
Deep learning of nonlinear
development of unstable

flame fronts

by Ludvig Nobel

Thesis for the degree of Master of Science
Thesis advisors: Assoc. Prof. Rixin Yu

To be presented, with the permission of the Faculty of Engineering of Lund University, for public criticism
on the online meeting at the Department of Energy Sciences on Monday, the 14th of November 2022 at

14:30.

This degree project for the degree of Master of Science in Engineering has been conducted
at the Department of Energy Sciences, Faculty of Engineering, Lund University.

Supervisor at the Lund University was Rixin Yu. Assoc Prof. at the Department of
Energy Sciences, Lund University.

Examiner at Lund University was Professor Johan Revstedt.

© Ludvig Nobel 2022
Department of Energy Sciences
Faculty of Engineering
Lund University

issn: <0282-1990>
LUTMDN/TMHP-23/5515-SE

Typeset in LATEX
Lund 2022

Contents

List of Figures v

List of Tables xi

Abstract xiii

1 Introduction 1
1.1 Background . 2
1.2 Objective . 3
1.3 Constraints . 3

2 Theory 5
2.1 Kuramoto-Sivashinsky equation . 5

2.1.1 Fourth order Runge-Kutta . 6
2.2 Neural Networks . 7

2.2.1 Brief history . 7
2.2.2 Basics . 8
2.2.3 Architecture . 8
2.2.4 Weights and Biases . 9
2.2.5 Activation functions . 10
2.2.6 Loss Function . 13
2.2.7 Back Propagation Algorithm 15

2.3 Convolutional Neural Network . 20
2.4 Fourier Neural Operator . 26

3 Method 29
3.1 Problem setup . 29
3.2 Data generation . 30
3.3 Deep-learning methods . 33

3.3.1 Modifications for varying parameters 35

4 Numerical Results 41
4.1 Benchmarking the FNO and CNN . 41
4.2 Truncation of Fourier modes in the FNO 48
4.3 Parametric Neural Networks . 54

5 Conclusion 61

iii

Contents

6 Appendix A - Programming setup 67

iv

List of Figures

2.1 Sigmoid activation functions plotted on a input range from (-4,4), the
output axis is scaled differently (-2,2) 12

2.2 Piecewise-linear activation functions plotted on a input range from (-4,4),
the output axis is scaled differently (-2,2) 13

2.3 An exmaple of the output from a neuron 14
2.4 Simplification of how batch size can affect gradient descent, i.e. optim-

ization of weights and biases . 15
2.5 Finding minimum of a simple function 𝑙𝑜𝑠𝑠 = 𝐶 (𝑤) 16
2.6 Finding minimum of a more complicated function 𝑙𝑜𝑠𝑠 = 𝐶 (𝑤) 17
2.7 Finding minimum of a more complicated function 𝑙𝑜𝑠𝑠 = 𝐶 (𝑤) by

stepwise evaluating the slope . 18
2.8 By sliding the kernel over the input matrix and performing simple

multiplication and additions yields the output matrix 20
2.9 Convolution with different channel sizes of input/output 22
2.10 Architecture of a standard Fourier Neural Operator with width T, dashed

lines representing skip connections . 28

3.1 Comparison between one sample of 𝑢0(𝑥) and 𝑢(𝑥,Δ𝑡) for a white-noise
initial condition . 32

3.2 Comparison between one sample of 𝑢0(𝑥) and 𝑢(𝑥,Δ𝑡) for a spectral-
noise initial condition . 33

3.3 Architecture of a Parametric Fourier Neural Operator with width T,
dashed lines representing skip connections 35

3.4 Architecture of a Parametric Fourier Neural Operator with width T,
dashed lines representing skip connections 37

3.5 Architecture of modified layers of the Parametric CNN, with a series
structure . 38

3.6 Architecture of modified layers of the Parametric CNN, with a parallel
structure . 39

v

List of Figures

4.1 Four samples of recurrent long-term predictions 𝑢(𝑥, 𝑡) made by Net-
work 𝐹𝑁𝑂1 (red lines) and the corresponding reference case (black,
dotted line) which are the numerical solutions to the KS equation when
starting from four randomized initial conditions 𝑢0(𝑥, 0) (the two initial
conditions to the left generated as spectral noise and the other two as
white-noise). The flame fronts visualized in the figure are samples taken
from these time evolution sequences at t = Δ𝑡[0, 50, 100, 200, 500, 800,
1100, 1400, 1700, 2000] with Δ𝑡 = 0.15. Each consecutive flame front
is shifted with a value of (t/100) to the right in the figure 42

4.2 Four samples of recurrent long-term predictions 𝑢(𝑥, 𝑡) made by Network
𝐹𝑁𝑂10 (red lines) and the corresponding reference case (black, dotted
line) which are the numerical solutions to the KS equation when starting
from four randomized initial conditions 𝑢0(𝑥, 0). See fig.4.1 for more
details . 43

4.3 Four samples of recurrent long-term predictions 𝑢(𝑥, 𝑡) made by Network
𝐹𝑁𝑂20 (red lines) and the corresponding reference case (black, dotted
line) which are the numerical solutions to the KS equation when starting
from four randomized initial conditions 𝑢0(𝑥, 0). See fig.4.1 for more
details . 43

4.4 Four samples of recurrent long-term predictions 𝑢(𝑥, 𝑡) made by Network
𝐶𝑁𝑁1 (red lines) and the corresponding reference case (black, dotted
line) which are the numerical solutions to the KS equation when starting
from four randomized initial conditions 𝑢0(𝑥, 0). See fig.4.1 for more
details . 44

4.5 Four samples of recurrent long-term predictions 𝑢(𝑥, 𝑡) made by Network
𝐶𝑁𝑁10 (red lines) and the corresponding reference case (black, dotted
line) which are the numerical solutions to the KS equation when starting
from four randomized initial conditions 𝑢0(𝑥, 0). See fig.4.1 for more
details . 44

4.6 Four samples of recurrent long-term predictions 𝑢(𝑥, 𝑡) made by Network
𝐶𝑁𝑁20 (red lines) and the corresponding reference case (black, dotted
line) which are the numerical solutions to the KS equation when starting
from four randomized initial conditions 𝑢0(𝑥, 0). See fig.4.1 for more
details . 45

4.7 Three samples of three recurrent short-term predictions 𝑢(𝑥, 𝑡) made
by the Networks 𝐹𝑁𝑂1, 𝐹𝑁𝑂10, 𝐹𝑁𝑂20 (see plot legend for line col-
ours/style) and the corresponding reference case (black, dotted line)
which are the numerical solutions to the KS equation when starting
from two randomized initial conditions 𝑢0(𝑥, 0) (spectral-noise to the
left and white-noise in the center) and the last one starts from the end
of an long-term solution. The flame fronts visualized in the figure are
samples taken from these time evolution sequences at t = Δ𝑡[0, 8, 20,
40, 80] with Δ𝑡 = 0.15. Each consecutive flame front is shifted with the
value (specified below each plot) to the right in the figure 45

vi

List of Figures

4.8 Three samples of three recurrent short-term predictions 𝑢(𝑥, 𝑡) made
by the Networks 𝐶𝑁𝑁1, 𝐶𝑁𝑁10, 𝐶𝑁𝑁20 (see plot legend for line col-
ours/style) and the corresponding reference case (black, dotted line)
which are the numerical solutions to the KS equation. See fig.4.7 for
more details . 46

4.9 Four sets of flame front slope derivatives (𝜕𝑥𝑢(𝑥, 𝑡)) visualized from
t=0 to t=2000 (T=2000*0.15=300). Above most set corresponds to
the reference case and the other three corresponds to predictions by
𝐹𝑁𝑂20, 𝐹𝑁𝑂10, 𝐹𝑁𝑂1 from top to bottom. Each set contains a row of
two solutions each starting from a differently randomized initial condition
𝑢0(𝑡, 0) (spectral-noise to the left and white-noise to the right) 46

4.10 Four sets of flame front slope derivatives (𝜕𝑥𝑢(𝑥, 𝑡)) visualized from
t=0 to t=2000 (T=2000*0.15=300). Above most set corresponds to
the reference case and the other three corresponds to predictions by
𝐶𝑁𝑁20, 𝐶𝑁𝑁10, 𝐶𝑁𝑁1 from top to bottom. Each set contains a row of
two solutions each starting from a differently randomized initial condition
𝑢0(𝑡, 0) (spectral-noise to the left and white-noise to the right) 47

4.11 Four samples of recurrent long-term predictions 𝑢(𝑥, 𝑡) made by Network
𝐹𝑁𝑂1,64 (red lines) and the corresponding reference case (black, dotted
line) which are the numerical solutions to the KS equation when starting
from four randomized initial conditions 𝑢0(𝑥, 0). See fig.4.1 for more
details. Note difference in time shift of each sample (t/75) 48

4.12 Four samples of recurrent long-term predictions 𝑢(𝑥, 𝑡) made by Network
𝐹𝑁𝑂1,32 (red lines) and the corresponding reference case (black, dotted
line) which are the numerical solutions to the KS equation when starting
from four randomized initial conditions 𝑢0(𝑥, 0). See fig.4.1 for more
details. 49

4.13 Four samples of recurrent long-term predictions 𝑢(𝑥, 𝑡) made by Network
𝐹𝑁𝑂1,16 (red lines) and the corresponding reference case (black, dotted
line) which are the numerical solutions to the KS equation when starting
from four randomized initial conditions 𝑢0(𝑥, 0). See fig.4.1 for more
details. 49

4.14 Four samples of recurrent long-term predictions 𝑢(𝑥, 𝑡) made by Network
𝐹𝑁𝑂20,128 (red lines) and the corresponding reference case (black, dotted
line) which are the numerical solutions to the KS equation when starting
from four randomized initial conditions 𝑢0(𝑥, 0). See fig.4.1 for more
details. 50

4.15 Four samples of recurrent long-term predictions 𝑢(𝑥, 𝑡) made by Network
𝐹𝑁𝑂20,64 (red lines) and the corresponding reference case (black, dotted
line) which are the numerical solutions to the KS equation when starting
from four randomized initial conditions 𝑢0(𝑥, 0). See fig.4.1 for more
details. 50

vii

List of Figures

4.16 Four samples of recurrent long-term predictions 𝑢(𝑥, 𝑡) made by Network
𝐹𝑁𝑂20,32 (red lines) and the corresponding reference case (black, dotted
line) which are the numerical solutions to the KS equation when starting
from four randomized initial conditions 𝑢0(𝑥, 0). See fig.4.1 for more
details. 51

4.17 Three samples of three recurrent short-term predictions 𝑢(𝑥, 𝑡) made by
the Networks 𝐹𝑁𝑂1,64, 𝐹𝑁𝑂1,32, 𝐹𝑁𝑂1,16 (teal dashed line represents
𝐹𝑁𝑂1,16, green dot-dashed 𝐹𝑁𝑂1,32 and red 𝐹𝑁𝑂1,64) and the cor-
responding reference case (black, dotted line) which are the numerical
solutions to the KS equation. See fig.4.7 for more details 51

4.18 Three samples of three recurrent short-term predictions 𝑢(𝑥, 𝑡) made by
the Networks 𝐹𝑁𝑂20,128, 𝐹𝑁𝑂20,64, 𝐹𝑁𝑂20,32 (see plot legend for line
colours/line-style) and the corresponding reference case (black, dotted
line) which are the numerical solutions to the KS equation. See fig.4.7
for more details . 52

4.19 Four sets of flame front slope derivatives (𝜕𝑥𝑢(𝑥, 𝑡)) visualized from
t=0 to t=2000 (T=2000*0.15=300). Above most set corresponds to
the reference case and the other three corresponds to predictions by
𝐹𝑁𝑂1,64, 𝐹𝑁𝑂1,32, 𝐹𝑁𝑂1, 16 from top to bottom. Each set contains a
row of two solutions each starting from a differently randomized initial
condition 𝑢0(𝑡, 0) (spectral-noise to the left and white-noise to the right) 52

4.20 Four sets of flame front slope derivatives (𝜕𝑥𝑢(𝑥, 𝑡)) visualized from
t=0 to t=2000 (T=2000*0.15=300). Above most set corresponds to
the reference case and the other three corresponds to predictions by
𝐹𝑁𝑂20,128, 𝐹𝑁𝑂20,64, 𝐹𝑁𝑂20, 32 from top to bottom. Each set contains
a row of two solutions each starting from a differently randomized initial
condition 𝑢0(𝑡, 0) (spectral-noise to the left and white-noise to the right) 53

4.21 Four samples of recurrent long-term predictions 𝑢(𝑥, 𝑡) with channel
width 𝐿 = 2𝜋 made by Network 𝑃 − 𝐹𝑁𝑂10 (red lines) and the cor-
responding reference case (black, dotted line) which are the numerical
solutions to the KS equation when starting from four randomized initial
conditions 𝑢0(𝑥, 0). See fig.4.1 for more details. 54

4.22 Four samples of recurrent long-term predictions 𝑢(𝑥, 𝑡) with channel
width 𝐿 = 2𝜋 made by Network 𝑃 − 𝐶𝑁𝑁1 (red lines) and the cor-
responding reference case (black, dotted line) which are the numerical
solutions to the KS equation when starting from four randomized initial
conditions 𝑢0(𝑥, 0). See fig.4.1 for more details. 55

4.23 Four samples of recurrent long-term predictions 𝑢(𝑥, 𝑡) with channel
width 𝐿 = 8𝜋 made by Network 𝑃 − 𝐶𝑁𝑁1 (red lines) and the cor-
responding reference case (black, dotted line) which are the numerical
solutions to the KS equation when starting from four randomized initial
conditions 𝑢0(𝑥, 0). See fig.4.1 for more details. 55

viii

List of Figures

4.24 Four samples of recurrent long-term predictions 𝑢(𝑥, 𝑡) with channel
width 𝐿 = 2𝜋 made by Network 𝑃 − 𝐶𝑁𝑁10 (red lines) and the cor-
responding reference case (black, dotted line) which are the numerical
solutions to the KS equation when starting from four randomized initial
conditions 𝑢0(𝑥, 0). See fig.4.1 for more details. 56

4.25 Four samples of recurrent long-term predictions 𝑢(𝑥, 𝑡) with channel
width 𝐿 = 8𝜋 made by Network 𝑃 − 𝐶𝑁𝑁10 (red lines) and the cor-
responding reference case (black, dotted line) which are the numerical
solutions to the KS equation when starting from four randomized initial
conditions 𝑢0(𝑥, 0). See fig.4.1 for more details. 56

4.26 Three recurrent short-term predictions 𝑢(𝑥, 𝑡) when 𝐿 = 2𝜋 made by the
Network 𝑃 − 𝐹𝑁𝑂1 (see plot legend for line colours/line-style) and the
corresponding reference case (black, dotted line) which are the numerical
solutions to the KS equation. See fig.4.7 for more details 57

4.27 Three recurrent short-term predictions 𝑢(𝑥, 𝑡) when 𝐿 = 8𝜋 made by the
Network 𝑃 − 𝐹𝑁𝑂1 (see plot legend for line colours/line-style) and the
corresponding reference case (black, dotted line) which are the numerical
solutions to the KS equation. See fig.4.7 for more details 57

