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Abstract

Breast cancer is the most frequently diagnosed form of cancer worldwide. 2 260 000
people were diagnosed with breast cancer year 2020, and 685 000 people deceased
from it. In low income countries, breast cancer is commonly detected at a later stage
when it is harder to treat, thus entailing a higher mortality rate. This is primarily due
to the lack of knowledge and diagnostic tools available. A low cost breast diagnostic
tool could therefore be a valuable solution in low income countries.

The objective of this thesis is to create a deep learning algorithm that can classify breast
pocket ultrasound images as malignant, benign or normal. In this thesis, two different
data sets were used. One ultrasound data set with 2062 images and one pocket ultra-
sound data set with 598 images. Four different approaches using convolution neural
networks (CNN) were tested in order to produce the best model on the pocket ultra-
sound data set. In the first part, multiple different CNNs were created and trained
on the ultrasound data set. The two models showing best results on the pocket ultra-
sound validation set were chosen for further evaluation. The second part consisted of
augmentation of the ultrasound data set. The augmented images were then used to
train the two chosen CNNs. In the third part, transfer learning was used in order to
train the CNNs on both data sets. The last part of the thesis consisted of training the
CNNs on the pocket ultrasound data set solely.

The best CNN gave an accuracy of 86.8% and an AUC value of 0.93 on the pocket
ultrasound test set. This was achieved by training on both ultrasound and pocket
ultrasound breast images using transfer learning. The performance on the pocket ul-
trasound test set was not improved by training the CNN’s on augmented ultrasound
images but training solely on pocket ultrasound images could be a good strategy with
more data available. The results seem promising for the future and a perfected model,
trained on more pocket ultrasound data, could possibly be implemented as a low cost
diagnostic tool in countries without breast diagnostics.
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Chapter 1

Introduction

The subject of this thesis is to create an automatic diagnostic tool for breast ultra-
sound images, specifically using deep learning (DL) to classify pocket ultrasound images
as malignant, benign or normal. Health care providers today collects large amounts of
data at a rate that traditional classifying methods cannot meet. This, in combination
with the high performance of deep learning algorithms in image classification, makes
the potential gain in the health care sector large [42].

1.1 Thesis Overview
This thesis is divided into four parts. The first part consists of an introduction to the
subject, background information needed to understand the thesis and the data used
(Chapters 1-3). In the second part, the methods used in the thesis is conveyed (Chap-
ter 4). The third part (Chapter 5) presents the results produced and finally the fourth
part (Chapter 6-7) discusses the results and potential future improvements as well as
concluding the thesis.

Chapter 1 An overview of breast cancer, the relevance of the thesis and objective of
the thesis is given.

Chapter 2 Background information about breast cancer and some basic concepts of
deep learning is presented.
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1. Introduction

Chapter 3 A description of the different data sets used in the thesis.

Chapter 4 Presentation of the methodology of the thesis.

Chapter 5 The results of the thesis is presented.

Chapter 6 A discussion of the results of the thesis and potential future improvements
is given.

Chapter 7 The conclusion, which can be drawn from the presented results, is stated.

1.2 Background
Breast cancer is the most common cancer type in the world. 2 260 000 people were di-
agnosed with breast cancer and 685 000 people deceased from it year 2020 [36]. In low
income countries, breast cancer is commonly detected at a later stage thus entailing a
higher mortality rate. This is primarily the result from lack of breast cancer awareness
and limited resources for early detection and treatment [16]. Today, many women in
low income countries avoid seeking medical care when finding a lump in the breast,
due to fear of abandonment and a belief that cancer is an untreatable disease [14]. For
women who seek medical care, the course of action is in almost all cases mastectomy
due to lack of resources [48]. However, not all lumps are cancerous, many are benign
cysts or fibroadenoma. Mastectomy is therefore an unethical and unsafe method to use
without having a confirmed diagnosis and it can lead to other problems such as in-
fection [30] [3]. Mammography screening has been shown to lower breast cancer specific
mortality but the cost of a digital mammography machine is 20 000 to 50 000 euros
[26] [16]. A mammography screening also needs a developed health care infrastructure.
Therefore, it does not seem feasible to implement mammography in low resource set-
tings.

