution and phase contrast.

The parameters of the low- and high-resolution scans are listed in Table 2. The reason
for taking projections at the rotation angles ranging from 0◦ to 360◦ in the case of low
resolution is given by the possibility that the sample might not be completely covered by
the beam. Hence, it can only be ensured to catch all features of the sample when it is
rotated by 360◦.

For the high-resolution images, a smaller region (ROI) is selected and positioned pre-
cisely in a way that it is completely covered by the beam, i.e. a coverage of 180◦ is
sufficient.
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Table 2: Used parameters for low- and high-resolution scans.

Low resolution High resolution
Photon energy [keV] 21 (monochromatic) 21 (monochromatic)

Beam geometry parallel parallel
Scintillator LuAg:Ce 300 µm LuAg:Ce 20 µm

Pixel size [µm] 6.5 (physical) 1.625 (effective)
Number of projections 5001 1801

Recorded angles [degrees] 0-360 0-180
Sample-detector distance z [m] 3 0.19

FoV [pixels] 2040 × 590 2560 × 2160
Exposure time [s] 0.02 0.08

Choosing a high spatial resolution always involves some trade-offs. In general, the
resolution δr depends on the wavelength λ and numerical aperture (NA) and is defined
as [11]:

δr = 0.61
λ

NA
(17)

With NA = 0.16 [20] and the LuAg:CE 20µm emitting light with a wavelength of
about 535 nm [28] in case of the 4 × magnification, this leads to:

δr = 0.61
535 nm

0.16
≈ 2 µm (18)

However, in the end the pixel size is the limiting factor, which is 1.625µm as can be
seen in Table 2. According to [20], not one, but about three pixels are required to identify
a feature in the sample, leading to a resolution of 4.875µm.

Additional aspects that have to be considered when it comes to resolution and focusing
the image onto the detector plane are the depth of focus DOF and thickness of the
scintillator. These two quantities have to match, i.e. the scintillator thickness has to be
equal or smaller than the DOF. If this requirement is not fulfilled, points that do not lay
on the focal plane of the lens within the scintillator will produce an unfocused image that
will hinder the resolution. Consequently, a thin scintillator is desirable for high-resolution
imaging. At the same time, the downside of thinner scintillators is that they tend to have
lower light yield if their thickness is smaller than the attenuation length [20, 29].

As has already been mentioned previously, the experiments were performed in the near-
field regime. To prove this vividly, the Fresnel number for the high-resolution setup is
calculated in the following by using Equation (7). The size of a scattering object/ feature
is assumed to be a = 3·1.625µm = 4.875µm because three pixels are needed to resolve
a feature, as described above. As can be seen in Table 2, z = 0.19 m and E = 21 keV
(λ = hc/E = 5.9 · 10−11 m with Planck constant h [30]).

F0 =
(4.875 · 10−6 m)2

0.19 m · 5.9 · 10−11 m
≈ 2.12 (19)

With this, F0 is close to the expected order of magnitude of F0 ∼ 1.
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3.3 Data Analysis

This section describes the processing of the recorded data. First, the algorithm used for
phase retrieval is introduced in detail (Section 3.3.1). This is followed by the tomographic
reconstructions of the data obtained by the micro-CT and TOMCAT in Section 3.3.2 and
3.3.3.

3.3.1 Phase Retrieval with TIE

For the phase retrieval and reconstruction of the original object, the algorithm developed
by Paganin et al. [13] was applied and implemented using the pyPhase Python package
[31]. This approach is based on the TIE (Equation (20)), which describes the progression
of the intensity of an electromagnetic wave as it propagates and correlates the wave’s
intensity I(r⊥, z) with its phase φ(r⊥, z). The optic axis z points in the direction of
propagation and the position vector r⊥ is perpendicular to it [13].

∇⊥ · (I(r⊥, z)∇⊥φ(r⊥, z)) = −2π

λ

∂

∂z
I(r⊥, z) (20)

When being in the contact region (z = 0), as described in Section 2.1.2, the absorption
contrast is dominant and thus the Beer-Lambert law (Equation (2)) holds. Therefore, the
intensity can be written as:

I(r⊥, z = 0) = I0 · exp(−µT (r⊥)) (21)

with the object thickness T (r⊥). Assuming a single material, this thickness can also be
related to the phase via:

φ(r⊥, z = 0) = −2π

λ
δT (r⊥) (22)

with the refractive-index decrement δ as defined in Section 2.1.1. That means that the
phase information is encoded in the sample’s thickness as the ratio δ/β is unique for
each material. By substituting Equation (21) and Equation (22) into Equation (20),
rearranging and applying FTs to the intensities in the contact region (z = 0) and at a
specific distance R (z = R), one obtains the expression:

T (r⊥) = − 1

µ
ln
(
F−1

{
µ
F{I(r⊥, z = R)}/I0

Rδ|k⊥|2 + µ

})
(23)

with the wave vector k⊥. The detailed derivation of this expression is omitted here,
however, it can be found in [13]. With Equation (3), (22) and (23), one obtains the final
equation for the retrieved phase:

φ(r⊥) =
δ

2β
ln
(
F−1

{F{I(r⊥, z = R)}/I0
1 + λRδ

4πβ
|k⊥|2

})
(24)

That means, that the phase information can be retrieved by measuring the intensities.
The additional parameters that have to be set to apply the Paganin algorithm are the
wave vector (by setting the energy), propagation distance and δ/β ratio, as can be seen in
Equation (24). The energy and propagation distance are determined by the experimental
setup. In case of a polychromatic X-ray source, the setups’ effective energy (see Table 1)
has to be used. By varying the δ/β ratio, the phase can be influenced. From Equation (24)
it becomes apparent that the Paganin algorithm acts as a low-pass filter: High-frequency
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noise is reduced and depending on the δ/β ratio this effect is more or less pronounced,
i.e. increasing the δ/β ratio reduces high-frequency noise more. However, this filtering
comes with the cost of loosing information, hence decreasing the resolution.

3.3.2 3D Image Reconstruction of Micro-CT Data

For the image reconstruction of the micro-CT data, the procedure described in Sec-
tion 2.2.2 was applied. However, the used algorithm was the FDK algorithm [32], which
takes into account the cone geometry of the beam (in contrast to the parallel beam geom-
etry in case of the gridrec algorithm). The ramp filter [33] was used for the suppression
of lower frequencies, as described in Section 2.2.2.

