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Abstract

This thesis is about the limiting eigenvalue distribution of n×n Toeplitz matrices
as n→∞. The two classical questions we want to answer are: what is the limit
set of the eigenvalues, and what is the limiting distribution of the eigenvalues.
Our main result is a new approach to calculate the limit set Λ(b) for a Laurent
polynomial b, i.e. for banded Toeplitz matrices. The approach is geometrical
and based on the formula Λ(b) = ∩ρ∈(0,∞) spT (bρ). We show that the full
intersection can be approximated by the intersection for a finite number of ρ’s,
and that spT (bρ) can be well approximated by a polygon. This results in an
algorithm whose output we show converge to Λ(b) in the Hausdorff metric. We
implement the algorithm in python and test it. It performs on par to and better
in some cases than existing algorithms. We argue, but do not prove, that the
average time complexity of the algorithm is O(n2 +mn), where n is the number
of ρ’s and m is the number of vertices for the polygons approximating spT (bρ).
Further, we present the theory for Toeplitz matrices for symbols in the Wiener
algebra, with an emphasis on the limiting eigenvalue distribution. In particular,
we derive the limiting measure and limit set for hermitian Toeplitz matrices and
banded Toeplitz matrices.
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Glossary

Term Definition
A The Lebesgue measure on C, when nothing else stated.
b Typically a Laurent polynomial.
Banded Toeplitz matrix A Toeplitz matrix whose symbol is a Laurent polynomial.
bρ A Laurent polynomial defined by bρ(t) = b(ρt).
B(X) The set of all bounded linear operators on the Banach space X.
convA The convex hull of a set A, that typically is a subset of C.
∆ The distributional Laplacian.
dH The Hausdorff metric.
|E| The Lebesgue measure of E, assuming E is Borel and E ⊂ R.
H(a) The infinite Hankel matrix generated by the symbol a.
IndA The Fredholm index of an Fredholm operator A.
Λ(b) The limit set of eigenvalues for a banded Toeplitz matrix.
Laurent polynomial

∑s
n=−r anx

n i.e. a regular polynomial but negative powers can occur.
lp The Banach space of all sequences (xn)∞n=1 with

∑∞
n=1 |xn|

p
<∞.

Q(z, λ) Polynomial defined by a Laurent polynomial: Q(z, λ) = zr(b(z)− λ).
spA The spectrum of A.
spessA The essential spectrum of A.
spT (bDρ ) A polygon approximation of spT (bρ).
T The unit circle.
T (a) The infinite Toeplitz matrix generated by the symbol a.
Tn(a) The finite n× n Toeplitz matrix generated by the symbol a.
W The Wiener algebra, see section 2.1.
(X)ε The ε-fattening of X: (X)ε = ∪x∈X {z ∈ C : |z − x| ≤ ε}.
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Chapter 1

Introduction

A finite Toeplitz matrix is an n× n matrix on the form (aj−k)n−1
j,k=0, i.e.

a0 a−1 a−2 . . . a−n+1

a1 a0 a−1 . . . a−n+2

a2 a1 a0 . . . . . .
. . . . . . . . . . . . a−1

an−1 an−2 . . . a1 a0

 . (1.1)

The matrix is completely determined by the complex doubly infinite sequence
(aj)

∞
j=−∞ that we in this paper assume to be absolutely summable. Let

a(t) :=

∞∑
j=−∞

ajt
j

be the function defined on the unit circle that has (aj)
∞
j=−∞ as its Fourier

coefficients. We will also study the infinite Toeplitz matrix T (a), which is defined
as (aj−k)∞j,k=0. The function a is called the symbol for the matrix T (a). We
denote the matrix in (1.1) by Tn(a).

Toeplitz matrices arise in several different applications, such as stochastic
processes and time series analysis, signal processing, numerical methods for dif-
ferential and integral equations, image processing, and quantum mechanics [6].

A crucial part of understanding linear operators is to understand the spec-
trum. In the case Tn(a), we wish to understand how the eigenvalues are dis-
tributed. For n of order up to 100 the spectrum of Tn(a) can be calculated
numerically using standard methods, but in some applications such as statisti-
cal physics, n can be of order 108−1012 [6], which is way beyond what numerical
methods can handle. Hence, theory is required to know how the eigenvalues of
Tn(a) are distributed. There are two main questions that we want to answer in
order to understand the spectrum of Tn(a), how the eigenvalues are distributed
on average, and where they accumulate. We proceed by specifying further what
this means.
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Denote by λ(n)
j , j = 1, 2, . . . , n the eigenvalues of Tn(a). Define the measures

µn(E) :=
#{j : λ

(n)
j ∈ E}
n

.

They describe what fraction of the eigenvalues of Tn(a) are located in E. The
first main question we want to answer is if there exists a limiting measure that
µn converge to as n → ∞, and if it exists, we want to compute the limiting
measure. For the second main question, define the strong and weak limit set

Λs = {λ ∈ C : λ
(n)
jn
→ λ for some sequence jn →∞},

Λw = {λ ∈ C : λ
(nk)
jk
→ λ for some sequences jk, nk →∞}.

The second question is: how are these limit sets structured?
The general answer to the two main questions remains to be discovered, but

a lot of research has been done, and in some cases a lot is known. The case when
a is real-valued, which corresponds to Tn(a) being hermitian is well understood,
the theory for it is presented in Section 2.7.

The case of non-hermitian matrices is more tricky, but for the case of banded
Toeplitz matrices, i.e. when only a finite number of Fourier coefficients of a
are non-zero, the two questions can be answered. The pioneering paper for
the eigenvalue distribution of banded Toeplitz matrices is due to Schmidt and
Spitzer [18]. It was published in 1960, and they showed that Λs and Λw are
equal and consists of a finite union of analytic arcs, equal to⋂

ρ∈(0,∞)

spT (aρ), (1.2)

where aρ(t) := a(ρt), with a being extended to C \ {0} in the natural way.
Hirschman improved on their result in 1967 and showed that there exists a
limiting measure with support on the limit set [15]. Widom later simplified
their proofs in [23] and [24]. We present the theory for banded matrices in
Section 2.8.

In Chapter 3 we present a novel approach to calculating the limit set in the
banded case. Our approach is geometric and based on (1.2). First, we show
that only a countable number of ρ’s in (1.2) actually are needed, and that the
full intersection can be well approximated by a finite number of ρ’s. Theory
presented in Chapter 2 provides a geometric description of spT (aρ), so our
approach consists of approximating spT (aρ) with polygons which we intersect
for a finite number of ρ’s. Further, we show that polygon approximation is
justified, and that our method converges to the limit set in the Hausdorff metric.
Also, we have implemented the algorithm in python, which outputs a polygon
which approximates the limit set. Several examples of limit set calculations are
provided.

The aim of this thesis is twofold. The first part is to present the core parts
of the existing theory for asymptotic eigenvalue behavior for Toeplitz matrices
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and to make the proofs easier to read than those in the monographic literature.
We briefly summarize what is consider to be the “core parts”: What do we know
about general Toeplitz matrices, how does the spectrum look for infinite matri-
ces, what can we say in general about the limiting eigenvalue distribution, and
how does the eigenvalues of the finite matrices relate to the spectrum of the
infinite matrix? What is known in the special cases of Hermitian and banded
Toeplitz matrices is also considered a core part. The second part of the over all
aim is to make an attempt at contributing with new knowledge about the lim-
iting eigenvalue distribution. The second part of the aim turned into the major
result of this thesis, which is the geometrically based algorithm for calculating
the limit set of eigenvalues for banded Toeplitz matrices.

The workflow consisted of first reading up on and understanding the theory,
and writing it down. After that, practical examples of how spT (aρ) for a banded
Toeplitz matrix behaves when ρ varies was considered. This turned into the
idea of calculating the limit set geometrically with intersections. Further, this
investigation is motivated by the recent article [7], where it is stated that a good
algorithm for calculating the limit set for banded matrices is missing.

The outline of this thesis is as follows: In Chapter 2, theory about Toeplitz
matrices with an emphasis on spectral behavior is presented. The material in
Chapter 2 is condensed from [5] and [8], but more elaborate explanations have
been added. Chapter 3 is about computing the limit set for banded Toeplitz
matrices. An existing algorithm from literature is presented, and then our
geometric approach is introduced. The chapter ends with a discussion on how
to practically implement the algorithm along with some illustrating examples.
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Chapter 2

Theory

2.1 Introduction

A general infinite Toeplitz matrix has the form

(aj−k)∞j,k=0 =


a0 a−1 a−2 . . .
a1 a0 a−1 . . .
a2 a1 a0 . . .
. . . . . . . . . . . .

 . (2.1)

The defining property of Toeplitz matrices is that they are constant along the
diagonals parallel to the main diagonal. One can see that the matrix in (2.1) is
completely determined by the doubly infinite sequence

(ak)∞k=−∞ = (. . . , a−2, a−1, a0, a1, a2, . . .). (2.2)

All the aks are assumed to be complex numbers. We will regard (2.1) as an
operator on lp for 1 ≤ p ≤ ∞ defined in the natural way. The matrix in (2.1) is
called banded if and only if (2.2) contains a finite number of non-zero elements.
Finite Toeplitz matrices of the form (1.1) can be viewed as truncations of (2.1).

Another important type of matrices are Hankel matrices that have the form

(aj+k+1)∞j,k=0 =


a1 a2 a3 . . .
a2 a3 . . . . . .
a3 . . . . . . . . .
. . . . . . . . . . . .

 . (2.3)

We note that similarly to (2.1) it is determined completely by the sequence in
(2.2).

We will work a lot with a class of functions called the Wiener algebra W
that consists of all the functions a : T → C with absolutely convergent Fourier
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series, i.e. all functions that can we written as

a(t) =

∞∑
n=−∞

ant
n where ||a||W :=

∞∑
−∞
|an| <∞. (2.4)

By T we mean the complex unit circle. The Fourier coefficients an of a can be
calculated using the formula

an =
1

2π

∫ 2π

0

a(eiθ)e−inθ dθ. (2.5)

There is a close connection between a function a on the form given in (2.4)
and the Toeplitz matrix and Hankel matrix given by (2.1) and (2.3) respectively.
If we let a have the Fourier coefficients in (2.2), we will get a very rich connection
between the properties of the matrix and the function. This is one of the main
points that make Toeplitz matrices so interesting to study. We say that a is the
symbol for (2.1) if (2.2) are the Fourier coefficients for a. We will henceforth
use the notation T (a) for the infinite Toeplitz matrix having a as symbol and
analogously H(a) for the infinite Hankel matrix having a as symbol.

Example 2.1.1. Define for all n ∈ Z, χn(t) = tn, t ∈ T. We see that T (χn)
corresponds to the one-shift operator on lp.

T (χ1) =


0 0 0 . . .
1 0 0 . . .
0 1 0 . . .
. . . . . . . . . . . .

 ,

so
T (χ1)(x0, x1, x2, . . .) = (0, x0, x1, . . .).

We also see that all H(χn) does is set all the xi, i ≥ n to zero, and reverse the
first n numbers.

2.2 Toeplitz matrices as operators
An important question for linear operators is of course if they are bounded.
There is an easy exact classification of when (2.1) is bounded on l2, namely if
and only if there is a function a ∈ L∞ that have (2.2) as Fourier coefficients.
This result was presented in 1911 by Otto Toeplitz in [20], and this is the reason
for matrices of type (2.1) being called Toeplitz matrices.

In this thesis however, we will only work with a ∈ W so we can prove
boundedness quite easily.

Proposition 2.2.1. Assume a ∈ W , then T (a) and H(a) induce bounded op-
erators on lp, 1 ≤ p ≤ ∞. Additionally we have the bounds

||T (a)||p ≤ ||a||W , ||H(a)||p ≤ ||a||W .
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Proof. We will use the representations

T (a) =

∞∑
n=−∞

anT (χn), H(a) =

∞∑
n=1

anH(χn).

Since T (χn) is nothing more than the shift operator andH(χn) essentially is only
a projection onto Cn we see that ||T (χn)||p = 1 for n ∈ Z and ||H(χn)||p = 1
for n ≥ 1. Hence, the triangle inequality gives us

||T (a)||p =

∥∥∥∥∥
∞∑

n=−∞
anT (χn)

∥∥∥∥∥
p

≤
∞∑

n=−∞
|an|||T (χn)||p =

∞∑
n=−∞

|an| = ||a||W .

And in the same way we get ‖H(a)‖p ≤ ‖a‖W .

There are more useful bounds for the norm of a Toeplitz matrix. The next
one we will prove stems from the fact that taking T (a)x almost is the same as
multiplying the function that has x as its Fourier coefficients with a. Consider
L2(T), with the usual L2 norm. In L2, every function f can be represented
by a Fourier series f(t) =

∑∞
n=−∞ fnt

n. There is a subspace H2(T) of L2(T)
called the Hardy space of L2, defined as {f ∈ L2 : fn = 0, n < 0}. Let P
be the orthogonal projection L2 → H2. Because of Parseval’s formula, we can
represent functions in H2 as the vector in l2 having the Fourier coefficients of
H2 as elements, in fact the operator Φ : H2 → l2, f 7→ (fn)∞n=0 is unitary, since
it preserves the scalar products. Now it is not difficult to see that if a ∈ W ,
then

Φ−1T (a)Φ : H2 → H2, operates by f 7→ P (af). (2.6)

Using (2.6) we can prove the following Lemma.

Lemma 2.2.2. Let a ∈W . Then ‖T (a)‖2 ≤ ‖a‖∞.

Proof. The proof is quite straight forward. We can write
∥∥Φ−1T (a)Φf

∥∥
2

=

‖P (af)‖2 ≤ ‖af‖2 ≤ ‖a‖∞ ‖f‖2. So ‖T (a)‖2 =
∥∥Φ−1T (a)Φ

∥∥
2
≤ ‖a‖∞

We will also show a useful property about Hankel matrices that we will use
later.

Proposition 2.2.3. Assume a ∈ W . Then H(a) induces a compact operator
on lp, 1 ≤ p ≤ ∞.

Proof. We will use a standard technique for proving compactness, namely to
show that a sequence of finite rank operators converge to H(a) in operator
norm. Assume that a is given on the form (2.4). Let SNa =

∑N
n=−N ant

n. We
see that H(SNa) of course is of finite rank since it only has N non-zero columns.
Also, we see that

‖H(a)−H(SNa)‖p =

∥∥∥∥∥
∞∑

n=N+1

anH(χn)

∥∥∥∥∥
p

≤
∞∑

n=N+1

|an| → 0, N →∞,

since a ∈W .
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We will now introduce some new notation and insights. W is called the
Wiener algebra because it is an algebra under pointwise algebraic operations.
One can also easily see that (W, || · ||W ) is a Banach space, and that for a, b ∈W
we have ‖ab‖W ≤ ‖a‖W ‖b‖W . Hence, W is a Banach algebra. For a ∈ W we
let ã = a(1/t), t ∈ T. We directly see that if a is in W , so is also ã, since

ã =

∞∑
n=−∞

a−nt
n ⇒ ‖ã‖W = ‖a‖W .

We also see that T (ã) is the transpose of T (a), whilst H(ã) is completely unre-
lated to H(a).

One can quite easily prove

a, b ∈W ⇒ T (ab) = T (a)T (b) +H(a)H(b̃) (2.7)

by comparing the left and right hand side element wise.
There are two subalgebras of W , called W+ and W−. W+ consists of all

the a ∈W that only have non-zero Fourier coefficients for non-negative indices.
W− is defined analogously, but for non-positive indices instead. We also see that
for a in W+, T (a) becomes lower-triangular and H(ã) = 0, but if a ∈ W−, we
instead get T (a) as upper-triangular and H(a) = 0. Using these observations
along with (2.7) we can derive the following important factorization.

Proposition 2.2.4. Let a− ∈W−, b ∈W,a+ ∈W+. Then

T (a−ba+) = T (a−)T (b)T (a+).

Proof. We use that H(a−) = H(ã+) = 0 and (2.7).

T (a−ba+) = T (a−)T (ba+) +H(a−)H(b̃ã+)

= T (a−)T (ba+)

= T (a−)(T (b)T (a+) +H(b)H(ã+))

= T (a−)T (b)T (a+).

2.3 Wiener–Hopf factorization
Next we will introduce more subsets of W and classify them in theorems 2.3.1–
2.3.3. To fully prove them would require results from the theory on commutative
Banach algebras, which we will not provide in full detail here. A good refer-
ence for commutative Banach algebras and the Wiener algebra can be found in
chapter 2 of [12]. After the results we need have been presented we will sketch
the main ideas.

Let GW consists of all the invertible elements of W (with respect to mul-
tiplication), this is exactly all a ∈ W such that there is a b ∈ W , fulfilling

12



a(t)b(t) = 1 for all t ∈ T. One can directly note that functions in GW can’t
have any zeros. But it is not immediately obvious that all functions in W that
are non-zero on the unit circle are in GW . But the following theorem originally
due to Wiener is in fact true.

Theorem 2.3.1. GW = {a ∈W : a(t) 6= 0 ∀t ∈ T}.

The next subset we introduce is expW which consists of all the a ∈W that
have a logarithm, i.e. every a ∈ W such that there is a b ∈ W with a = eb.
There is a very convenient geometric classification of expW , but for it we need
the concept of winding number. Since all a ∈W are continuous, a(t), t ∈ T will
trace out a closed curve when tmoves in positive direction around the unit circle,
further assume that a : T → C \ {0}. The number of times this curve revolts
around the origin is the definition of the winding number. A less geometric and
equivalent definition is as follows: Every a ∈ W such that a : T → C \ {0} can
be written on the form a(eiθ) = |a(eiθ)|eic(θ), for a continuous c : [0, 2π) → R.
The winding number now becomes

1

2π
(c(2π − 0)− c(0 + 0)). (2.8)

Note that (2.8) is independent from what c is chosen, also the winding number
is of course always an integer, and we denote it wind a. The next theorem is
the awaited classification.

Theorem 2.3.2. expW = {a ∈ GW : wind a = 0}

We earlier introduced the subalgebrasW+ andW−. A natural extension is to
look at the invertible elements in them as well as the elements with logarithms.
Therefore, let GW± consist of all the functions a± ∈W± such that there exists
b± ∈ W± for which a±(t)b±(t) = 1 for all t ∈ T. Similarly let expW± be the
functions a± in GW± that can be represented a± = eb± for b± ∈ GW±.

All the subalgebras just defined also have convenient classifications, for which
we will look at the analytic continuation. Let D be the open unit disk, i.e. the
set {z ∈ C : |z| < 1}. We can extend every a+ ∈ W+ analytically to D
by a+(z) =

∑∞
n=0 anz

n, z ∈ D since a+(z) must have convergence radius at
least 1, since it converges on the unit circle. In the same manner we see that
we can extend every a− ∈ W− analytically to {z ∈ C : |z| > 1} ∪ {∞} by
a−(z) =

∑0
n=−∞ anz

n, 1 < z ≤ ∞. Now the full classification comes.

Theorem 2.3.3. It holds that

GW+ = {a ∈W : a(z) 6= 0 ∀ |z| ≤ 1},
GW− = {a ∈W : a(z) 6= 0 ∀ |z| ≥ 1 and z =∞},

expW+ = GW+,

expW− = GW−.