10



1.2 Background

A potential accessible and cost-effective tool to provide breast diagnostics in low re-
source settings is a pocket ultrasound probe, which costs around 4 000 euros [7]. Women
that seek medical care for breast symptoms can then undergo diagnostic imaging at
a lower cost. This would prevent unnecessary surgery for benign lesions whilst also
detecting breast cancer in an early stage. By adding decision support to the pocket
ultrasound using artificial intelligence, the tool can be more widely used, also by users
with limited experience.

1.2.1 Purpose and Objective Statement
The purpose of this project is to evaluate if the pocket ultrasound probe Vscan Air
from GE [8] in combination with a created deep learning classification algorithm could
be a possible diagnostic tool in low income countries. The objective of the thesis is to
produce a deep learning algorithm to classify pocket ultrasound images as malignant,
benign or normal. In order to obtain this, the following problem statement will be
analyzed and answered.

1.2.2 Problem Statement
• Is it possible to use ultrasound images as training data in order to classify pocket

ultrasound images as malignant, benign or normal?

• Can the results on the pocket ultrasound images be improved by training on
artificially augmented ultrasound images?

• Can the results on the pocket ultrasound images be improved by using transfer
learning to train the created neural networks on both ultrasound and pocket
ultrasound data?

• Is it possible to solely use pocket ultrasound images during training in order to
classify pocket ultrasound images as malignant, benign or normal?

• Which of the created deep learning models gives the highest accuracy on the
pocket ultrasound test set?

11
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Chapter 2

Technical Background

2.1 Breast Cancer Screening
Breast cancer is the most common cancer type and the most common cause of cancer-
related deaths for women globally [36]. The incidence is increasing due to, among
other factors, an ageing population and a change in reproductive patterns [41]. There-
fore, breast cancer has become a world wide health issue and the best way to decrease
the mortality rate of breast cancer is to find them at an early stage when they are easier
to treat. The most effective way to find the cancers at an early stage is by screening
for breast cancer [10] [16].

2.1.1 Mammography
The most effective screening method to detect breast cancers at an early stage is with
mammography screening. Mammography, an X-ray based method, can be used to
detect cancer that has not yet started to cause symptoms. Mammography screening can
therefore reduce the mortality of breast cancer through early detection [16]. However,
many cancers are missed in mammography, especially cancers in dense breasts where
the sensitivity can be as low as 30-48% [4]. This is due to overlaying dense breast tissue
that makes cancers harder to visualize in mammography images. Women with dense
breast tissue also have a 4-6 times higher risk of getting breast cancer compared with
women with
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2. Technical Background

entirely fatty breasts and the prevalence of dense breasts is about 40% of women in
ages 40-74 in Sweden[5].

2.1.2 Ultrasound
An attractive supplement to mammography, especially for patients with dense breast
tissue, is ultrasound since it visualizes the tissue without overlap and is more afford-
able and tolerable by patients [20]. An ultrasound image is created by high frequency
sound waves that are transmitted by the ultrasound probe. The sound waves will pen-
etrate the tissue until a mass or object appears. Some of the sound waves will then be
reflected back and the reflected sound waves are received by the ultrasound probe. A
connected computer then constructs an image out of the time of each echos return and
the speed of sound in the tissue. A traditional ultrasound machine consists of a probe
with a cord to a computer, where the computations are made, and a screen where the
image is shown in real time [12]. The resolution of an ultrasound image is divided
into lateral and axial resolution. The axial resolution depends on the frequency of the
sound waves, a high frequency entails higher attenuation in soft tissue which leads to
poor axial resolution in deeper tissue. If an object is located further down in the tissue,
a lower frequency needs to be used at the expense of axial resolution. Lateral resolu-
tion depends on the focus of the sound beam, a smaller width of the beam entails a
higher lateral resolution whilst a wider width gives a larger view of the tissue [46].