A problem that occurred during the micro-CT measurements was the presence of ring
artifacts in the reconstructed images. Ring artifacts are caused by defective or miscal-
ibrated detector elements. Incorrect pixel responses lead to the occurrence of vertical
or horizontal stripes in the sinograms. As a consequence, bright rings are visible in the
reconstructed images, hence decreasing the image quality. In order to overcome this, a
wavelet-fast FT filter [34] was used, which eliminates the stripes from the very beginning.

3.3.3 3D Image Reconstruction of TOMCAT Data

For the 3D image reconstruction of the TOMCAT data, the gridrec algorithm explained
in Section 2.2.2 was used. This was done with the TomoPy Python package [23]. In order
to reduce noise, a filter, as mentioned in Section 2.2.2, was applied. This low-pass Parzen
window was used in order to filter out high-frequency noise [33].

Combining all the information given above, the overall procedure can be described as
follows:

1. Measure intensities (= projections) of transmitted and refracted beam for each slice
at different angles.

2. Optional: Perform phase retrieval with Paganin on projections to get phase infor-
mation and compute corresponding sinograms. Otherwise proceed with sinograms
that are based on absorption contrast.

3. Reconstruct 2D slices by applying the FT to the projections and combining all
individual FTs to one FT of the whole slice. In the Fourier space, filtering operations
are performed and regridding takes place. Afterwards, an inverse FT is applied.
Overall, this is done by:

(a) applying the FDK algorithm for micro-CT data

(b) applying the gridrec algorithm for synchrotron data.

4. Combine all 2D slices to get 3D volume.

As soon as the images are reconstructed, they can be segmented into their components
for further analysis, as described in Section 3.4.
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3.4 Image Segmentation

Image segmentation describes the procedure of dividing an image into several segments
with similar properties (e.g. shape). In order to do this, ROIs are created, in which labels
are assigned to the voxels of the image. Using the labels and original dataset, parameters
of the individual segments (e.g. volume) can be extracted. For the image segmentation
in this thesis, it was worked with Dragonfly [35], a software for image processing.

In order to distinguish between different components of the images, here between back-
ground and cells in the foreground, the Otsu algorithm [36] was used for the threshold
selection as a starting point and if necessary a manual adjustment was made. The Otsu
method can be applied for gray-level images and makes it possible to separate foreground
(higher intensity pixels) from background (lower intensity pixels) by looking at the image
histogram. In order to find the threshold that defines the cut between fore- and back-
ground, the following approach is used: One starts by defining the probability pi of finding
a pixel with a specific gray level i as shown in Equation (25).

pi =
ni

N
(25)

Here, ni and N are defined as the number of pixels with the gray level i and total number
of pixels, respectively. Next, it is distinguished between back- and foreground by defining
two classes C0 and C1 with the gray values ranging from 1 to the threshold k for the
former and from k + 1 to the maximum gray value L for the latter. The corresponding
probability distributions are:

ω0 = Pr(C0) =
k∑

i=1

pi (26)

and

ω1 = Pr(C1) =
L∑

i=k+1

pi (27)

The means are defined as:

µ0 =
k∑

i=1

iPr(i|C0) =
k∑

i=1

ipi
ω0

(28)

and

µ1 =
L∑

i=k+1

iPr(i|C1) =
L∑

i=k+1

ipi
ω1

(29)

This leads to the variances:

σ2
0 =

k∑
i=1

(i− µ0)
2Pr(i|C0) =

k∑
i=1

(i− µ0)
2 pi
ω0

(30)

and

σ2
1 =

L∑
i=k+1

(i− µ1)
2Pr(i|C1) =

L∑
i=k+1

(i− µ1)
2 pi
ω1

(31)
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As a next step, it can be distinguished between the within-class variance σ2
W , the between-

class variance σ2
B and the total variance σ2

T :

σ2
W = ω0σ

2
0 + ω1σ

2
1 (32)

σ2
B = ω0(µ0 − µT )

2 + ω1(µ1 − µT )
2 (33)

σ2
T = σ2

B + σ2
W (34)

Here, µT = ω0µ0 +ω1µ1 is the total mean. The optimum threshold k is found when σB is
maximized (and σW is minimized) [36, 37].

Once the image is divided into fore- and background, the properties of the individual
components, here mean intensities and volume, can be determined.
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4 Results

This section presents the results of this master thesis. It is started by showing the overall
reconstructed 2D images of an intestinal sample with their corresponding histograms of a
chosen slice for the two different setups in Section 4.1. In general, the reconstruction of the
data acquired by the TOMCAT setup is divided into direct and self-developed, hereafter
referred to as SD, reconstruction. The direct reconstruction refers to the reconstruction
procedure performed at the beamline, whereas the SD reconstruction means obtaining
the reconstructed images by using the Python scripts that can be found in the Appendix.
This is followed by the comparison of the setups’ CNR and evaluation of the setups in
terms of resolving the ganglia, that are made up of neurons as described in Section 1,
in Section 4.2. Afterwards, the focus is shifted towards the phase contrast, including an
approach for its improvement in case of the lab based source in Section 4.3. As a final
result, an optimal segmentation of ganglia of one sample is shown in Section 4.4.

4.1 Image Reconstructions of Selected Slices

An overview of the investigated sample is given in Figure 12. The FoV in Figure 12(a)
covers the complete sample and the image was recorded with the micro-CT and a 4 ×
magnification. The FoV of the 4 × magnification images recorded by the TOMCAT setup
(Figure 12(b)) covers only part of the sample, more specifically the part that is marked
by the orange box in Figure 12(a).

(a) Micro-CT (b) TOMCAT (direct)

Figure 12: Reconstructed images (4 × magnification) with phase retrieval. The orange
box in (a) is the part of the sample that is covered by the FoV in (b).

The reconstructed images and corresponding histograms obtained by algorithms with-
out phase retrieval are illustrated in Figure 13. The reconstructions were performed either
directly at the experimental station (Figure 13(a) and (b)) or with SD scripts for the
TOMCAT data (Figure 13(c)). The orange boxes mark the regions that were used to
obtain the histograms that are shown in Figure 13(d), (e) and (f). The histograms show
how the pixels with different gray level values are distributed. All three histograms show
one peak and especially Figure 13(e) and (f), where the same dataset was used, have
similar distributions in terms of gray level range and distribution shape. When compar-
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ing Figure 13(b) with (c), it can be seen that the edges of the image in (c) are slightly
brighter.