4.28 Three recurrent short-term predictions 𝑢(𝑥, 𝑡) when 𝐿 = 2𝜋 made by the
Network 𝑃 − 𝐶𝑁𝑁1 (see plot legend for line colours/line-style) and the
corresponding reference case (black, dotted line) which are the numerical
solutions to the KS equation. See fig.4.7 for more details 58

4.29 Three recurrent short-term predictions 𝑢(𝑥, 𝑡) when 𝐿 = 8𝜋 made by the
Network 𝑃 − 𝐶𝑁𝑁1 (see plot legend for line colours/line-style) and the
corresponding reference case (black, dotted line) which are the numerical
solutions to the KS equation. See fig.4.7 for more details 58

4.30 Two sets of flame front slope derivatives (𝜕𝑥𝑢(𝑥, 𝑡)) when 𝐿 = 2𝜋
visualized from t=0 to t=2000 (T=2000*0.15=300). Above most set
corresponds to the reference case and the other corresponds to predictions
by 𝑃 − 𝐶𝑁𝑁1. Each set contains a row of two solutions each starting
from a differently randomized initial condition 𝑢0(𝑡, 0) (spectral-noise
to the left and white-noise to the right) 59

4.31 Two sets of flame front slope derivatives (𝜕𝑥𝑢(𝑥, 𝑡)) when 𝐿 = 8𝜋
visualized from t=0 to t=2000 (T=2000*0.15=300). Above most set
corresponds to the reference case and the other corresponds to predictions
by 𝑃 − 𝐶𝑁𝑁1. Each set contains a row of two solutions each starting
from a differently randomized initial condition 𝑢0(𝑡, 0) (spectral-noise
to the left and white-noise to the right) 59

4.32 Two sets of flame front slope derivatives (𝜕𝑥𝑢(𝑥, 𝑡)) when 𝐿 = 2𝜋
visualized from t=0 to t=2000 (T=2000*0.15=300). Above most set
corresponds to the reference case and the other corresponds to predictions
by 𝑃 − 𝐶𝑁𝑁10. Each set contains a row of two solutions each starting
from a differently randomized initial condition 𝑢0(𝑡, 0) (spectral-noise
to the left and white-noise to the right) 60

ix

List of Figures

4.33 Two sets of flame front slope derivatives (𝜕𝑥𝑢(𝑥, 𝑡)) when 𝐿 = 8𝜋
visualized from t=0 to t=2000 (T=2000*0.15=300). Above most set
corresponds to the reference case and the other corresponds to predictions
by 𝑃 − 𝐶𝑁𝑁10. Each set contains a row of two solutions each starting
from a differently randomized initial condition 𝑢0(𝑡, 0) (spectral-noise
to the left and white-noise to the right) 60

x

List of Tables

3.1 Table of all solution sequences to the KS equation 33

4.1 Table of trained Networks using the standard architectures, with respect-
ive parameters and training results . 42

4.2 Table of FNOs with different amounts of truncated modes 48
4.3 Table of Parametric Neural Networks 54

6.1 Table of Python packages . 67

xi

Abstract

The purpose of this study is to investigate Machine Learning methods and their ability
to learn the development of nonlinear unstable flame fronts due to diffusive-thermal
instabilities. This task is performed by first numerically computing long time-sequences
of solutions to the chaotic partial differential equation named Kuramoto-Sivashinsky
equation which models such instabilities in a flame front. From the generated solution
functions an operator is trained to map the function to a future solution function after a
small time-step. The goal is for this operator to be able to accurately map long sequences
of solutions through repeated application of the operator. Two networks were trained
for this task, a Convolutional Neural Network and A Fourier Neural Operator. The
investigation found that the operator were not only able to accurately predict fairly long
sequences, but was also able to capture the long-term characteristics of the flame front
development. This study also shows that it is possible with specific modifications to a
Convolutional Neural Network proposed in the study, a single Neural Network is able
to make accurate recurrent predictions for multiple values of a parameter affecting the
solution of the partial differential equation considered.

xiii

Chapter 1

Introduction

The diffusive-thermal instability considered in this study is an intrinsic flame instability,
meaning that it is a combustion instability which can appear in both premixed flames and
in diffusion flames. This instability is one of the major reasons that cause a nonlinear
development of unstable flame fronts, which can appear as a cellular structure on the
”surface” of a freely propagating flame caused by a combustion of a premixed fuel[1]. The
reason that this instability appears is because of the difference in the diffusion coefficient
between the fuel and heat transport. Small deviations in these flows can cause this
instability to grow so large that they change the features of the flow. Flame propagation
due to this diffusive-thermal instability can be modeled by the ”Kuramoto-Sivashinsky”
(KS) equation.

The KS equation was first derived by Kuramoto and Tsuzuki but in the context of a
reaction diffusion system [2], and later on by Gregory Sivashinsky but this time in the
context of flame front propagation[3]. The equation which is a fourth-order nonlinear
partial differential equation can be considered to be ”chaotic”. The reason for why it
is called chaotic is partly because the distance between nearby solution functions can
grow exponentially [4]. Which in turn makes deep learning of the problem very difficult
and it is considered close to impossible to make accurate long-term predictions of the
time-advancement of the partial differential equation (PDE).

This study is aiming to train a deep neural networks to learn the spatial-temporal evolution
of the KS equation. Through training on solution sequences of the PDE generated
using the spectral method in combination with with a fourth-order Runge-Kutta to
perform the temporal integration. The past decades there has been an exponential
increase in interest of the Machine Learning field, and thereby also an increase in new
methods being explored and developed such as the PINN method[5], Neural Operator
[6], Fourier Neural Operator [7] , different LSTM networks [8] and many more. There
are many advantages of using deep learning compared to other methods such as the
classical finite element method (FEM) and direct numerical simulation (DNS). For
example, direct numerical simulation can be quite slow in terms of computation speed
and certain tasks can take days or weeks to simulate, a trained neural network could

1

Chapter 1 Introduction

perhaps compute the same simulation in a fraction of that time. If deep learning
methods could be improved so that the performance is comparable to methods like
DNS it could make a major difference in fields such as aerospace designing and many
other fields where quickly solving partial differential equations is necessary. Machine
learning is nowadays also used for many vastly different applications such as image
recognition, speech recognition and in search engines to name a few. The networks used
for those kind of applications also do not differ very much from the ones used in this study.

Half of this study can be considered as benchmarking of two existing Machine learning
methods on the chaotic KS equation for different parameters, these methods which also
previously have been tested and proven to be effective when used to learn other PDEs[9].
The methods to be benchmarked are the deep convolution neural network and the Fourier
neural operator. While the second half of the study amounts to modify these networks to
see if a network can be trained to make accurate prediction for different parameters of
the input.

1.1 Background

This study was conducted at the request from Assoc Prof. Rixin Yu at the department of
Energy Sciences at Lunds University as a Master Thesis for a master degree in Energy
Sciences. The research is done as an extension to the earlier research done by Assoc
Prof. Rixin Yu. This research can be found in both the publication [1] about the onset of
cellular flame instability in premixed flames and in a publication currently under review,
titled: ”Deep learning of nonlinear flame fronts development due to the Darrieus-Landau
instability”[9] also done by Assoc Prof. Rixin Yu. The spatial-temporal evolution of
these instabilities afflicting a flame front can be modeled through the theoretical partial
differential equation named the ”Michelson-Sivashinsky” equation. By introducing
some type of noise to the system the solutions were shown to become chaos-like and
therefore also very hard for a Neural Network to predict. The research benchmarks
three different known Neural Network methods and shows that they are able to learn
to accurately predict short-term spatial-temporal evolution of this chaotic-like partial
differential equation.

The aim of the research in this thesis is similar to what was described above. With the
largest difference being that instead of investigating the flame fronts development due
to the Darrieus-Landau instability, this study will instead focus on the spatial-temporal
evolution of flame fronts due to diffusive-thermal instabilities. This spatial-temporal
evolution can instead be modeled using the ”Kuramoto-Sivashinsky equation”. More on
the goals of this project in the next sub-chapter.

2

1.2 Objective

1.2 Objective

The objective of this study is to investigate different deep-learning methods ability to learn
an operator for the time-advancement of unstable flame fronts. More specifically, to learn
the time-advancement of non-linear unstable flame fronts afflicted by diffusive-thermal
instabilities. Which can be modeled through the chaotic Kuramoto-Sivashinsky partial
differential equation.

The study is focused on investigating two of the more well known Machine Learning
methods. These methods are the Fourier neural operator (”FNO”) and deep convolution
neural networks (”CNN”). With the aim to see how the accuracy of the networks
predictions differ for different implementations of the methods. Also to investigate the
ability for the networks to make long-term predictions by altering the training method.
Another objective is to investigate how the FNO’s performance is affected by truncating
different amounts of Fourier modes in the convolution operator in Fourier space within
the Fourier layers.

The final task of the thesis is to modify these methods to see if it is possible to train a
network which can accurately learn to make predictions for the time-advancement of a
partial differential equation for multiple values of a parameter describing the physical
system. In this case the physical system is the channel with the propagating flame
subjected to diffusive-thermal instabilities which can be described by the KS equation.
The parameter that can be altered is the channel width (”L”).

1.3 Constraints

Due to time constraints, relevance and length aspects a few limitations had to be placed
on what this study would include and how thorough the investigation of the problems
would be.

The first limitation put upon this study is that only the Kuramoto-Sivashinsky equation
will be tested on the neural networks. Furthermore, only the 1-dimensional version of
the equation will be considered.

The choice to investigate the CNN and FNO was made because of the large differences
in their structure and how they work. No other Neural Network methods were chosen
which means that more focus could be placed on investigating the CNN and FNO.

3

Chapter 1 Introduction

As later will be explained, to use any Neural Network to learn the time advancement of an
PDE, the infinite-freedom function has to be discretized to a finite-freedom function. This
dicretization can be viewed as a mesh over the continuous function and the size of this
mesh determines the resolution. While a coarse mesh is faster to compute it is also less ac-
curate and vice versa. For this study only two mesh sizes were chosen: N=128 and N=256.

4

Chapter 2

Theory

This chapter briefly explains some of the theory behind the different methods used in
the neural networks and some background information about the Kuramoto-Sivashinsky
equation. Chapter 2.2 introduces the basics and some history of simple feed-forward
neural networks and might be overindulgent if already familiar with the topic of Machine
Learning. However, chapter 2.3 and 2.4 describes the Convolutional Neural Network
and the Fourier Neural Operator, both of which are used extensively in this study.

2.1 Kuramoto-Sivashinsky equation

A cellular structure can develop on the front of a freely propagating flame caused
by combustion of a premixed fuel, this happens mainly due to the Darrieus-Landau
instability and the diffusive-thermal instability[1]. This cellular flame structure looks
like there is ”wrinkling” on the surface of the flame. Since Assoc. Prof. Rinxin Yu
already have investigated the deep learning of nonlinear unstable flame fronts due to
the Darrieus-Landau instability, this study will instead focus on the diffusive-thermal
instability.

This instability can be modeled using the one-dimensional chaotic partial differential
equation named the Kuramoto-Sivashinsky equation.

𝑢𝑡 + 𝑢𝑥𝑥 + 𝑢𝑥𝑥𝑥𝑥 + 𝑢𝑢𝑥 = 0, 𝑥 ∈ (−𝐿/2, 𝐿/2), 𝑢 = 𝑢(𝑥, 𝑡) (2.1)

The equation was first derived by Kuramoto and Tsuzuki [2] to handle reaction diffusion
problems. Later on Sivashinsky derived the same equation but now to model the
propagation of a flame front, where u(x,t) is the disturbance of an unstable planar flame
front in the direction of propagation [10]. Numerical experiments have shown that the
equation becomes chaotic if solved with periodic boundary conditions, a large enough L
and when time t goes towards infinity [2]. Studies done on the the 1-dimensional case

5

Chapter 2 Theory

of the equation with Neumann boundary conditions led Nicolaenko et al to notice an
low modal behaviour and proposed that the number of determining Fourier modes is
proportional to the cell size [11] [12]. Furthermore, Hyman and Nicolaenko states that
”there are strong evidence that the infinite dimension solution solution space is spanned
by the solutions to a coupled system of ODEs with only a few degrees of freedom”[10].
The authors also state that the KS equations transition to chaos can be analyzed using
tools developed for low-dimensional dynamical systems since the KS equation is strictly
equivalent to such a low-dimensional dynamical system.

Papageorgiou and Smyrlis states in the paper ”The route to chaos for the Kuramoto-
Sivashinsky equation”[12] that since the behaviour of the system is ”low modal” important
characteristics such as period-doubling cascades to chaos is not lost by a truncated
system. This led them to numerically solve the equation by two different methods. The
first method by classical discretization and then performing the time integration of the
linear part in Fourier space and the nonlinear part in real space. The second method was
through a Galerkin projection onto low-dimensional inertial manifold which yields a
coupled nonlinear system of ODEs. For this case the nonlinear part was advanced in
time through a fourth-order Runge-Kutta method and the linear term was treated the
same way as for the other method.

2.1.1 Fourth order Runge-Kutta

The fourth order Runge-Kutta (RK4) can be used to numerically find the solution to an
ordinary differential equation [13]. Consider an initial value problem (IVP) with,

𝑑𝑦

𝑑𝑡
= 𝑓 (𝑡, 𝑦), 𝑦(𝑡0) = 𝑦0 (2.2)

where y is an unknown function of time t and the goal is to approximate that function.
From 2.2 it is evident that the derivative 𝑑𝑦

𝑑𝑡
= 𝑓 (𝑡, 𝑦) is a function of t and y. If the

function f and 𝑡0, 𝑦0 is given

𝑦𝑛+1 = 𝑦𝑛 +
1
6
(𝐾1 + 2𝐾2 + 2𝐾3 + 𝐾4) (2.3)

𝐾1 = ℎ 𝑓 (𝑡𝑛, 𝑦𝑛) (2.4)

𝐾2 = 𝑓 (𝑡𝑛 +
1
2
ℎ, 𝑦𝑛 +

1
2
𝐾1ℎ) (2.5)

𝐾3 = 𝑓 (𝑡𝑛 +
1
2
ℎ, 𝑦𝑛 +

1
2
𝐾2ℎ) (2.6)

𝐾4 = 𝑓 (𝑡𝑛 + ℎ, 𝑦𝑛 + 𝐾3ℎ) (2.7)

where 𝑡𝑛+1 = 𝑡𝑛 + ℎ and h is the step size. The RK4 approximates 𝑦(𝑡𝑛+1) with 𝑦𝑛+1.