13



Sktech of proof for 2.3.1–2.3.3. To find the invertible elements of W , W− and
W+ we use a result from [12] which states that for each non-invertible element
a in a commutative Banach algebra there is a multiplicative linear functional
ϕ such that ϕ(a) = 0. To use this result we need to find all the multiplicative
linear functionals on W . So assume that ϕ is a multiplicative linear functional.
Another result from [12] says that ‖ϕ‖ = 1, so we have

1 = ‖t‖W ≥ |ϕ(t)| = 1

|ϕ(t−1)|
≥ 1

‖t−1‖W
= 1.

Hence |ϕ(t)| = 1. Let t∗ := ϕ(t) ∈ T. We now see that for any W 3 a =∑∞
n=−∞ ant

n we have

ϕ

( ∞∑
n=−∞

ant
n

)
=

∞∑
n=−∞

anϕ(t)n = a(t∗).

Hence all multiplicative linear functionals on W have the form ϕ(a) = a(t∗) for
some t∗. Also note that a 7→ a(t∗) indeed is a multiplicative linear functional,
and that they are different for different t∗, this is easily checked.

We wanted to prove that a ∈W not having any zeros implies that a ∈ GW .
So assume that a /∈ GW , then there is a multiplicative linear functional ϕ with
ϕ(a) = 0, but then ϕ(a) = a(t∗) = 0, which is a contradiction.

A similar approach as for W and GW can be used to handle W− and W+.
Note that we only need to do the argument for one of them, e.g. W+, the
result for W− follows by the change of variables z∗ = 1/z. So, we need to
find the multiplicative linear functionals on W+. We see that |ϕ(t)| ≤ 1, so all
multiplicative linear functionals are of the form ϕ(a+) = a(z∗+) for

∣∣z∗+∣∣ ≤ 1.
Hence, we have the classification of GW,GW− and GW+.

To find the exponential sets we utilize another result from [12] saying that
expB for a commutative Banach algebra B is the connected component of
the invertible elements that contains the identity. So we want to show that
{a ∈ GW : wind a = 0} is the connected component of GW that contains 1. Of
course the winding number of the identity function is 0. We can visualize how we
find a connected component of GW by deforming the curve a(T) continuously.
1(T) is just a point. But we can stretch it out to any curve as long as the curve
does not go through the origin, since we then would leave GW . So, we can
deform all curves that have zero winding number into each other without the
curve going though the origin, but to get a non-zero winding number the curve
would have to pass through the origin, which would mean leaving GW .

We can find expW+ and expW− in a similar manner. Again, we only need to
show it for expW+, the result for expW− follows by symmetry. Take a ∈ GW+

and create a family of functions in GW+ by aλ(z) = a(λz). We see that a1 = a,
and a0 is a constant function, which clearly is in the same connected component
of GW+ as the identity. Also, note that aλ(z) 6= 0 for |z| ≤ 1 for all λ ∈ [0, 1], so
aλ never leaves GW+ as we vary λ from 1 to 0. Hence, all of GW+ is connected,
and the result follows.

14



We are now ready to prove a very important Theorem that gives a great
factorization of a ∈W , namely the Wiener–Hopf factorization.

Theorem 2.3.4. Let a ∈ GW , and suppose that wind a = m. Then we can
factorize a as

a(t) = a−(t)tma+(t) where t ∈ T, and a± ∈ GW±.

Proof. We first note that because of the winding number definition given in (2.8)
we have the property wind ab = wind a + wind b for a, b ∈ W . Also note that
wind tm = m. This gives us wind(at−m) = m−m = 0. Therefore, by Theorems
2.3.1 and 2.3.2 we get that at−m = eb for some b =

∑∞
−∞ bnt

n ∈W . Now define
b− =

∑−1
n=−∞ bnt

n and b+ =
∑∞
n=0 bnt

n. Because of Theorem 2.3.3 we see that
eb± ∈ GW±, and we now see that at−m = eb = eb−eb+ ⇔ a = eb−tmeb+ .

2.4 The spectrum of T (a)
We will momentarily turn to a more general setting than before. Let X be a
Banach space, we will denote by B(X) the set of all bounded linear operators
A : X → X. A generalization of spectra of matrices to spectra of bounded
linear operators on Banach spaces can be made using the following definition:

spA = {λ ∈ C : A− λI is not invertible}.

Here spA denotes the spectrum of the bounded linear operator A. It can be
proved that spA is always a compact set. An operator A ∈ B(X) is called
a Fredholm operator if its kernel and cokernel (:= X/Im A) both have finite
dimension. It can be shown that a bounded operator A is Fredholm if and only
if there is a B ∈ B(X) such that AB−I and BA−I are compact operators. One
could loosely say that a Fredholm operator is “almost” invertible. This leads to
the definition of the essential spectrum:

spessA = {λ ∈ C : A− λI is not Fredholm}.

Of course spessA ⊂ spA, since all invertible operators are Fredholm (invertible
operators have both kernel and cokernel of dimension 0). An important concept
connected to Fredholm operators is the index, it is defined through

Ind A := dimKer A− dimCoker A.

A central property of Fredholm operators is that if A ∈ B(X) is Fredholm then
all B ∈ B(X) : ‖A−B‖ < ε for a sufficiently small ε are also Fredholm and
Ind A = Ind B. Proofs as well as a thorough treatise of all the facts presented
about Fredholm operators and the spectrum can be found in [10].

We will now begin to develop the theory that will give us a clear geometric
picture of the spectrum of T (a). We will begin by classifying when T (a) is
Fredholm.
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Theorem 2.4.1. Assume a ∈ W . T (a) as an operator on lp (1 ≤ p ≤ ∞)
is Fredholm if and only if a ∈ GW . If T (a) is Fredholm, we have IndT (a) =
−wind a.

Proof. We begin with the if part, so assume that a ∈ GW and that wind a = m.
We can now use the Wiener-Hopf factorization to write a = a−t

ma+, where
a± ∈ GW±. Using Proposition 2.2.4 we now see that

T (a) = T (a−)T (tm)T (a+).

We will now use the fact that T (a±) are invertible with inverses T (a−1
± ). This

follows from Proposition 2.2.4. We know that a− is invertible, and a−1
− ∈

W− ⊂ W so from 2.2.4 we get I = T (a−1
− a−) = T (a−1

− )T (a−) = T (a−a
−1
− ) =

T (a−)T (a−1
− ). An analogous argument works for a+. Since T (a±) are invertible,

T (a) has the same dimension for its kernel and cokernel as T (tm). So all that
remains to prove for the if part is that T (tm) is Fredholm and that it has index
−m. But this is quite easily seen. If we keep in mind that T (tm) just is the
shift operator, we see that

dimKer T (tm) =

{
0 if m ≥ 0,

−m if m < 0,
dimCoker T (tm) =

{
m if m ≥ 0,

0 if m < 0.

And this implies exactly what we want, that T (tm) is Fredholm with index −m,
and hence that T (a) also is Fredholm with index −m.

Now to the only if part. Assume that T (a) is Fredholm and assume to
the contrary that there is a t0 such that a(t0) = 0. We will now construct a
contradiction that builds upon the fact that Fredholmness and index is constant
under small perturbations. We can construct b, c ∈ GW by adding a constant
to a, we can view this as translating the graphs slightly. We can construct b and
c in such a way that the origin no longer intersects the graphs, and the origin
lies on different sides of the graphs. This implies that |wind b − wind c| ≥ 1,
but we can make the translation arbitrarily small, which means that ‖a− b‖W
and ‖a− c‖W can be made small, this in turn implies by Proposition 2.2.1 that
‖T (a)− T (b)‖ and ‖T (a)− T (c)‖ can be made arbitrarily small. But now we
have a contradiction, since we proved in the if part that T (b) and T (c) are
Fredholm and because of |wind b − wind c| ≥ 1 their index must differ by one.
But the index is constant for sufficiently small perturbations, which implies that
Ind T (b) = Ind T (c). Therefore the assumption that a has a zero on the unit
circle is false.

Theorem 2.4.1 now directly gives us the essential spectrum. If we apply it
to a− λ instead of a we immediately get the following corollary.

Corollary 2.4.2. Assume a ∈W , then spess T (a) = a(T).

We proceed to classify the invertibility in terms of the winding number.

Theorem 2.4.3. Let a ∈ W . T (a) as an operator on lp (1 ≤ p ≤ ∞) is
invertible if and only if a ∈ expW .
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Figure 2.1: The spectrum and essential spectrum of T (a) for a(t) = t−4 +t. The
essential spectrum is the dashed red line, and the blue area is the spectrum.

Proof. If T (a) is invertible, it is Fredholm with index 0. Theorem 2.4.1 then
gives that a has no zeros on T and that wind a = 0. The other direction
follows easily from the Wiener–Hopf factorization. If a has no zeros on T and
wind a = 0, we know that we can write a = a−a+ for a± ∈ GW±. As we noted
in the proof of 2.4.1, the inverses of T (a±) are T (a−1

± ). Hence, the inverse of
T (a) = T (a−a+) = T (a−)T (a+) is T (a−1

+ )T (a−1
− ).

We are now ready to present an amazing geometric description of a Toeplitz
operator.

Corollary 2.4.4. Let a ∈W , then

spT (a) = a(T) ∪ {λ ∈ C \ a(T) : wind (a− λ) 6= 0}

Proof. Apply Theorem 2.4.3 to a− λ.

Example 2.4.5. Let a(t) = t−4 +t. We plot the spectrum of T (a) in Figure 2.1
by first plotting the essential spectrum and then filling in the area with non-zero
winding number.
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2.5 Stability of truncations of T (a)
The next topic we will discuss is stability, and how we approximately can solve
T (a)x = y for x, y ∈ l2. We will use the results to get information about how
the eigenvalues of the partial matrices converge. Throughout this subsection we
will assume that the underlying Banach space is l2, and we will only use the l2
norm.

We momentarily take a step back to more generality and consider
a11 a12 a13 . . .
a21 a22 a23 . . .
a31 a32 a33 . . .
. . . . . . . . . . . .



x1

x2

x3

...

 =


y1

y2

y3

...

 . (2.9)

A naive and natural approach to solving (2.9) is to truncate the system and
instead solve a11 . . . a1n

...
...

an1 . . . ann



x

(n)
1
...

x
(n)
n

 =

y1

...
yn

 . (2.10)

Intuitively, if they exists, the solutions to (2.10) should approach the solution
of (2.9), but this needs to be formalized. We begin by some notation. Let Pn
be the projection l2 → l2 which acts by

Pn : (x1, x2, x3, . . .) 7→ (x1, . . . , xn, 0, 0, . . .).

We can write (2.10) on the form PnAx
(n) = Pny, where x(n) ∈ ImPn. We

can naturally identify ImPn with Cn, which we will do freely throughout this
section. We also identify the matrixa11 . . . a1n

...
...

an1 . . . ann


with the restriction PnAPn| ImPn. If A = T (a), a ∈W we denote the truncation
PnT (a)Pn| ImPn by Tn(a). We will now study how, if, and when the solutions
to (2.10) (if they exist) approach the solution to (2.9).

Before getting into more details we need to define different modes of con-
vergence. Let (An)∞n=1 be a sequence of bounded operators on X. We say
that it converges strongly to A ∈ B(X) if ‖Anx−Ax‖ → 0 as n → ∞ for all
x ∈ X. Further, we say that the sequence An converge uniformly or in norm to
A ∈ B(X) if ‖An −A‖ → 0 as n→∞.

We call a sequence of matrices (An)∞n=1 an approximating sequence for an
operator A ∈ B(l2) if AnPn converges strongly to A, where An is a n×n matrix.
A typical example of an approximating sequence for A is PnAPn| ImPn. But
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just that we have an approximating sequence does not mean we can apply it
to solve (2.9). We therefore write A ∈ Π(An) and say that the approximation
method (An) is applicable to A if there exists an n0 ∈ N such that

1. the matrices An are invertible for all n ≥ n0;

2. for all y ∈ l2, the solutions x(n) ∈ ImPn to the systems Anx(n) = Pny,
where n ≥ n0 converge in l2 to a solution x ∈ l2 to Ax = y.

The other concept we need, and that is very common in numerical analysis, is
that of stability. We say that a sequence of matrices (An)∞n=1 is stable if there
is a n0 such that for all n ≥ n0, An is invertible and supn≥n0

∥∥A−1
n

∥∥ <∞. We
will show that an approximation method being applicable implies stability, and
stability, together with invertibility of A implies A ∈ Π(An).

Next we formulate a version of the uniform boundedness principle, a well
known theorem of functional analysis that we need to prove the result just
mentioned.

Theorem 2.5.1. Assume that (An)∞n=1 is a sequence of bounded operators on l2
such that Anx is a convergent sequence in l2 for all x ∈ l2. Then supn≥1 ||An|| <
∞, and the operator A which is defined by Ax := limn→∞Anx is bounded on
l2, and the operator norm of A satisfies ‖A‖ ≤ lim infn→∞ ‖An‖.

A proof can be found in [10]. We use the result to prove the announced
equivalence.

Proposition 2.5.2. Let A ∈ B(l2) and let (An)∞n=1 be an approximating se-
quence. Then A ∈ Π(An) if and only if A is invertible and (An)∞n=1 is stable.

Proof. We start by proving the only if part. First note that A−1
n Pn is a sequence

of bounded operators on l2, and A−1
n Pny converges for all y ∈ l2. Uniform

boundedness now tells us that supn≥n0
||A−1

n Pn|| < M for some constant M ,
and since

∥∥A−1
n Pn

∥∥ =
∥∥A−1

n

∥∥, (An)∞n=1 is stable. Next, we prove that A is
invertible. The second requirement for A ∈ Π(An) implies that A is surjective,
so we only need to prove that A in injective, which is equivalent to the kernel of
A only consisting of 0. Using the bound ||A−1

n Pn|| < M we can for an arbitrary
x ∈ l2 write

‖Pnx‖ =
∥∥A−1

n AnPnx
∥∥ =

∥∥A−1
n PnAnPnx

∥∥ ≤ ∥∥A−1
n Pn

∥∥ ‖AnPnx‖ .
If we let n → ∞ we get ‖x‖ ≤ M ‖Ax‖ since Pnx converge to x and AnPnx
converge to Ax since AnPn converges strongly to A. But now we see that 0
must be the only element in the kernel of A, so the only if part is done.

Now to the if part. The fact that (An) is stable implies the first requirement
of A ∈ Π(An), so we only need to prove that A−1

n Pny → A−1y as n → ∞,
since this would imply second requirement. We can use the bound we get from
stability and write∥∥A−1

n Pny −A−1y
∥∥ ≤ ∥∥A−1

n Pny − PnA−1y
∥∥+

∥∥PnA−1y −A−1y
∥∥ . (2.11)
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We see that the second term on the right in (2.11) goes to zero, since Pn → I
strongly. Also, we can rewrite the first term on the right to∥∥A−1

n Pny − PnA−1y
∥∥ =

∥∥A−1
n (Pny −AnPnA−1y)

∥∥ ≤M ∥∥Pny −AnPnA−1y
∥∥ .

Since Pny → y, and AnPn converges strongly to A we see that AnPn(A−1y)→
AA−1y = y. Hence

∥∥A−1
n Pny − PnA−1y

∥∥ → 0, which through (2.11) implies∥∥A−1
n Pny −A−1y

∥∥→ 0, which is what we wanted to prove.

Proposition 2.5.2 gives us equivalence between two important concepts but
we still have no tool that allows to show that a sequence is stable. Our next
step is to prove that Tn(a) is stable if T (a) is invertible, and a ∈ W . In order
to do this we need some lemmas.

Lemma 2.5.3. Let (Bn)∞n=1 be a sequence of bounded operators on l2 that
converge strongly to a bounded operator B ∈ B(l2). Further, let K be a compact
operator on l2. Then BnK converges to BK uniformly, i.e. ‖BnK −BK‖ → 0.

Proof. We want to show that sup‖x‖=1 ‖BnKx−BKx‖ → 0 as n → ∞. Since
K is compact, it sends the unit sphere of l2 into a relatively compact set.
Therefore, we can for each ε > 0 find x1, x2, . . . xN in the unit sphere of l2 such
that for each x with ‖x‖ ≤ 1 there is a j ∈ {1, 2, . . . N} fulfilling ‖Kxj −Kx‖ <
ε. Using this insight, we can bound ‖BnKx−BKx‖. Take an arbitrary ε > 0
and x with ‖x‖ = 1. Choose a xj such that ‖Kxj −Kx‖ < ε. Then

‖BnKx−BKx‖ ≤ ‖BnKx−BnKxj‖+ ‖BnKxj −BKxj‖+ ‖BKxj −BKx‖
≤ ‖Bn‖ ‖Kx−Kxj‖+ ‖BnKxj −BKxj‖+ ‖B‖ ‖Kxj −Kx‖ .

(2.12)

Uniform boundedness gives ut that ‖Bn‖ ≤ M for some constant M , and by
assumption, Bn → B strongly, so there is a n0 for which ‖BnKxj −BKxj‖ < ε
for all n ≥ n0 and all j = 1, . . . , N . All in all, we just showed that

‖BnKx−BKx‖ ≤ (M + 1 + ‖B‖)ε

for all n ≥ n0. Since x was arbitrary, we have shown that ‖BnK −BK‖ →
0.

The next lemma is quite general and very useful when dealing with truncated
matrices.

Lemma 2.5.4. Assume that X is a linear space, and that P and Q are pro-
jections (P 2 = P and Q2 = Q) such that P + Q = I. Let A be an invertible
operator on X. Then A “truncated” to ImP , PAP | ImP is invertible on ImP
if and only if QA−1Q| ImQ is invertible on ImQ. Further the inverse is given
by

(PAP | ImP )−1 = (PA−1P − PA−1Q(QA−1Q)−1QA−1P | ImP ).
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Proof. The proof is just direct calculation. Assume that QA−1Q| ImQ is in-
vertible (we will simply write the inverse as (QA−1Q)−1). We have

PAP (PA−1P − PA−1Q(QA−1Q)−1QA−1P )

= PA(I −Q)A−1P − PA(I −Q)A−1Q(QA−1Q)−1QA−1P

= P − PAQA−1P − PQ(QA−1Q)−1QA−1P + PAQA−1P

= P − PAQA−1P − 0 + PAQA−1P

= P.

The equality PQ(QA−1Q)−1QA−1P = 0 is due to the fact that PQ = 0
for projections with the property P + Q = I. Similar calculations give that
(PA−1P − PA−1Q(QA−1Q)−1QA−1P )PAP = P . Note that we have proved
the if part, and due to symmetry, the only if part follows, so we are done.

Now we are ready to prove the promised result, which was first presented by
Gohlberg and Feldman in [14].

Theorem 2.5.5. Let a ∈W , and assume that T (a) is invertible. Then (Tn(a))∞n=1

is stable.