(a) Micro-CT (b) TOMCAT (direct) (c) TOMCAT (SD)

(d) Micro-CT (e) TOMCAT (direct) (f) TOMCAT (SD)

Figure 13: Reconstructed images (4 × magnification) and corresponding histograms
without phase retrieval. The TOMCAT data was additionally reconstructed using SD
Python scripts. The orange boxes show the regions that were used to create the his-
tograms.

Figure 14 shows equivalent results to Figure 13 with the difference that phase retrieval
was used. Here, it is especially noticeable that the histograms show two peaks: One more
pronounced peak at lower gray level values, and one less pronounced one at higher gray
level values. In Figure 14(a)-(e) the same δ/β ratio was used (optimized value from
TOMCAT beamline: 217.6). However, Figure 14(d) and (f) differ despite the fact that
the same dataset was reconstructed. In (f), the peaks are more distinct and the gray
level range is smaller. The effect of having brighter image edges, as it was the case in
Figure 13(c), is even more pronounced in Figure 14(e). Changing the δ/β ratio to 75 in
the SD reconstruction (Figure 14(h)) leads to a distribution that looks more similar to
Figure 14(d).
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(a) Micro-CT with δ/β = 217.6
(b) Micro-CT with δ/β = 217.6

(c) TOMCAT (direct) with
δ/β = 217.6

(d) TOMCAT (direct) with
δ/β = 217.6

(e) TOMCAT (SD) with
δ/β = 217.6

(f) TOMCAT (SD) with
δ/β = 217.6

(g) TOMCAT (SD) with
δ/β = 75

(h) TOMCAT (SD) with
δ/β = 75

Figure 14: Reconstructed images (4 × magnification) and corresponding histograms
with phase retrieval. The TOMCAT data was additionally reconstructed using SD Python
scripts. The orange boxes show the regions that were used to create the histograms.
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4.2 Comparison of Setups

This section deals with the comparison of the two setups, as well as the comparison of
the direct vs. SD reconstruction in case of the TOMCAT data, in terms of CNR and
resolution. In order to make statements about contrast, a 3D segmentation of the same
blood vessel was performed with the procedure described in Section 3.4. Each one 2D
slice of the segmented blood vessel for the micro-CT and two TOMCAT (direct and
SD) datasets is shown in Figure 15. Here, it is distinguished between the reconstruction
without phase retrieval ((a)-(c)) and with phase retrieval ((d)-(f)).

(a) Micro-CT without
phase retrieval

(b) TOMCAT (direct)
without phase retrieval

(c) TOMCAT (SD) without
phase retrieval

(d) Micro-CT with phase
retrieval

(e) TOMCAT (direct) with
phase retrieval

(f) TOMCAT (SD) with
phase retrieval

Figure 15: Segmented blood vessels with the segments being blood (red), vessel wall
(green) and paraffin background (blue). For the phase retrieval, a δ/β ratio of 217.6 was
used.

In Figure 15 it can be seen that the blood vessel was partitioned into three segments:
blood (red), vessel wall (green) and background (blue), with the background being paraf-
fin. The complete 3D blood vessel resulting from the direct reconstruction of the phase
retrieved TOMCAT data is illustrated in Figure 16.

26



Figure 16: 3D blood vessel from direct TOMCAT reconstruction with δ/β = 217.6.

To perform a meaningful comparison between the setups and used reconstruction
methods, their individual CNRs were analyzed. In order to calculate the CNRs, the mean
intensities and corresponding standard deviations of the different segments were extracted
using the Dragonfly software. As the contrast between two segments is just their inten-
sity difference, it can be directly calculated from the intensity values. This means that
the contrast C depends on the intensity values IA and IB of the segments A and B:
C = |IA − IB|.

The standard deviation of the intensity values of the individual segments can be inter-
preted as their noise. To obtain the noise of the contrast between two segments A and
B, it is assumed that the individual standard deviations are not correlated, i.e. the total
noise σ0 is defined as σ0 =

√
σ2
A + σ2

B [38].
The extracted mean intensity values and their standard deviations as well as the cal-

culated contrasts and CNR values are shown in Table 3 and Table 4 for the images
reconstructed without and with phase retrieval, respectively. For the reconstructions
with phase retrieval a δ/β ratio of 217.6 was used. For a better evaluation of the SD
approach, reconstructions resulting from different δ/β ratios would be desirable, but im-
age segmentation is a time-consuming process that could only be performed to a limited
extent within the framework of this thesis. To compare the reconstructions resulting from
the same initial conditions, the same δ/β ratio was used in all three cases.

Table 3: Mean intensities, corresponding standard deviations σ and calculated contrasts
and CNRs for the segments blood (b), vessel wall (w) and background (bg) (no phase
retrieval).

Micro-CT TOMCAT (direct) TOMCAT (SD)
Intensity of b with σ 1.3 · 104 ± 1.8 · 103 3.8 · 104 ± 6.5 · 103 3.8 · 104 ± 6.0 · 103
Intensity of w with σ 1.1 · 104 ± 1.2 · 103 3.9 · 104 ± 6.3 · 103 3.9 · 104 ± 6.7 · 103
Intensity of bg with σ 0.78 · 104 ± 1.5 · 103 2.5 · 104 ± 6.1 · 103 2.4 · 104 ± 5.6 · 103

Contrast (|b-w|) 2.0 · 103 1.0 · 103 1.0 · 103
Contrast (|b-bg|) 5.2 · 103 1.3 · 104 1.4 · 104
Contrast (|w-bg|) 3.2 · 103 1.4 · 104 1.5 · 104

CNR (|b-w|) 0.9245 0.1105 0.1112
CNR (|b-bg|) 2.2193 1.4584 1.7058
CNR (|w-bg|) 1.6659 1.5965 1.7178
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Table 4: Mean intensities, corresponding standard deviations σ and calculated contrasts
and CNRs for the segments blood (b), vessel wall (w) and background (bg) (with phase
retrieval, δ/β = 217.6).