2.1.3 Pocket Ultrasound
The pocket ultrasound device used in this thesis is the Vscan Air ultrasound probe
developed by GE. The device is a wireless ultrasound probe that connects to a smart-
phone with bluetooth where the ultrasound image is shown in real time. The name
’pocket ultrasound’ comes from the fact that it is an ultrasound system that can fit in
your pocket. The probe has two different sides for different purposes. One side is a
curved ultrasound probe that sends lower frequency sound waves and the other side is
a linear ultrasound probe with higher frequency. The technique of creating the pocket
ultrasound images is based on the same principles as in an ordinary ultrasound system
[8]. Figure 2.1 displays the Vscan Air probe from GE with measurements.

2.1.4 Tumour Characteristics
When finding an object in the breast, the doctors want to determine if the finding is
malignant or benign. Malignant means cancerous and benign means a non-cancerous
finding. When determining if a finding is malignant or benign, characteristics such as

14



2.1 Breast Cancer Screening

Figure 2.1: Picture and measurements of the Vscan Air ultrasound probe
[8]. The illustration is used with permission from GE.

shape, acoustic enhancement/shadowing, echogenity and margins are evaluated [35].

Shape
When looking at the shape of a finding a malignant tumour usually have an irregular
shape as can be seen in Figure 2.2 (b). A benign finding on the other hand usually has
a regular shape, as displayed in Figure 2.2 (a).

Figure 2.2: Image of typical benign shape (a) and malignant shape (b) [18].

Margin
The margin of a finding refers to if the object is circumscribed or not.
A malignant finding usually have an unclear margin without clear circumscription
whilst a benign finding has a smooth margin. Therefore it is a good tool for determin-
ing if a tumour shown in an ultrasound image is malignant or not. This can be seen in
Figure 2.3.

Acoustic Enhancement and Shadowing
Acoustic enhancement typically appears in a breast ultrasound image in water filled
findings such as cysts. This is due to the low attenuation of sound in fluid which causes
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2. Technical Background

Figure 2.3: Image of circumscribed and uncircumscribed margins typical
for benign (a) and malignant (b) [18].

the tissue below to appear lighter underneath the finding [31]. Acoustic shadowing is
seen under solid mass findings. A solid mass will often have a high attenuation thus
entailing a shadowing underneath the finding [44]. These phenomenons are shown in
Figure 2.4.

Figure 2.4: Image of aucoustic enhancement (a) and acoustic shadowing
(b) of a finding [18].

Echoic Pattern
Echoic pattern is a good tool in breast ultrasound images to determine if a finding is
malignant or not. An echoic finding, shown in Figure 2.5 (a), will appear dark grey in
the ultrasound image and it is a common characteristic of a malignant tumour. A be-
nign cyst on the other hand is anechoic and will appear black in an ultrasound image,
see Figure 2.5 (b).

Figure 2.5: Image of an echoic (a) and anechoic (b) mass [18].
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2.2 Deep Learning

2.2 Deep Learning
AI is a broad term used in various ways today as well as its definition. AI is essentially
a machine that performs a task in a "smart" way. Machine learning is a sub-field in
AI where a machine teaches itself with help from designed features to perform a task
by training on a set of data and then ideally performing the same on new data [15].
Furthermore, artificial neural networks (ANN) is a segment within machine learning.
ANN is a set of algorithms inspired by the human brain and it consists of multiple
nodes, neurons, that are interconnected similar to neurons in a human brain [19] [34].
An ANN with more then three layers can be considered a deep learning algorithm, a
branch within ANN that refers to ’deeper’ neural networks [19]. The existence of deep
learning goes back to 1940 but has become essential in recent years due to massive
collection of data and advanced computer power that allows networks to be larger
and deeper. These factors are the reason for the high accuracy that deep learning
algorithms can achieve today [15]. The relationship between AI, machine learning,
artificial neural networks and deep learning is illustrated in Figure 2.6.