Proof. We begin by noting that T (a) being invertible implies that a is invertible.
We can therefore use (2.7) and write I = T (aa−1) = T (a)T (a−1) + H(a)H(ã),
from which we obtain

T (a)−1 = T (a−1) + T (a)−1H(a)H(ã) =: T (a−1) +K, (2.13)

where K is a compact operator, this follows from the fact that H(ã) is com-
pact. We will now aim to use Lemma 2.5.4. We want information about the
invertibility of PnT (a)Pn| ImPn, and we know that it is invertible precisely
when QnT (a)−1Qn| ImQn is invertible, where Qn is a projection that fulfills
Pn +Qn = I. From (2.13) we get that

QnT (a)−1Qn| ImQn = QnT (a−1)Qn| ImQn +QnKQn| ImQn. (2.14)

We now use Lemma 2.5.3 to see that ‖QnKQn| ImQn‖ → 0. This follows from
the fact that ‖QnKQn| ImQn‖ = ‖QnKQn‖ and that Qn → 0 strongly, so
QnK → 0 uniformly. Due to this we see that∥∥QnT (a)−1Qn| ImQn −QnT (a−1)Qn| ImQn

∥∥→ 0

uniformly. Also, we note that QnT (a−1)Qn| ImQn has the same matrix as
T (a−1), due to the Toeplitz structure. So QnT (a−1)Qn| ImQn is always in-
vertible, and its norm is constant. One can prove using series expansion of the
inverse that if A is invertible and ‖A−B‖ < 1/ ‖A‖, then B is also invertible.
Therefore we get that QnT (a)−1Qn| ImQn is invertible for all sufficiently large
n. Additionally, using the series expansion of the inverse we can for each ε > 0
find an n0 such that∥∥(QnT (a)−1Qn| ImQn)−1

∥∥ < (1+ε)
∥∥QnT (a−1)Qn| ImQn

∥∥ = (1+ε)
∥∥T (a−1)

∥∥
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for all n > n0. We are now ready to apply Lemma 2.5.4. SinceQnT (a)−1Qn| ImQn
is invertible for sufficiently large n, so is PnT (a)Pn| ImPn, and the inverse is
PnT (a)−1Pn − PnT (a)−1Qn(QnT (a)−1Qn)−1QnT (a)−1Pn| ImPn, whose oper-
ator norm does not exceed∥∥T (a)−1

∥∥+ (1 + ε)
∥∥T (a)−1

∥∥∥∥T (a−1)
∥∥∥∥T (a)−1

∥∥
for all sufficiently large n, which shows that (PnT (a)Pn| ImPn) = (Tn(a)) is
stable.

Theorem 2.5.5 gives us the first link between T (a) and Tn(a) that we need for
investigating the eigenvalues of Tn(a). We utilize this link in the next section.

2.6 The Szegő limit theorem
In this subsection we will show a version of the first Szegő limit theorem, which
gives an estimate of how the determinants of Tn(a) grows. This will in turn give
us information about how the eigenvalues of Tn(a) are distributed. The main
result in this subsection will provide an asymptotic estimate for

1

n

n∑
i=1

f(λ
(n)
i )

where λ(n)
i are the eigenvalues, counted with multiplicity of Tn(a) and f is a

function that is analytic in an open neighborhood of the spectrum of T (a).
We begin by proving an intuitively reasonable estimate of where the eigen-

values of Tn(a) are located.

Lemma 2.6.1. Let a ∈ W and let Ω be an open set containing spT (a). Then
there is a n0 = n0(a,Ω) such that spTn(a) ⊂ Ω for all n ≥ n0.

Proof. We remind ourselves that the spectrum of Tn(a) are all the λ such that
Tn(a − λ) is not invertible. Gershgorin’s theorem gives that there is an R > 0
such that Tn(a−λ) is invertible for all n and for all |λ| > R since the row sums of
non-diagonal entries in Tn(a− λ) is bounded by ‖a‖W . Assume W.L.O.G. that
{z ∈ C : |z| ≤ R} =: B(0, R) contains Ω. Now we just need to show that there
is an n0 such that Tn(a− λ), n ≥ n0 is invertible for all λ ∈ (C \ Ω) ∩B(0, R).
Take an arbitrary λ ∈ (C \Ω) ∩B(0, R). Theorem 2.5.5 gives that Tn(a− λ) is
invertible for all n ≥ m0 = m0(a, λ), and that∥∥T−1

n (a− λ)
∥∥ ≤M(λ) <∞, n ≥ m0.

Using the same invertibility argument as in the proof of Theorem 2.5.5 we see
that for all µ with |µ−λ| < 1/M(λ), Tn(a−µ) is invertible for all n ≥ m0, since
‖T (a− λ)− T (a− µ)‖ = ‖T (µ− λ)‖ = |µ − λ|. Now we use the compactness
of (C \Ω)∩B(0, R) to finish the proof. For all λ ∈ (C \Ω)∩B(0, R), construct
an open ball with radius 1/M(λ), this forms an open covering, so we can pick
a finite number of the balls and pick the greatest m0 from them, and use that
value as our n0.
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Lemma 2.6.1 is quite a substantial step in our understanding of the eigenval-
ues of Tn(a), since we have a very good understanding of how the spectrum of
T (a) looks. But the lemma does not give any information of where in the spec-
trum of T (a) the eigenvalues of Tn(a) are located. We will, however, develop
the theory further to partially answer that question.

We will now present a version of the first Szegő limit theorem.

Theorem 2.6.2. Let a ∈ W and let Dn(a) := detTn(a). Assume that T (a) is
invertible. Then

lim
n→∞

Dn(a)

Dn−1(a)
= G(a), (2.15)

where G(a) is defined by exp 1
2π

∫ 2π

0
log(a(eiθ)) dθ.

Proof. We will first show that limn→∞
Dn−1(a)
Dn(a) = P1T

−1(a)P1 where P1T
−1(a)P1

means the (1, 1) entry of T−1(a). We first show that Dn−1(a)
Dn(a) = P1T

−1
n (a)P1.

This follows from solving the system Tn(a)x = E1 where E1 is a vector in
Cn or l2 with a 1 in its first entry and with all other entries 0. We see that
P1T

−1
n (a)P1 is exactly the first entry of the solution T−1

n (a)E1. Solving the
system using Cramer’s rule we also see that the first entry of the solution is
Dn−1(a)
Dn(a) , hence we know that Dn−1(a)

Dn(a) = P1T
−1
n (a)P1. Now we apply Theo-

rem 2.5.5 to get that (Tn(a)) is stable, which by Proposition 2.5.2 implies that
T−1
n (a)E1 → T−1(a)E1, which implies that P1T

−1
n (a)P1 → P1T

−1(a)P1. So we
now have that limn→∞

Dn−1(a)
Dn(a) = P1T

−1(a)P1, and the only step remaining is
to show that G(a) = 1/P1T

−1(a)P1.
Note that due to Theorem 2.4.3, T (a) being invertible implies a ∈ expW .

Let b ∈ W be such that eb = a. Using the Wiener-Hopf factorization we can
write

T−1(a) = (T (a−)T (a+))−1 = T (a−1
+ )T (a−1

− ).

Note that T (a−1
+ ) is lower triangular and T (a−1

− ) is upper triangular, so the (1, 1)

entry of T−1(a) is just the product of the (1, 1) entries of T (a−1
− ) and T (a−1

+ ),
which equals (a−1

+ )0(a−1
− )0 where (a)0 means the 0th Fourier coefficient. Note

that a± = eb± , we can now write

(a−1
+ )0(a−1

− )0 = (e−b+)0(e−b−)0

= e(−b+)0+(−b−)0

= e(−b)0 = e−(b)0

=
1

e(b)0

=
1

G(a)
.

The second equality can be justified by doing a series expansion of ex. Now we
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know that P1T
−1(a)P1 = 1

G(a) so P1T
−1(a)P1 is nonzero, which means we get

lim
n→∞

Dn(a)

Dn−1(a)
=

1

P1T−1(a)P1
= G(a).

Next, we will utilize Theorem 2.6.2 to get information about the eigenvalues
of Tn(a). The intuition behind this is that the determinants is the product of
the eigenvalues, so we should be able to get information about how they change
and are distributed as n grows.

Theorem 2.6.3. Let a ∈ W and let Ω ⊃ conv spT (a) be an open subset of C.
Let f be a function that is holomorphic on Ω. Then

1

n

n∑
j=1

f(λ
(n)
j )→ Gf (a) :=

1

2π

∫ 2π

0

f(a(eiθ))dθ

as n→∞.

Proof. The idea behind the proof is to take the logarithm of both sides in
(2.15), show that the limit still holds, use the “trick” that if Dn/Dn−1 → g then
n
√
Dn → g, then take the derivative, multiply with f(λ) and integrate to use

Cauchy’s integral formula.
Let Ω1 be an open subset of Ω such that conv spT (a) ⊂ Ω1 ⊂ Ω and Ω \Ω1

contains a smooth curve surrounding Ω1. This is possible since conv spT (a)
is closed, while Ω is open. Let D be an open disk in (C \ Ω1) ∩ Ω such that
D ∩ Ω1 = ∅, and let λ ∈ D. We will now look at

Dn−1(a− λ)

Dn(a− λ)
.

Since we are only interested in what happens at the limit as n→∞ and Lemma
2.6.1 gives us that spTn(a) ⊂ Ω1 for sufficiently large n, we can W.L.O.G.
assume that the eigenvalues of Tn(a) are inside Ω1. We need this for showing
that

Dn−1(a− λ)

Dn(a− λ)
→ 1

G(a− λ)
(2.16)

uniformly on compact subsets of D. Since D does not touch spT (a), we know
that T (a − λ) is invertible for all λ ∈ D, so (2.16) holds pointwise. As before,

denote the eigenvalues of Tn(a) by λ
(n)
j . Since Dn−1(a−λ)

Dn(a−λ) =
Πn−1
j=1 (λ

(n−1)
j −λ)

Πnj=1(λ
(n)
j −λ)

is a rational function it is holomorphic, which means that we only need to
prove that the sequence φn(λ) := Dn−1(a−λ)

Dn(a−λ) is locally bounded, i.e. for each
λ ∈ D, there is a neighborhood N of λ such that supn∈N,λ∈N |φn(λ)| < ∞.
This follows from Vitali’s theorem, which is presented in e.g. [17, p. 150].
So we need to prove that (φn) is locally bounded. To do this we utilize the
fact that φn(λ) = P1T

−1
n (a − λ)P1. As in the proof of Theorem 2.6.2, let E1

be a vector in Cn with first entry 1 and the rest being 0. P1T
−1
n (a − λ)P1
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is the first entry of T−1
n (a − λ)E1, which is the solution xλ to the equation

Tn(a−λ)xλ = E1. So it suffices (and is stronger) to find a neighborhood where
xλ is bounded. Therefore, fix λ0 ∈ D. Consider xλ close to xλ0

, i.e. solutions
to Tn(a− λ)xλ = E1 ⇔ Tn(a− λ0 + (λ0 − λ))xλ = E1, which we rewrite as

Tn(a−λ0)xλ+(λ0−λ)xλ = E1 ⇔ xλ = (λ−λ0)T−1
n (a−λ0)xλ+T−1

n (a−λ0)E1.

Theorem 2.5.5 gives us that for all n ≥ n0(λ0), Tn(a − λ0) is invertible and∥∥T−1
n (a− λ0)

∥∥ < M(λ0). Let |λ−λ0| < 1/2M(λ0). Taking the norm of xλ now
yields

‖xλ‖ ≤ ‖xλ‖ /2 +M(λ0)⇒ ‖xλ‖ ≤ 2M(λ0).

This holds for all λ with |λ − λ0| < 1/2M(λ0) and all n ≥ n0. So we have
shown that φn(λ) is locally bounded, since |φn(λ)| ≤ ‖xλ‖. Therefore (2.16)
holds uniformly for compact subsets of D. This implies that the limit function

1
G(a−λ) is holomorphic on D, and even on a neighborhood of D, since we could
have extended D slightly, since D ∩ Ω1 = ∅.

The next step in our proof is to show that

log
Dn−1(a− λ)

Dn(a− λ)
→ log

1

G(a− λ)
(2.17)

uniformly on compact subsets of D, with a suitably chosen branch. Uniformly
continuous functions preserve uniform convergence, so if we can find a branch
defined on a compact subset which contains the ranges of φn(λ) and 1

G(a−λ) =:

φ(λ) we are done. To define a continuous branch we need the domain to be
compact and not enclose 0. Since D is bounded, D is compact. As 1/G(a−λ) is
holomorphic on a neighborhood ofD, we can look at the image 1/G(a−D) =: K,
which will be a compact set not containing 0. Let dK be the distance between
K and 0. We see that for sufficiently large n, φn(λ) is contained in the compact
set {z ∈ C : infk∈K |z− k| < dk/2} =: Ke, since φn converges uniformly to φ on
D. Notice that

G(a− λ) = exp
1

2π

∫ 2π

0

log (a(eiθ)− λ)dθ.

Because of convexity there is a line in C separating conv spT (a) ⊃ a(T) and D.
Hence, the imaginary part of log (a(eiθ)− λ) (which is a continuous function)
will describe angles in some half plane. The intermediate value theorem then
tells us that G(a−λ) must be in the same half plane for all λ ∈ D, and the same
must hold for 1

G(a−λ) , which in turn implies that Ke does not surround 0. So
we can in fact construct a branch such that (2.17) holds uniformly on compact
subsets of D.

We now have that

n−1∑
j=1

log (λ
(n−1)
j − λ)−

n∑
j=1

log (λ
(n)
j − λ)+logG(a− λ)−2πim(n, λ)→ 0 (2.18)
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uniformly on compact subsets, where m(n, λ) is an integer. Next, we want to
switch the branches such that all terms on the form log (λ

(n)
j − λ) are holomor-

phic in D, which we can do by compensating for the phase, so (2.18) still holds,
but with a modified m(n, λ). We now see that m(n, λ) only depends on n for
sufficiently large n, since all the other terms in (2.18) are continuous in λ a jump
in m(n, λ) would violate the uniform convergence on compact subsets.

Introduce sn such that sn − sn−1 = m(n) and define

Hn(λ) =

n∑
j=1

log (λ
(n)
j − λ) + 2πisn.

Let K be any compact subset of D. From (2.18) we now have for any ε > 0 an
n0 such that

|Hn(λ)−Hn−1(λ)− logG(a− λ)| < ε ∀λ ∈ K, n ≥ n0.

To prove the theorem we are interested in how Hn/n behaves. For n ≥ n0 we
can write a telescopic sum to get the estimate∣∣∣∣Hn

n
− logG(a− λ)

∣∣∣∣ ≤ n0−1∑
j=1

∣∣∣∣Hj −Hj−1 − logG(a− λ)

n

∣∣∣∣
+

n∑
j=n0

∣∣∣∣Hj −Hj−1 − logG(a− λ)

n

∣∣∣∣
for all λ ∈ K, where we let H0 := 0. The second term is bounded by ε and
the first can be made arbitrarily small by increasing n. So we see that Hn

n →
logG(a− λ) uniformly on K. Which means that∑n

j=1 log (λ
(n)
j − λ)

n
− logG(a− λ) +

2πisn
n
→ 0

uniformly on compact subsets of D. Differentiating, we get that

1

n

n∑
j=1

1

λ− λ(n)
j

− d

dλ

1

2π

∫ 2π

0

log (a(eiθ)− λ)dθ → 0

uniformly on compact subsets of D. We interchange differentiation and integra-
tion in the second term, and multiply the expression with f(λ)/2πi, and retain
uniform convergence on compact subsets, since f is bounded on compact sets.
Furthermore, let γ be a closed curve in Ω \ Ω1 that surrounds Ω1 once. Cover
γ with a finite number of open disks Dk (γ is compact). Collecting all facts we
can now integrate around γ and get

1

2πi

1

n

n∑
j=1

∫
γ

f(λ)

λ− λ(n)
j

dλ− 1

2πi

∫
γ

1

2π

∫ 2π

0

f(λ)

λ− a(eiθ)
dθdλ→ 0
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as n → ∞. We swap the order of integration in the second term and use
Cauchy’s integral formula to rewrite it as

1

n

n∑
j=1

f(λ
(n)
j )→ 1

2π

∫ 2π

0

f(a(eiθ))dθ, n→∞,

which is what we wanted to prove.

Theorem 2.6.3 looks very strong, like it would give is a lot of information
about the eigenvalue distribution, all we have to do is select f as some suitable
test function. But this does not work. Since harmonic functions do not have
local minima or maxima we are very restricted when choosing f , so Theorem
2.6.3 is actually not as strong as one could wish. But there is a special case
where Theorem 2.6.3 indeed gives us a lot of information, which we will explore
in the next section.

2.7 Eigenvalue distribution for Hermitian Toeplitz
matrices

In the case of Hermitian Toeplitz matrices, we can in fact say a lot more about
the eigenvalues. T (a) is Hermitian if and only if a is real-valued, so conv spT (a)
is just a line segment. To begin our treatment we will need an auxiliary result
to Lemma 2.6.1.

Lemma 2.7.1. Let a ∈W , then spTn(a) ⊂ conv spT (a) for all n ≥ 1.

Proof. Take a λ ∈ C\conv spT (a). We want to show that Tn(a−λ) is invertible.
We will do this by transforming Tn(a − λ) linearly to something that we can
show is invertible. Let b = a − λ and study conv spT (b). This set does not
contain 0 because of how λ is chosen. Therefore, there is a minimum distance
d > 0 between conv spT (b) and 0. Because of convexity, there is a γ ∈ T such
that γ conv spT (b) ends up in the cut off disk {z ∈ C : <z ≥ d, |z| ≤ ‖b‖∞},
now we can scale γ conv spT (b) with d/ ‖b‖2∞, which moves the bounds to{

z ∈ C : <z ≥ d2

‖b‖2∞
, |z| ≤ d

‖b‖∞

}
⊂

{
z ∈ C : |z − 1| ≤

√
1− d2

‖b‖2∞

}
,

which can be verified by a simple geometric argument. Now we see that the
spectrum of γd

‖b‖2∞
T (b) is close to 1, so γd

‖b‖2∞
T (b) should almost be the identity

matrix, and hence invertible. In fact we have∥∥∥∥∥ γd

‖b‖2∞
Tn(b)− I

∥∥∥∥∥
2

=

∥∥∥∥∥Tn(
γd

‖b‖2∞
b− 1)

∥∥∥∥∥
2

≤

∥∥∥∥∥ γd

‖b‖2∞
b− 1

∥∥∥∥∥
∞

≤
√

1− d2

‖b‖2∞
< 1

which implies that γd
‖b‖2∞

Tn(b) and Tn(b) are invertible. In the second inequality
we used Lemma 2.2.2 and the fact that ‖Tn(b)‖ = ‖PnT (b)Pn‖ ≤ ‖T (b)‖.
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We are now ready to prove a version of Theorem 2.6.3 that is applicable in
the Hermitian case.

Theorem 2.7.2. Let a ∈W and assume that conv spT (a) is a real line segment.
Let f be a function that is continuous on conv spT (a). Then

1

n

n∑
j=1

f(λ
(n)
j )→ Gf (a) :=

1

2π

∫ 2π

0

f(a(eiθ))dθ, n→∞.