Micro-CT TOMCAT (direct) TOMCAT (SD)
Intensity of b with σ 5.5 · 104 ± 2.6 · 103 3.5 · 104 ± 3.6 · 103 4.3 · 104 ± 4.3 · 103
Intensity of w with σ 5.1 · 104 ± 1.0 · 103 3.2 · 104 ± 3.3 · 103 4.0 · 104 ± 4.1 · 103
Intensity of bg with σ 4.7 · 104 ± 1.8 · 103 2.3 · 104 ± 3.1 · 103 3.4 · 104 ± 5.2 · 103

Contrast (|b-w|) 4.0 · 103 3.0 · 103 3.0 · 103
Contrast (|b-bg|) 8.0 · 103 1.2 · 104 9.0 · 103
Contrast (|w-bg|) 4.0 · 103 9.0 · 103 6.0 · 103

CNR (|b-w|) 1.4359 0.6143 0.5049
CNR (|b-bg|) 2.5298 2.5259 1.3338
CNR (|w-bg|) 1.9426 1.9878 0.9061

Having a look at Table 3 leads to the observation that all CNRs are larger for the micro-
CT setup compared to the TOMCAT setup. The blood-wall CNR is almost identical for
the direct and SD reconstruction of the TOMCAT data, whereas the blood-background
and wall-background CNRs are slightly higher in case of the SD TOMCAT data.

Table 4 reveals that the CNR values are larger than their corresponding equivalents in
Table 3 for the micro-CT and direct TOMCAT data. In case of the SD TOMCAT data
this is only true for the blood-wall CNR. The blood-background and wall-background
CNRs of the phase-retrieved SD TOMCAT data are smaller than their corresponding
values in Table 3. The blood-wall CNR is significantly larger for the micro-CT data,
whereas its blood-background CNR is only slightly higher and its wall-background CNR
even slightly smaller when comparing to the direct TOMCAT data. The CNRs resulting
from the direct TOMCAT reconstruction are higher than the ones obtained from the SD
reconstruction of the TOMCAT data in all cases.

The two setups were compared with regards to resolution with the aim to find out if the
identification of the ganglia (and hence neurons) is possible. When the ganglia could be
resolved, some exemplary ganglia were marked by arrows. This is illustrated for the two
setups in Figure 17 (a) and (b) for reconstructions without phase retrieval and (c) and (d)
for reconstructions with phase retrieval. It can be seen that an identification of the ganglia
in case of the absorption contrast image recorded with the micro-CT setup (Figure 17 (a))
is not possible. Their identification in Figure 17 (b)-(d) is successful, with the ganglias’
best visibility delivered by the phase retrieved TOMCAT data (Figure 17 (d)).
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(a) Micro-CT without phase
retrieval (4 × magnification)

(b) TOMCAT (direct) without
phase retrieval (1 × magnification)

(c) Micro-CT with phase retrieval
(4 × magnification)

(d) TOMCAT (direct) with phase
retrieval (1 × magnification)

Figure 17: Reconstructed images of the overall sample. The arrows indicate the presence
of ganglia.

4.3 Optimization of Phase Contrast for Micro-CT

In order to get the best phase contrast, several parameters can be tuned and their influence
on the image quality will be described in Section 5.4. Here, the aim was to find the best
δ/β ratio for the lab based setup with the purpose of contrast enhancement. This section
presents several reconstructions of the images recorded by the micro-CT with δ/β =
21.76, 217.6, 1000 and 2176. The images and corresponding histograms are shown in
Figure 18. For the histograms, the peaks were fitted using Gaussian distributions. In
order to give an orientation about which parts of the image contribute to which part of
the histogram, numbers were used to assign the image parts to the peaks. Figure 18(b)
has only one peak with all parts of (a) contributing to it. In case of Figure 18(d), it can be
distinguished between high-intensity biological features (2) and background/low-intensity
biological features (1) (see Figure 18(c)). For Figure 18(f) and (h) there are four peaks:
the background (1) and three different kinds of biological tissue (2-4).
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(a) Reconstruction with δ/β =
21.76 (b) Histogram with δ/β = 21.76

1
1

2

(c) Reconstruction with δ/β =
217.6
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2

(d) Histogram with δ/β = 217.6

1

3

2

4

(e) Reconstruction with δ/β =
1000

1 2

3

4

(f) Histogram with δ/β = 1000

1

3

2

4

(g) Reconstruction with δ/β =
2176

1 2

3

4

(h) Histogram with δ/β = 2176

Figure 18: Reconstructed images (4 × magnification) and corresponding histograms
obtained by the micro-CT setup with different δ/β ratios. The peaks of the histograms
were fitted by Gaussian distributions. The numbers give an orientation about which parts
of the images contribute to which peak in the histogram.
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There are several aspects that can be observed in Figure 18. First, the image quality,
i.e. the resolution, decreases with increasing δ/β ratio. Second, the histograms show
distributions with more and better distinguishable peaks with increasing δ/β ratios. More
peaks correspond to being able to better distinguish between different parts of the image.
In order to find the optimal δ/β ratio for contrast improvement, it would be best to
determine and compare the different CNRs. However, as was pointed out in Section 4.2,
the image segmentation needed for this procedure is time-consuming and was not feasible
in the scope of this thesis. In addition, as will be discussed in Section 5.1, the extracted
CNRs seem to be unreliable. As an alternative approach to get an impression about what
δ/β ratio is best, the SNRs of the different images was analyzed instead. The noise is
assumed to be given by the full width at half maximum (FWHM) of the background peak,
only clearly visible in Figure 18(f) and (h), which is why a SNR analysis only makes sense
for these two cases. The signals of the different biological tissues are assumed to be the
difference between the expectation value µ of the corresponding peak to the expectation
value of the background peak. The Gaussian fits were used to find these values and are
listed in Table 5.

Table 5: SNR for different δ/β ratios for the micro-CT data.