6

2.2 Neural Networks

2.2 Neural Networks

Both the name ”Neural Network” (referred to as ”NN”) and the fundamental working
principle of it, is inspired by how the neurons work in a human brain. Since, as later
will be further explained, the ”neurons” of the network operates in a way which is
similar to how the biological neurons communicate with each other. There are many
different purposes with neural networks and they can be used in vastly different areas.
A few of these applications are image recognition, speech recognition, stock market
predictions, social media algorithms and predicting the time-advancement of ordinary or
partial differential equations. The simplest kind of implementation consists of one layer
containing a single neuron. This neuron is fed with one or many input values which
are combined through some linear function. This single value is then modified by an
arbitrary non-linear operation to produce the output.[14] However, neural networks are
only one kind of implementation method within the field of Machine Learning (referred
to as ”ML”). Which in turn is only a subset of the academic field Artificial Intelligence
(referred to as ”AI”). One can think of the difference between AI and ML like this; a
computer uses AI to perform tasks like learning and predicting and generally behave
like a human. While ML is how the computer system becomes intelligent and able to
perform these tasks [15].

2.2.1 Brief history

The academic fields of machine learning and AI cannot be said to have been recently dis-
covered. Alexander L. Fradkov [16] means that the origin of machine learning is usually
associated with the American psychologist Frank Rosenblatt, who had an idea to create a
computer system which imitates the way an human brain works. This idea originated from
research done by McCulloch and Pitts, in this research they invented the first mathematical
model of an artificial neuron back in the 1940s. Almost twenty years later Rosenblatt
[17] continued their research on artificial neurons and his goal was to create a system
which could recognise the letters of the Alphabet through image recognition. This pro-
ject resulted in the first modern neural networks which Rosenblatt called the ”perceptron”.

After this invention in the neural network field of the machine learning community the
progress continued slowly but steadily until shortly after the new millennium started.
This was the occasion when Neural networks got wide-spread attention through the
new deep neural networks performance compared to the alternative machine learning
methods[16].

7

Chapter 2 Theory

2.2.2 Basics

Throughout the years many different types of NNs has emerged with increasingly higher
prediction accuracy and to cover different fields and purposes. Today most of the NN
that are being employed are so called ”Deep Neural Network” (DNN). The only real
criteria for a network to be deep instead of regular is that it contains more than one
”layer”[18], i.e. in the case of the perceptron it would mean that for the network to be
considered deep it would have to have two or more consecutive neuron layers. Moreover,
each layer usually contains multiple parallel neurons.

A multi-layer ”Feed-forward Neural Network” (referred to as FNN) is one type of
DNN[19]. The network consists of many neurons stacked in layers. The neurons in the
FNN operates a bit differently from the perceptron neuron, which will be shown in the
following sub-chapters.

Another of the most common NNs is the Convolutional Neural Network, the idea was
first presented in a network called ”Neocognitron” by Kunihiko Fukushima back in
1979[18]. Since then this idea has been further evolved. Today this method is usually
referred to as Convolutional Neural Network (”CNN”). A more detailed account of how
the CNN works will be presented in section 2.3.

2.2.3 Architecture

The layout of a NN can vary greatly depending on which model is chosen and for what
purpose the NN is created for. The simplest of FNNs contains as earlier stated an amount
of layers and within each layer an amount of neurons (also called nodes) are stored. The
first layer is usually called the input layer and the last is called output layer, the layers
in between these two layers are called hidden layers[19]. The amount of hidden layers
deployed in the NN is sometimes referred to as the depth of the network and the amount
of neurons in a layer is called the width. In the case when each neuron in each layer is
connected to each neuron in the following layer the network is called fully-connected.
The structure of the NN can be chosen in a close to infinite amount of ways by choosing
different widths, depths and how the layers are connected. For instance, one can choose
to create a separate branch for one of the inputs and then merge that sub-branch with the
rest.

The best structure to employ depends greatly on the purpose of the NN. For instance,
consider a case where the network has four inputs and one of these inputs is completely
unrelated to the other three, then one could employ a branching architecture as described
above. One example where this could be preferable is if the purpose of the NN is to

8

2.2 Neural Networks

predict the long-term time-advancement of an ordinary differential equation such as
the Lorenz equation. For long-term solutions the time-advancement needs to be split
into shorter time-steps where the NN only predicts one step at a time. A common
implementation is then to create a NN that is trained with a varying time-step on the
input data. This means that the inputs to this network would be (𝑥1=dt, 𝑥2=x, 𝑥3=y, 𝑥4=z)
where ”dt” is the time-step and (x, y, z) are coordinates in euclidean space. The output
would be the predicted coordinates (x’,y’,z’) after the specified time-step (dt).

To put it simply, the fundamental principle of a fully-connected FNN is that each input
is connected to each neuron in the first hidden layer. Each of these connections has an
assigned value called weight. This weight is multiplied with the value of the input and sent
to the neuron. Then all the incoming connections to the neuron are summarized together.
The neuron contains an activation function which is deployed on this summarized value,
if the output of the function is above a stored value within the neuron called bias the
neuron is activated. If the neuron is activated the connections to the next layer are opened
and so on until the output layer.

One might think that the bigger the network is the better it will be able to make accurate
predictions. This is however often not the case. By increasing the width and depth then
the amount of trainable parameters for the network grow exponentially. For example,
by increasing the width by one in a fully connected FNN. Mean that even if that only
adds one extra activation function and one extra trainable bias. It would also add extra
trainable weights equal to the amount of neurons in the previous and consecutive layer
combined. As later will be proven this leads to heavier computational cost, i.e. longer
time to train the network and harder for the network to converge.

2.2.4 Weights and Biases

The FNN learns to make accurate predictions and to recognise patterns with the help
of the weights and biases[19]. Both these values are trainable, meaning that through
training the network by feeding it with enough input data and then by comparing the
output to a desired output these weights and biases in the neurons can be adjusted through
penalizing functions. The goal is that this will enable the following predictions to differ
less from the desired output.

The perceptron presented earlier is one of the simplest kinds of neurons. However,
the general idea is still the same in modern neurons. The perceptron takes the desired
amount of binary inputs [𝑥1, 𝑥2, ..., 𝑥 𝑗], multiplies them with a weight [𝑤1, 𝑤2, ..., 𝑤 𝑗]

9

Chapter 2 Theory

and compares them to the bias value and then outputs a single binary value:

𝑂𝑢𝑡𝑝𝑢𝑡 =

{
0 if

∑
𝑗 𝑤 𝑗𝑥 𝑗 ≤ 𝑏𝑖𝑎𝑠

1 if
∑
𝑗 𝑤 𝑗𝑥 𝑗 > 𝑏𝑖𝑎𝑠

(2.8)

Which can be simplified through instead creating vectors of the inputs and weights and
using the dot product of these vectors and moving the bias to the left-hand side:

𝑥 = [𝑥1, 𝑥2, ..., 𝑥 𝑗], 𝑤 = [𝑤1, 𝑤2, ..., 𝑤 𝑗] (2.9)

𝑥 · 𝑤 =
∑︁
𝑗

𝑤 𝑗𝑥 𝑗 (2.10)

𝑂𝑢𝑡𝑝𝑢𝑡 =

{
0 if 𝑥 · 𝑤 + 𝑏𝑖𝑎𝑠 ≤ 0
1 if 𝑥 · 𝑤 + 𝑏𝑖𝑎𝑠 > 0

(2.11)

The (sigmoid) neuron is a more modern variant of the perceptron. One of the major
differences between the neurons are that the modern (sigmoid) neurons inputs and outputs
does not have to be binary. However, the neuron still uses weights and biases in a similar
way as the perceptron does. The output from the neuron is usually determined by the
sigmoid activation function ”Logistic”:

𝜎(𝑧) = 1
1 + 𝑒−𝑧 (2.12)

𝑧 =
∑︁
𝑗

𝑤 𝑗𝑥 𝑗 + 𝑏 (2.13)

𝑂𝑢𝑡𝑝𝑢𝑡 =
1

1 + 𝑒𝑥𝑝(−∑
𝑗 𝑤 𝑗𝑥 𝑗 − 𝑏)

(2.14)

𝑂𝑢𝑡𝑝𝑢𝑡 =
1

1 + 𝑒𝑥𝑝(−𝑥 · 𝑤 − 𝑏) (2.15)

2.2.5 Activation functions

Today there exists many different activation functions with different properties. The
choice of a suitable activation function for the considered task is crucial for the effect-
iveness of the NN. As Johannes Lederer states in his publication ”Activation Functions
in Artifical Neural Networks” [20], ”The activation functions themselves influence the
network’s expressivity, that is, the network’s ability to approximate target functions”.
In the same publication Johannes Lederer also proves that Networks that only utilizes
linear activation functions are always linear, meaning that the network will not be able
to predict or learn non-linear functions. Which activation function that is chosen also
impacts parameter optimization which in turn affects the computational difficulty. The
reason for this is because many of the optimizers that adjust the networks parameters

10

2.2 Neural Networks

uses gradients of the output to do so. A more detailed explanation of this is given in the
chapter about back propagation.

Sigmoid functions

The sigmoid functions are suitable as activation functions due to that they are easily
differentiable, non decreasing (𝑥1 < 𝑥2 =⇒ 𝑓 (𝑥1) < 𝑓 (𝑥2)), bounded and because they
only have one inflection point. In the section below a couple of activation functions from
the Sigmoid category will be presented[20]:

Logistic:
1

1 + 𝑒−𝑧 , ℝ → {0, 1} (2.16)

Arctan: 𝑎𝑟𝑐𝑡𝑎𝑛(𝑧), ℝ → {−𝜋
2
,
𝜋

2
} (2.17)

Tanh: 𝑡𝑎𝑛ℎ(𝑧) = 𝑒𝑧 − 𝑒−𝑧
𝑒𝑧 + 𝑒−𝑧 , ℝ → {−1, 1} (2.18)

Softsign:
𝑧

1 + |𝑧 | , ℝ → {−1, 1} (2.19)

The logistic function has been called the ”smooth binary function” which is evident
when looking at figure 2.1 and when evaluating the equation 2.18. Since for high positive
value of z the output will be one and for high negative the output will be zero.

Piecewise-Linear Functions

The piecewise-linear functions are another category of popular activation functions.
The popularity is mainly due to their computational efficiencies when compared to
other types of activation functions. For example, both the functions in themselves and
their derivatives are easily computed since they contain no exponential or trigonometric
functions. They are also not as afflicted by the ”vanishing gradient” problem as the
sigmoid functions. The most common piecewise-linear functions are: linear, relu and
leakyrelu[20].

Linear: 𝑧, ℝ → {−∞,∞} (2.20)
relu: 𝑚𝑎𝑥{0, 𝑧}, ℝ → {0,∞} (2.21)

leakyrelu: 𝑚𝑎𝑥{0, 𝑧} + 𝑚𝑖𝑛{0, 𝑎𝑧}, ℝ → {−∞,∞} (2.22)

As can be seen in figure 2.2 the linear activation function is purely linear, with the first
derivative always equal to 1 and the second derivative equal to 0. Which makes it obvious
that this activation function is very efficient in terms of computation expensiveness.
Johannes Lederer[20] means that many claim that constant derivatives impacts the

11

Chapter 2 Theory

Figure 2.1: Sigmoid activation functions plotted on a input range from (-4,4), the output axis is
scaled differently (-2,2)

optimization poorly, but he also states implies that may be inaccurate since the optimization
is also affected by the loss function. However, as earlier stated the drawback of using
only linear activation function in a NN is that the network would not be able to account
for non-linearity. This is why most NN only use the linear activation function in certain
layers. The relu function is much similar to the linear in many aspects, however, the
function is not linear since all negative inputs returns an output of zero. One of the
drawbacks with the relu function is that it is afflicted by a type of vanishing gradient
problem called ”dying-relu”. The leakyrelu was developed to counteract the dying-relu
phenomena.
To summarize the recent sub-chapters with an example, the input into a neuron from 5
neurons in the previous layer can be viewed as, see figure.2.3:

Where ”𝑎1” is the output from that specific neuron, also called ”activation”. The output
is thereby defined as such:

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝜎(𝑎1 ∗ 𝑤1 + 𝑎2 ∗ 𝑤2 + 𝑎3 ∗ 𝑤3 + 𝑎4 ∗ 𝑤4 + 𝑎5 ∗ 𝑤5 + 𝑏) (2.23)

Where 𝜎 is the activation function.

12

2.2 Neural Networks

Figure 2.2: Piecewise-linear activation functions plotted on a input range from (-4,4), the output
axis is scaled differently (-2,2)

2.2.6 Loss Function

The training process of the NN can be done several ways, the most common is to split
the entire training database into smaller ”batches” where each batch contains a certain
portion of the entire database. The network then iterates through each batch consecutively
until the whole database has been covered which would complete one ”epoch”. Usually
the network is trained for a large amount of epochs, which means that it will iterate
through the same data multiple times. For instance, consider a case where an network
is trained to recognise patterns in images. Each image that is to be used for training
needs a corresponding label so that the output of the NN can be compared and then
adjusted according to the label or desired output. To train the network efficiently it
needs to see many similar samples so that the patterns can be defined in the weights and
biases. Say that in this case one has a training database of 10000 samples then in many
cases it will be advantageous to split this database in to smaller groups of samples, i.e.
”batch”. The choice of batch size and if it even should be used depends on many different
variables such as the size of database, data characteristics, network type and structure,
which optimizer that is used and more. In most cases one has to find the correct batch
size by trial and error. An oversimplification of how the batch size affects the gradient
descent training process can be seen in figure 2.4. In the figure the red arrows represents

13

Chapter 2 Theory

Figure 2.3: An exmaple of the output from a neuron

a training case where batches are not used, blue represents a too small batch size and the
black arrows represents the correct batch size for the situation. The figure shows how
the batch size affect the gradient descent in the optimization of the network, gradient
descent is explained in the following chapter.

By using a very small batch size or running optimization after every sample leads to
many more and less generalized adjustment of the parameters but can lead to higher
accuracy. Using a large batch size means that the network make predictions for a large
amount of samples in parallel and calculates a summarized loss (a value of how far off
the prediction is compared to the desired output) based on all the predictions. Then the
network is optimized based on this combined loss.

Loss function is the function that determines by how much the network parameters
are to be adjusted after each batch. As stated, the loss is an measure of how accur-
ate predictions the network can make, since a low loss means that the prediction is
close to the target. Loss functions can also be split into two major sub-categories,
regression - and classification loss functions. Regression loss functions predicts output
values based on the given input values, examples of this type is mean square error loss
(”MSE”) which is categorized under LP loss functions (”LP”)[21]. While classific-
ation loss functions produces a vector of probabilities of which categories the input
should be classified as. The cross entropy loss function is a common loss function in
this sub-category. Classification loss functions are obviously not suited to predict the
time advancement of partial differential equations and will therefore not be further studied.

For an input of n rows and p columns the mean square error would be calculated with

14

2.2 Neural Networks

Figure 2.4: Simplification of how batch size can affect gradient descent, i.e. optimization of
weights and biases

the following formula:

𝑀𝑆𝐸 =
1
𝑛𝑝

𝑛∑︁
𝑖=1

𝑝∑︁
𝑗=1

(𝑥𝑖 𝑗 − 𝑥𝑖 𝑗)2 (2.24)

𝐿2 =
1
𝑛𝑝

𝑛∑︁
𝑖=1

𝑝∑︁
𝑗=1

(𝑥2
𝑖 𝑗 − 𝑥2

𝑖 𝑗)1/2 (2.25)

Where 𝑥 is the predicted output and x is the desired output value.