Proof. We can prove such a strong result thanks to holomorphic functions being
dense in the continuous functions on line segments. Thanks to Weierstraß’
approximation Theorem we have for each ε > 0 a polynomial p defined such
that |f(z)− p(z)| < ε for all z ∈ conv spT (a). We now see the bounds∣∣∣∣∣∣ 1n

n∑
j=1

f(λ
(n)
j )− p(λ(n)

j )

∣∣∣∣∣∣ < ε

∣∣∣∣ 1

2π

∫ 2π

0

f(a(eiθ))− p(a(eiθ))dθ

∣∣∣∣ < ε

where the first is justified by Lemma 2.7.1. Now we can use Theorem 2.6.3 with
our polynomial p as the holomorphic function and get∣∣∣∣∣∣ 1n

n∑
j=1

p(λ
(n)
i )− 1

2π

∫ 2π

0

p(a(eiθ))dθ

∣∣∣∣∣∣ < ε

for sufficiently large n. Combining all the bounds, we see that∣∣∣∣∣∣ 1n
n∑
j=1

f(λ
(n)
i )− 1

2π

∫ 2π

0

f(a(eiθ))dθ

∣∣∣∣∣∣ < 3ε

for sufficiently large n, so we are done.

There are multiple useful corollaries to Theorem 2.7.2 that give us more of
a hands on understanding of the distribution of eigenvalues for Tn(a). We will
present two different but similar ways to view Theorem 2.7.2. We begin by
viewing two collections ((λ

(n)
j )nj=1)∞n=1 and ((µ

(n)
j )nj=1)∞n=1 of real numbers. We

say that the collections are equally distributed in the sense of Weyl if

lim
n→∞

1

n

n∑
j=1

(
f(λ

(n)
j )− f(µ

(n)
j )
)

= 0 (2.19)

for all f ∈ C0(R), i.e. all continuous functions with compact support. Note that
(2.19) is weaker than

lim
n→∞

1

n

n∑
j=1

f(λ
(n)
j ) = lim

n→∞

1

n

n∑
j=1

f(µ
(n)
j ), f ∈ C0(R). (2.20)
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But (2.20) implies (2.19). We are now ready to formulate our first corollary.

Corollary 2.7.3. Let a ∈ W be a real-valued symbol. Then the collection of
eigenvalues of Tn(a), ((λ

(n)
j )nj=1)∞n=1 are equally distributed in the sense of Weyl

to ((a(e
2πij
n ))nj=1)∞n=1.

Proof. We need to prove something with the sums 1
n

∑n
j=1 f(a(e

2πij
n )), which are

Riemann sums. Since a ∈W , it is continuous and therefore Riemann integrable.
Because of this we see that

lim
n→∞

1

n

n∑
j=1

f(a(e
2πij
n )) =

1

2π

∫ 2π

0

f(a(eiθ))dθ

for all f ∈ C0(R). Now Theorem 2.7.2 gives us (2.20), which in turn gives us
(2.19).

Now we have a better idea of the consequences of Theorem 2.7.2. And there
is yet another interesting viewpoint. Consider a sequence of measures (µn)∞n=1

and a measure µ. We say that µn converges weakly to µ if∫
R
fdµn →

∫
R
fdµ (2.21)

for all f ∈ C0(R). As usual, let a ∈W , let (λ
(n)
j )nj=1 be the eigenvalues of Tn(a),

and denote for Borel sets E the usual Lebesgue measure as |E|. We define Borel
measures µn and µ on R as

µn(E) =
1

n

n∑
j=1

χE(λ
(n)
j ), (2.22)

µ(E) =
1

2π
|φ−1(E)|, (2.23)

where φ is the function φ : [0, 2π) → R that takes θ 7→ a(eiθ). µn(E) is the
fraction of eigenvalues for Tn(a) in E, while µ(E) on the other hand can be
interpreted as the probability that a uniformly random point on the unit circle
is mapped to E by a. We are now ready for our next corollary.

Corollary 2.7.4. Let a ∈ W be a real-valued symbol. Then the sequence of
measures defined by (2.22) converges weakly to the measure defined by (2.23).
Furthermore, for Borel sets E ⊂ R with |φ−1(∂E)| = 0 we have µn(E)→ µ(E).

Proof. Let f be an arbitrary function in C0(R). We see that∫
R
fdµn =

1

n

n∑
j=1

f(λ
(n)
j )
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directly from the definition of µn. We also see that∫
R
fdµ =

1

2π

∫ 2π

0

f(a(eiθ))dθ

by a standard identity from integration theory. Now Theorem 2.7.2 implies the
first part of the corollary. For the second statement, we will show that

lim inf
n→∞

µn(E) = lim sup
n→∞

µn(E) = µ(E).

The second statement is equivalent to (2.21) being true for f = χE , so the
idea is to use the first part of the Corollary and approximate χE with functions
in C0(R). However, for approximations to have compact support we need E
to be bounded, and because of Lemma 2.7.1 we can assume W.L.O.G. that
E ⊂ Im a since µn and µ have support in Im a. Introduce fm, gm : R → R by
fm(x) = 1−min{1,md(x,E)} and gm(x) = min{1,md(x,Ec)} for all m ∈ Z+,
where d is the usual distance function between a point and a set. We have
gm(x) ≤ χE(x) ≤ fm(x) for all x ∈ a(T). Further, gm converges pointwise to
χInt E , and that fm converges pointwise to χE . Equipped with these facts we
can write

lim sup
n→∞

µn(E) = lim sup
n→∞

∫
a(T)

χE dµn ≤ lim sup
n→∞

∫
a(T)

fm dµn =

∫
a(T)

fm dµ.

In the last equality we use the fact that (2.21) holds for C0(R)-functions. Taking
the limit as m goes to ∞, and using the dominated converge theorem we get
that

lim sup
n→∞

µn(E) ≤
∫
a(T)

χE dµ = µ(E).

Doing analogous calculations with lim infn→∞ µn(E) and gm yields µ(Int E) ≤
lim infn→∞ µn(E). In total we have

µ(Int E) ≤ lim inf
n→∞

µn(E) ≤ lim sup
n→∞

µn(E) ≤ µ(E).

But because of the assumption |φ−1(∂E)| = 0 ⇔ µ(∂E) = 0 we have that
µ(Int E) = µ(E) = µ(E), so we are done.

Now we have an even clearer picture of how the eigenvalues of Tn(a) behave
as n grows, especially the property µn(E)→ µ(E) is quite easy to visualize and
gives us a lot of insight. Further, this property makes it easy for us to find the
limit sets Λw, Λs defined in the introduction.

Corollary 2.7.5. Let a ∈W be a real-valued symbol, and let Λ = conv spT (a).
Then we have

Λs = Λw = Λ.
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Proof. Because of the definition, we always have Λs ⊂ Λw, and thanks to Lemma
2.7.1 we have Λw ⊂ Λ. So we only need to show Λ ⊂ Λs. Since a ∈ W ,
φ, defined by θ 7→ a(eiθ) is continuous. Since a is real valued, we know that
a(T) = conv spT (a). So pick λ ∈ Λ. Then there is an open interval around λ, E
of width ε > 0. Because of continuity φ−1(E) is open, and it cannot be empty,
since a(T) 3 λ ∈ E. This implies that µ(E) > 0, and since µn(E) → µ(E),
µn(E) > 0 for sufficiently large n. Hence, there is an eigenvalue of Tn(a) in E
for all sufficiently large n.

We proceed with an example where we can analytically calculate the limiting
measure.

Example 2.7.6. Let a(t) = (t−1 + t)/2. This corresponds to a(eiθ) = cos θ.
We derive an analytic expression for µ by a change of variables.

µ(E) =
1

2π

∫ 2π

0

χE(cos θ) dθ

=
1

π

∫ π

0

χE(cos θ) dθ

=


cos θ = λ

θ = arccos(λ)
dθ = − 1√

1−λ2
dλ

λ : 1→ −1


=

1

π

∫ 1

−1

χE(λ)
1√

1− λ2
dλ

=
1

π

∫
[−1,1]∩E

1√
1− λ2

dλ.

So dµ = 1/π(1−λ2)−1/2dλ with support on [−1, 1]. We numerically calculate the
eigenvalues of T500(a) and plot the histogram compared to the density 1/π(1−
λ2)−1/2. The comparison can be seen in Figure 2.2.

2.8 Banded Toeplitz matrices
We saw that there is an extensive theory in the case of Hermitian Toeplitz
matrices, and the limiting measure could be derived. Next we investigate the
case of banded Toeplitz matrices, i.e. how the eigenvalues of Tn(b) behave when
b is a Laurent polynomial,

b(t) =

s∑
n=−r

bnt
n. (2.24)

The cases where r or s is ≤ 0 are trivial, since we in those cases get triangular
matrices. So we henceforth assume r, s ≥ 1 and that b−r and bs are non-zero.

As mentioned in the introduction, one goal in understanding the eigenvalue
distribution is finding the strong and weak limit set, Λs and Λw. From the
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Figure 2.2: A histogram of the eigenvalues for T500(a) with a = (t−1 + t)/2
along with the theoretical density of the eigenvalues 1/π(1− λ2)−1/2.

definition we have that Λs(b) ⊂ Λw(b). Also, thanks to Lemma 2.6.1 we see that
if we take λ0 /∈ spT (b), there is a set Ω ⊃ spT (b) such that infz∈Ω |z − λ0| > 0
and spTn(b) ⊂ Ω for sufficiently large n. So we have actually shown that

Λs(b) ⊂ Λw(b) ⊂ spT (b). (2.25)

The article that begun the investigation of banded Toeplitz matrices is writ-
ten by Schmidt and Spitzer, [18]. We will present their results and further
theory in this section. Schmidt and Spitzer had the insight that if Λs(b) and
Λw(b) are to “mimic” the behavior of spT (b), then they are forced to also mimic
the behavior or spT (bρ) where bρ(t) := b(ρt), since Tn(bρ) and T (b) only differ
by a similarity transform,

Tn(bρ) = diag(ρ, ρ2, · · · , ρn) Tn(b) diag(ρ−1, ρ−2, · · · , ρ−n). (2.26)

So Λs(bρ) = Λs(b) and Λw(bρ) = Λw(b). Using these observations we can
strengthen (2.25) into

Lemma 2.8.1. Let b be a Laurent polynomial, then

Λs(b) ⊂ Λw(b) ⊂
⋂

ρ∈(0,∞)

spT (bρ).

The big result of Schmidt and Spitzer is that all the sets in Lemma 2.8.1
are equal, and they are a finite union of analytic arcs. To prove these claims
we need to investigate how spT (bρ) behaves when ρ varies, specifically we want
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to find the intersection. We will begin by calculating the winding number for a
Laurent polynomial b. Clearly we can view b as a rational function on C that
has one pole of order r in 0 and r + s zeros in C \ {0}. Assume that 0 /∈ b(T)
and that b has exactly p zeros in the open unit disk D. Then we can factor b as

b(t) = bst
−r

p∏
j=1

(t− zj)
r+s∏
j=p+1

(t− zj),

with |zj | < 1 for 1 ≤ j ≤ p and |zj | > 1 for p+ 1 ≤ j ≤ r + s. t−r has winding
number −r and a factor (t− z) has winding number 1 if |z| < 1 and 0 if |z| > 1.
So the winding number for a Laurent polynomial b is the number of zeros minus
the number of poles in D, with our notation p− r. We can now use this fact to
deduce that T (b) is invertible if and only if 0 /∈ b(T) and b has r zeros in D. If
we instead look at the invertibility of T (bρ) we see that is it invertible when b
has no zeros on ρT and exactly r zeros inside ρD.

When looking at the spectrum of T (bρ) we are interested in when bρ(t)−λ is
invertible, which makes us interested in where the zeros of b(z)− λ are located.
We therefore introduce

Q(λ, z) := zr(b(z)−λ) = b−r+b−r+1z+ · · · (b0−λ)zr+ · · · bs−1z
r+s−1 +bsz

r+s.

It is clear that Q(λ, z) has the same zeros as b(z)− λ. We are interested when
exactly r of the zeros are inside ρD, so it makes sense to order the zeros.
Let zj(λ), j = 1, 2, · · · , r + s be the zeros of Q(λ, z) for a fixed λ, also order
them so that |zj(λ)| ≤ |zj+1(λ)| , j = 1, 2, · · · r + s − 1. Now we can classify
∩ρ∈(0,∞) spT (bρ) in terms of the zeros of Q(λ, z) by defining the set

Λ(b) = {λ ∈ C : |zr(λ)| = |zr+1(λ)|}.

In fact, we can show the following Lemma

Lemma 2.8.2. Let b be a Laurent polynomial, then⋂
ρ∈(0,∞)

spT (bρ) = Λ(b).

Proof. Assume first that λ /∈ ∩ρ∈(0,∞) spT (bρ). Then these is a ρ such that
T (bρ − λ) is invertible. This means that bρ(z) − λ has no zeros on ρT and
exactly r zeros inside ρD. This implies that |zr(λ)| < ρ < |zr+1(λ)| and hence
that λ /∈ Λ(b).

The other direction can be proved in a similar manner. Assume λ /∈ Λ(b).
Then there is a ρ such that |zr(λ)| < ρ < |zr+1(λ)| but this implies that T (bρ−λ)
is invertible and hence λ /∈ ∩ρ∈(0,∞) spT (bρ).

Example 2.8.3. Let b(t) = t−1 + 2t. To calculate Λ(b) algebraically we solve
z−1 + 2z = λ, which gives z2 − λ/2z + 1/2 = 0. If we call the roots z1 and
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z2, we see from Vieta’s formulas z1z2 = 1/2, which implies z1 = 1/
√

2eiθ and
z2 = 1/

√
2e−iθ, as well as z1 + z2 = λ/2, which implies that 2

√
2 cos θ = λ. So

it is exactly for λ ∈ [−2
√

2, 2
√

2] that the roots could have equal absolute value.
Additionally, if λ is real and |λ| ≤ 2

√
2 the roots must be complex conjugated

and therefore have equal moduli. Hence Λ(b) = [−2
√

2, 2
√

2].
We can also look at

b(ρeiθ) = 2ρeiθ + ρ−1e−iθ = (2ρ+ ρ−1) cos θ + (2ρ− ρ−1)i sin θ.

So b(ρT) is an ellipse with half axes 2ρ+ ρ−1 and
∣∣2ρ− ρ−1

∣∣. So the spectrum
of T (bρ) is exactly the filled in ellipses. We see that all ellipses contain the strip
[−2
√

2, 2
√

2], since 2ρ+ ρ−1 ≥ 2
√

2ρρ−1 = 2
√

2. Also, for ρ = 1/
√

2 the ellipse
is exactly the strip [−2

√
2, 2
√

2], so ∩ρ∈(0,∞) spT (bρ) = [−2
√

2, 2
√

2].

We will now investigate the structure of Λ(b). To do this we will consider
how the zeros zj(λ) of b(z)−λ (and Q(λ, z)) vary with λ. If b−λ only has simple
zeros, then b − λ is locally invertible with analytic inverse around each zj(λ),
which implies that zj(λ) depends analytically on λ. In the case of multiple zeros
the dependence of the roots on λ is a bit more intricate. But we can introduce a
uniformization parameter t such that λ = λ0+tm, for some positive integerm so
that the zeros ofQ(λ, z) depend analytically on t. The uniformization parameter
comes from the fact the equation f(z) = 0 for an arbitrary holomorphic f around
a critical point z0 of order m can be written as f(z) = g(z)m + f(z0) where g
is holomorphic with a simple zero at z0 and therefore is locally invertible. One
can then introduce t := g(z) and see that the zeros close to z0 of b− λ depend
analytically on t. If there are different multiple zeros we can choose m as the
least common multiple and the statement still holds. An exposition of the local
behavior of holomorphic functions can be found in chapter VIII of [13]. All in
all we have that for all λ0 ∈ C there is a parameter t and integer m ≥ 1 so that
λ = λ0 + tm and the zeros of Q(λ, z), zj(t) depend analytically on t, for t in
some neighborhood of 0.

A fact we will use later is that Q(λ, z) only have multiple zeros for a finite
number of λ’s. This is due to the fact that Q(λ, z) has a double zero in z0

exactly when Q(λ, z0) = 0 and ∂
∂zQ(λ, z0) = 0, i.e. when the determinant of

the resultant of Q and ∂
∂zQ is zero. This determinant is itself a polynomial in

λ, which of course has a finite number of zeros.
We are currently investigating the structure of Λ(b). For a coming argument

we will need the fact that the gcd of {n : bn 6= 0} is 1. However, that is not true
for all Laurent polynomials b but we can construct a new Laurent polynomial
b# which fulfills this criterion, and such that Λ(b) = Λ(b#). If the gcd is not 1,
it is equal to d > 1, this means that b can be written b(z) =

∑s/d
j=−r/d bdjz

dj , we

now introduce b#(z) =
∑s/d
j=−r/d bdjz

j and see that Λ(b) = Λ(b#) since the zeros
of b−λ are exactly the dth roots of the zeros of b#−λ, since b#(zd) = b(z). So
we will henceforth without loss of generality assume that the gcd of {n : bn 6= 0}
is 1.
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It is of interest to consider the ratios zl(t)/zk(t) of the zeros of Q(λ, z),
since Λ(b) is given precisely by |zr(t)/zr+1(t)| = 1. We will therefore need the
following lemma.

Lemma 2.8.4. The ratios of two different zeros of Q(λ, z) cannot be constant,
i.e. there is no neighborhood around any λ0 so that zk(t)/zl(t) = γ, where l 6= k.

Proof. Assume the opposite. Then we have zk(t) = γzl(t) with γ 6= 0 since
Q(λ, 0) 6= 0, which implies

0 = γ−rQ(λ, γzl(t))−Q(λ, zl(t)) =

r+s∑
j=0

bj−r(γ
j−r − 1)zl(t)

j .

So if we show that zl(t) cannot be constant, we have that γj−r = 1 for all
bj−r 6= 0. Which with the gcd-assumption implies γ = 1. So assume that zl(t)
is constant, then we have

0 = Q(λ0 + tm, zl(t))

= b−r + b−r+1zl(t) + · · ·+ (b0 − (λ0 + tm))zl(t)
r + · · · bszl(t)r+s

It follows that
(λ0 + tm) = zl(t)

−rQ(0, zl(t))

But this gives us a contradiction since (λ0 + tm) cannot be constant. By the
earlier remarks we now have γ = 1, but this means that Q(λ, z) has multiple
zeros for infinitely many λ, which is a contradiction.

We will next show the Lemma leading up to the main result on the structure
of Λ(b).

Lemma 2.8.5. For each λ0 ∈ Λ(b) there is an open neighborhood U of λ0 such
that Λ(b)∩U is a union of a finite number of analytic arcs. Also, Λ(b) contains
no isolated points.

Proof. As before we use the notation λ = λ0 + tm with the zeros depending
analytically on t. Also let U be an open neighborhood around λ and let V
be the corresponding open neighborhood of 0 for t. Since λ0 ∈ Λ(b) there are
p, q ≥ 1 such that

|z1(0)| ≤ · · · ≤ |zr−p(0)| <
|zr−p+1(0)| = · · · = |zr+q(0)| <
|zr+q+1(0)| ≤ · · · ≤ |zr+s(0)| .