δ/β = 1000 δ/β = 2176
Noise (FWHM 1) 1.9153 · 10−5 1.4004 · 10−5

Signal 2 (µ2 − µ1) 0.9587 · 10−5 0.8628 · 10−5

Signal 3 (µ3 − µ1) 1.9413 · 10−5 1.7246 · 10−5

Signal 4 (µ4 − µ1) 3.9037 · 10−5 3.1039 · 10−5

SNR 2 0.5005 0.6161
SNR 3 1.0136 1.2315
SNR 4 2.0382 2.2164

Overall it can be seen that it is impossible to distinguish between the different parts
of the image in Figure 18(b). In Figure 18(d) the high-intensity biological tissue can be
identified, but the background cannot be extracted. From Table 5 it becomes apparent
that the SNR increases with increasing δ/β ratio.

4.4 Segmentation of Ganglia

As could be seen in Figure 17(d), the ganglia could be best identified within the images
reconstructed from the TOMCAT data with phase retrieval. Since the ganglias’ visibility
is crucial for their successful segmentation, the high-resolution TOMCAT dataset was
used for this purpose. The ganglia (red) were segmented within a 0.5 mm3 volume and
separated from the background (blue) and remaining biological tissue (green), as can be
seen in Figure 19. The volumes of the ganglia, remaining biological tissue and background
were determined to be 0.011 mm3, 0.44 mm3 and 0.067 mm3.

31



Figure 19: Segmentation of the ganglia (red) in a 0.5 mm3 volume of the sample. The
background is blue and the remaining biological tissue is green.
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5 Discussion

The actual interpretation of the results is presented in this section. The research questions
formulated in Section 1 are addressed and answered: What requirements need to be
fulfilled to image ganglia and successfully segment them subsequently? Is phase contrast
needed for this purpose and how can it be improved? Overall, the whole procedure for
segmenting the ganglia is evaluated and optimized.

First, the two setups are compared and the differences and their influence on the images
is discussed in Section 5.1. This is followed by taking up the need of phase contrast
images (Section 5.2) and the evaluation of the SD reconstruction of the TOMCAT data
(Section 5.3). Afterwards, it is argued which is the best δ/β ratio for the micro-CT setup
in Section 5.4, followed by debating the impact of ganglia segmentation on understanding
the enteric nervous system (ENS) in Section 5.5.

5.1 Comparison of Setups

The purpose of comparing the two setups is to find out what requirements have to be
fulfilled in order to visualize and successfully segment the ganglia. Therefore, the results
from Section 4.2 are explained with the background of the different setup properties. As
could be seen, the CNRs obtained from image segmentation were different for the two se-
tups, i.e. the CNRs resulting from the micro-CT setup were significantly higher than the
ones from the TOMCAT setup (see Table 3). This is surprising because the expectation
would be the reverse. Since synchrotron radiation delivers a significantly larger photon
flux, the contrast should be larger for the TOMCAT setup. This indicates a problem in
the evaluation of the CNR and raises the question whether the obtained values can be
trusted.

To address this question, the histograms of the background segment based on the ab-
sorption contrast images for both setups are shown in Figure 20. In case of the micro-CT
(Figure 20(a)), no clear peak can be identified, suggesting that signal from the biolog-
ical tissue also contributes to this distribution. In contrast, the TOMCAT histogram
(Figure 20(b)) shows a clearly identifiable peak that can be assigned to the background.
Consequently, the histogram in Figure 20(a) seems to be unreliable, which means that the
extracted mean and standard deviation are biased. This leads to the conclusion that the
CNRs from the TOMCAT setup seem to be more reliable, which does not mean that they
can assumed to be correct. Overall, the method used here is not suitable to determine
and compare CNRs.
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(a) Micro-CT (b) TOMCAT (direct)

Figure 20: Histograms of absorption contrast based images corresponding to the seg-
mented background.

The same problem occurred in case of the phase contrast images, as can be seen
in Figure 21 in the Appendix. Consequently, the CNRs in Table 4 cannot be used for
comparing the two setups, too. However, one trend that was observed when comparing
the CNRs of the same setups in Table 3 and 4, is as expected: the CNRs were in general
larger than their corresponding CNR values from Table 3. On the one hand, considering
phase contrast leads to edge enhancement, subsequently improving contrast, as was de-
scribed in Section 2.1.2. On the other hand, the Paganin algorithm acts as low-pass filter,
thus reducing high-frequency noise (Section 3.3.1). This leads to the overall increase of
the CNR.

From this it cannot be concluded which setup is superior as the determined CNRs are
assumed to be incorrect. However, the effect of the Paganin algorithm on decreasing the
noise could be illustrated vividly. In general, it was shown in Figure 15 that a segmen-
tation was possible in all cases, but the corresponding histograms raise the question of
how successful the determination of the individual CNRs was, especially in case of the
micro-CT. What made the segmentation itself a challenging process was not the contrast,
but particularly the resolution, which is discussed in the following.

As was illustrated in Figure 17, the ganglias’ visibility was best in case of the phase
retrieved TOMCAT data. Here, it has to be distinguished between two factors: resolution
and contrast mechanism. The effect of the phase contrast on the ganglias’ visibility is
discussed in Section 5.2. The resolution of the TOMCAT setup is higher because of the
smaller effective pixel size. As listed in Table 1 and 2, the micro-CT had an effective pixel
size of 18.75 µm, whereas TOMCAT delivered effective pixel sizes of 6.5 µm (1 × magni-
fication) and 1.625µm (4 × magnification).

One can wonder now if it is possible to decrease the effective pixel size of the micro-
CT to a value comparable to the effective pixel size of TOMCAT. The answer is yes,
increasing the magnification by adapting the source-sample and source-detector distances
(geometric magnification) will decrease the effective pixel size. However, a resolution as
low as the one delivered by TOMCAT will not be achieved. This is due to the different
detection systems. The direct detection system of the micro-CT setup (single photon
counting) is based on geometric magnification, whose resolution is additionally limited by
the source spot size (20µm × 80 µm). This means that reducing the effective pixel size
into the single-digit micrometer range will cause blurring of the image. This is not true
for the TOMCAT setup, as it has an indirect detection system (X-rays are converted to
visible light via a scintillator), that uses an optical microscope for magnification, leading
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to the resolution not being dependent on the source spot size [39, 40].
A requirement that needs to be met for phase contrast imaging is spatial coherence.

This is achieved by having source spot sizes as small as possible, which will lead to a
decrease in photon flux and hence signal. As synchrotrons deliver radiation of higher
brightness (and photon flux), the exposure time and radiation dose can be drastically de-
creased when performing experiences at such facilities. This leads to the practical aspect
of time consumption, which makes the TOMCAT setup superior to the micro-CT setup
[41].