Figure 2.6: Relationship between artificial intelligence, machine learning,
artificial neural networks and deep learning shown in euler graph.

2.2.1 Multi Layer Perceptron
A multi-layer perceptron (MLP) is a type of ANN with one or more fully connected
hidden layers of type feed forward, meaning the input propagates forward in the layers
to the output as Figure 2.7 displays. Before deep learning became popular the MLP
networks usually consisted of two hidden layers but today many more layers are often
used [34].
Figure 2.7 illustrates a MLP with three input nodes, two fully connected hidden layers
and three output nodes. Since all layers are fully connected in a MLP, the computa-
tional problem becomes large with many nodes. For example in image classification,
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2. Technical Background

Figure 2.7: Illustration of a multi-layer perceptron with two hidden layers
and three output classes.

all pixels in an image would be connected to all hidden nodes. Furthermore the MLP
does not take spatial information, such as information from neighbouring inputs, to
account. Therefore, the MLP is not the optimal method to use in image classification
problems [11] [34]. Equation (2.1) shows the calculation of a MLP’s output y in one
layer from input x, activation function φ and weights w. n in the formula is the num-
ber of input nodes. Information about activation functions and weights is found in
the section below.

y = φ(
n∑

i=0

wixi) (2.1)

2.2.2 Convolutional Neural Networks
Convolutional neural networks (CNN), are commonly used in image classification
since they are good at recognizing spatial relations in inputs, for example information
from neighbouring pixels in an image. The CNN focuses mainly on feature detection
in multiple layers. The first layers detects small features such as brightness or lines
that are passed to the next layer, which builds more complex features out of the ones
passed from the layer before [34].

Activation Function

18



2.2 Deep Learning

The activation function plays an important role in artificial neural networks and it
can improve the performance noticeably if chosen correctly. Some common activation
functions for CNN models are ReLU, tanh and sigmoid shown in Equations (2.3),(2.4)
and (2.5) [17].

f (x) =
0 x < 0

x x ≥ 0
(2.2)

f (x) =
2

1 + e−2x − 1 (2.3)

f (x) =
1

1 + e−x (2.4)

Weights
Weights are numerical values that determines how important the input is to the out-
put, a small weight entails less influence on the output and a large value entails a large
influence on the output [29].

Kernel
A kernel is a matrix of weights that together with an activation function is a filter that
extracts features from the layer before. In a CNN, the weights in the kernel is decided
and updated by the model itself during training [34].

Convolutional Layer
The fundamental part of a CNN is the mathematical convolution. Equation (2.2) dis-
plays the convolutional computation H of a 2D image I with pixel coordinates (i,j) and
a kernel K with dimensions (m,n) [34].

H(i, j) = (I ∗ K)(i, j) =
∑
m,n

I(i − m, j − n)K(m.n) (2.5)

Pooling Layer
A pooling layer consists of a pooling filter without weights, that summarizes the fea-
tures created from a convolutional layer. The function of a pooling layer is to reduce
the dimensionality of the feature maps and thus also reduce the complexity of the
computations as well as make the model invariant to the position of the features. Max
pooling layers only store the highest feature value from a certain area in the feature map
and it is often used in combination with convolutional layers [34]. Figure 2.8 shows
a graphical explanation of the convolutional layer with an input image and a kernel
with size 3 x 3, marked red in the image, as well as a max pooling layer.
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2. Technical Background

Figure 2.8: Visual representation of a convolutional layer with kernel 3 x
3 and a max pooling layer with pool size 2 x 2 [13]. The image is added
to this thesis in consent with the terms in the Creative Commons license
[28].