2.2.7 Back Propagation Algorithm

Back propagation is a crucial tool for the training and learning of regular neural networks
and is performed at the end of each training batch. The main purpose of the task is to,
as the name implies, propagate backwards through each layer and each neuron of the
network from the output to the input and to adjust each trainable parameter according
the loss of the current batch. However, it wouldn’t be a very effective process if all the
parameters were changed by the same amount. Since in most cases the loss of an entire
batch consists of a single real value calculated from a loss function, then a method is
needed that can differentiate the importance of each weight in regards to the output and
adjust accordingly. Today there exists many such algorithms and many of them are based
on a method called ”gradient descent”[22].

If one considers the loss function to have the weights and biases as the input, the training
data as the parameters and the loss as the output. Then for a specific batch the goal is
to adjust these weights and biases so that the loss function returns the lowest possible
value. To make the case easier, one can consider this function to have only one input

15

Chapter 2 Theory

(𝑤) and one output (𝑙𝑜𝑠𝑠), which means that 𝑙𝑜𝑠𝑠 = 𝐶 (𝑤). If the function is simple the
minimum can be found easily through basic calculus, see figure 2.5 where the x-axis
corresponds to the value of the weight and the y-axis to the loss.

Figure 2.5: Finding minimum of a simple function 𝑙𝑜𝑠𝑠 = 𝐶 (𝑤)

Then the minimum is found through:

𝑑𝐶

𝑑𝑤
(𝑤) = 0 (2.26)

However, the case is not as simple as this since the functions are more complicated and
especially since the amount of weights in a network usually counts in the thousands.
In the case of a more complicated function but still simplified compared to a real case
can be seen in fig 2.6, using the same tactic to find the minimum will not suffice. Since
this function has multiple extreme values which means that eq.2.26 also has multiple
solutions, and in this case one of these solutions will be the local maxima at 𝑤 ≃ −0.5
which obviously is not preferable.

The problem is then to find a method which does not end up in local maximums but
instead finds the minimums. One way to do this is by doing an iterative evaluation
of the slope at the current position. In other words, by starting at an arbitrary point
on the function and then evaluating the slope at this position, if the slope is positive a
new evaluation is done a ”step” to the left/backwards of that position and if the slope is

16

2.2 Neural Networks

Figure 2.6: Finding minimum of a more complicated function 𝑙𝑜𝑠𝑠 = 𝐶 (𝑤)

negative a new evaluation of the slope is done a bit to the right/forward until a minimum
is found. See fig.2.7 for clarification.

One way to avoid ”overshooting” the minimum value is to make the size of the step
proportionate to the slope at the current position.

However, this method does not take into account if the minimum found is the global- or
simply a local minimum of the function. Meaning that depending on the starting point
one might as well end up in the first minimum seen in fig.2.7.

If the function instead has two inputs and one output (𝑙𝑜𝑠𝑠 = 𝐶 (𝑥, 𝑦)) then one can
imagine the input space as the xy-plane and the loss function as an surface graphed above
it. Using the same technique as earlier described but now its not the slope that is being
evaluated but instead the direction of the step is determined by the gradient. Since the
gradient is the direction in which the function increases the most, the negative of that
gradient gives us the direction in which the function decreases the most. Another useful
property of the gradient is that the length of the gradient is an indication of how steep the
slope of that direction is. Which is as described earlier useful for determining the step size.

Today there exists many different back-propagation algorithms that can be used for
training a neural networks, this process or algorithm which back-propagates through the

17

Chapter 2 Theory

Figure 2.7: Finding minimum of a more complicated function 𝑙𝑜𝑠𝑠 = 𝐶 (𝑤) by stepwise
evaluating the slope

network and updates the weights to minimize a certain loss function is usually referred
to as the optimizer of the network. Consider a case where one has a database containing
the inputs 𝑥1, ..., 𝑥 𝑗 and outputs 𝑦1, ..., 𝑦 𝑗 which have been arranged in pairs where
(𝑥1, 𝑦1), ..., (𝑥 𝑗 , 𝑦 𝑗) and the task is for a neural network (F) to learn this relationship
between x and y.

𝑦 = 𝐹 (𝑤, 𝑥) (2.27)

where w are the weights of the network. As earlier stated the loss or cost is calculated
through any given loss function C.

𝐿𝑜𝑠𝑠 = 𝐶 (𝑦, 𝐹 (𝑥, 𝑤)) (2.28)

And the task is to minimize this loss function by only altering the weights of the network.
One of the most simple optimization techniques is the gradient descent method [23] with
a weight update defined as:

𝑤𝑡+1 = 𝑤𝑡 − [∇𝑤𝐶 (𝑤𝑡 ; 𝑥, 𝑦) (2.29)

where [is the learning rate coefficient which determines the size of the weight updates.
Note that equation 2.29 has not specified a specific weight in the network to alter. To

18

2.2 Neural Networks

specify the weight update in a single weight the definition of gradient needs to be
considered. The gradient of loss function C in this case is,

𝜕𝐶

𝜕𝑥
= [𝜕𝐶

𝜕𝑥1
, ...,

𝜕𝐶

𝜕𝑥 𝑗
] (2.30)

Consider a fully-connected FNN, meaning that the amount of incoming weights to a
neuron always equals the amount of neurons in the previous layer. Then for a single
weight in layer l and neuron j in that layer and k refers to the neurons in the previous layer
then the gradient of this weight can be described as following through the chain rule

𝜕𝐶

𝜕𝑤𝑙
𝑗 𝑘

=
𝜕𝐶

𝜕𝑧𝑙
𝑗

𝜕𝑧𝑙
𝑗

𝜕𝑤𝑙
𝑗 𝑘

(2.31)

where 𝑧𝑙
𝑗

is the output from neuron j in layer l before using the activation function. Then
From eq.2.23 it is known that the value z is equal to

𝑧𝑙𝑗 =

𝑚∑︁
𝑘=1

𝑤𝑙𝑗 𝑘𝑎
𝑙−1
𝑘 + 𝑏𝑙𝑗 (2.32)

where m is the amount of neurons in the previous layer. By differentiating eq.2.32 with
respect to the considered weight 𝑤𝑙

𝑗 𝑘
leads to,

𝜕𝑧𝑙
𝑗

𝜕𝑤𝑙
𝑗 𝑘

= 𝑎𝑙−1
𝑘 (2.33)

Which means that by inserting eq.2.33 into eq.2.31 leads to,

𝜕𝐶

𝜕𝑤𝑙
𝑗 𝑘

=
𝜕𝐶

𝜕𝑧𝑙
𝑗

𝑎𝑙−1
𝑘 (2.34)

One of today’s most used optimizer in practice is the Adam optimizer[23][22] because
of its efficiency compared to other optimization methods. The name Adam stands for
Adaptive Moment Estimation and as the name suggests computes adaptive learning rates
for each parameter. Meaning that the method stores an average of previous squared
gradients (𝑣𝑡) and an average of past non-squared gradients (𝑚𝑡) which both decay
exponentially over time.

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)∇𝑤𝐶𝑡 (2.35)
𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)∇𝑤𝐶2

𝑡 (2.36)

where 𝛽1 and 𝛽2 are coefficients, common values for these are 𝛽1 = 0.9 and 𝛽2 = 0.999.

19

Chapter 2 Theory

The weights are altered through the Adam update rule [22],

𝑊𝑡+1 = 𝑊𝑡 −
[

√
𝑣𝑡 + 𝜖

𝑚𝑡 (2.37)

where 𝜖 is also an coefficient, a common value for 𝜖 is 10−8.

Since each update to the weights are affected by past gradients, this gives the update
something similar to momentum and thereby also a robustness against sudden unwanted
deviations in the loss minimizing. Which in turn makes the gradient descent process
smoother, like the black arrows representing gradient descent in fig.2.4.

2.3 Convolutional Neural Network

The Convolutional Neural Network (”CNN”) is in many ways similar to the Feed Forward
Neural Network. The basic idea is the same; the network is given an input which is
passed along some hidden layers performing some type of operation on the input and an
output is returned.

An important difference between the FNN and CNN is that each operation within a
convolution layer on a single value in the input matrix is also affected by the neighbouring
values unlike for the FNN where every neuron usually is connected to each neuron in the
next layer.

Consider a 2-dimensional input matrix of size 3x3, and a kernel matrix of size 2x2 (also
called filter). The convolution between these two matrices produces a new matrix where
the output values are calculated by sliding the kernel over the input matrix, see figure.2.8

Figure 2.8: By sliding the kernel over the input matrix and performing simple multiplication and
additions yields the output matrix

In a standard convolution where the stride is equal to one and padding equal to zero, this
case can be seen in figure 2.8. Then the size of the output matrix Y is equal to the size of

20

2.3 Convolutional Neural Network

the input matrix I minus the size of the kernel matrix K plus one 𝑌 = 𝐼 − 𝐾 + 1. The
stride of a convolution is what determines how many points on the matrix the kernel
should slide after each operation and padding adds an extra layer on the outside of the
input matrix without any values stored. By doing this the equation describing the output
matrix size becomes 𝑌 = 𝐼 − 𝐾 + 3.

The operation that has been described so far is not actually convolution, this is an
operation called cross-correlation[24]. Which is similar to convolution, but for the
convolution the kernel matrix is rotated 180 deg. This is denoted as:

𝐼 ∗ 𝐾 = 𝐼 ★ 𝑟𝑜𝑡180(𝐾) (2.38)

An important feature to many convolutional neural networks is the ability to shrink
the dimension of the matrices while increasing the amount of channels between layers
(or the other way around). The way to increase channel size of the input is to in each
layer convolute more kernels on the same matrix. These kernels are usually of the
same size but storing different values of weights. Meaning that if the input to layer one
is one channel with kernel size 3 and the goal is to lift the output channel size to 16
then the amount of kernels will be 16 times 1 each with a size of 3. Now if the next
layer lifts these 16 channels to 32 with kernel size 3, means that the convolution takes
place on 16 channels with 16 rows times 32 columns of new kernels each storing 3 weights.

The usage of an Autoencoder architecture is common technique for CNNs[25][26].
An autoencoder usually consist of two parts, an encoder and a decoder. The encoder
compresses the high dimensional data flow into a lower dimension as described above.
The decoder reconstructs this data flow into the original high dimensional input. Many of
the Autoencoder CNNs does not use the convolution layers to decrease the dimensionality,
but instead uses a pooling layer placed in series with the convolution layer to do this[27].
The max pooling layer reduces the dimensionality of the input through an operation which
is similar to convolution. It features an empty kernel which slides over the input matrix
and stores the highest value for each step. The reduction in dimensions is dependent
on the stride and kernel size of the maxpooling layer. These layers are advantageous
because the operation is computationally inexpensive and they introduce small invariance
to translation and distortion. The opposite of the max pooling layer is an upsampling
layer which can be used to increase the dimension of the data flow.

Consider the case when the input to a convolution layer is a 1-dimensional vector of three
values but with a channel size of three, what this actually means is that there is three
1-dimensional vectors all of size three. The desired output size from this layer is two
1-dimensional vectors of size 2, i.e. only two channels. That means that two channels
of kernels are needed each containing three 1-dimensional vectors of size two. This
operation has been illustrated in fig. 2.9

21

Chapter 2 Theory

Figure 2.9: Convolution with different channel sizes of input/output

Note, the two kernel channels usually does not contain the same weights even though
they are denoted as such in the figure. Highlighted vectors means that they are currently
involved in the same operation, meaning that 𝑦1

1 is calculated through

𝑦1
1 = 𝑘1

1𝑥
1
1 + 𝑘

1
2𝑥

1
2 + 𝑘

2
1𝑥

2
1 + 𝑘

2
2𝑥

2
2 + 𝑘

3
1𝑥

3
1 + 𝑘

3
2𝑥

3
2 + 𝑏

1
1 (2.39)

Which means that each output channel is a linear combination of all the input channels.
If the vectors are instead denoted as matrices, where 𝑋1, 𝑋2, 𝑋3 represents each of the
channels and 𝐾1,1, 𝐾1,2, 𝐾1,3, 𝐾2,1, 𝐾2,2, 𝐾2,3 represents the the kernel vectors in each
channel respectively and so on enables eq.2.39 to be developed to,

𝑌1 = 𝐵1 + 𝑋1 ★𝐾1,1 + 𝑋2 ★𝐾1,2 + 𝑋3 ★𝐾1,3 (2.40)
𝑌2 = 𝐵2 + 𝑋1 ★𝐾2,1 + 𝑋2 ★𝐾2,2 + 𝑋3 ★𝐾2,3 (2.41)

𝑌𝑖 = 𝐵𝑖 +
𝑚∑︁
𝑗=1

𝑋 𝑗 ★𝐾𝑖, 𝑗 , 𝑖 = 1, ..., 𝑑 (2.42)

where m is the channel size of the input X. Equation 2.42 is basically the forward
propagation of a simple convolution layer before the activation function.

The backward propagation for a CNN is very similar to how it works for a FNN, simply
by going backwards through the layer and using the chain rule to find the needed partial
derivatives. As with the FNN the optimization for a CNN start from the partial derivative
of the cost function with respect to the output 𝜕𝐸

𝜕𝑌𝑖
and the gradients with respect to

the weights and biases are what is desired, meaning the partial derivatives 𝜕𝐸
𝜕𝐾𝑖 𝑗

and
𝜕𝐸
𝜕𝐵𝑖

. If the CNN considered is a deep neural network, meaning that it contains multiple
convolution layers. Then the partial derivative with respect to the input to the layer also
needs to be computed 𝜕𝐸

𝜕𝑋 𝑗
.

22

2.3 Convolutional Neural Network

Starting from eq.2.39 but only considering the layer to contain one input channel and
output channel, which means that the layer only consists of one input vector of size three,
one kernel of size two and so on. Then the equations becomes:

𝑦1 = 𝑏1 + 𝑘1𝑥1 + 𝑘2𝑥2 (2.43)
𝑦2 = 𝑏2 + 𝑘1𝑥2 + 𝑘2𝑥3 (2.44)

The goal here is to try to compute the partial derivative of the error from the loss function
with respect to the weights

𝜕𝐸

𝜕𝑌
=
𝜕𝐸

𝜕𝑦1
,
𝜕𝐸

𝜕𝑦2
−→ 𝜕𝐸

𝜕𝑘1
,
𝜕𝐸

𝜕𝑘2
(2.45)

Using the chain rule yields:

𝜕𝐸

𝜕𝑘1
=
𝜕𝐸

𝜕𝑦1

𝜕𝑦1
𝜕𝑘1

+ 𝜕𝐸

𝜕𝑦2

𝜕𝑦2
𝜕𝑘1

(2.46)

From this last equation, looking at the second division in every term, i.e 𝜕𝑦1
𝜕𝑘1
,
𝜕𝑦2
𝜕𝑘1

, it is
evident that from the forward propagation eq.2.43 that,

𝜕𝑦1
𝜕𝑘1

= 𝑥1 (2.47)

which gives us:

𝜕𝐸

𝜕𝑘1
=
𝜕𝐸

𝜕𝑦1
𝑥1 +

𝜕𝐸

𝜕𝑦2
𝑥2 (2.48)

This can easily be computed for all kernel points by using cross-correlation,

𝜕𝐸

𝜕𝐾
= 𝑋 ★

𝜕𝐸

𝜕𝑌
(2.49)

This is however not really the forward propagation from the case described earlier since
this is only for 1 to 1 amount channels, by instead starting from eq.2.42,

𝑌1 = 𝐵1 + 𝑋1 ★𝐾11 + ... + 𝑋𝑛 ★𝐾𝑖𝑛 (2.50)
𝑌2 = 𝐵2 + 𝑋1 ★𝐾21 + ... + 𝑋𝑛 ★𝐾2𝑛 (2.51)

... (2.52)
𝑌𝑑 = 𝐵𝑑 + 𝑋1 ★𝐾𝑑1 + ... + 𝑋𝑛 ★𝐾𝑑𝑛 (2.53)

23

Chapter 2 Theory

The goal is still to find the derivatives of E with respect to K. Note that using the chain
rule directly is not possible since the terms are now matrices and not values. Instead by
looking at the derivatives separately, for example 𝜕𝐸

𝜕𝐾21
and at eq.2.53 it is evident that

𝜕𝐸

𝜕𝐾21
= 𝑋1 ★

𝜕𝐸

𝜕𝑌2
(2.54)

since the matrix 𝐾21 only appears once in the equations. This is also true for all matrices
𝐾𝑖 𝑗 .