This leads to the conclusion that synchrotron radiation is not necessarily a requirement
to perform phase contrast imaging, but is advantageous in terms of time and radiation
dose. However, the most important aspect is the resolution that differs due to the dif-
ferences in detection systems. This is the main reason that makes the TOMCAT setup
superior to the micro-CT setup because a higher resolution leads to a less ambiguous
image segmentation.

Even though the micro-CT setup delivers lower resolutions, it can be a useful tool for
overview scans of the sample. As could be seen in Figure 17(c), it is sufficient to identify
the ganglia and hence a ROI that can be scanned with a higher resolution setup.

5.2 Comparison of Contrasts

As the requirements for phase contrast imaging are much more complicated to fulfill
than the ones for conventional absorption based imaging because a spatially coherent
beam is needed, the question arises if phase contrast is necessary for the segmentation
of the ganglia. In Section 2.1.2 it was described that the advantage of phase contrast
is given by edge enhancement. In addition, absorption contrast is weak for biological
tissue because it has similar absorption properties and does not absorb much radiation
in general. Consequently, phase contrast imaging leads to a non-negligible improvement
in contrast. This could not only be seen subjectively on the reconstructed images in
Figure 13 and 14, but also in the corresponding histograms. The histograms of the
images reconstructed without phase retrieval consist of only one peak, with all parts of
the sample contributing to it. That makes a separation of the different parts of the sample
less obvious. The histograms resulting from applying phase retrieval show two peaks,
making a separation between background and biological tissue more explicit. Although
segmentation is generally possible in all cases, it reduces mistakes in the assignment of
image pixels to certain sample components when the contrast is increased, since this leads
to a more obvious separation between different parts of the sample.

5.3 Evaluation of Self-Developed Reconstruction

This section continues the discussion of the two different contrasts, shifting the focus to
whether the SD reconstruction of the TOMCAT data was successful. When looking at the
reconstructed images in Figure 13(b) and (c), it can be seen that the images look almost
identical, indicating a successful reconstruction using the SD approach. However, what
can be seen in Figure 13(c) is that the edges of the image are slightly brighter compared
to Figure 13(b). That can be explained by an imperfect padding procedure in case of the
SD reconstruction. Here, the padding was performed with the edge values of the array.
The padding procedure of the direct TOMCAT reconstruction is not known.

The histograms in Figure 13(e) and (f) support the statement of a successful recon-
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struction, as they show a similar gray level range and distribution shape. From Table 3
it could be seen that the CNRs for the direct and SD reconstruction were similar, with
the SD reconstruction having slightly higher values. It is not unlikely that a subjective
segmentation might play a role in these deviations. The bright image edges described
above might have an impact, too. In addition, as was discussed in Section 5.1, it cannot
be assumed that the CNRs are correct. As this section discusses the same setup, namely
the TOMCAT setup, a comparison in terms of the CNR was still conducted.

In case of the reconstruction using phase retrieval with δ/β = 217.6, more differences
become apparent. The blood-background and wall-background CNRs listed in Table 4
are significantly higher for the direct TOMCAT reconstruction, whereas the blood-wall
CNR is only slightly larger. This can be explained when looking at the histograms in
Figure 14(d) and (f). The intensity values of the background and biological tissue from
Table 4 do match with the first and second histogram peak in Figure 14(d), respectively,
for the direct reconstruction. This is not true for the SD reconstruction. The background
and biological tissue intensities can only be assigned to the second peak in Figure 14(f).
The reason for this is given by the gradient in intensity that is pronounced on the image
edges in Figure 14(e). As the Paganin algorithm enhances edges and hence intensity
differences, the brighter image edges are more emphasized in the phase contrast image
compared to the absorption contrast image that was discussed before and the not suf-
ficient padding becomes apparent even more. Therefore, the first peak in Figure 14(f)
corresponds to the background as well, but brighter parts of the background are part of
the second peak, i.e. the separation between background and biological tissue was not
successful. That is why the contrasts (and thus CNRs) between the biological tissue and
background are smaller for the SD reconstruction compared to the direct one. Neverthe-
less, an image segmentation is still possible, even though it is less obvious when using
thresholding with the Otsu method.

The image reconstruction and corresponding histograms can be manipulated by vary-
ing some parameters of Equation (24). This will be discussed in detail in Section 5.4.
By setting δ/β to 75, as it was done for Figure 14(g) and (h), the edge enhancement is
decreased and hence the histogram distribution becomes more similar to the one from the
direct reconstruction.

In summary, it can be concluded that the SD reconstruction did work, but was not
as optimal as the direct one. Since the detailed procedure of the direct reconstruction
is unknown, a further comparison is impossible. The fact that the direct reconstruction
delivered better results is most likely due to the fact that it was optimized for user op-
eration. In order to improve the SD approach, one could think about looking into other
padding procedures or simply masking the image.

5.4 Optimization of Phase Contrast for Micro-CT

An optimization for the micro-CT phase retrieval procedure was not performed yet and
is part of this section. From Equation (24), the following can be seen:

1. By tuning some parameters, the phase and hence the reconstructed image can be
influenced. These parameters, are the energy (proportionally related to the wave
vector k⊥), propagation distance z and δ/β ratio. Here, it was tried to find the
optimal value for the latter, as this parameter is not set by the experimental setup.
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2. As was discussed in Section 3.3.1, the Paganin algorithm acts as a low-pass filter
and the higher the δ/β ratio, the more high-frequency noise is filtered out. However,
this decreases the image resolution as a consequence.

The SNRs in Table 5, resulting from the histograms in Figure 18, showed an increase
in SNR with increasing δ/β ratio. As was mentioned in Section 4.3, the noise could not be
extracted in case of Figure 18(b) and (d) and could only be obtained from the histograms
in Figure 18(f) and (h). Overall, it was shown that the SNR increases with increasing
δ/β ratio. That is because an increase in δ/β leads to noise reduction. In principle, that
would mean that the higher δ/β ratio, the better the reconstructed image. As can be seen
in the images that correspond to the histograms, this is not the case. When looking at
the images subjectively, one sees that the image quality of the highest δ/β ratio (2176) is
not the best. That is because by filtering out high-frequency values, the image resolution
is decreased. Therefore, in order to determine the best δ/β ratio, one has to trade-off
between resolution and SNR. The resolution should still be as high as possible in order
to make image segmentation feasible. The images in Figure 18(e) and (g) appear to be
too blurry for this purpose, which is why the standard δ/β ratio of 217.6 is confirmed to
be the most optimal one for the micro-CT setup due to this trade-off.