(2.27)

We choose V small enough so that the strict inequalities in (2.27) hold for all
t ∈ V . Now consider ϕjk(t) :=

zj(t)
zk(t) for j 6= k and r − p + 1 ≤ j, k ≤ r + q.

Thanks to Lemma 2.8.4 we have that ϕjk is not constant, so if we make V small
enough, the solutions to |ϕjk(t)| = 1 is given by a finite number of analytic arcs
originating in t = 0 and ending on the boundary of V . Now consider the set
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Γ = {t ∈ V : |ϕjk(t)| = 1, r− p+ 1 ≤ j, k ≤ r+ q, j 6= k}, i.e. all the arcs for all
different j, k. We can choose V such that Γ consists of a finite number of analytic
arcs originating in 0 and ending on the boundary of V without intersecting. This
is true since if two arcs are different, their series expansions must differ in some
term, we can therefore for each pair of arcs make V small enough so that the
differing term makes the arcs distinct throughout V (except for t = 0 of course).

We want to know when the rth and (r + 1)th smallest zeros (ordered by
absolute value) have the same absolute value. The interesting zeros must have
indices in the range [r−p+1, r+q] because of (2.27), and since the arcs in Γ only
intersect in t = 0 the absolute value ordering of the zeros zr−p+1(0), · · · , zr+q(0)
cannot change in Γ \ {0}. So the set where the rth and (r+ 1)th smallest zeros
(ordered by absolute value) have the same absolute value are exactly some or
none of the arcs in Γ. We will now show that it is not none of the arcs, i.e. that
λ0 is not an isolated point of Λ(b). If λ0 is isolated we have for some ordering
of the zeros

|zj(t)| < |zk(t)| , j = 1, 2, · · · , r k = r + 1, r + 2, · · · r + s

for all t ∈ V \ {0}. But we also have |zr(0)| = |zr+1(0)|. So the function
ϕ(t) := zr(t)

zr+1(t) is analytic on V with |ϕ(0)| = 1 and |ϕ(t)| < 1 on the rest of
V , but this violates the maximum modulus principle, so λ0 is not isolated in
Λ(b).

We are almost ready to formulate our final theorem describing the structure
of Λ(b). We first introduce the notion of end point, which are all the points
λ0 ∈ Λ(b) that either are such that Q(λ0, z) have multiple zeros or such that
there is no neighborhood U of λ0 such that Λ(b)∩U consists of one analytic arc
beginning and ending on ∂U .

Theorem 2.8.6. The set Λ(b) consists of a finite number of pairwise disjoint
analytical arcs without endpoints as well as a finite number of end points. Also,
Λ(b) has no isolated points.

Proof. Thanks to Lemma 2.8.2 we have that Λ(b) is compact, since it is the
intersection of closed bounded sets. So cover each point in Λ(b) with the neigh-
borhoods given by Lemma 2.8.5. Now we have that Λ(b) is covered by a finite
number of open sets each containing a finite number of analytic arcs without
end points and a finite number of end points. Also, Lemma 2.8.5 says that Λ(b)
does not have any isolated points. ´

We conclude that Λ(b) and hence Λw(b) and Λs(b), must be quite small, they
all have measure 0 for the usual Lebesgue measure on C. A natural question
that Theorem 2.8.6 raises is whether Λ(b) is connected. It turns out that it is,
but we will need more tools before proving it.

Out next endeavor is to construct a measure on Λ(b) that describes the
limiting distribution of eigenvalues. The result we are about to present is due
to Hirschman, [15]. But the proofs we present are based on refinements of the
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original proof due to Widom’s work in [23] and [24]. An outline is as follows:
We use the Szegő limit theorem to obtain

log |Dn(bρ − λ)|1/n → log |G(bρ − λ)| . (2.28)

Then we use potential theory, which says that the generalized Laplacian of
log |f | is a sum of 2π-point measures located at the zeros of f , so if we take the
Laplacian of (2.28) we obtain that the limiting measure of the eigenvalues is
1

2π∆λ log |G(bρ − λ)|, which we can simplify using Green’s identities. But this
is only an outline and now a rigorous proof is presented.

The first result we need is that log |Dn(bρ − λ)|1/n converges.

Lemma 2.8.7. There exists a continuous function

g : C \ Λ(b)→ R+

such that
|Dn(b− λ)|1/n → g(λ)

locally uniformly. In fact, g is given by

g(λ) = exp

(
1

2π

∫ 2π

0

log
∣∣bρ(eiθ)− λ∣∣ dθ) , (2.29)

where ρ is chosen so that

|zr(λ)| < ρ < |zr+1(λ)| (2.30)

locally.

Proof. Take λ ∈ C \ Λ(b). Then we can choose a ρ that satisfies (2.30) locally.
Equation (2.26) implies that Dn(bρ − λ) = Dn(b− λ), so we can shift our focus
to Dn(bρ − λ). Clearly, T (bρ − λ) is invertible, since the winding number of
bρ − λ is 0. We can therefore use Theorem 2.6.2, and the same reasoning as in
the proof of Theorem 2.6.3 to get that

Dn−1(bρ − λ)

Dn(bρ − λ)
→ 1

G(bρ − λ)

locally uniformly. We earlier remarked that both sides stay away from zero, so

log |Dn−1(bρ − λ)| − log |Dn(bρ − λ)| → − log |G(bρ − λ)|

locally uniformly. Using the same method with the telescopic sum as in the
proof of Theorem 2.6.3 we get that

1

n
log |Dn(bρ − λ)| → log |G(bρ − λ)|

locally uniformly. Moving in the 1
n , and taking the exponent, and noting that

both sides are locally bounded we get that

|Dn(b− λ)|1/n → |G(bρ − λ)| =: g(λ)

locally uniformly. Now it is not difficult to see that some manipulations involving∣∣ef ∣∣ = e<f and < log f = log |f | gives the explicit formula for g(λ).
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We shall next derive an alternate expression for g(λ) involving the roots
zj(λ) of Q(λ, z). Essentially, we will rewrite exp( 1

2π

∫ 2π

0
log(bρ(e

iθ)−λ)dθ) with
the help of logarithmic identities and some algebraic manipulation. However,
first we need to discuss our new setting and make some definitions. Take a
λ0 ∈ Λ(b) that is not an end point. Then there is an open neighborhood of λ0,
U such that Λ(b)∩U consists of one analytic arc. Furthermore, Λ(b) divides U
into two disconnected components that we call D1 and D2. Also, we can choose
U small enough so that there exists p, q ≥ 1, such that for λ ∈ Λ(b) ∩ U

|z1(λ)| ≤ · · · ≤ |zr−p(λ)| <
|zr−p+1(λ)| = · · · = |zr+q(λ)| <
|zr+q+1(λ)| ≤ · · · ≤ |zr+s(λ)| .

After reordering we can assume that for λ ∈ D1 we have

max
1≤j≤r

|zj(λ)| < min
r+1≤j≤r+s

|zj(λ)| .

Let N1 = {r + 1, r + 2, · · · , r + s}. Now we will define N2 similarly for D2 by
taking the s zeros with largest modulus. Since D2∩Λ(b) = ∅, the largest s zeros
are strictly larger than the smallest r zeros. Hence we have for λ ∈ D2

max
j /∈N2

|zj(λ)| < min
j∈N2

|zj(λ)| .

Since the zeros depend analytically on λ (we are not at an end point) we see that
N2 is a union of {r+ q+ 1, · · · , r+ s} and q of the values {r− p+ 1, · · · , r+ q}.
Note that this specifically implies that for λ ∈ Λ(b) ∩ U we have∏

j∈N1

|zj(λ)| =
∏
j∈N2

|zj(λ)| . (2.31)

Now we are ready to formulate out next Lemma.

Lemma 2.8.8. For λ ∈ Dk we have

g(λ) = |bs|
∏
j∈Nk

|zj(λ)| ,

for k = 1, 2.

Proof. Fix λ ∈ D1 and choose a ρ that satisfies (2.30). We can now factor
bρ(e

iθ)− λ as

bρ(e
iθ)− λ = bsρ

−re−riθ
∏
j /∈N1

(ρeiθ − zj(λ))
∏
j∈N1

(ρeiθ − zj(λ))

= bs
∏
j /∈N1

(1− ρ−1e−iθzj(λ))
∏
j∈N1

(ρeiθ − zj(λ)).
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Now we use the complex logarithm identity to obtain

1

2π

∫ 2π

0

log(b(ρeiθ)− λ)dθ

=
1

2π

∫ 2π

0

log bsdθ +
∑
j /∈N1

1

2π

∫ 2π

0

log(1− ρ−1e−iθzj(λ))dθ

+
∑
j∈N1

1

2π

∫ 2π

0

log(−zj(λ)) + log(1− ρeiθ/zj(λ))dθ + 2πim,

(2.32)

for some integer m. Now we use the analytic series expansion log(1 − z) =∑∞
j=1

zj

j , and the fact that
∫ 2π

0
ejθidθ = 0 for integers j 6= 0. We see that most

of (2.32) cancels out. In fact the only terms remaining are

1

2π

∫ 2π

0

log(b(ρeiθ)− λ)dθ = log bs +
∑
j∈N1

log(−zj(λ)) + 2πim.

Taking the exponent, and then absolute value of both sides, and taking the
formula (2.29) of g(λ) into account we obtain our desired result. The argument
is the same for D2 and N2.

We introduce the functions

Gk(λ) =
∏
j∈Nk

(−zj(λ))

for k = 1, 2. We note that Gk is analytic in U and g(λ) = |bs| |Gk(λ)| for λ ∈ Dk,
and see that we can extend g continuously to all of U since D1 ∪D2 ⊃ U and
(2.31) holds for λ ∈ Λ(b) ∩ U .

The next lemma gives important information about the size of g near Λ(b).

Lemma 2.8.9. For some neighborhood U for a non-endpoint λ ∈ Λ(b) we have

|G1(λ)| = |G2(λ)| for λ ∈ Λ(b) ∩ U,
|G1(λ)| > |G2(λ)| for λ ∈ D1,

|G1(λ)| < |G2(λ)| for λ ∈ D2.

D1 and D2 is defined as above.

Proof. Equality of the moduli in Λ(b) has already been proven, so let us prove
that |G1(λ)| > |G2(λ)| for λ ∈ D1. If we use the same ordering as before we see
that N1 = {r + 1, · · · , r + s}, while N2 is a union of {r + q + 1, · · · , r + s} and
q of the values {r − p + 1, · · · , r + q}. So it suffices to show that N2 contains
at least one of the indices {r − p + 1, · · · , r}. If we assume the contrary, this
would mean that it is exactly the same roots that have the largest moduli in
D1 and D2, i.e. that N1 = N2. But now we can look at the analytic function
ϕ(λ) := zr(λ)

zr+1(λ) . We have |ϕ(λ)| = 1 on Λ(b)∩U and |ϕ(λ)| < 1 on D1 and D2.
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But this means that |ϕ(λ)| ≤ 1 on U which by the maximum modulus principle
implies that ϕ(λ) is constant in U , which is a contradiction. The corresponding
statement for D2 follows by symmetry.

Let us summarize and add some properties of g that we need to construct
the limiting measure on Λ(b).

Lemma 2.8.10. The function g can be extended to a function that is positive
and continuous on C except for the end points of Λ(b). For non-end points
λ ∈ Λ(b), let U be a neighborhood give by Lemma 2.8.9 and n1 = n1(λ) be the
outer normal vector of D1 and n2 = n2(λ) the outer normal vector for D2.
Then both ∂g

∂n1
and ∂g

∂n2
exist and they fulfill

∂g

∂n1
(λ) +

∂g

∂n2
(λ) < 0.

Proof. We already know that g is positive on C \ Λ(b) and because all zeros of
Q(λ, z) are nonzero in the whole of U , Lemma 2.8.8 gives the desired statement.

For the statement regarding the normal derivatives, take λ0 ∈ Λ(b) and write
G1 = u+ iv, we then have g(λ) =

√
u2 + v2 for λ ∈ D1, and since G1(λ) 6= 0 for

λ ∈ U we get that ∂g
∂n1

(λ0) exists and if we write n1 = n1x + in1y we get that

∂g

∂n1
(λ) = (n1x, n1y) ·

(
uxu+ vxv√
u2 + v2

,
uyu+ vyv√
u2 + v2

)
=

1

|G1(λ)|
(n1x(uxu+ vxv) + n1y(vyv + uyu))

=
<(G1G

′
1n1)

|G1(λ)|
,

where the last step is just algebra and an application of the Cauchy–Riemann
equations. This implies that we can write

∂g

∂n1
(λ0) +

∂g

∂n2
(λ0) =

<(G1(λ0)G′1(λ0)n1 +G2(λ0)G′2(λ0)n2)

|G1(λ0)|
. (2.33)

It turns out that the right hand term in (2.33) is similar to (G1/G2)
′
(λ0).

Observe how G1/G2 transforms U , it sends D1 outside the unit circle, Λ(b) to
the unit circle and D2 inside the unit circle. This implies that (G1/G2)

′
(λ0) 6= 0

since elsewise, the solutions to |G1/G2(λ)| = 1 near λ0 would form multiple
arcs. This means that the tangent to Λ(b) at λ0 is transformed to a tangent
to the unit circle, i.e. (G1/G2)

′
(λ0)n1i is tangent to the unit circle, which

means that (G1/G2)
′
(λ0)n1 is orthogonal to the tangent to the unit circle,

i.e. (G1/G2)
′
(λ0)n1 = −kG1/G2(λ0) for k ∈ R+, since the absolute value of

G1/G2(λ) decreases along n1. Now, noting that n2 = −n1 we get(
G1

G2

)′
(λ0)n1 =

G′1G2n1 +G1G
′
2n2

G2
2

= −kG1

G2

⇔ G1G
′
1n1 +G2G

′
2n2 = −k |G2|2 .
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Now we get that the nominator on the right in (2.33) is negative, which proves
exactly what we want.

It turns out that the final measure actually will involve ∂g
∂n1

(λ) + ∂g
∂n2

(λ),
which is why we have payed so much attention to it.

We have now done all the preliminary work, and can take the Laplacian
of log |Dn(b− λ)|1/n, which was our original idea. Introduce Borel measures
µn in a similar way as before, i.e. like (2.22), but now our measure space
is (C,B(C)). We want to take the Laplacian of log g, since it is the limit of
log |Dn(b− λ)|1/n = 1

n log |Dn(b)− λ|. To justify this, we need to show that
log g is subharmonic in C. We haven’t yet considered the end points of Λ(b).
Define g(λ) to be 0 here. In the proof of Theorem 2.6.2 we showed that for
each λ0 ∈ C \ Λ(b), and ρ satisfying (2.30) there is an open neighborhood
around λ0 where G(bρ − λ) is holomorphic, hence log g(λ) = log |G(bρ − λ)| is
harmonic in a neighborhood of λ0 and consequently, in the whole of C \ Λ(b).
For a neighborhood U of λ0 ∈ Λ(b), not being an end point we showed that
log g(λ) = max(log |G1(λ)| , log |G2(λ)|), so log g is subharmonic for all of C,
since log g(λ) = −∞ at the end points. Let A denote the Lebesgue measure on
C. Since log g 6= −∞ for all of C except the end points we get that the Radon
measure ∆ log g exists and it is the unique Radon measure that fulfills∫

C
ϕ∆ log g =

∫
C

log g∆ϕdA

for all ϕ ∈ C∞0 (C), where C∞0 (C) is the set of real valued infinitely differentiable
functions on C with compact support. A good exposition about subharmonicity
and the Laplacian can be found in [16].

Lemma 2.8.11. The measures µn converge in distributional sense to the Radon
measure 1

2π∆ log g, i.e. ∫
C
ϕdµn →

∫
C

1

2π
log g∆ϕdA (2.34)

for all ϕ ∈ C∞0 (C).

Proof. As remarked earlier, potential theory tells us that ∆ 1
n log |Dn(b− λ)| =

2πµn, i.e. ∫
C

2πϕdµn =

∫
C

1

n
log |Dn(b− λ)|∆ϕdA

for all ϕ ∈ C∞0 (C). So in order to prove (2.34) we need to show that∫
C

1

n
log |Dn(b− λ)|∆ϕdA→

∫
C

log g∆ϕdA (2.35)

for all ϕ ∈ C∞0 (C). Let K ⊃ supp ϕ be a compact set, and let AK denote
the restriction of A to K, i.e. AK(E) = A(K ∩ E). Now AK is a finite Borel
measure on C, and since ∆ϕ has support inside K, it is enough to prove (2.35)
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with A replaced by AK . Furthermore, 1
n log |Dn(b− λ)| → log g(λ), A-a.e. since

Λ(b) has Lebesgue measure 0, and hence also AK-a.e. Because AK is a finite
measure we now get that 1

n log |Dn(b− λ)| → log g(λ) in measure, i.e.

AK

({
λ ∈ K :

∣∣∣∣ 1n log |Dn(b− λ)| − log g(λ)

∣∣∣∣ > ε

})
→ 0

for all ε > 0. To ease notation let

Bε :=

{
λ ∈ K :

∣∣∣∣ 1n log |Dn(b− λ)| − log g(λ)

∣∣∣∣ > ε

}
.

Further, let fn(λ) := 1
n log |Dn(b− λ)|∆ϕ(λ) and f(λ) = log g(λ)∆ϕ(λ). We

show (2.35) by writing∣∣∣∣∫
C
fn − fdAK

∣∣∣∣ =

∣∣∣∣∣
∫
Bε

fn − fdAK +

∫
K\Bε

fn − fdAK

∣∣∣∣∣ ≤∫
Bε

|fn| dAK +

∫
Bε

|f | dAK + εA(K).

Now it is sufficient to prove that
∫
Bε
|fn| dAK and

∫
Bε
|f | dAK get small as

AK(Bε) gets small. It is known from measure theory that if h is an L1 function,
then there for all ε > 0 exists δ > 0 such that

∫
B
|h| dAK < ε for all measurable

sets B ⊂ K with AK(B) < δ, see e.g. chapter 4.2 in [9]. Now, the only thing that
could cause trouble is

∫
Bε
|fn| dAK not being uniformly small, or, more correctly,

{fn} not being uniformly integrable. But fn = ∆ϕ 1
n

∑n
j=1 log |λ(n)

j − λ|, is the
mean of translated logarithms times ∆ϕ, and since log |λ| is locally integrable,
i.e. integrable on all compact sets and ∆ϕ is bounded we get that that {fn}
is uniformly integrable, and hence for all ε > 0 there is a δ > 0 such that∫
B
|fn| dAK < ε for all n ∈ N and B with AK(B) < δ. Now we can conclude

our proof, for each ε > 0, pick N large enough so that AK(Bε) is small enough
to make

∫
Bε
|fn| dAK and

∫
Bε
|f | dAK < ε for all n > N . We then have∣∣∣∣∫

C
fn − fdAK

∣∣∣∣ < (2 +A(K))ε.

The next step is to simplify ∆ log g and show that it only has support on
Λ(b). It makes intuitive sense that it should only have support on Λ(b) since as
we remarked earlier, log g is harmonic on C \ Λ(b).