Using a similar technique to investigate the gradients for the biases and starting with the
simplified version:

𝑦1 = 𝑏1 + 𝑘1𝑥1 + 𝑘2𝑥2 (2.55)

and so on, as before,

𝜕𝐸

𝜕𝑌
=
𝜕𝐸

𝜕𝑦1
,
𝜕𝐸

𝜕𝑦2
(2.56)

using the chain rule yields,

𝜕𝐸

𝜕𝑏1
=
𝜕𝐸

𝜕𝑦1

𝜕𝑦1
𝜕𝑏1

+ 𝜕𝐸

𝜕𝑦2

𝜕𝑦2
𝜕𝑏1

(2.57)

As for the weights, comparing eq.2.57 to eq.2.43 yields,

𝜕𝑦1
𝜕𝑏1

= 1 (2.58)

𝜕𝑦2
𝜕𝑏1

= 0 (2.59)

which means that,

𝜕𝐸

𝜕𝑏1
=
𝜕𝐸

𝜕𝑦1
(2.60)

𝜕𝐸

𝜕𝑏2
=
𝜕𝐸

𝜕𝑦2
(2.61)

−→ 𝜕𝐸

𝜕𝐵
=
𝜕𝐸

𝜕𝑌
(2.62)

Moving over to the expanded version and looking at the partial derivative of E with

24

2.3 Convolutional Neural Network

respect to 𝐵1

𝜕𝐸

𝜕𝐵1
=
𝜕𝐸

𝜕𝑌1
(2.63)

−→ 𝜕𝐸

𝜕𝐵𝑖
=
𝜕𝐸

𝜕𝑌𝑖
(2.64)

Since 𝐵1 only appears in the first equation.

The last part of the back propagation on the CNN is to look at the partial derivative of E
with respect to the input x and again starting by looking at the simplified version. Using
the chain rule yields,

𝜕𝐸

𝜕𝑥1
=
𝜕𝐸

𝜕𝑦1

𝜕𝑦1
𝜕𝑥1

+ 𝜕𝐸

𝜕𝑦2

𝜕𝑦2
𝜕𝑥1

(2.65)

By comparing the second division of each term to eq.2.43,

𝜕𝐸

𝜕𝑥11
=
𝜕𝐸

𝜕𝑦11
𝑘11 (2.66)

This, however, is not true for all 𝑥𝑖, since for example 𝑥2 appears in both of the equations
2.43. Which means that:

𝜕𝐸

𝜕𝑥1
=
𝜕𝐸

𝜕𝑦1
𝑘1 (2.67)

𝜕𝐸

𝜕𝑥1
=
𝜕𝐸

𝜕𝑦1
𝑘2 +

𝜕𝐸

𝜕𝑦2
𝑘1 (2.68)

𝜕𝐸

𝜕𝑥3
=
𝜕𝐸

𝜕𝑦1
𝑘2 (2.69)

If these equations are investigated, one can find that this pattern corresponds to a full
correlation where the kernel have been rotated 180 degrees.

𝜕𝐸

𝜕𝑋
=
𝜕𝐸

𝜕𝑌
∗ 𝑓 𝑢𝑙𝑙 𝑟𝑜𝑡180(𝐾) (2.70)

Which is an convolution not an cross-correlation. Onto the expanded one and starting
with eqs.2.53, by again investigating in which of these equations that 𝑋1 appears, which

25

Chapter 2 Theory

yields:

𝜕𝐸

𝜕𝑋1
=
𝜕𝐸

𝜕𝑌1
∗ 𝑓 𝑢𝑙𝑙 (𝐾11) + ... +

𝜕𝐸

𝜕𝑌𝑑
∗ 𝑓 𝑢𝑙𝑙 (𝐾𝑑1) (2.71)

𝜕𝐸

𝜕𝑋 𝑗
=
𝜕𝐸

𝜕𝑌1
∗ 𝑓 𝑢𝑙𝑙 (𝐾1 𝑗) + ... +

𝜕𝐸

𝜕𝑌𝑑
∗ 𝑓 𝑢𝑙𝑙 (𝐾𝑑𝑗) (2.72)

=⇒ 𝜕𝐸

𝜕𝑋 𝑗
=

𝑑∑︁
𝑖=1

𝜕𝐸

𝜕𝑌1
∗ 𝑓 𝑢𝑙𝑙 (𝐾1 𝑗), 𝑗 = 1, .., 𝑛 (2.73)

With this equation derived means that all equations have been derived to be able to
perform back propagation on a CNN. The equations needed are:

𝜕𝐸

𝜕𝐾𝑖 𝑗
= 𝑋 𝑗 ★

𝜕𝐸

𝜕𝑌𝑖
(2.74)

𝜕𝐸

𝜕𝐵𝑖
=
𝜕𝐸

𝜕𝑌𝑖
(2.75)

𝜕𝐸

𝜕𝑋 𝑗
=

𝑑∑︁
𝑖=1

𝜕𝐸

𝜕𝑌1
∗ 𝑓 𝑢𝑙𝑙 (𝐾1 𝑗), 𝑗 = 0, ..., 𝑛 (2.76)

Many modern CNNs feature a new type of layer called inception layer [28]. The basic
idea behind the layer is to branch the input within the layer to different branches each
containing a series of smaller convolution layers and pooling layers. At the end of
the inception layer all the branch are concatenated into one output with the desired
dimensions. According to Wojna et al. [28] there are several advantages to using
inception layers. For example, to avoid representational bottlenecks, high performance
vision networks and moderate computation cost in comparison to many other alternative
CNN structures.

2.4 Fourier Neural Operator

Fourier Neural Operator is quite a bit different from the classical deep-learning methods
such as the CNN or FNN. The idea behind the Fourier Neural Operator [7] is based on
the Neural Operator proposed in the scientific paper ”Neural Operator: Graph Kernel
Network for Partial Differential Equations” [6]. The Neural Operator can be thought
as a structure of several blocks of smaller neural networks, one input neural network
”A” whose task is to lift the input to a higher dimension representation and one output
NN ”B” to bring the solution back to the desired dimensional representation. Between
these layers is a iterative structure of blocks each performing some linear and nonlinear

26

2.4 Fourier Neural Operator

operation on the solution.

To explain this in more detail, the input PDE solution 𝑣(𝑥) is as explained lifted to
a higher dimension of representation through a fully connected feed forward neural
network. This is done by taking the whole PDE function as one input and returning the
solution lifted to the desired dimension by the linear local transformation A, in a way
similar to how the convolution layer increases the amount of channels.

𝑢(𝑥) = 𝐴(𝑣(𝑥)) (2.77)
𝐴 : ℝ𝑑𝑣 → ℝ𝑑𝑢 (2.78)

where 𝑑𝑣 < 𝑑𝑢 and 𝑣(𝑥) ∈ ℝ𝑑𝑣 . The function 𝑢(𝑥) is iterated T times (𝑢1 ↦→ ... ↦→ 𝑢𝑇
through a block containing a non-local integral operator and a local nonlinear activation
function 𝜎 such as the RELU explained in chapter 2.2.5. The integral operator contains
two branches, one of them is a linear transformation of the input 𝑊 : R𝑑𝑢 → R𝑑𝑢

(typically a convolution layer) and the other branch performs an operation called kernel
integral transformation K. Here is where the Fourier Neural Operator differs from the
standard Neural Operator. Instead of using a kernel integral transformation, the branch
contains a convolution operator defined in Fourier Space. So instead of eq.2.79

𝑢𝑡+1(𝑥) = 𝜎(𝑊𝑡𝑢𝑡 (𝑥) + (K(𝑣; 𝜙)𝑣𝑡) (𝑥)) (2.79)

One gets the following equation:

𝑢𝑡+1 = 𝜎(𝑊𝑡𝑢𝑡 (𝑥) + F −1(R𝑡 · F (𝑢𝑡))) (2.80)

where F is the Fast Fourier Transform (FFT). The linear transformation𝑊𝑡 is the same
as in eq.2.79 and does not change the amount of channels/dimensions. The equation is
performed by using a kernel of size=1 and also means that each new channel is a linear
combination of all previous channels. The last stage of the Fourier Neural Operator is the
output neural network B. The task of this network is to reduce the dimensions down to
the desired level which is also most often done using a fully-connected FNN. Meaning:

𝑣′(𝑥) = 𝐵(𝑢𝑇 (𝑥)) (2.81)
𝐵 : ℝ𝑑𝑢 → ℝ𝑑𝑣 (2.82)

See figure 2.10 for clarification of the FNO architecture.

The convolution operator in Fourier space is the part that is similar to how the spectral
method works. From eq.2.80 one can see that this operation corresponds to F −1(R𝑡 ·

27

Chapter 2 Theory

F (𝑢𝑡)). The operator first transforms each of the channels of the input function 𝑢𝑡 (𝑥)
using the FFT (F). The FFT can be used in this study since the input function is a PDE
solution discretized on a uniform mesh with periodic boundary conditions. After the
transformation one yields the same amount of Fourier modes ^ as the mesh size N. By
truncating the highest frequency modes the computational speed can be increased while
only losing little to none information (depends on how many modes that are truncated
and the modal behavior of the equation). With the remaining Fourier modes ^𝑚𝑎𝑥 a
multiplication is done between the modes and a matrix of complex trainable parameters
R ∈ ℂ^𝑚𝑎𝑥×𝑑𝑢×𝑑𝑢 in frequency space.

F −1(R𝑡 · F (𝑢𝑡))^, 𝑗 =
𝑑𝑢∑︁
𝑗=1

R^, 𝑗 (F 𝑣𝑡)^, 𝑗 , ^ = 1, ..., ^𝑚𝑎𝑥 , 𝑗 = 1, ..., 𝑑𝑢 (2.83)

Truncating 𝑁 − ^𝑚𝑎𝑥 amount of Fourier modes increases computational speed of the
operator since it also removes a large portion of the operations performed in the
convolution operator in Fourier space. This also means that there are fewer trainable
weights in the matrix R since the size of this matrix depends on ^, R ∈ ℂ^𝑚𝑎𝑥×𝑑𝑢×𝑑𝑢 . The
FNO can make use of skip connections in a similar way as for the CNN, the difference is
that within each Fourier layer the input data is copied and this copy bypasses the Fourier
layer and then added to the output of the layer[9], see figure 2.10.

Figure 2.10: Architecture of a standard Fourier Neural Operator with width T, dashed lines
representing skip connections

28

Chapter 3

Method

Since it does not exist a computer software which is coded to perform the objectives
of this study, several scripts had to be created from scratch for these purposes. The
decision was made to conduct the entire study in the programming language python
using the integrated development environment pycharm. Even though there does not
exist a fully developed computer software for this there are open source python packages
which helps with some parts of the coding. See table 6.1 in appendix A for all packages
used. All code for this study will also be made available in the github library linked
to in the appendix. To speed up the generation of training data and the training of
the networks a GPU cluster was employed. This resource is provided by The Swedish
National Infrastructure for Computing (”SNIC”) and hosted at Chalmers University. The
specific clusters used is called ”ALVIS” and is a national SNIC resource dedicated for
research within Artificial Intelligence and Machine Learning. Since parts of this study
are based on research[9] done by Assoc Prof Rixin Yu some parts of the code for that
project could be reused in this project.

3.1 Problem setup

The problem to be solved in this thesis is as explained to train an operator to learn the
time-advancement of a non-linear unstable flame front propagating through a channel, by
using the KS-PDE to model the flame front subjected to diffusive-thermal instabilities.
In other words, to train an operator to map the 1d flame front from one point in time to a
future point after a short fixed time interval, by repeating this process yields a sequence
of predicted flame fronts. For a neural network to learn this it needs to be trained using
many samples of propagating flame fronts. Which means that before the training of the
networks can start a database of samples has to be generated. There are several ways
to solving/approximating the solution of a PDE, such as finite element and difference
methods, integrating factor, Runge-Kutta and many more. Using the fourier spectral
method is another way of solving the problem.

29

Chapter 3 Method

If one considers the task at hand, the problem consists of a physical system with the
flame front which can be described by the PDE. The entire system can be viewed as many
separate functions where the solution at each time-step corresponds to one function, then
the goal is to create an operator G which can map one function 𝑣(𝑥) to another 𝑣′(𝑥′) by
approximating the real map Ĝ between the functions[9].

Ĝ : 𝑣(𝑥) ↦→ 𝑣′(𝑥′) (3.1)

The input function:

𝑣 : D → ℝ𝑑𝑣 ; 𝑥 ↦→ 𝑣(𝑥) (3.2)

where 𝑣 is a part of the function space V(D;ℝ𝑑𝑣) where D ⊂ ℝ𝑑 and the codomain ℝ𝑑𝑣 .

By making the assumption that the two functions share the same domain and codomain,
yields the following output function:

𝑣′ : D → ℝ𝑑𝑣 ; 𝑥′ ↦→ 𝑣′(𝑥′) (3.3)

To further simplify the problem the assumption was made that D does not vary in time
and has periodic boundary conditions. The map Ĝ for this problem is to be an operator
mapping one function to another after a specific time step Δ𝑡 , which means:

Ĝ : 𝑢(𝑥; 𝑡) ↦→ 𝑢(𝑥; 𝑡 + Δ𝑡) (3.4)

where 𝑣(𝑥) is replaced by the PDE solution 𝑢(𝑥; 𝑡) with time parameter 𝑡 and 𝑣′(𝑥) with
𝑢(𝑥; 𝑡 + Δ𝑡). The task of the neural network is then to find the approximated map G so
that

G : V × Θ → V′ or equivalently, (3.5)
G\ : V → V′, \ ∈ Θ (3.6)

where Θ is a finite-dimensioned space with all the trainable weights of the neural network.