5.5 Segmentation of Ganglia

After optimizing and justifying the procedure used to obtain the images for the segmen-
tation of the ganglia, the results of the segmented ganglia are addressed. Even though the
volume could be successfully determined, it is meaningless as of now. That is because only
a small volume of one sample was investigated in the scope of this thesis, as the image
segmentation procedure is a time-consuming process. In order to compare the extracted
volume of the ganglia to that of other patients and get statistically significant results, the
ganglias’ volume in a larger sample volume (here 0.5 mm3) and of more patients should be
determined. Nevertheless, a workflow for the successful ganglia segmentation was devel-
oped and the analysis of this one sample lays the cornerstone for studying chronic bowel
diseases caused by changes in the ENS in detail.
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6 Conclusion

Enteric neuropathy is an intestinal disease that causes changes of the ENS. If the neurons,
that make up the ganglia, in the ENS are abnormal, this can lead to a broad spectrum
of symptoms, including nausea, pain, diarrhea and vomiting. It happens that patients
suffering from enteric neuropathy get a wrong diagnosis, but a correct diagnosis and un-
derstanding of the disease are important for successful treatment. In the scope of this
thesis, different experimental setups and approaches for the sufficient segmentation of the
ganglia were compared and evaluated with the aim to improve the segmentation proce-
dure.

In order to record 3D images of the ENS in intestinal samples, two different setups
were used: A micro-CT in Lund (Sweden) and the TOMCAT beamline of SLS in Villigen
(Switzerland). X-ray tomography was used for this purpose and the obtained images were
either based on absorption or phase contrast. For the latter, the Paganin algorithm was
used for the phase retrieval, as the phase cannot be detected directly.

These two setups were compared in terms of CNR and resolution in Section 5.1. It
was found that the determined CNRs should not be trusted, especially in case of the
micro-CT, because a clear separation between the different segments was not visible in
the corresponding histograms. From this, it was concluded that the method used here
for evaluating the CNRs of the different setups is not suitable. The resolution was bet-
ter for the TOMCAT setup due to using an optical microscope for magnification, which
makes the effective pixel size independent from the source spot size. Furthermore, it was
discussed that using synchrotron radiation is no requirement for this specific experiment,
but can be advantageous as its high brightness leads to lowering exposure time and thus
radiation dose. What is required, however, is a resolution as high as possible for the
successful segmentation of ganglia, which could not be delivered by the micro-CT setup.

As biological tissue has similar absorption properties, the image contrast can be dras-
tically improved when using phase retrieval, as was discussed in Section 5.2. During this
process, edge enhancement takes place and different features can be distinguished better
form each other.

In Section 5.3, the self-developed reconstruction of the TOMCAT data was found to
be working in general, but the results were not optimal, especially in case of the recon-
struction with phase retrieval. The separation between background and biological tissue
was not successful in comparison to the reconstruction that was directly performed at the
beamline. The reason for this was a not optimal padding of the image, leading the the
creation of an intensity gradient within the image. A segmentation was still possible, but
more biased due to this reason. By varying the δ/β ratio, the result obtained by the self-
developed reconstruction became more similar to the reconstruction directly performed
at the beamline. A further comparison was impossible, as the details of the beamline’s
reconstruction procedure are unknown.

The influence of varying δ/β values (21.76, 217.6, 1000 and 2176) on the image re-
construction with phase retrieval was investigated and optimized for the micro-CT in
Section 5.4. It was found that a higher δ/β ratio leads to an increase in SNR, but de-
crease in resolution. It was concluded that in principle the highest SNR, and hence highest
δ/β ratio of 2176 would be best, but the image resolutions when using the δ/β ratios 1000
and 2176 were not high enough for a sufficient segmentation of the ganglia. Consequently,
it has to be compromised between SNR and resolution and the δ/β value of 217.6 was
confirmed to be the most appropriate one among 21.76, 217.6, 1000 and 2176.
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Using the phase retrieved TOMCAT dataset, the ganglia in a 0.5 mm3 were segmented
for one sample and their volume was determined to be 0.011 mm3. The segmentation
was performed by applying thresholding based on the Otsu method. The volumes of the
remaining biological tissue and background were 0.44 mm3 and 0.067 mm3, respectively.
In Section 5.5 it was discussed that the obtained volumes make no human impact, as no
data for comparison is available yet.

In conclusion, the successful workflow for the studies of ganglia in the ENS was found
to consist of the recording of 3D images with a resolution in the order of 4.875µm and
the reconstruction using phase retrieval. The ganglia could be successfully separated from
the other biological components of the sample, however, further studies on the ENS are
necessary to obtain statistically relevant results.
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7 Outlook

This thesis lays the foundation for improving the segmentation of ganglia from 3D images
of intestinal samples, paving the way for a better understanding of enteric neuropathy
caused by changes of the ENS and thus an impact on human health. The pipeline for
data acquisition as well as image reconstruction and image segmentation has been suc-
cessfully carried out for a 0.5 mm3 volume of an intestinal sample.

In future, as many ganglia volumes as possible should be determined in order to com-
pare them to each other and obtain statistically significant results. To do this, the pipeline
used in this thesis can be used to analyze the remaining data of the TOMCAT beamtime.
In addition, data of more samples could be collected to increase the statistic significance.