Lemma 2.8.12. We have for all ϕ ∈ C∞0 (C)∫
C
ϕ∆ log g =

∫
Λ(b)

ϕ
1

g

∣∣∣∣ ∂g∂n1
+

∂g

∂n2

∣∣∣∣ ds, (2.36)

where s is the Lebesgue length measure.
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Proof. Note that we proved in Lemma 2.8.10 that ∂g
∂n1

+ ∂g
∂n2

exists and is neg-
ative for the non-end points of Λ(b), and that g > 0 for non-end points on
Λ(b). Our method is to show (2.36) for a small neighborhood U of some point
λ in the support of ϕ and then write ϕ as a partition of smooth functions with
support on these sets. The most interesting case is to look at a neighborhood
U of λ ∈ Λ(b) such that Λ(b) ∩ U just consists of an analytic arc without end
points, use the same notation as before with D1 and D2 as the two components
of U \ Λ(b) and n1 and n2 as the outer normal vectors to D1 and D2 at Λ(b).
Now, Greens formula says∫

Ω

(u∆v − v∆u) dA =

∫
∂Ω

(
u
∂v

∂n
− v ∂u

∂n

)
ds.

Setting Ω = D1, u = log g and v = ϕ we get∫
D1

(log g∆ϕ− ϕ∆ log g) dA =

∫
∂D1

(
log g

∂ϕ

∂n
− ϕ∂ log g

∂n

)
ds.

Since log g is harmonic in D1, we get∫
D1

log g∆ϕdA =

∫
∂D1

log g
∂ϕ

∂n
ds−

∫
∂D1

ϕ
∂ log g

∂n
ds. (2.37)

Similarly for D2 we get∫
D2

log g∆ϕdA =

∫
∂D2

log g
∂ϕ

∂n
ds−

∫
∂D2

ϕ
∂ log g

∂n
ds.

Adding the two together we get∫
U

log g∆ϕdA =

∫
∂U

log g
∂ϕ

∂n
ds−

∫
∂U

ϕ
∂ log g

∂n
ds

+

∫
U∩Λ(b)

log g
∂ϕ

∂n1
ds+

∫
U∩Λ(b)

log g
∂ϕ

∂n2
ds

−
∫
U∩Λ(b)

ϕ
∂ log g

∂n1
ds−

∫
U∩Λ(b)

ϕ
∂ log g

∂n2
ds.

Noting that ∂ log g
∂n = 1

g
∂g
∂n and ∂ϕ

∂n1
+ ∂ϕ

∂n2
= 0 we can simplify to∫

U

log g∆ϕdA =

∫
∂U

log g
∂ϕ

∂n
ds−

∫
∂U

ϕ
1

g

∂g

∂n
ds

−
∫
U∩Λ(b)

ϕ
1

g

(
∂g

∂n1
+

∂g

∂n2

)
ds.

(2.38)

From Lemma 2.8.10 we know that ∂g
∂n1

+ ∂g
∂n2

< 0 so

−
∫
U∩Λ(b)

ϕ
1

g

(
∂g

∂n1
+

∂g

∂n2

)
ds =

∫
U∩Λ(b)

ϕ
1

g

∣∣∣∣ ∂g∂n1
+

∂g

∂n2

∣∣∣∣ ds.
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If ϕ has compact support in U , we see that two of the terms in (2.38) vanish.
Hence we are left with∫

U

log g∆ϕdA =

∫
U∩Λ(b)

ϕ
1

g

∣∣∣∣ ∂g∂n1
+

∂g

∂n2

∣∣∣∣ ds. (2.39)

So (2.39) holds if ϕ has compact support in U , where U is a neighborhood
of some λ ∈ Λ(b) such that U ∩ Λ(b) just consists of an analytic arc without
endpoints. If instead U was just an open subset of C \Λ(b) and ϕ had compact
support in U , we see from (2.37) that

∫
U

log g∆ϕdA = 0.
Now, we need to argue that (2.39) implies (2.36). Let K be a compact set

such that supp ϕ ⊂ K, assume further that K ⊃ Λ(b), and construct an open
covering for K in the following way: For each ε > 0 construct open balls with
radius ε around all the end points, for the other λ ∈ K, if λ /∈ Λ(b), take an
open ball around λ that is a subset of C \ Λ(b), and for λ ∈ Λ(b) choose as
usual an open neighborhood U so that U ∩ Λ(b) just consists of an analytic
arc. Since K is compact we get that there are finite index sets Iε and Jε such
that K ⊂ (∪α∈IεUα)∪ (∪β∈JεBβ), where Jε consists of all discs around the end
points and Iε the rest of the covering sets. Now choose a partition of unity
1 =

∑
α∈Iε ψα +

∑
β∈Jε ψβ , where all ψα and ψβ are in C∞0 (C) with compact

support in Uα and Bβ respectively, and fulfill 0 ≤ ψα, ψβ ≤ 1. We first want to
show that ∫

Λ(b)

1

g

∣∣∣∣ ∂g∂n1
+

∂g

∂n2

∣∣∣∣ ds <∞.
Define ψn =

∑
α∈I 1

n

ψα, n ∈ Z+. We can choose the ψα’s such that ψ1 ≤ ψ2 ≤
. . ., and write ∫

C
ψn∆ log g =

∑
α∈I 1

n

∫
C
ψα∆ log g

=
∑
α∈I 1

n

∫
Λ(b)

ψα
1

g

∣∣∣∣ ∂g∂n1
+

∂g

∂n2

∣∣∣∣ ds
=

∫
Λ(b)

ψn
1

g

∣∣∣∣ ∂g∂n1
+

∂g

∂n2

∣∣∣∣ ds.
(2.40)

In the second equality we used (2.39) since ψα have compact support on well
behaving sets. Note that ψn converges a.e. to 1 on K, and that 1

g

∣∣∣ ∂g∂n1
+ ∂g

∂n2

∣∣∣ >
0, and that

∫
C ψn∆ log g can be bounded by ∆ log g(Ke) where Ke is some

compact set with Ke ⊃ K such that ψα all have support inside Ke. Hence we
can use the monotone convergence theorem on (2.40) and see that

lim
n→∞

∫
Λ(b)

ψn
1

g

∣∣∣∣ ∂g∂n1
+

∂g

∂n2

∣∣∣∣ ds =

∫
Λ(b)

1

g

∣∣∣∣ ∂g∂n1
+

∂g

∂n2

∣∣∣∣ ds ≤ ∆ log g(Ke) <∞.
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Now we can use a similar argument with ϕn := ϕψn, but with the dominated
convergence theorem instead. Since |ϕn| ≤ |ϕ| and ϕ is bounded we get that∫

C
ϕ∆ log g = lim

n→∞

∫
C
ϕn∆ log g

= lim
n→∞

∫
Λ(b)

ϕn
1

g

∣∣∣∣ ∂g∂n1
+

∂g

∂n2

∣∣∣∣ ds
=

∫
Λ(b)

ϕ
1

g

∣∣∣∣ ∂g∂n1
+

∂g

∂n2

∣∣∣∣ ds.
Which concludes our proof. For a reference on how to construct partitions of
unity, see Theorem 1.8.4 in [19].

Combining Lemmas 2.8.11 and 2.8.12 we get our main theorem about the
distribution of the eigenvalues on Λ(b). The theorem was first presented by
Hirschman in [15].

Theorem 2.8.13. The measures µn converge in the weak sense to the measure

1

2π

1

g

∣∣∣∣ ∂g∂n1
+

∂g

∂n2

∣∣∣∣ ds.
supported on Λ(b), i.e.

1

n

n∑
j=1

ϕ(λ
(n)
j )→ 1

2π

∫
Λ(b)

ϕ(λ)
1

g(λ)

∣∣∣∣ ∂g∂n1
(λ) +

∂g

∂n2
(λ)

∣∣∣∣ ds(λ) (2.41)

for all continuous ϕ : C→ R with compact support.

Proof. We have
∫
C φdµn = 1

n

∑n
j=1 ϕ(λ

(n)
j ), so from Lemmas 2.8.11 and 2.8.12

we get that (2.41) holds for all φ ∈ C∞0 (C), but since C∞0 (C) is dense in C0(C),
it follows that (2.41) holds for all continuous ϕ with compact support.

We next give a result that was first proven by Schmidt and Spitzer in [18].
Schmidt and Spitzer proved their result in 1960 before Hirschman proved his
result in 1967. The proof we give here builds upon the result of Hirschman, so
it differs from the techniques Schmidt and Spitzer used.

Theorem 2.8.14. Using the previous notation with limiting sets of eigenvalues
we have

Λs(b) = Λw(b) = Λ(b)

Proof. In Lemma 2.8.1 we showed that Λs(b) ⊂ Λw(b) ⊂ Λ(b), so to prove
equality we only need to prove Λ(b) ⊂ Λs(b). We do this by for each λ0 ∈ Λ(b)
showing that for each neighborhood U of λ0 there is a N such that for all n ≥ N
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there is an eigenvalue of Tn(b) in U . Essentially, we want to put in χU as ϕ in
Theorem 2.8.13, but we can’t do it directly, since χU is not continuous. Instead,
choose a continuous ϕ ≤ 1 with support in U with ϕ(λ0) = 1. Then we have

#{j : λ
(n)
j ∈ U}
n

=
1

n

n∑
j=1

χU (λ
(n)
j ) ≥ 1

n

n∑
j=1

ϕ(λ
(n)
j )→

1

2π

∫
Λ(b)

ϕ(λ)
1

g(λ)

∣∣∣∣ ∂g∂n1
(λ) +

∂g

∂n2
(λ)

∣∣∣∣ ds(λ) > 0.

This shows that #{j : λ
(n)
j ∈ U} > 0 for all n sufficiently large, so we are

done.

We have before promised a result on the connectedness of Λ(b), which now
follows. The theorem was first proved by Ullman in [21].

Theorem 2.8.15. The limiting set Λ(b) is connected.

Proof. Assume that Λ(b) is not connected. Then there is a K ⊂ Λ(b) such that
K and Λ(b) \ K form two disconnected components. We now construct open
sets Ω1 and Ω2 such that K ⊂ Ω1 and Λ(b) \ K ⊂ Ω2, where Ω1 and Ω2 are
simply connected and have smooth boundaries. We can construct Ω1 and Ω2

sufficiently far away from each other (since K in closed) such that there exists
a ϕ ∈ C∞0 (C) such that ϕ is 1 on Ω1 and 0 on Ω2. Denote the limiting measure
from Theorem 2.8.13 by µ. Since no points in Λ(b) are isolated, we must have
0 < µ(K) < 1. Our goal is to calculate µ(K) in a different way and get that it
must be an integer, and hence get a contradiction. From Lemma 2.8.12 we get
that

µ(K) =

∫
K

dµ =

∫
Λ(b)

ϕdµ =
1

2π

∫
C

log g∆ϕdA. (2.42)

We now wish to use Green’s formula and notice that ∆ϕ = 0 for Ω1 and Ω2,
which gives us useful boundary conditions. Hence we create Ω̃1 ⊃ K and
Ω̃2 ⊃ Λ(b)\K, both open simply connected sets with smooth boundaries whose
closures are subsets of Ω1 and Ω2 respectively. Let Ω be a bounded subset of
C \ (Ω̃1 ∪ Ω̃2) such that ∆ϕ has support in Ω. As we have noted earlier, log g is
harmonic in C \ Λ(b) ⊃ Ω, so Green’s formula gives us∫

Ω

log g∆ϕdA =

∫
∂Ω

log g
∂ϕ

∂n
− ϕ∂ log g

∂n
ds. (2.43)

But ϕ is constant on Ω1 and Ω2, and 0 on Ω2. So (2.42) and the right hand side
in (2.43) gives

µ(K) =
1

2π

∫
∂Ω̃1

∂ log g

∂n
ds.

Recall from the proof of Lemma 2.8.7 that g(λ) = |G(bρ − λ)| and that

G(bρ − λ) = lim
n→∞

Dn(bρ − λ)

Dn−1(bρ − λ)
= lim
n→∞

Dn(b− λ)

Dn−1(b− λ)
=: G(b− λ),
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so g(λ) = |G(b− λ)|, where G(b − λ) is holomorphic in C \ Λ(b). We choose a
branch of logG(b− λ) that is analytic in a neighborhood of ∂Ω̃1 \ {λ0}, where
λ0 an arbitrary element of ∂Ω̃1, this is possible, because if zero is inside Ω̃1 we
draw the branch through λ0. This gives

logG(b− λ) = log g + i argG(b− λ) =: u+ iv.

Note that we can use the Cauchy–Riemann equations in the neighborhood of
∂Ω̃1 \ {λ0}, so here ux = vy and uy = −vx. Let (x(t), y(t)), t ∈ (0, 1) be a
parametrization of ∂Ω̃1 \ {λ0} in counter-clockwise direction. With this we can
write

µ(K) =
1

2π

∫
∂Ω̃1

∂ log g

∂n
ds

=
1

2π

∫ 1

0

(ux, uy) · (ẏ,−ẋ)

|(ẋ, ẏ)|
|(ẋ, ẏ)| dt

=
1

2π

∫ 1

0

uxẏ − uyẋ dt

=
1

2π

∫ 1

0

vxẋ+ vy ẏ dt

=
1

2π
(v(x(1), y(1))− v(x(0), y(0))) ∈ Z.

The last step is due to the fact that v is the imaginary part of a branch of
logG(b− λ). We got our contradiction, so we are done.

It is due time for an example of Λ(b) that is not a subset of R, which
demonstrates the results of Theorems 2.8.13 – 2.8.15. It also presents one of the
few types of limit sets that are possible to compute analytically.

Example 2.8.16. Let b(t) = t−4 + t1. Then

Λ(b) = {λ ∈ C : λ = re
2πi
5 , 0 ≤ r ≤ 5 · 4−4/5}.

In [18], b on the form t−k + th, k, h ≥ 1 were stated as one of the only examples
where it is relatively easy to compute Λ(b) analytically. However, the proof
relies on “careful analysis of trinomials on the form 1 + azk + zk+h”, and the
calculations are not presented in [18], instead they reference [4]. In [18], it also
stated that in fact spTn(b) ⊂ Λ(b) for all n, so one could say that our specific
choice of b is quite well behaving. We plot Λ(b) along with T100(b) in Figure
2.3.

2.9 Beyond banded matrices
The problem of finding the limit sets Λs and Λw, and a limiting measure for
the eigenvalues of Tn(a) for an arbitrary symbol a is an open question. In

47



1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Eigenvalues compared to (b)

Figure 2.3: Λ(b) in blue lines compared to T100(b) for b(t) = t−4 + t.

1994 Widom summarized the current knowledge on the topic [24]. As we have
done in this thesis, Widom begins by describing real symbols and then Laurent
polynomials. It should be mentioned that in the case of real symbols, one can
generalize the results we have presented to any real symbol in L∞ [5]. The
results for Laurent polynomials can be generalized to rational symbols without
poles on the unit circle. This was done by Day in 1975 [11].

Using the same notation as in (2.22) and (2.23) for µn and µ, but defining
them on C instead of R, we say that the eigenvalues of Tn(a) are canonically dis-
tributed if µn → µ weakly. Theorem 2.6.3 indicates that canonically distributed
eigenvalues should be the usual case. Of course, as we have seen is the case
for Laurent polynomials there are very basic counter examples to this. One
of the things we used when dealing with the Laurent polynomials was (2.26)
which “forces” spTn(a) to behave similarly to not only spT (a), but spT (aρ) for
all ρ ∈ (0,∞). A similar argument can be done for any symbol that can be
analytically extended into an annulus r < |z| < 1 or 1 < |z| < r, so we should
not expect canonical distribution from those symbols [23]. Therefore, Widom
claims in [24] that there is “some merit” to the assertion that for a “normal”
symbol a that can not be analytically continued to r < |z| < 1 nor 1 < |z| < r,
the eigenvalues of Tn(a) are canonically distributed. In [23], Widom proved
that for a symbol a that is continuous and piecewise C∞ but not C∞ with
exactly one singularity point (points where a is not C∞ in any neighborhood),
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the eigenvalues of Tn(a) are canonically distributed, and Λs = λw = a(T). The
proof involves the following result, from [23].

Theorem 2.9.1. Suppose that a ∈ L∞ and

|Dn(a− λ)|1/n → G(|a− λ|) (2.44)

in measure. Then the eigenvalues of Tn(a) are canonically distributed.

The proof of 2.9.1, is almost identical to the proof of Lemma 2.8.11, but uses
the identity

1

2π
∆

1

2π

∫
log
∣∣a(eiθ)− λ

∣∣ dθ = µ.

If T (a − λ) is invertible, then we know that (2.44) holds, thanks to Theorem
2.6.2. But this is only true when wind(a − λ) = 0, which is not always the
case. So to handle wind(a − λ) = m, Widom defines a0(t) := t−m(a(t) − λ).
Now, a0 has winding number 0, so the asymptotic formula for Dn(a0) is known,
and using techniques related to what we did with Cramer’s rule in the proof of
Theorem 2.6.2, it is possible to express Dn(a) in Dn(a0) and the elements of
T−1
n (a0). To do this, a good understanding of the elements of the inverse matrix

is needed, and that is why it is difficult to generalize the result to discontinuous
functions [24].
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Chapter 3

Finding Λ(b)

As demonstrated in Section 2.8, there is for banded Toeplitz matrices an exten-
sive theory that describes the structure of the limit set Λ(b) and how dense the
eigenvalues cluster on Λ(b). But we have as of yet not presented a practical way
to calculate it. A natural approach to find Λ(b) is to calculate spTn(b) for n of
increasing size and simply see where the eigenvalues seem to cluster. However,
this approach does not work. If we study the b from Example 2.8.16 we know
Λ(b) exactly, but if we try computing spT200(b) and spT400(b) using numpy, see
Figure 3.1, the eigenvalues do not cluster around Λ(b). Also, as we noted in
Example 2.8.16, all the eigenvalues of Tn(b) belong to Λ(b), so what we see in
Figure 3.1 is purely a result of numerical errors. A better method to calculate
Λ(b) is definitely needed.

In the recent article [7], it is stated that “Finding this limiting set neverthe-
less remains a challenge”. Then the authors propose an algorithm that is based
on the article [3], which essentially looks at the roots of Q(z, λ). This algorithm
gives some points contained in the limit set, and the more sample points used,
the better the representation will be. However, this algorithm requires finding
zeros of polynomials, which is a hard problem if the degree of the polynomial
is big, and for some cases a large number of sampling points are needed. In-
stead of searching for Λ(b) algebraically, we present a novel approach to find it
geometrically.

3.1 Previous work

A naive approach to calculating Λ(b) is to sample a grid in C and check what
points almost are in the set, by solving b(z) = λ and looking at the root sizes.
However, this approach is time consuming and it is not obvious how a point
almost being in Λ(b) should be interpreted. In [7] a better algorithm for calcu-
lating Λ(b) is presented. The idea is: instead of sampling λ, sample ϕ ∈ (0, 2π)
and solve

b(z)− b(zeiϕ) = 0. (3.1)
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(a) Λ(b) and the eigenvalues of T200(b) for
b(t) = t−4 + t.
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(b) Λ(b) and the eigenvalues of T400(b) for
b(t) = t−4 + t.