3.2 Data generation

To generate the large database containing all the sequences of solutions to the KS equation
some initial setup was required in terms of coding and preparation. For a case where
a flame propagates in a channel of width L with x being a normalized coordinate with
direction normal to the channel wall. Assuming periodic boundary conditions and that

30

3.2 Data generation

all coordinates along the flow can be described by a function 𝑢(𝑥, 𝑡). Then,

𝑢𝑡 + 𝑢𝑥𝑥 + 𝑢𝑥𝑥𝑥𝑥 + 𝑢𝑢𝑥 = 0, 𝑥 ∈ (−𝐿/2, 𝐿/2), 𝑡 > 0 (3.7)
𝑢(𝑥, 𝑡) = 𝑢(𝑥 + 2𝜋𝐿, 𝑡), 𝑢𝑥 (𝑥, 𝑡) = 𝑢𝑥 (𝑥 + 2𝜋𝐿, 𝑡), 𝑡 ≥ 0 (3.8)

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ (−𝐿/2, 𝐿/2) (3.9)

By using the Fourier Spectral method in combination with the Runge-Kutta method,
eq.3.7 could be numerically solved. But before this can be done the initial conditions
𝑢0(𝑥) had to be generated. Since the goal is to learn to make predictions for any initial
condition means that all initial conditions used are randomly generated on a mesh by
two different methods. Half of the database is generated by an initial condition made to
imitate white-noise. The initial condition is generated on the mesh of the channel with N
points with the following formula:

𝑢(𝑥𝑖) = 0.1 ∗ 𝛼 (3.10)

After evaluating the initial condition and the solution after one time-step 𝑢(𝑥,Δ𝑡) the
change between the function was deemed too big to be learnable for a neural network,
see figure.3.1. This led to that the first solution was removed for all sequences generated
with the white-noise initial condition, meaning that 𝑢(𝑥,Δ𝑡) was instead considered the
first solution in all of these sequences.

The other half of the database was instead generated as spectral-noise[9] meaning
smoother waves more similar to a sinusoidal wave than the previous white-noise. This
initial condition was generated by:

𝑢0(𝑥) = 0.031𝛾𝑁
8∑̂︁
=2
(𝛽^ + 1)𝑐𝑜𝑠(^𝑥 + 2𝜋𝛼^) (3.11)

where 𝛾 is a randomly generated value between 0 and 1, 𝛼^ and 𝛽^ are arrays of randomly
generated values also between 0 and 1. In figure 3.2 one sample of the initial condition
using spectral noise can be seen and the solution after one time-step. The change between
these two functions were deemed satisfactory and the sequence was not altered.

The initial condition 𝑢0(𝑥) is already discretized on the mesh of size N which means that
the solution is already of finite-freedom and can be transformed with the Fast Fourier
Transform FFT. The spectral method is used to generate the sequence of solutions from
the initial condition by first translating eq.3.7 into ordinary differential equations (ODE)
with 𝑁/2 + 1 number of complex Fourier modes.

𝐹^ (𝑢(𝑥 𝑗 ; 𝑡)), ^ = 0, ..., 𝑁/2 (3.12)

Then the time-step is done by temporal integration of these ODEs by using a fourth-order

31

Chapter 3 Method

Figure 3.1: Comparison between one sample of 𝑢0(𝑥) and 𝑢(𝑥,Δ𝑡) for a white-noise initial
condition

Runge-Kutta update.

The choice of time-step size (Δ𝑡) is another important decision to consider. Since a too
large time-step would lead to too large changes between each solution and a too small
step size would lead to an almost stationary system with very little changes. Both of those
options are undesirable and therefore a reasonable step-size had to be found through trial
and error and by comparing to similar cases. In the end a step size of Δ𝑡 = 0.15 was
found to work well for this study.

The solutions generated have been verified with both a matlab script also using the spectral
method in combination with a temporal integration using fourth-order Runge-Kutta
and another python script using spectral method in combination with a semi-implicit
third-order Runge-Kutta method.

The database generated contains different lengths of the KS-solution sequences to better
cover distinct features during different time scales of the evolution of the flame front. In
table 3.1 all the generated solution sequences used in this study can be found.

32

3.3 Deep-learning methods

Figure 3.2: Comparison between one sample of 𝑢0(𝑥) and 𝑢(𝑥,Δ𝑡) for a spectral-noise initial
condition

Amount of sequences Length N L Initial condition Δ𝑡

200 501 128 2𝜋 white-noise 0.15
200 501 128 2𝜋 spectral-noise 0.15
100 201 128 2𝜋 white-noise 0.15
100 201 128 2𝜋 spectral-noise 0.15
50 2001 128 2𝜋 white-noise 0.15
50 2001 128 2𝜋 spectral-noise 0.15
200 501 256 2-,5-,8𝜋 white-noise 0.15
200 501 256 2-,5-,8𝜋 spectral-noise 0.15
100 201 256 2-,5-,8𝜋 white-noise 0.15
100 201 256 2-,5-,8𝜋 spectral-noise 0.15
50 2001 256 2-,5-,8𝜋 white-noise 0.15
50 2001 256 2-,5-,8𝜋 spectral-noise 0.15

Table 3.1: Table of all solution sequences to the KS equation

3.3 Deep-learning methods

The networks are created for the purpose of making a long sequence of predictions evolving
in time starting from one single PDE solution. Two different approaches for training the
neural networks for this were adopted in this study. The main difference between the
methods is that one training methods forces the network to make multiple consecutive
predictions before calculating the loss function and performing back propagation. These
setups are called one-to-one training and one-to-many training. As the name implies
one-to-one (1-to-1) setup involves training the network using a magnitude of one-to-one

33

Chapter 3 Method

data pairs, meaning that the entire database of PDE solutions are divided into pairs of
input function and the target output function which is when the input function have
evolved one time-step into the future (as in eq.3.4). Simply put, the NN is given the
input function and then the output predicted function is compared to the target solution
function, the goal is to alter the parameters \ in the map 𝐺\ to minimize the loss of the
following equation.

1-to-1 pair: (𝑣, �̂�𝑣) (3.13)
𝑚𝑖𝑛
\∈Θ

𝔼[𝐶 ((�̂�𝑣), (𝐺\𝑣))] (3.14)

where C is the loss function. Respectively, the one-to-many (1-to-𝑛) setup is as described
to train the network using 1-to-𝑛 pairs of data. Meaning that one initial solution is
paired with 𝑛 amount of consecutive solutions each evolved by a time-step Δ𝑡 from the
previous solution, creating a sequence PDE solutions of the flame front propagating in
time. The input to the network is only the initial solution then from the output prediction
the network makes a new prediction and so on until 𝑛 consecutive predictions has been
done (�̂�𝑛 = �̂� ◦ ... ◦ �̂�︸ ︷︷ ︸

n

). These n predictions are then compared to the 𝑛 PDE solutions

from the 1-to-n pair using a loss function and first then is the backpropagation initialized.

1 − 𝑡𝑜 − 𝑛𝑝𝑎𝑖𝑟 : (𝑣, �̂�1𝑣, ..., �̂�𝑛𝑣) (3.15)
𝑚𝑖𝑛
\∈Θ

𝔼[𝐶 ((�̂�1𝑣, ..., �̂�𝑛𝑣), (𝐺1
\𝑣, ..., 𝐺

𝑛
\𝑣))] (3.16)

where 𝑛 is a natural number.

The FNO investigated in this study is the same as described earlier and almost the same
as proposed by Zhongyi Li, et al in the paper ”Fourier Neural Operator for Parametric
Partial Differential Equations” [7]. Meaning that the FNO tested consisted of four
Fourier layers using the convolution operator in Fourier space as one of the two branches
in the Fourier layer. The network also uses skip connections within each layer. The
FNN at the beginning of the network starts by lifting the initial input function 𝑣(𝑥) to
20 channels. The other branch within the Fourier layer consists of a single layer of a
standard convolution operation. The stride of the kernel in this convolution operation
is set to one with zero padding which means that the dimensions will not be altered in
this operation. After each Fourier layer the RELU activation function is applied to the
output solution and the FNN at the end brings the solution back to one channel through a
shallow fully connected architecture.

The standard CNN studied is of an autoencoder structure and the encoder and decoder
features seven layers respectively. The shrinking of the dimensions in the encoder is
performed using maxpooling layers and the decoder uses upsampling layers to increase
the dimensions. Each layer uses the RELU as activation function after the convolution

34

3.3 Deep-learning methods

operation, the structure of the network can be seen in figure 3.3 where the dimensions
and channels of the data in each layer is also given. Note that the figure is illustrated in a
way that makes it seem like the data is two-dimensional which is not true for this study.
The reason for why it was illustrated this way is because it makes the layers easier to
visualize. The model also features skip connection on all layers, meaning that the output
from each layer in the encoder is stored in a list and then added to its corresponding layer
in the decoder as extra channels.

Figure 3.3: Architecture of a Parametric Fourier Neural Operator with width T, dashed lines
representing skip connections

3.3.1 Modifications for varying parameters

The parametric version of the FNO is the same in every way as the standard FNO except
for an extra multiplication in all the Fourier layers convolution operator in Fourier space.
Consider the figure 3.4, the entire FNO now have an extra dimension on the input, namely
the channel width L which is a parameter of the function 𝑣(𝑥). Since, if given the same
initial condition the solution function will not be the same if the initial condition is
placed on different meshes based on different channel widths. For example,

𝑥1 𝑗
≠ 𝑥2 𝑗

, 𝑥1 ∈ (−2𝜋/2,−2𝜋/2), 𝑥2 ∈ (−8𝜋/2,−8𝜋/2), 𝑗 = 1, ..., 𝑁 (3.17)

When creating the architecture of these networks one of the ideas to improve the perform-
ance were to keep the translational symmetries of the input to output function throughout
the networks operations. Both the Fourier Neural Network and the Convolutional Neural
Network have been proven to be able to use translational symmetries to improve results

35

Chapter 3 Method

[29][30] and are therefore already employed in the versions described earlier. Why these
network methods have translational symmetry will not be dwelt upon in this study, but
can instead be read about in section 4.2 and 5.1 in the paper ”Geometric Deep Learning:
Grids, Groups, Graphs, Geodesics, and Gauges” by Michael M. Bronstein et al[30]. The
proposed methods below for the modified networks are believed to keep the translational
symmetry from the standard versions of the methods. Since the modifications only adds
a few scalars that affect the data on a few instances in the networks, this will be further
explained below.

This modified version of the FNO first splits the input to its two components, the KS
solution function 𝑣(𝑥) and the channel width L that corresponds to the considered
solution 𝑣(𝑥) and which is a single value. This L is modified by a linear transformation
𝑀 : R𝑣 → R𝐿 to output ^𝑚𝑎𝑥 amount of values.

𝐴^ = 𝑀 (𝐿), ^ = 1, ..., ^𝑚𝑎𝑥 (3.18)

while the function 𝑣(𝑥) is treated in the same way as described in chapter 2.4 about the
FNO until the convolution operator in the Fourier layer. This operation is modified so
that each value in in the array A scales its respective Fourier mode as a multiplication of
scalar on a matrix in Fourier space. Exactly the same modification is done on all of the
Fourier layers using the same array A.

F −1(R𝑡 · F (𝑢𝑡))^, 𝑗 =
𝑑𝑣∑︁
𝑗=1

𝑅^, 𝑗 (F 𝑣𝑡)𝑘, 𝑗𝑀 (𝐿)^, ^ = 1, ..., ^𝑚𝑎𝑥 , 𝑗 = 1, ..., 𝑑𝑢

(3.19)

The idea behind the Parametric CNN (modified version of CNN) is similar to the modified
FNO described above. But the idea could not be implemented in exactly the same way
due to the different structures and operations in the networks. Instead the shallow FNN
outputs one value for each of the extra convolution layers added to the structure, see
figure 3.5. This value is used to scale the output from the extra layer before being merged
back into the encoder. The version where the extra convolution is placed in series (figure
3.5) with the original convolution layer can mathematically be explained as,

𝑢(𝑥) = 𝜎(𝑊𝑙𝑣(𝑥) + (𝑊′
𝑙 (𝑊𝑙𝑣(𝑥)))𝑃𝑙 (𝐿)) (3.20)

The version where the extra convolution is placed in parallel (figure 3.6) with the original
convolution layer can mathematically be explained as,

𝑢(𝑥) = 𝜎(𝑊𝑙𝑣(𝑥) + (𝑊′
𝑙 𝑣(𝑥))𝑃𝑙 (𝐿)) (3.21)

If the convolution layer it is placed in parallel with contains a max pooling layer then this
layer must do so as well to retain the same dimension size as the main branch.

36

3.3 Deep-learning methods

Figure 3.4: Architecture of a Parametric Fourier Neural Operator with width T, dashed lines
representing skip connections

37

Chapter 3 Method

Figure 3.5: Architecture of modified layers of the Parametric CNN, with a series structure

38

3.3 Deep-learning methods

Figure 3.6: Architecture of modified layers of the Parametric CNN, with a parallel structure

39

Chapter 4

Numerical Results

The entire chapter is purely dedicated to presenting the results of the trained networks.
All networks are benchmarked through visual representation in figures comparing the
predicted solution to the reference case. Another indicator of the result of the training
is the loss calculated from the loss function in the last batch and epoch of the training
process. Different neural network can be compared to each other when trained under
the same conditions. The amount of learnable weights and training time per epoch are
also considered, since they give an indication of the complexity and effectiveness of the
model. To simplify the denotation of the networks the training methods will be included
when referring to a network, meaning that for a standard CNN and FNO trained with
1-to-20 pairs will henceforth be denoted to as 𝐶𝑁𝑁20 and 𝐹𝑁𝑂20. Three different types
of plots are used to benchmark the networks, the first type shows long-term predictions
for a network compared to the reference (real) solution. The second type is similar to the
first type but instead shows short-term predictions. The third type corresponds to contour
plots of the spatial derivative of the flame front slope (𝜕𝑥𝑢(𝑥, 𝑡)) evolving in time.