The lab based micro-CT can be used in future to acquire overview scans of the sam-
ple, hence helping with identifying ROIs within them. An improvement of the lab based
setup would also be conceivable. For example, data could be acquired with a nano-CT
to evaluate if the resolution is comparable to that of the TOMCAT setup and therefore a
realistic alternative to participating in beamtimes.
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Appendix

Discussion of Reliability of the CNR

(a) Micro-CT
(b) TOMCAT (direct)

Figure 21: Histograms of phase contrast based images corresponding to the segmented
background.
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Self-Developed Reconstruction without Phase Retrieval

1 import h5py

2 import numpy as np

3 import matplotlib.pyplot as plt

4 import tomopy

5 from PIL import Image, ImageOps

6

7 # Open file

8 with h5py.File('/data/staff/tomograms/users/julia/PSI_2022/061/

061_39_rescanned_x4_S04_.h5','r') as file:↪→

9

10 # Find group

11 group_items = list(file.items())

12 group = file.get('exchange')

13

14 # Find dataset

15 dataset_items = list(group.items())

16

17 # Get data of selected slices

18 data = group.get('data')

19 proj = np.array(data[:, 599:900, :])

20 dark_data = group.get('data_dark')

21 dark = np.array(dark_data[:, 599:900, :])

22 flat_data = group.get('data_white')

23 flat = np.array(flat_data[:, 599:900, :])

24

25 # Flat-field correction

26 proj = tomopy.normalize(proj, flat, dark)

27

28 # Normalization

29 proj = np.divide(proj, np.max(proj))

30

31 # Logarithm

32 proj = tomopy.minus_log(proj)

33

34 # Create theta

35 theta = np.pi/180*np.linspace(0., 180., 1801, endpoint=False)

36

37 # Padding

38 proj = np.pad(proj, ((0,0), (0,0), (600, 600)), "edge")

39

40 # Reconstruction

41 recon = tomopy.recon(proj, theta, center=1282.13+600,

algorithm='gridrec', sinogram_order=False, filter_name='parzen')↪→

42

43 for i in range(301):

44 print("Next recon: ", i)

45 one_img = recon[i, :, :]

46

47
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48 # float32 to uint16

49 one_img[np.where(one_img<-0.0007)] = -0.0007

50 one_img[np.where(one_img>0.0011)] = 0.0011

51 minimum = -0.0007

52 if minimum < 0:

53 one_img += abs(minimum)

54 maximum = 0.0011+np.abs(minimum)

55 one_img = one_img/maximum

56 one_img = one_img * 2**16-1

57 one_img = one_img.astype(np.uint16)

58

59 # Create image

60 PIL_image = Image.fromarray(one_img)

61

62 # Rotate image

63 PIL_image = PIL_image.rotate(270)

64

65 # Crop image

66 left = 600

67 top = 600

68 right = 3160

69 bottom = 3160

70

71 PIL_image_cropped = PIL_image.crop((left, top, right, bottom))

72

73 # Save image

74 PIL_image_cropped.save("/data/staff/tomograms/users/julia/Final

Analysis/Absorption_Manual/tomo_{}.tif".format(i))↪→
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Self-Developed Reconstruction with Phase Retrieval

1 # Obtain phase information

2 import h5py

3 import numpy as np

4 import matplotlib.pyplot as plt

5 import pyphase

6 from pyphase import *

7 from PIL import Image, ImageOps

8

9 # Open file

10 with h5py.File('/data/staff/tomograms/users/julia/PSI_2022/061/

061_39_rescanned_x4_S04_.h5','r') as file:↪→

11

12 # Find group

13 group_items = list(file.items())

14 group = file.get('exchange')

15

16 # Find dataset

17 dataset_items = list(group.items())

18

19 # Get data of selected slices

20 data = group.get('data')

21 proj = np.array(data[:, 625:815, :])

22 dark_data = group.get('data_dark')

23 dark = np.array(dark_data[:, 625:815, :])

24 flat_data = group.get('data_white')

25 flat = np.array(flat_data[:, 625:815, :])

26

27 # Flat-field correction

28 flat = np.mean(flat, axis = 0)

29 dark = np.mean(dark, axis = 0)

30 num = proj-dark

31 den = flat-dark

32 proj = num/den

33

34 # Normalization

35 proj = np.divide(proj, np.max(proj))

36

37 # Phase retrieval

38 pixel_size = np.array([1.625, 1.625])*1e-6 # in m

39 distance = np.array([0.19]) # in m

40 energy = 21 # in keV

41 one_phase = []

42

43 for j in range(0,1801):

44 print("Phase " + str(j))

45 one_proj = proj[j, :, :]

46 shape = one_proj.shape

47

47



48 retriever = phaseretrieval.TIEHOM(delta_beta=3.7e-8/1.7e-10,

shape=shape, pixel_size=[pixel_size[0], pixel_size[1]],

distance = distance, energy = energy)

↪→

↪→

49

50 phase, attenuation = retriever.reconstruct_image(one_proj)

51 one_phase.append(phase[ None, :])

52 all_phases = np.vstack(one_phase)

53

54 # Save phases

55 np.save('/data/staff/tomograms/users/julia/Final

Analysis/phase_data_STD.npy', all_phases)↪→
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1 # 3D reconstruction

2 import numpy as np

3 import matplotlib.pyplot as plt

4 import tomopy

5 from PIL import Image, ImageChops

6

7 # Open file

8 phase = np.load('/data/staff/tomograms/users/julia/Final

Analysis/phase_data_STD.npy')↪→

9

10 # Create theta

11 theta = np.pi/180*np.linspace(0., 180., 1801, endpoint=False)

12

13 # Padding

14 phase = np.pad(phase, ((0,0), (0,0), (1000, 1000)), "edge")

15

16 # Reconstruction

17 recon = tomopy.recon(phase, theta, center=1282.13+1000,

algorithm='gridrec', sinogram_order=False, filter_name='None')↪→

18

19 for i in range(190):

20 print("Next recon: ", i)

21 one_img = recon[i, :, :]

22

23 # float32 to uint16

24 one_img[np.where(one_img<-0.0309)] = -0.0309

25 one_img[np.where(one_img>0.004)] = 0.004

26 minimum = -0.0309

27 if minimum < 0:

28 one_img += abs(minimum)

29 maximum = 0.004+np.abs(minimum)

30 one_img = one_img/maximum

31 one_img = one_img * 2**16-1

32

33 # Create image

34 PIL_image = Image.fromarray(one_img)

35 PIL_image = PIL_image.rotate(270)

36

37 # Crop image

38 left = 1000

39 top = 1000

40 right = 3560

41 bottom = 3560

42

43 PIL_image_cropped = PIL_image.crop((left, top, right, bottom))

44

45 # Save image

46 PIL_image_cropped.save("/data/staff/tomograms/users/julia/Final

Analysis/Paganin_Manual/tomo_{}.tif".format(i))↪→
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