Figure 3.1: Examples of bad numerical behavior for computed eigenvalues.

This approach works since if λ ∈ Λ(b) then two of the roots of b(z)−λ = 0, zr(λ)
and zr+1(λ) have the same modulus, so zr+1(λ)/zr(λ) = eiϕ, which implies that
zr(λ) is a root of (3.1). Note that in the case zr(λ) = zr+1(λ), (3.1) is the
equation 0 = 0. But for double roots, the derivative also has a zero, so to find
the cases where zr(λ) = zr+1(λ), we solve

b′(z) = 0. (3.2)

From solving (3.2), and (3.1) for the sampled ϕ we get some candidates zk. For
each of these candidates we can calculate the corresponding λk := b(zk) and
check each of these λk for membership in Λ(b) by solving the equation

b(z) = λk

and checking if the r’th and (r+1)’th smallest root ordered by modulus have the
same absolute value. The output from this algorithm is a set of points belonging
to Λ(b), and it involves numerically finding the roots of multiple polynomials
that have degree r + s. For fixed r and s, the computational time is at most
O(N), where N is the amount of sampled ϕ.

3.2 A geometric approach
One way to look at the problem of finding Λ(b) is Lemma 2.8.2, which says⋂

ρ∈(0,∞)

spT (bρ) = Λ(b).
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We can either work with the left hand side and try to compute it geometrically,
or look at the right hand side and compute it algebraically. In this subsection
we will investigate how to compute it geometrically.

The first observation that speaks in favor of ∩ρ∈(0,∞) spT (bρ) even being
possible to compute numerically is that not all ρ’s are needed.

Theorem 3.2.1. Given a Laurent polynomial b, there exists ρl, ρh with 0 <
ρl < ρh <∞ such that

Λ(b) =
⋂

ρ∈(0,∞)

spT (bρ) =
⋂

ρ∈[ρl,ρh]

spT (bρ). (3.3)

Furthermore, ρl and ρh can be found by solving a polynomial equation with real
coefficients.

Proof. Intuitively, (3.3) is clear. We know that Λ(b) is bounded, i.e. |λ| ≤
K ∀λ ∈ Λ(b) for some constant K. As ρ tends to zero, the lowest order term in
b will dominate and bρ(T) will approximately trace out a circle of radius b−rρ−r
revolving r times in negative direction. Similarly, as ρ tends to ∞, bρ(T) will
approximately trace out a circle of radius bsρs revolving s times in positive
direction. So intersecting with the spectrum for small or large enough ρ will not
change the result.

Let ρl be the smallest real positive solution to |b−r| ρ−r−
∑s
n=−r+1 |bn| ρn =

K. Hence |b−r| ρ−r−
∑s
n=−r+1 |bn| ρn ≥ K for all ρ ≤ ρl. We now estimate the

size of bρ(t). For ρ in 0 < ρ ≤ ρl:

|bρ(t)| =

∣∣∣∣∣
s∑

n=−r
bnρ

ntn

∣∣∣∣∣ ≥
∣∣∣∣∣|b−r| ρ−r −

∣∣∣∣∣
s∑

n=−r+1

bnρ
ntn

∣∣∣∣∣
∣∣∣∣∣

≥

∣∣∣∣∣|b−r| ρ−r −
s∑

n=−r+1

|bn| ρn
∣∣∣∣∣

≥ K.

Hence Λ(b) ⊂ spT (bρ) for ρ in 0 < ρ ≤ ρl. Analogously we define ρh as the
largest positive root to |bs| ρs −

∑s−1
n=−r |bn| ρn = K and do similar calculations

to get that Λ(b) ⊂ spT (bρ) for ρ ≥ ρh, which concludes our proof.

So, only a compact set of ρ’s are needed to obtain Λ(b). A natural approach
to calculate Λ(b) is to select a partition ρl = ρ0 < ρ1 < . . . < ρn−1 < ρn = ρh
and compute

n⋂
j=0

spT (bρj ). (3.4)

The granularity of the partition (ρj)
n
j=0 is defined as ∆ := max0≤j≤n−1(ρj+1 −

ρj). A natural question now is if (3.4) will approach Λ(b), and in what way? We
will show that (3.4) approach Λ(b) in the Hausdorff metric as the granularity of
(ρj)

n
j=0 tends to 0. By the Hausdorff metric we mean the metric dH operating
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on the set C consisting of all the bounded non-empty closed subsets of C defined
by

dH(A,B) := inf {ε : A ⊂ (B)ε, B ⊂ (A)ε} ,

where (X)ε denotes the ε–fattening of X, defined by

(X)ε :=
⋃
x∈X
{z ∈ C : |z − x| ≤ ε} .

One can show that (C, dH) forms a complete metric space. To show that (3.4)
approach Λ(b) we need the following Theorem.

Theorem 3.2.2. For a Laurent polynomial b, the map

ρ 7→ spT (bρ)

from (R+, | · |)→ (C, dH) is continuous.

Proof. Throughout the proof we will view b as a function from C \ {0} → C,
but when we write bρ we view it as a function from T → C. Given ε > 0 and
ρ∗ > 0 we want to find δ > 0 such that dH(spT (bρ∗), spT (bρ)) < ε for all ρ with
|ρ− ρ∗| < δ. Fix an ε > 0 and a ρ∗ > 0 that we will work with throughout the
proof. We will work with wind(bρ − λ) and use the formula

wind(bρ − λ) =
1

2πi

∫
bρ(T)

1

z − λ
dz =

1

2πi

∫ 2π

0

ρieivb′(ρeiv)

b(ρeiv)− λ
dv. (3.5)

Hence, it is of interest how the function zb′(z)/(b(z) − λ) behaves. We will
frequently work with annuli, so we introduce the notation A(ρ, δ) = {z ∈ C :
||z| − ρ| ≤ δ}, where ρ and δ are real positive numbers. Since b is continuous on
C\{0}, there is due to uniform continuity a δ0 > 0 such that for z1, z2 ∈ A(ρ∗, δ0)
with |z1 − z2| ≤ 2δ0 we have |b(z1)− b(z2)| < ε. Now, we want to study the
poles of zb′(z)/(b(z)− λ). Therefore we introduce the set

Rε :=
⋃

ρ∈[ρ∗−δ0,ρ∗+δ0]

 ⋃
λ/∈(spT (bρ))ε

{r ∈ C : b(r) = λ}

 .

In words, Rε consists of all the roots of b(r) = λ for some λ /∈ (spT (bρ))ε for
some ρ ∈ [ρ∗ − δ0, ρ∗ + δ0]. Note that Rε ∩ A(ρ∗, δ0) = ∅ since if r ∈ Rε and
r ∈ A(ρ∗, δ0) then there is a ρ ∈ [ρ∗ − δ0, ρ∗ + δ0] such that

∣∣b(r)− b(ρeit)∣∣ > ε

for all t ∈ [0, 2π), but this implies
∣∣r − ρeit∣∣ > 2δ0 for all t ∈ [0, 2π), which in

turn implies r /∈ A(ρ∗, δ0). So Rε ∩A(ρ∗, δ0) = ∅.
For ease of notation, let

f(z, λ) := zb′(z)/(b(z)− λ)

Λ0 :=
⋃

ρ∈[ρ∗−δ0/2,ρ∗+δ0/2]

((spT (bρ))ε)
C
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To estimate the rightmost integral in (3.5) we roughly want f to be uniformly
continuous on A(ρ∗, δ0/2) × Λ0. Note that Rε ∩ A(ρ∗, δ0) = ∅ implies that f
is continuous on A(ρ∗, δ0/2)× Λ0. Formally we want to show that there exists
δr > 0 such that z1, z2 ∈ A(ρ∗, δ0/2) and λ ∈ Λ0 with |z1 − z2| < δr implies
|f(z1, λ)− f(z2, λ)| < 1/2. To prove this, assume the opposite, for all δr > 0,
i.e. there exists λ0 ∈ Λ0 and z1, z2 ∈ A(ρ∗, δ0/2) with |z1 − z2| < δr but with
|f(z1, λ0)− f(z2, λ0)| ≥ 1/2. We now proceed with a standard “passing to
a subsequence” argument. Let δn = 1/n, and construct z1n, z2n ∈ A(ρ∗, δ0/2)
with |z1n − z2n| < 1/n, such that both (z1n) and (z2n) are convergent sequences.
Additionally there are λn such that |f(z1n, λn)− f(z2n, λn)| ≥ 1/2. If (λn) is
unbounded, we get a contradiction since supz∈A(ρ∗,δ0/2) |f(z, λ)| → 0 as λ →
∞. So (λn) must be bounded. Hence we can choose (λn) to be a convergent
sequence. We have z1n → z1, z2n → z2 and λn → λ. But |z1n − z2n| < 1/n so
z1 = z2. Because of continuity, f(z1n, λn)→ f(z1, λ) and f(z2n, λn)→ f(z2, λ),
but this is a contradiction, and so a δr with the specified requirements must
exist.

Choose δ := min(δr, δ0/2). Next we show that |ρ− ρ∗| < δ implies that
dH(spT (bρ∗), spT (bρ)) ≤ ε, i.e. we want to show (spT (bρ))ε ⊃ spT (b∗ρ) and
(spT (b∗ρ))ε ⊃ spT (bρ). To do this, take an arbitrary λ0 /∈ (spT (bρ))ε. Hence,
λ0 ∈ Λ0. Now we have

|wind(bρ − λ0)− wind(bρ∗ − λ0)|

=

∣∣∣∣ 1

2π

∫ 2π

0

f(ρeit, λ0)− f(ρ∗eit, λ0) dt

∣∣∣∣ ≤ 1

2
,

since |ρ− ρ∗| < δr. Because wind(bρ − λ0) always is integer valued, wind(bρ −
λ0) = wind(bρ∗ − λ0) = 0 since λ0 /∈ spT (bρ) , and this implies λ0 /∈ spT (bρ∗).
So (spT (bρ))ε ⊃ spT (bρ∗) holds. A similar argument can be made in the oppo-
site direction since the integral bound holds for all λ ∈ Λ0, which concludes our
proof.

Theorem 3.2.2 is quite intuitively reasonable, we expect bρ(T) to vary con-
tinuously with ρ, and so also the spectrum. We can use Theorem 3.2.2 to show
the promised result, that (3.4) approaches Λ(b) in the limit.

Theorem 3.2.3. Let ρl and ρh be the bounds given by Theorem 3.2.1 and let
(ρj)

n
j=0 be a partition of [ρl, ρh], and let ∆ be the granularity of the partition.

Then we have

lim
∆→0

n⋂
j=0

spT (bρj ) = Λ(b)

in the Hausdorff metric, i.e. for each ε > 0 there exists a δ > 0 such that for all
partitions with ∆ < δ it holds that dH(∩nj=0 spT (bρj ),Λ(b)) < ε.

Proof. From Theorem 3.2.2 we have that the map ρ 7→ spT (bρ) from [ρl, ρh]→ C
is uniformly continuous. Given an ε > 0 there is a δs > 0 such that for all
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ρ∗ ∈ [ρl, ρh]; |ρ− ρ∗| < δs implies dH(spT (bρ∗), spT (bρ)) < ε. We now show
that for all partitions (ρj)

n
j=0 with granularity ∆ < 2δs we have

dH

 n⋂
j=0

spT (bρj ),
⋂

ρ∈[ρl,ρh]

spT (bρ)

 ≤ ε.
Naturally we always have

⋂
ρ∈[ρl,ρh] spT (bρ) ⊂

(⋂n
j=0 spT (bρj )

)
ε
. So we need

to prove the opposite inclusion. To do this, take an arbitrary

λ /∈

 ⋂
ρ∈[ρl,ρh]

spT (bρ)


ε

=
⋂

ρ∈[ρl,ρh]

(spT (bρ))ε .

So there is a ρ∗ ∈ [ρl, ρh] such that λ /∈ (spT (bρ∗))ε. Because ∆ < 2δs there is a
ρk in the partition with |ρ∗ − ρk| < δs. This implies dH(spT (bρ∗), spT (bρ)) < ε,
which means (spT (bρ∗))ε ⊃ spT (bρk) so λ /∈ spT (bρk), and therefore not in
∩nj=0 spT (bρj ) either. Hence our proof is finished.

Theorem 3.2.3 hints at great possibilities for computing Λ(b) numerically.
But it is difficult to represent spT (bρ) numerically. A possible solution is to
approximate spT (bρ) as a polygon with vertices sampled along bρ(T). The
next theorem will show that polygon approximation indeed gives the desired
result. We will partition [0, 2π] with 0 = v0 < c1 < . . . < vn−1 < vn = 2π.
The granularity for (vj)

n
j=0 is defined as before. A partition of [0, 2π] defines a

polygon discretization bDρ approximating bρ, on the form bDρ : [0, 2π)→ C,

bDρ (v) =
v − vj

vj+1 − vj
(
b(ρeivj+1)− b(ρeivj )

)
+ b(ρeivj ), v ∈ [vj , vj+1).

We define spT (bDρ ) for a polygon as

bDρ ([0, 2π)) ∪
{
λ ∈ C : wind(bDρ − λ) 6= 0

}
.

Now we are ready to formulate our next Theorem.

Theorem 3.2.4. Let ρl and ρh be the bounds given by Theorem 3.2.1. Then
for all ε > 0 there exists δ > 0 such that for all partitions (vj)

n
j=0 of [0, 2π] with

granularity ∆ < δ we have

dH
(
spT (bρ), spT (bDρ )

)
< ε

for all ρ ∈ [ρl, ρh].

Proof. This proof is quite similar to that of Theorem 3.2.2, we will bound the
difference winding number integral

wind(bρ − λ)− wind(bDρ − λ)

=
1

2πi

∫ 2π

0

d
dv b(ρe

iv)

b(ρeiv)− λ
−

d
dv b

D
ρ (v)

bDρ (v)− λ
dv.

(3.6)
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To do that we need some bounds.
Comparing bDρ with bρ it is convenient to write

b(ρeiv) = xρ(v) + iyρ(v).

Further, we see

xρ(v) = <b(ρeiv) =
b(ρeiv) + b(ρe−it)

2
,

yρ(v) = =b(ρeiv) =
b(ρeiv)− b(ρe−iv)

2i
,

with b(z) =
∑s
n=−r bnz

n. By differentiating we get

ẋρ(v) =
iρeivb′(ρeiv)− iρeivb′(ρe−iv)

2
,

ẏρ(v) =
iρeivb′(ρeiv) + iρeivb

′
(ρe−iv)

2i
.

Specifically we see that ẋρ(v) and ẏρ(v) are uniformly continuous on [ρl, ρh] ×
[0, 2π], and that

∣∣ d
dv b(ρe

iv)
∣∣ < M <∞ on [ρl, ρh]× [0, 2π].

Next we wish to compare d
dv b

D
ρ (v) and d

dv b(ρe
iv) = ẋρ(v) + iẏρ(v). For

v ∈ (vj , vj+1) we have

d

dv
bDρ (v) =

b(ρeivj+1)− b(ρeivj )
vj+1 − vj

= ẋρ(vjx) + iẏρ(vjy),

for some vjx, vjy ∈ (vj , vj+1) by the mean value theorem. Hence∣∣∣∣ ddv b(ρeiv)− d

dv
bDρ (v)

∣∣∣∣ ≤ |ẋρ(v)− ẋρ(vjx)|+ |ẏρ(v)− ẏρ(vjy)| , (3.7)

for v ∈ [vj , vj+1). A similar argument can be made for b(ρeiv)−λ and bDρ (v)−λ
with v ∈ (vj , vj+1):∣∣bDρ (v)− b(ρeiv)

∣∣ =
∣∣(v − vj)(ẋρ(vjx) + ẏρ(vjy)) + b(ρeivj )− b(ρeiv)

∣∣
=
∣∣(v − vj)(ẋρ(vjx) + ẏρ(vjy))− (v − vj)(ẋρ(v∗jx) + ẏρ(v

∗
jy))

∣∣
≤ |v − vj |

(∣∣(ẋρ(vjx)− (ẋρ(v
∗
jx)
∣∣+
∣∣(ẏρ(vjy)− (ẏρ(v

∗
jy)
∣∣) ,
(3.8)

for some v∗jx, v∗jy ∈ (vj , vj+1).
Now we can begin assembling the different estimates. To simplify reasoning,
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we will bound
d
dv b(ρe

iv)

b(ρeiv)− λ
−

d
dv b

D
ρ (v)

bDρ (v)− λ
=

d
dv b(ρe

iv)

b(ρeiv)− λ
−

d
dv b(ρe

iv)

bDρ (v)− λ
+

d
dv b(ρe

iv)

bDρ (v)− λ
−

d
dv b

D
ρ (v)

bDρ (v)− λ

=
d

dv
b(ρeiv)

(
1

b(ρeiv)− λ
− 1

bDρ (v)− λ

)
+

1

bDρ (v)− λ

(
d

dv
b(ρeiv)− d

dv
bDρ (v)

)
.

(3.9)

Now, let ε > 0 be as given in the statement of the theorem. We want to
show that (spT (bρ))ε ⊃ spT (bDρ ) and (spT (bDρ ))ε ⊃ spT (bρ), so we will assume
λ /∈ (spT (bDρ ))ε or /∈ (spT (bρ))ε. Let ∆1 > 0 be given by the uniform continuity
of ẋρ(v) and ẏρ(v), such that |v1 − v2| < ∆1 implies |ẋρ(v1)− ẋρ(v2)| < ε/4
and |ẏρ(v1)− ẏρ(v2)| < ε/4. Further, let ∆1 < 1. From (3.8) we see that∣∣bDρ (v)− b(ρeiv)

∣∣ ≤ ε/2 for partitions with granularity < ∆1. This means that
since either λ /∈ (spT (bDρ ))ε or /∈ (spT (bρ))ε, we have

∣∣b(ρeiv)− λ∣∣ ≥ ε/2 and∣∣bDρ (v)− λ
∣∣ ≥ ε/2. The map z 7→ 1/z is uniformly continuous on {z ∈ C :

|z| ≥ ε/2}. Let δ2 be such that z1, z2 ∈ {z ∈ C : |z| ≥ ε/2} with |z1 − z2| < δ2
implies |1/z1 − 1/z2| < 1/4M . Now, let ∆2 be less than ∆1 and such that∣∣bDρ (v)− b(ρeiv)

∣∣ < δ2 for partitions with granularity < ∆2. We have now
managed to get the bound∣∣∣∣ ddv b(ρeiv)

(
1

b(ρeiv)− λ
− 1

bDρ (v)− λ

)∣∣∣∣ < 1

4
, (3.10)

for partitions with granularity < ∆2.
Next, let ∆3 be ≤ ∆2 and such that

∣∣ d
dv b

D
ρ (v)− d

dv b(ρe
iv)
∣∣ < ε/8 for parti-

tions of granularity < ∆3, this is possible thanks to the uniform continuity of
ẋρ(v) and ẏρ(v), and (3.7). From this we get the bound∣∣∣∣ 1

bDρ (v)− λ

(
d

dv
b(ρeiv)− d

dv
bDρ (v)

)∣∣∣∣ < 2

ε

ε

8
=

1

4
. (3.11)

Now let δ = ∆3. Combining (3.10) and (3.11) with (3.9) we see from (3.6) that∣∣wind(bρ − λ)− wind(bDρ − λ)
∣∣ < 1/2 for any λ /∈ (spT (bDρ ))ε or /∈ (spT (bρ))ε

for all partitions with granularity less than δ. Hence, using the same reasoning as
in the end of the proof for Theorem 3.2.3 we get that dH

(
spT (bρ), spT (bDρ )

)
< ε

which concludes our proof.