4.1 Benchmarking the FNO and CNN

All networks presented under this sub-chapter are the standard versions of the models,
meaning they are precisely as presented in the previous chapter. Furthermore, the
solutions are defined on a discretized equispaced mesh with length 𝐿 = 2𝜋 and of size
𝑁 = 128. The amount of truncated Fourier modes ^𝑚𝑎𝑥 for the FNO networks equals to
𝑁/2 − ^𝑚𝑎𝑥 = 32

41

Chapter 4 Numerical Results

Network type 1-to-n L Trainable parameters Time per epoch[s] Loss

FNO 1-to-1 2𝜋 28877 2.7 0.00173
FNO 1-to-10 2𝜋 28877 4.3 0.0059
FNO 1-to-20 2𝜋 28877 4.8 0.0124
CNN 1-to-1 2𝜋 339733 12.5 0.0037
CNN 1-to-10 2𝜋 339733 21.9 0.0265
CNN 1-to-20 2𝜋 339733 26.7 0.0224

Table 4.1: Table of trained Networks using the standard architectures, with respective parameters
and training results

Figure 4.1: Four samples of recurrent long-term predictions 𝑢(𝑥, 𝑡) made by Network 𝐹𝑁𝑂1
(red lines) and the corresponding reference case (black, dotted line) which are the
numerical solutions to the KS equation when starting from four randomized initial
conditions 𝑢0(𝑥, 0) (the two initial conditions to the left generated as spectral noise
and the other two as white-noise). The flame fronts visualized in the figure are
samples taken from these time evolution sequences at t = Δ𝑡 [0, 50, 100, 200, 500,
800, 1100, 1400, 1700, 2000] with Δ𝑡 = 0.15. Each consecutive flame front is
shifted with a value of (t/100) to the right in the figure

42

4.1 Benchmarking the FNO and CNN

Figure 4.2: Four samples of recurrent long-term predictions 𝑢(𝑥, 𝑡) made by Network 𝐹𝑁𝑂10
(red lines) and the corresponding reference case (black, dotted line) which are the
numerical solutions to the KS equation when starting from four randomized initial
conditions 𝑢0(𝑥, 0). See fig.4.1 for more details

Figure 4.3: Four samples of recurrent long-term predictions 𝑢(𝑥, 𝑡) made by Network 𝐹𝑁𝑂20
(red lines) and the corresponding reference case (black, dotted line) which are the
numerical solutions to the KS equation when starting from four randomized initial
conditions 𝑢0(𝑥, 0). See fig.4.1 for more details

43

Chapter 4 Numerical Results

Figure 4.4: Four samples of recurrent long-term predictions 𝑢(𝑥, 𝑡) made by Network 𝐶𝑁𝑁1
(red lines) and the corresponding reference case (black, dotted line) which are the
numerical solutions to the KS equation when starting from four randomized initial
conditions 𝑢0(𝑥, 0). See fig.4.1 for more details

Figure 4.5: Four samples of recurrent long-term predictions 𝑢(𝑥, 𝑡) made by Network 𝐶𝑁𝑁10
(red lines) and the corresponding reference case (black, dotted line) which are the
numerical solutions to the KS equation when starting from four randomized initial
conditions 𝑢0(𝑥, 0). See fig.4.1 for more details

44

4.1 Benchmarking the FNO and CNN

Figure 4.6: Four samples of recurrent long-term predictions 𝑢(𝑥, 𝑡) made by Network 𝐶𝑁𝑁20
(red lines) and the corresponding reference case (black, dotted line) which are the
numerical solutions to the KS equation when starting from four randomized initial
conditions 𝑢0(𝑥, 0). See fig.4.1 for more details

Figure 4.7: Three samples of three recurrent short-term predictions 𝑢(𝑥, 𝑡) made by the Networks
𝐹𝑁𝑂1, 𝐹𝑁𝑂10, 𝐹𝑁𝑂20 (see plot legend for line colours/style) and the corresponding
reference case (black, dotted line) which are the numerical solutions to the KS equation
when starting from two randomized initial conditions 𝑢0(𝑥, 0) (spectral-noise to the
left and white-noise in the center) and the last one starts from the end of an long-term
solution. The flame fronts visualized in the figure are samples taken from these time
evolution sequences at t = Δ𝑡 [0, 8, 20, 40, 80] with Δ𝑡 = 0.15. Each consecutive
flame front is shifted with the value (specified below each plot) to the right in the
figure

45

Chapter 4 Numerical Results

Figure 4.8: Three samples of three recurrent short-term predictions 𝑢(𝑥, 𝑡) made by the Networks
𝐶𝑁𝑁1, 𝐶𝑁𝑁10, 𝐶𝑁𝑁20 (see plot legend for line colours/style) and the corresponding
reference case (black, dotted line) which are the numerical solutions to the KS
equation. See fig.4.7 for more details

Figure 4.9: Four sets of flame front slope derivatives (𝜕𝑥𝑢(𝑥, 𝑡)) visualized from t=0 to t=2000
(T=2000*0.15=300). Above most set corresponds to the reference case and the other
three corresponds to predictions by 𝐹𝑁𝑂20, 𝐹𝑁𝑂10, 𝐹𝑁𝑂1 from top to bottom.
Each set contains a row of two solutions each starting from a differently randomized
initial condition 𝑢0(𝑡, 0) (spectral-noise to the left and white-noise to the right)

46

4.1 Benchmarking the FNO and CNN

Figure 4.10: Four sets of flame front slope derivatives (𝜕𝑥𝑢(𝑥, 𝑡)) visualized from t=0 to t=2000
(T=2000*0.15=300). Above most set corresponds to the reference case and the other
three corresponds to predictions by 𝐶𝑁𝑁20, 𝐶𝑁𝑁10, 𝐶𝑁𝑁1 from top to bottom.
Each set contains a row of two solutions each starting from a differently randomized
initial condition 𝑢0(𝑡, 0) (spectral-noise to the left and white-noise to the right)

47

Chapter 4 Numerical Results

4.2 Truncation of Fourier modes in the FNO

As explained in chapter 2.4 regarding the FNO, there is a controllable parameter
𝑀 = 𝑁/2 − ^𝑚𝑎𝑥 which determines how many of the Fourier modes that are to be
truncated ^𝑚𝑎𝑥 in the convolution operator in Fourier space of the FNO. This sub-chapter
presents how this truncation affects the networks ability to make accurate prediction.
Since each Network is trained with different amounts of Fourier modes truncated an extra
parameter will be added to the denotation of the network 𝐹𝑁𝑂𝑛,𝑀 , where n still refers
to the training method (1-to-n). The number of points on the mesh or the ”resolution”
equals to 𝑁 = 256.

Network type 1-to-n L ^𝑚𝑎𝑥 Trainable parameters Time per epoch[s] Loss

FNO 1-to-1 8𝜋 64 54477 5.4 0.0016
FNO 1-to-1 8𝜋 32 28877 4.3 0.0035
FNO 1-to-1 8𝜋 16 16077 3.6 0.0169
FNO 1-to-20 8𝜋 128 105677 11.3 0.0138
FNO 1-to-20 8𝜋 64 54477 8.7 0.0108
FNO 1-to-20 8𝜋 32 28877 7.6 0.0309

Table 4.2: Table of FNOs with different amounts of truncated modes

Figure 4.11: Four samples of recurrent long-term predictions 𝑢(𝑥, 𝑡) made by Network 𝐹𝑁𝑂1,64
(red lines) and the corresponding reference case (black, dotted line) which are the
numerical solutions to the KS equation when starting from four randomized initial
conditions 𝑢0(𝑥, 0). See fig.4.1 for more details. Note difference in time shift of
each sample (t/75)

48

4.2 Truncation of Fourier modes in the FNO

Figure 4.12: Four samples of recurrent long-term predictions 𝑢(𝑥, 𝑡) made by Network 𝐹𝑁𝑂1,32
(red lines) and the corresponding reference case (black, dotted line) which are the
numerical solutions to the KS equation when starting from four randomized initial
conditions 𝑢0(𝑥, 0). See fig.4.1 for more details.

Figure 4.13: Four samples of recurrent long-term predictions 𝑢(𝑥, 𝑡) made by Network 𝐹𝑁𝑂1,16
(red lines) and the corresponding reference case (black, dotted line) which are the
numerical solutions to the KS equation when starting from four randomized initial
conditions 𝑢0(𝑥, 0). See fig.4.1 for more details.

49

Chapter 4 Numerical Results

Figure 4.14: Four samples of recurrent long-term predictions 𝑢(𝑥, 𝑡) made by Network 𝐹𝑁𝑂20,128
(red lines) and the corresponding reference case (black, dotted line) which are the
numerical solutions to the KS equation when starting from four randomized initial
conditions 𝑢0(𝑥, 0). See fig.4.1 for more details.

Figure 4.15: Four samples of recurrent long-term predictions 𝑢(𝑥, 𝑡) made by Network 𝐹𝑁𝑂20,64
(red lines) and the corresponding reference case (black, dotted line) which are the
numerical solutions to the KS equation when starting from four randomized initial
conditions 𝑢0(𝑥, 0). See fig.4.1 for more details.

50

4.2 Truncation of Fourier modes in the FNO

Figure 4.16: Four samples of recurrent long-term predictions 𝑢(𝑥, 𝑡) made by Network 𝐹𝑁𝑂20,32
(red lines) and the corresponding reference case (black, dotted line) which are the
numerical solutions to the KS equation when starting from four randomized initial
conditions 𝑢0(𝑥, 0). See fig.4.1 for more details.

Figure 4.17: Three samples of three recurrent short-term predictions 𝑢(𝑥, 𝑡) made by the Networks
𝐹𝑁𝑂1,64, 𝐹𝑁𝑂1,32, 𝐹𝑁𝑂1,16 (teal dashed line represents 𝐹𝑁𝑂1,16, green dot-
dashed 𝐹𝑁𝑂1,32 and red 𝐹𝑁𝑂1,64) and the corresponding reference case (black,
dotted line) which are the numerical solutions to the KS equation. See fig.4.7 for
more details

51

Chapter 4 Numerical Results

Figure 4.18: Three samples of three recurrent short-term predictions 𝑢(𝑥, 𝑡) made by the Networks
𝐹𝑁𝑂20,128, 𝐹𝑁𝑂20,64, 𝐹𝑁𝑂20,32 (see plot legend for line colours/line-style) and
the corresponding reference case (black, dotted line) which are the numerical
solutions to the KS equation. See fig.4.7 for more details

Figure 4.19: Four sets of flame front slope derivatives (𝜕𝑥𝑢(𝑥, 𝑡)) visualized from t=0 to t=2000
(T=2000*0.15=300). Above most set corresponds to the reference case and the
other three corresponds to predictions by 𝐹𝑁𝑂1,64, 𝐹𝑁𝑂1,32, 𝐹𝑁𝑂1, 16 from top
to bottom. Each set contains a row of two solutions each starting from a differently
randomized initial condition 𝑢0(𝑡, 0) (spectral-noise to the left and white-noise to
the right)

52

4.2 Truncation of Fourier modes in the FNO

Figure 4.20: Four sets of flame front slope derivatives (𝜕𝑥𝑢(𝑥, 𝑡)) visualized from t=0 to t=2000
(T=2000*0.15=300). Above most set corresponds to the reference case and the other
three corresponds to predictions by 𝐹𝑁𝑂20,128, 𝐹𝑁𝑂20,64, 𝐹𝑁𝑂20, 32 from top to
bottom. Each set contains a row of two solutions each starting from a differently
randomized initial condition 𝑢0(𝑡, 0) (spectral-noise to the left and white-noise to
the right)

53

Chapter 4 Numerical Results

4.3 Parametric Neural Networks

Only two of the Parametric NNs trained are included in this report, the best one from the
FNO and CNN. Both networks were trained for both 1-to-1 and 1-to-10 pairs separately.
The Parametric CNN for which the extra layers were placed in series are not included
in the report due to the superior performance when the extra layer is placed in parallel.
Each of the networks were trained with a varying channel width of 2−, 5− and 8𝜋
simultaneously with a constant mesh size of 𝑁 = 256. The extra layers are only placed
on the two first layers of the encoder.

Network type 1-to-n Type Trainable weights Time/epoch[s] Loss

Parametric FNO (P-FNO) 1-to-1 None 55311 12.4 0.0388
Parametric FNO (P-FNO) 1-to-10 None 54477 12.4 0.0361
Parametric CNN (P-CNN) 1-to-1 Parallel 347736 19.5 0.0072
Parametric CNN (P-CNN) 1-to-10 Parallel 347736 30.1 0.0254

Table 4.3: Table of Parametric Neural Networks

Figure 4.21: Four samples of recurrent long-term predictions 𝑢(𝑥, 𝑡) with channel width 𝐿 = 2𝜋
made by Network 𝑃 − 𝐹𝑁𝑂10 (red lines) and the corresponding reference case
(black, dotted line) which are the numerical solutions to the KS equation when
starting from four randomized initial conditions 𝑢0(𝑥, 0). See fig.4.1 for more
details.

54

4.3 Parametric Neural Networks

Figure 4.22: Four samples of recurrent long-term predictions 𝑢(𝑥, 𝑡) with channel width 𝐿 = 2𝜋
made by Network 𝑃−𝐶𝑁𝑁1 (red lines) and the corresponding reference case (black,
dotted line) which are the numerical solutions to the KS equation when starting
from four randomized initial conditions 𝑢0(𝑥, 0). See fig.4.1 for more details.

Figure 4.23: Four samples of recurrent long-term predictions 𝑢(𝑥, 𝑡) with channel width 𝐿 = 8𝜋
made by Network 𝑃−𝐶𝑁𝑁1 (red lines) and the corresponding reference case (black,
dotted line) which are the numerical solutions to the KS equation when starting
from four randomized initial conditions 𝑢0(𝑥, 0). See fig.4.1 for more details.

55

Chapter 4 Numerical Results

Figure 4.24: Four samples of recurrent long-term predictions 𝑢(𝑥, 𝑡) with channel width 𝐿 = 2𝜋
made by Network 𝑃 − 𝐶𝑁𝑁10 (red lines) and the corresponding reference case
(black, dotted line) which are the numerical solutions to the KS equation when
starting from four randomized initial conditions 𝑢0(𝑥, 0). See fig.4.1 for more
details.

Figure 4.25: Four samples of recurrent long-term predictions 𝑢(𝑥, 𝑡) with channel width 𝐿 = 8𝜋
made by Network 𝑃 − 𝐶𝑁𝑁10 (red lines) and the corresponding reference case
(black, dotted line) which are the numerical solutions to the KS equation when
starting from four randomized initial conditions 𝑢0(𝑥, 0). See fig.4.1 for more
details.