With this result we are ready to prove a stronger version of Theorem 3.2.3.

Theorem 3.2.5. Let ρl and ρh be the bounds given by Theorem 3.2.1, and let
(ρj)

n
j=0 denote partitions of [ρl, ρh] with granularity ∆ρ, and let (vj)

m
j=0 denote

partitions of [0, 2π] with granularity ∆v. Then

lim
∆ρ,∆v→0

n⋂
j=0

spT (bDρj ) = Λ(b)

58



in the Hausdorff metric, i.e. for each ε > 0 there exists δρ > 0 and δv > 0 such
that ∆ρ < δρ and ∆v < δv implies dH

(
∩nj=0 spT (bDρ ),Λ(b)

)
< ε.

Proof. We can use the triangle inequality for dH to estimate

dH

 n⋂
j=0

spT (bDρj ),Λ(b)

 ≤ dH
 n⋂
j=0

spT (bDρj ),

n⋂
j=0

spT (bρj )


+ dH

 n⋂
j=0

spT (bρj ),Λ(b)

 .

Let δρ be such that dH
(
∩nj=0 spT (bρj ),Λ(b)

)
< ε/2 for all partitions of [ρl, ρh]

with granularity less than δρ, which exists by Theorem 3.2.3. Now, choose δv
such that dH

(
spT (bρ), spT (bDρ )

)
< ε/2 for all partitions of [0, 2π] with granular-

ity less than δv. Using this we can prove that dH
(
∩nj=0 spT (bDρj ),∩

n
j=0 spT (bρj )

)
<

ε/2, by noting that n⋂
j=0

spT (bDρj )


ε/2

=

n⋂
j=0

(
spT (bDρj )

)
ε/2
⊃

n⋂
j=0

spT (bρj ),

 n⋂
j=0

spT (bρj )


ε/2

=

n⋂
j=0

(
spT (bρj )

)
ε/2
⊃

n⋂
j=0

spT (bDρj ),

since (spT (bρj ))ε/2 ⊃ spT (bDρj ) and (spT (bDρj ))ε/2 ⊃ spT (bρj ) for all j since
dH
(
spT (bρ), spT (bDρ )

)
< ε/2 for all ρ ∈ [ρl, ρh]. This concludes our proof since

we now have dH
(⋂n

j=0 spT (bDρj ),Λ(b)
)
≤ ε/2 + ε/2 = ε.

Thanks to Theorem 3.2.5 we have the outlines of an algorithm that we know
will converge to Λ(b). Given b we sample ρ’s in [ρl, ρh], and for each sampled ρ
construct an estimating polygon. Then, taking the intersection with respect to
non-zero winding number of all the sampled polygons yields an estimate of Λ(b).
By Theorem 3.2.5 we know that the intersection of the polygons will approach
Λ(b) as we decrease the granularities. Pseudocode for the algorithm can be seen
in Algorithm 1.

3.3 Implementation details
The main operation we need in Algorithm 1 is polygon intersection, which is a
common problem in the field computer graphics. Hence, it has been thoroughly
researched, and there exists efficient implementations. For this thesis, we use
the python library pyclipper [2], which is a python wrapper library for the C++
library Clipper2 [1]. The library is based on Vatti’s clipping algorithm, which is
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Algorithm 1 Basic approach to calculating Λ(b) geometrically

procedure CalcLimitSet(b, n,m)
b: the symbol,
n: the number of sampled ρ’s,
m: number of sampled v’s.

ρl, ρh ← bounds from theorem 3.2.1
rhos ← sample n+ 1 ρ’s in [ρl, ρh]
vs ← sample m+ 1 v’s in [0, 2π]
Λ← bDrhos[1](vs)
for i← 2 to n+ 1 do

Λ← Λ ∩ bDrhos[i](vs)
end for
return Λ

end procedure

described in his paper [22]. The processing time for intersecting two polygons
using Vatti’s algorithm scales linearly in the number of vertices of the polygons
being intersected.

Besides finding a good polygon intersection algorithm, the most important
details about the implementation are how to choose (vj)

m
j=0 and (ρj)

n
j=0, i.e.

where to choose the vertices of bDρj on bρj (T) and what ρ’s to choose for the
intersections. We know from Theorem 3.2.5 that if we just choose the granular-
ities finer and finer, the intersection will approach Λ(b), but we should be able
to get a more computationally efficient algorithm if the partitions are chosen in
a good way.

For simplicity, the only investigated partition for v is the uniform one, i.e.
vj = 2πj/m, it is quite difficult to imagine some strategy working much better.
Choosing ρ’s is more interesting. A natural approach is to first calculate [ρl, ρh]
using the estimate from Theorem 3.2.1. Then, a naive solution is to sample ρ’s
uniformly in this interval. There are two major points of critique for this method
of sampling ρ’s. First, the bounds [ρl, ρh] are not strict. For the ρ close to the
end points, spT (bρ) probably contains the entirety of the currently intersected
polygon. Secondly, from the proof of Theorem 3.2.3 we see that ideally, we want
to choose more ρ’s where “the Hausdorff metric of spT (bρ) varies rapidly with
ρ”.

To get an intuition of good heuristics for choosing stricter bounds for ρ it is
helpful to plot bρ(T) and vary ρ. An insight from experimenting is that it seems
like Λ(b) is formed by the points where bρ(T) intersects itself, and when ρ is
varied, this intersection moves along Λ(b) in a continuous manner. This would
suggest that we only want to find the intervals for which bρ(T) intersects itself,
and where these intersections are a part of Λ(b). In essence, there should be a
finite number of interesting intervals for ρ. Actually, one can see from (3.1) that
all λ ∈ Λ(b) except for a finite number must arise from an intersection of bρ(T)
with itself, since (3.1) exactly describes this type of intersection.
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To find the interesting intervals of ρ’s is not obvious analytically. But we can
use the fact that when we intersect our partial polygon with spT (bρ) for a good
ρ, the area of the partial polygon decreases. So we could sweep over [ρl, ρh], and
calculate the decrease in area when intersecting with different spT (bρ). Also,
note that area of a polygon can be calculated in linear time with respect to the
number of vertices. Pseudocode calculating Λ(b) with the sweep improvement
can be seen in Algorithm 2. How to choose the intervals of ρ’s where the
area is reduced the most deserves some attention. If some ρ is in both rhos
and sweeprhos in Algorithm 2, the area reduced will be 0. To avoid missing
out on good ρ because of this a moving average filter is used for areareduce,
and then all the good intervals are selected as the ones where areareduce[ρ]
≥ (maxρ areareduce[ρ])/106.

The problem of sampling the same ρ also applies to when we sample rhos for
the next intersection-run. Typically, we will find the exact same interval of good
ρ that reduces area the most in each iteration. Therefore a randomly chosen ε
with 0 ≤ ε ≤ sweeprhos[i + 1] − sweeprhos[i] is added to the left boundaries of
the good intervals, and subtracted from the right boundaries.

A significant optimization can be done when we calculate areareduce. The
important observation is that areareduce[ρ] is non-increasing. When updating
areareduce we begin by calculating Λs for the intervals of ρ that we just inter-
sected with, then if areareduce for the ρ that did not reduce area the most in the
previous iteration still are smaller then the threshold, we don’t need to update
those values. Practically, this drastically reduces the number of intersections
done in total. Almost all polygon intersections used for calculating Λs are done
in the first iteration, when we have no prior values in areareduce.

The second points of improvement for Algorithm 1 is that we want to sample
ρ denser where spT (bρ) varies rapidly. Ideally, we would want to differentiate
spT (bρ) with respect to the Hausdorff metric, but there is to the knowledge of
the author not any way of doing this. However, one could make the observation
that b can be seen as a sum of two polynomials, one in z and one in 1/z. The
standard approach if nothing better is known is to sample uniformly, but because
of 1/z, it would make sense to sample ρj uniformly for ρ ≥ 1 and sampling ρ < 1
in such a way that 1/ρj becomes uniformly distributed.

3.3.1 Testing suggested improvements

To investigate the two suggested improvements, i.e. using Algorithm 2 instead
of 1 and not sampling ρ uniformly we study an example. We compute Λ(b) for

b(t) = −2t−1 + 4(1− i) + 7it− 3(1 + i)t2 + t3. (3.12)

The symbol is presented in [7] as an example of where the numerically computed
eigenvalues for Tn(bρ) do not converge to the true Λ(b), and the computed
eigenvalues vary with ρ, which they theoretically do not.

To test Algorithms 2 and 1, we run Algorithm 1 and 2 with b as in (3.12),
and n = 2500, m = 500, for Algorithm 1 and n = 2000, m = 500, l = 500,
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Algorithm 2 Improved Λ(b)–calculator using area sweeps

procedure CalcLimitSet(b, n,m, l,#sweeps)
b: the symbol,
n: the number of sampled ρ,
m: number of sampled v,
l: the number of sample ρ for area sweeping,
#sweeps: how many times new ρ should be generated.

ρl, ρh ← bounds from theorem 3.2.1
sweeprhos ← sample l points for area sweeping in [ρl, ρh].
rhos ← sample n/#sweeps points in [ρl, ρh]
vs ← sample m+ 1 points in [0, 2π]
Λ← bDrhos[1](vs)
for i← 1 to #sweeps do

for each ρ in rhos do
Λ← Λ ∩ bDρ (vs)

end for
for each ρ in sweeprhos do

Λs ← Λ ∩ bDρ (vs)
areareduce[ρ] ← Area(Λ) - Area(Λs)

end for
rhos ← sample n/s points in the intervals that reduces area the most

end for
return Λ

end procedure
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#sweeps = 2 for Algorithm 2. The parameters are chosen so that both al-
gorithms use 2500 polygon intersections. Also, we calculate Λ(b) using the
algebraic approach from [7], to see that the result is close to the limit set. The
results can be seen in Figure 3.2. If one looks closely in Figures 3.2b and 3.2d,
one sees that the line segment part is much more narrow in 3.2d than 3.2b.
This is because we have not wasted polygon intersections where they made no
difference. An even bigger difference can be seen if one zooms in at the top of
Λ(b), which is done in 3.2a and 3.2c. So for this example our suggested improve-
ment really does help in computing Λ(b). And it should generalize to different
examples, since it is never good to “waste” polygon intersections.
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(a) A zoomed in version of 3.2b.
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(b) Λ(b) calculated from Algorithm 1 using
n = 2500, m = 500, and b from (3.12), in
blue. Also the result from the algorithm
described in section 3.1 with 105 ϕ sam-
pled uniformly in [0, π] is plotted in lime.
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(c) A zoomed in version of 3.2d.
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(d) Λ(b) calculated from Algorithm 2 using
n = 2000, m = 500, l = 500, #sweeps = 2
and b from (3.12), in blue. Also the result
from the algorithm described in section 3.1
with 105 ϕ sampled uniformly in [0, π] is
plotted in lime.

Figure 3.2: A comparison of Algorithms 1 and 2. Both algorithms have calcu-
lated Λ(b) for b as in (3.12) and have used 2500 polygon intersections.

To compare the different ρ sampling strategies we proceed by comparing
the results of Algorithm 1 with b as given by (3.12), with n = 2500, m = 500,
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and vary how we sample ρ. The first sampling strategy is uniform sampling in
[ρl, ρh]. The second is sampling uniformly in [1,∞)∩ [ρl, ρh], and sampling ρj so
that 1/ρj are distributed uniformly for ρj in (0, 1] ∩ [ρl, ρh]. A comparison can
be seen in Figure 3.3. If one looks closely it can be seen from Figures 3.3b and
3.3d that the first sampling strategy is worse for the line segment part of Λ(b),
but if you look at 3.3a and 3.3c, the second strategy far under performs on the
zoomed in area. Overall, for this Λ(b), it looks like the first strategy performed
better, even though we had an argument for the second being better. So the
optimal ρ sampling strategy probably depends a lot on the specific symbol.
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(a) A zoomed in version of 3.3b.
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(b) Λ(b) calculated using Algorithm 1 with
n = 2500, m = 500, and b from (3.12),
in blue. The first sampling strategy is
used. Also the result from the algorithm
described in section 3.1 with 105 ϕ sam-
pled uniformly in [0, π] is plotted in lime.
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(c) A zoomed in version of 3.3d.

0 2 4 6 8 10

10

8

6

4

2

0

Limit set

(d) Λ(b) calculated using Algorithm 1 with
n = 2500, m = 500, and b from (3.12),
in blue. The second sampling strategy is
used. Also the result from the algorithm
described in section 3.1 with 105 ϕ sam-
pled uniformly in [0, π] is plotted in lime.

Figure 3.3: A comparison of sampling strategies for ρ. Both runs have calculated
Λ(b) for b as in (3.12) and have used 2500 polygon intersections.
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3.3.2 Convergence for known examples

To investigate convergence when increasing n and m for Algorithm 2 we study
the example b(t) = t−4 + t. This is the same symbol as in example 2.8.16, so we
know Λ(b). We first run Algorithm 2 with n = 500, #sweeps = 2, l = bn/4c and
m = [10, 50, 100]. The results can be seen in Figure 3.4. For m = 10 the results
are quite rubbish, but already for m = 50 one could hardly see any difference,
and for m = 100 one cannot see any difference.
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(a) m = 10.
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(b) m = 50
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(c) m = 100

Figure 3.4: In blue, the result of Algorithm 2 for inputs b(t) = t−4 + t, n = 500,
#sweeps = 2, l = bn/4c, and m being varied. The true Λ(b) is plotted in red.

We conduct a similar experiment, but we vary n instead. For b(t) = t−4 + t,
n = [50, 250, 500], #sweeps = 2, l = bn/4c and m = 500 we run Algorithm
2. The results can be seen in Figure 3.5. As expected, as n grows the polygon
becomes finer and finer. For n = 50 the polygon structure is clearly visible, for
n = 250 it is barely visible, and for n = 500 it is difficult to see a difference
between the polygon and Λ(b).
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(a) n = 50.
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(b) n = 250
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(c) n = 500

Figure 3.5: In blue, the result of Algorithm 2 for inputs b(t) = t−4 + t, m = 500,
#sweeps = 2, l = bn/4c, and n being varied. The true Λ(b) is plotted in red.
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3.4 Reasoning about time complexity

To analyze the time complexity of Algorithm 2 rigorously is difficult, but we
will provide an argument and an example to back up that the running time on
average probably is O(nm+ n2).

The most computationally complex parts of Algorithm 2 is the polygon
intersections which we know are linear in the the number of vertices of the
incoming polygons. So what we really want to analyze is how the number of
vertices grows in Λ. Let w(i) be the number of vertices of Λ after i intersections.
We will now argue that w(i) should increase at most linearly. To see this, view
Figure 3.6. When we intersect Λ with bDρ (vs), the typical situation is described
in Figure 3.6, specifically Figure 3.6 is zoomed in on one of the spots where
bDρ (vs) intersects itself, and the intersection is part of Λ(b), which happens a
bounded number of times. In Figure 3.6 we see that 3 vertices are added to
Λ for the specific intersection of bDρ (vs) with itself. Since the number of self
intersections of bDρ (vs) is limited, w(i) should increase at most linearly.

To test our hypothesis about w(i) growing linearly we generate a random
Laurent polynomial with r = s = 5. We get the polynomial

b(t) = (9.563− 6.844i)t5 + (−2.246 +−4.182j)t4 + (0.8478 + 0.4667j)t3

+ (−4.125 + 1.539j)t2 + (9.114 + 2.07j)t+ (6.679 + 7.744j)

+ (5.21− 3.819j)t−1 + (−4.62− 3.149j)t−2 + (−6.911− 1.115j)t−3

+ (4.486 + 4.44j)t−4 + (4.279 + 0.9657j)t−5.
(3.13)

We then run Algorithm 2 with m = 500, n = 3000, l = 500, #sweeps = 6,
ρ sampled uniformly, and keep track of w(i), and plot it in Figure 3.7. The
resulting limit set can be seen in Figure 3.8. Figure 3.7 looks like it should
according to our argument. It seems like w(i) grows piecewise linearly, with
the slope changing. The changes corresponds to the alterations of the amount
of intersections with itself. The algorithm finds the same interval of good ρ’s
after each intersection-run, which explains the repetition of the pattern. Also
note that the repetitive pattern we see is exactly what should happen if our
reasoning in Figure 3.6 is correct, since we intersect over the same interval of
ρ’s each time.

Assuming w(i) = O(i+m), the total complexity is

n∑
i=1

O(w(i) +m) +

#sweeps∑
s=1

l∑
i=1

O(w(s · n/#sweeps) +m)

= O

(
n(n+m+ 2m)

2

)
+O

(
l#sweeps(n/#sweeps+ 2m+ n+ 2m)

2

)
= O(n2 + nm+ nl#sweeps+ml#sweeps).

However, as we remarked earlier, we can practically optimize away the #sweeps-
factor if it is of moderate size, and in regular use cases it should never be set
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Limit set

Figure 3.6: A probable illustration of how it looks when Λ is intersected with
bDρ (vs) in Algorithm 2. The red line is the true Λ(b), the black lines are Λ prior
to being intersected, and the blue lines are bDρ (vs). The figure is zoomed in on
one of the spots where bDρ (vs) intersects itself. The green points mark the new
vertices in Λ, and the red ones are the vertices being removed from Λ.

higher than about 10. Also, typically l is chosen as smaller than n, else we would
“waste” too many intersections on area sweeping. So with these reasonable
restrictions on #sweeps and l, the time complexity of Algorithm 2 should on
average be O(n2 + nm).

3.5 Conclusion
A new approach to calculate Λ(b) geometrically has been presented. Pseudocode
for the approach can be found in Algorithm 2. Compared to the previous
approaches that are algebraically based, it has the advantage of not requiring
root finding of arbitrary complex polynomials. Furthermore, one could argue
that the output from the geometric algorithm is more natural than the output
for the algebraic one, since you get a connected subset of the complex plane,
instead of points sampled on Λ(b). In some case the geometric algorithm yields
better information on Λ(b). An example of this can be seen in Figure 3.2c. It is
not clear from the lime dots whether Λ(b) separates the plane or not, but from
the blue polygon, we see that this is very likely the case.

69



0 500 1000 1500 2000 2500 3000
#intersections

0

5000

10000

15000

20000

25000

30000

35000

40000

#v
er

tic
es

Growth of vertices of 

Figure 3.7: The number of vertices of Λ in Algorithm 2 as a function of the
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20 10 0 10 20 30 40 50 60

10

5

0

5

10

15

20

25
Limit set

Figure 3.8: The limit set given by Algorithm 2 b as in (3.13),m = 500, n = 3000,
l = 500, #sweeps = 6.
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