56

4.3 Parametric Neural Networks

Figure 4.26: Three recurrent short-term predictions 𝑢(𝑥, 𝑡) when 𝐿 = 2𝜋 made by the Network
𝑃 − 𝐹𝑁𝑂1 (see plot legend for line colours/line-style) and the corresponding
reference case (black, dotted line) which are the numerical solutions to the KS
equation. See fig.4.7 for more details

Figure 4.27: Three recurrent short-term predictions 𝑢(𝑥, 𝑡) when 𝐿 = 8𝜋 made by the Network
𝑃 − 𝐹𝑁𝑂1 (see plot legend for line colours/line-style) and the corresponding
reference case (black, dotted line) which are the numerical solutions to the KS
equation. See fig.4.7 for more details

57

Chapter 4 Numerical Results

Figure 4.28: Three recurrent short-term predictions 𝑢(𝑥, 𝑡) when 𝐿 = 2𝜋 made by the Network
𝑃 − 𝐶𝑁𝑁1 (see plot legend for line colours/line-style) and the corresponding
reference case (black, dotted line) which are the numerical solutions to the KS
equation. See fig.4.7 for more details

Figure 4.29: Three recurrent short-term predictions 𝑢(𝑥, 𝑡) when 𝐿 = 8𝜋 made by the Network
𝑃 − 𝐶𝑁𝑁1 (see plot legend for line colours/line-style) and the corresponding
reference case (black, dotted line) which are the numerical solutions to the KS
equation. See fig.4.7 for more details

58

4.3 Parametric Neural Networks

Figure 4.30: Two sets of flame front slope derivatives (𝜕𝑥𝑢(𝑥, 𝑡)) when 𝐿 = 2𝜋 visualized from
t=0 to t=2000 (T=2000*0.15=300). Above most set corresponds to the reference
case and the other corresponds to predictions by 𝑃 − 𝐶𝑁𝑁1. Each set contains a
row of two solutions each starting from a differently randomized initial condition
𝑢0(𝑡, 0) (spectral-noise to the left and white-noise to the right)

Figure 4.31: Two sets of flame front slope derivatives (𝜕𝑥𝑢(𝑥, 𝑡)) when 𝐿 = 8𝜋 visualized from
t=0 to t=2000 (T=2000*0.15=300). Above most set corresponds to the reference
case and the other corresponds to predictions by 𝑃 − 𝐶𝑁𝑁1. Each set contains a
row of two solutions each starting from a differently randomized initial condition
𝑢0(𝑡, 0) (spectral-noise to the left and white-noise to the right)

59

Chapter 4 Numerical Results

Figure 4.32: Two sets of flame front slope derivatives (𝜕𝑥𝑢(𝑥, 𝑡)) when 𝐿 = 2𝜋 visualized from
t=0 to t=2000 (T=2000*0.15=300). Above most set corresponds to the reference
case and the other corresponds to predictions by 𝑃 − 𝐶𝑁𝑁10. Each set contains a
row of two solutions each starting from a differently randomized initial condition
𝑢0(𝑡, 0) (spectral-noise to the left and white-noise to the right)

Figure 4.33: Two sets of flame front slope derivatives (𝜕𝑥𝑢(𝑥, 𝑡)) when 𝐿 = 8𝜋 visualized from
t=0 to t=2000 (T=2000*0.15=300). Above most set corresponds to the reference
case and the other corresponds to predictions by 𝑃 − 𝐶𝑁𝑁10. Each set contains a
row of two solutions each starting from a differently randomized initial condition
𝑢0(𝑡, 0) (spectral-noise to the left and white-noise to the right)

60

Chapter 5

Conclusion

The main goal of this thesis was to investigate different deep learning methods to predict
the spatial-temporal evolution of an unstable nonlinear flame front due to diffusive-
thermal instabilities. This evolution can be modeled through a 1-dimensional chaotic
fourth-order partial differential equation named the Kuramoto-Sivashinsky equation.

This task was carried out by training an operator to recurrently predict the development
of the flame front from one point in time to future states through a small constant
time-step. Chaotic PDEs like this one are known to be very difficult to predict for long
time sequences. Which is why the initial expectation before conducting this investigation
was not that the chosen methods would be able to make accurate long-term recurrent
predictions of the solution to the PDE.

By investigating all the figures featuring the recurrent short-term predictions it can
be seen that all presented networks are able to make relatively accurate predictions
for at least 80 time-step except for two of the models. These two networks are the
𝑃−𝐹𝑁𝑂1 and 𝐹𝑁𝑂1, 16, see figures 4.26 and 4.17. In the case of 𝐹𝑁𝑂1, 16 the reason
for the poor performance for both long term and short term prediction is most likely
due to that too much information is lost when truncating the Fourier modes down to
an amount of 16, but it might also be because of how much fewer trainable weights
the network contains compared to all the other. The 𝐹𝑁𝑂1, 16 only contains 16077
trainable weights which is quite few in comparison to the 347736 the 𝑃 − 𝐶𝑁𝑁1 have.
The poor results generated from the 𝑃 − 𝐹𝑁𝑂1 could be due to that the model structure
has too little freedom, perhaps a better structure would be for the FNN to output 4𝑥𝑀
values, meaning that every Fourier mode not truncated would be scaled by a separate value.

From the long-term prediction and flame front slope derivative plots it is evident that
several of the Networks are not only able to make relatively accurate long-term predictions
but are also to capture the long-term characteristics of the flame front development.
Meaning that even if the prediction deviates from the reference case the characteristics
features of the flame front development is still evident. Examples of this are figures.

61

Chapter 5 Conclusion

4.3,4.22,4.5,4.6,4.11,4.14 and4.16. From only inspecting the figures from the standard
cases one could draw the conclusion that the CNN performs better than the FNO,
especially when considering the flame front slopes and long term time sequences. An
important detail to note though is that the CNN contains more than 10 times more
trainable weights and the time per epoch about 5 times longer. Which makes one think
that it would probably have been good to test extending the width and the depth of the
Fourier layers.

Considering the result of the parametric neural networks in chapter 4.3, I think that it is
safe to conclude that the implementation of the P-FNO was not very effective. While it is
clear that the network is learning to make predictions for different values of L (fig.4.27)
the solutions tends to ”explode” as in in fig.4.21. On the other hand the results for the
P-CNN are much better than expected, the short term predictions for different values of
L are all close to perfectly predicted, see figures. 4.28 and 4.29. The results for the flame
front slope derivatives and long-term predictions are also quite good. These results were
far above the expectations since the only actual difference to the standard CNN is adding
an extra convolution layer in parallel to each of the first two layers in the encoder and
combining the outputs through a linear combination determined by a shallow FNN.

One of the bigger problems with the implementation of the parametric NNs is how
to ensure that the network actually takes into account for which channel width L it is
supposed to make an prediction for. The generation of the initial function 𝑢0(𝑥, 0) was
for this study not in any way dependent on the channel width. The only solution thought
of was to make the channel width an additional input alongside the solution function
𝑢(𝑥, 𝑡) to the Network. This leads to the next problem to consider, which is how to use
this L within the network structure. The simplest idea tested was if it could work to only
use the value of L as a scalar that scales the input function into different length ranges
depending on the magnitude of L.

One of the most promising of the ideas was to branch the encoder part of a CNN with an
autoencoder structure into two or more branches which merges at the throat before the
decoder. By structuring the data preparation so that every sample within a batch have an
assigned value of L, then by sending the value of L into a shallow FNN that returns a
number f between one and zero. With this value f the input function 𝑢(𝑥, 𝑡) could be split
into two functions by 𝑣1(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) 𝑓 and 𝑣2(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) (1 − 𝑓). Each of which is
sent into a separate branch of the encoder. The idea was to use skip connections from
each encoder layer to the corresponding decoder layer and possibly having a function
to do some linear combination of the two functions when merging at the throat of the
network. The idea was never tested due to time limitations but remains as an idea for the
future.

62

Bibliography

[1] J. Yu, R. Yu, X. Fan, M. Christensen, A. Konnov and X.-S. Bai, “Onset of cellular
flame instability in adiabatic ch4/o-2/co2 and ch4/air laminar premixed flames
stabilized on a flat-flame burner”, English, Combustion and Flame, vol. 160, no. 7,
pp. 1276–1286, 2013, issn: 0010-2180. doi: 10.1016/j.combustflame.2013.
02.011.

[2] D. Michelson, “Steady solutions of the kuramoto-sivashinsky equation”, Physica
D: Nonlinear Phenomena, vol. 19, no. 1, pp. 89–111, 1986, issn: 0167-2789.
doi: https://doi.org/10.1016/0167- 2789(86)90055- 2. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
0167278986900552.

[3] G. SIV ASHINSKY, “Nonlinear analysis of hydrodynamic instability in laminar
flames—i. derivation of basic equations”, in Dynamics of Curved Fronts, P. Pelcé,
Ed., San Diego: Academic Press, 1988, pp. 459–488, isbn: 978-0-12-550355-
6. doi: https://doi.org/10.1016/B978-0-08-092523-3.50048-4.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/B9780080925233500484.

[4] J. C. Baez, S. Huntsman and C. Weis, “The kuramoto-sivashinsky equation”, 2022.
doi: 10.48550/ARXIV.2210.01711. [Online]. Available: https://arxiv.
org/abs/2210.01711.

[5] S. Cai, Z. Wang, S. Wang, P. Perdikaris and G. E. Karniadakis, “Physics-Informed
Neural Networks for Heat Transfer Problems”, Journal of Heat Transfer, vol. 143,
no. 6, Apr. 2021, 060801, issn: 0022-1481. doi: 10.1115/1.4050542. eprint:
https://asmedigitalcollection.asme.org/heattransfer/article-

pdf/143/6/060801/6688635/ht_143_06_060801.pdf. [Online].
Available: https://doi.org/10.1115/1.4050542.

[6] Z. Li, N. Kovachki, K. Azizzadenesheli et al., Neural operator: Graph kernel
network for partial differential equations, 2020. doi: 10.48550/ARXIV.2003.
03485. [Online]. Available: https://arxiv.org/abs/2003.03485.

[7] Z. Li, N. Kovachki, K. Azizzadenesheli et al., Fourier neural operator for
parametric partial differential equations, 2020. doi: 10.48550/ARXIV.2010.
08895. [Online]. Available: https://arxiv.org/abs/2010.08895.

[8] T. M. Breuel, Benchmarking of lstm networks, 2015. doi: 10.48550/ARXIV.
1508.02774. [Online]. Available: https://arxiv.org/abs/1508.02774.

63

Bibliography

[9] R.Yu, “Deep learning of nonlinear flame fronts development due to darrieus-landau
instability”, Submitted for journal publication, 2022.

[10] J. M. Hyman and B. Nicolaenko, “The kuramoto-sivashinsky equation: A bridge
between pde’s and dynamical systems”, Physica D: Nonlinear Phenomena,
vol. 18, no. 1, pp. 113–126, 1986, issn: 0167-2789. doi: https://doi.org/
10.1016/0167- 2789(86)90166- 1. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/0167278986901661.

[11] B Nicolaenko, B Scheurer and R Temam, “Attractors for the kuramoto-sivashinsky
equations”, Jan. 1985. [Online]. Available: https://www.osti.gov/biblio/
5696580.

[12] D. Papageorgiou and Y. Smyrlis, “The route to chaos for the kuramoto-sivashinsky
equation”, Theoretical and Computational Fluid Dynamics, vol. 3, pp. 15–42, Sep.
1991. doi: 10.1007/BF00271514.

[13] R. England, “Error estimates for Runge-Kutta type solutions to systems of ordinary
differential equations”, The Computer Journal, vol. 12, no. 2, pp. 166–170, Jan.
1969, issn: 0010-4620. doi: 10.1093/comjnl/12.2.166. eprint: https://
academic.oup.com/comjnl/article-pdf/12/2/166/1021770/120166.

pdf. [Online]. Available: https://doi.org/10.1093/comjnl/12.2.166.
[14] I. C. Education, Neural networks, 2020. [Online]. Available: https://www.

ibm.com/cloud/learn/neural-networks#toc-how-do-neu-vMq6OP-P

(visited on 26/10/2022).
[15] A. Microsoft, Artificial intelligence (ai) vs. machine learning (ml). [Online].

Available: https : / / azure . microsoft . com / en - us / solutions / ai /
artificial-intelligence-vs-machine-learning/#process (visited
on 25/10/2022).

[16] A. L. Fradkov, “Early history of machine learning”, IFAC-PapersOnLine, vol. 53,
no. 2, pp. 1385–1390, 2020, 21st IFAC World Congress, issn: 2405-8963.
doi: https://doi.org/10.1016/j.ifacol.2020.12.1888. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S2405896320325027.

[17] J.-C. B. Loiseau, Rosenblatt’s perceptron, the first modern neural network, 2019.
[Online]. Available: https://towardsdatascience.com/rosenblatts-
perceptron-the-very-first-neural-network-37a3ec09038a (visited
on 25/10/2022).

[18] J. Schmidhuber, “Deep learning in neural networks: An overview”, Neural
Networks, vol. 61, pp. 85–117, 2015, issn: 0893-6080. doi: https://doi.
org/10.1016/j.neunet.2014.09.003. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0893608014002135.

64

Bibliography

[19] D. Svozil, V. Kvasnicka and J. Pospichal, “Introduction to multi-layer feed-forward
neural networks”, Chemometrics and Intelligent Laboratory Systems, vol. 39, no. 1,
pp. 43–62, 1997, issn: 0169-7439. doi: https://doi.org/10.1016/S0169-
7439(97)00061-0. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0169743997000610.

[20] J. Lederer, Activation functions in artificial neural networks: A systematic overview,
2021. doi: 10.48550/ARXIV.2101.09957. [Online]. Available: https://
arxiv.org/abs/2101.09957.

[21] K. Janocha and W. M. Czarnecki, On loss functions for deep neural networks in
classification, 2017. doi: 10.48550/ARXIV.1702.05659. [Online]. Available:
https://arxiv.org/abs/1702.05659.

[22] S. Ruder, An overview of gradient descent optimization algorithms, 2016. doi:
10.48550/ARXIV.1609.04747. [Online]. Available: https://arxiv.org/
abs/1609.04747.

[23] S. Bock and M. Weiß, “A proof of local convergence for the adam optimizer”, in
2019 International Joint Conference on Neural Networks (IJCNN), 2019, pp. 1–8.
doi: 10.1109/IJCNN.2019.8852239.

[24] T. Homma, L. Atlas and R. II, “An artificial neural network for spatio-temporal
bipolar patterns: Application to phoneme classification.”, Jan. 1987, pp. 31–40.

[25] J. Xu and K. Duraisamy, “Multi-level convolutional autoencoder networks for
parametric prediction of spatio-temporal dynamics”, Computer Methods in
Applied Mechanics and Engineering, vol. 372, p. 113 379, 2020, issn: 0045-
7825. doi: https://doi.org/10.1016/j.cma.2020.113379. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S0045782520305648.

[26] V. Badrinarayanan, A. Kendall and R. Cipolla, “Segnet: A deep convolutional
encoder-decoder architecture for image segmentation”, IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 39, no. 12, pp. 2481–2495, 2017.
doi: 10.1109/TPAMI.2016.2644615.

[27] J. Masci, U. Meier, D. Ciresan, J. Schmidhuber and G. Fricout, “Steel defect
classification with max-pooling convolutional neural networks”, in The 2012
International Joint Conference on Neural Networks (IJCNN), 2012, pp. 1–6. doi:
10.1109/IJCNN.2012.6252468.

[28] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna, “Rethinking the
inception architecture for computer vision”, in 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016, pp. 2818–2826. doi: 10.1109/
CVPR.2016.308.

[29] I. Higgins, D. Amos, D. Pfau et al., Towards a definition of disentangled rep-
resentations, 2018. doi: 10.48550/ARXIV.1812.02230. [Online]. Available:
https://arxiv.org/abs/1812.02230.

65

Bibliography

[30] M. M. Bronstein, J. Bruna, T. Cohen and P. Veličković, Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges, 2021. doi: 10.48550/ARXIV.
2104.13478. [Online]. Available: https://arxiv.org/abs/2104.13478.

66

Chapter 6

Appendix A - Programming setup

All the computational experiments performed in this study were conducted in the
Integrated development environment Pycharm, except for a. Python (version:3.9) was
chosen as the pro The following table contains all python packages used for this study.
All scripts used will be made available online on my Github account: LudvigNobel in

Table 6.1: Table of Python packages
Package Version
Pytorch 1.9.0
Scipy 1.7.3
Matplotlib 3.5.1
Pandas 1.4.2
numpy 1.21.2
functools -
math -
pickle -
timeit -

the repository deep-learning-KS-eq-master-thesis.

67