Dropout Layer
Dropout is a useful tool to use during training in order to reduce overfitting, which is
when the model becomes to adapted to the training data. In the dropout layer some
nodes are randomly dropped, which reduces the risk of a few nodes dominating the
result of the output and therefore overfitting to the training data [49]. When design-
ing a dropout layer, a probability is chosen which is the likelihood that a node will be
dropped.
Loss Function
The loss function is a way to determine how good the model is. It measures the distance
between the output of the model and the expected output. In multiple class problems
the loss categorical cross entropy function (E) is used and the equation is shown in Equa-
tion (2.6). n is the number of classes in the data, in our case three: malignant, benign
and normal. y is the true label and ŷ is the probability of a sample belonging to class i
[6].

E = −
n∑

i=0

yilog(ŷi) (2.6)
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2.3 Training a CNN

2.3 Training a CNN
When training a machine learning algorithm it is challenging to foresee how well the
model performs on unseen data. Therefore, to evaluate this, the data set is divided into
three parts, training, validation and testing. The training data set is given to the algo-
rithm to train and learn from. The validation data set is used to estimate a generalized
performance on data not seen in training and to change hyper parameters to make the
model better. The performance on the validation data can however not surely be re-
produced on new unseen data since the hyper parameters are optimized based on the
results from the validation data. To be able to rely on the performance of a model it
is tested on the test set which then gives the generalized performance on new unseen
data that has not been used in any part of the training or optimization process [34].
The method of splitting the data set can be seen in Figure 2.9

Figure 2.9: Visual representation of dividing data set into training, vali-
dation and test sets.

2.3.1 K-fold Cross Validation
K-fold cross validation is a method to get reliable validation results which is especially
useful in cases of small data sets. This is due to the validation data set then being too
small to rely on during the training process. In k-fold cross validation the data set
is divided into k parts or ’folds’ where one fold is used for validation and the others
are used for training. K slightly different models will be produced due to k slightly
different training and validation sets. In the first model, the first fold is used for val-
idation, in the second model, the second fold is used as validation and so on until all
folds have been used as validation to produce k models. The estimated generalized
performance will then be the average of the k validation results [34]. Standard devia-
tion and mean value can be calculated from the K models in order to evaluate how the
performance differs. A graphical explanation of the k-fold cross validation method is
shown in Figure 2.10.
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2. Technical Background

Figure 2.10: Visual representation of the k-fold cross validation method
with k = 5 folds.

2.3.2 Transfer Learning
Transfer learning is a method where an already trained model or pre-trained model,
is used as a starting point for another model which makes the learning process less
difficult. In that way features of one problem can be reused for prediction in a new
similar problem.
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2.3 Training a CNN

Typically the first layers in the pre-trained model is reused and the last layers are
trained on the new data set, thus using the features from the pre-trained model and
optimizing them to the new problem [43]. Some common transfer learning networks
available in the Keras framework are VGG16 [24], InceptionV3 [23], InceptionRes-
NetV2 [22] and Xception [25]. These networks are trained on the ImageNet data set,
which is a data set commonly used in deep learning research and consists of more than
14 000 000 images of almost 22 000 different classes [45].

2.3.3 Data augmentation
Data augmentation is when small changes are made to the data which allows the al-
gorithm to see it as a different data point. For example images can be augmented by
adding a zoom, changing the intensity in the image or adding noise to the image. This
makes the data set larger and can force the algorithm to look at important features
instead of for example noise.

2.3.4 Hyper Parameters
Hyper parameters are changeable parameters that are altered in order to get the best
results on the validation data. These differ from for example the training weights that
are chosen and optimized by the model to perform good on the training data.

Batch Size and Epochs
Batch size is used in certain optimizing techniques and refers to how much data from the
data set is used before the weights are updated during training. Instead of processing
the whole data set at once, it is divided into batches of data used for training. After
processing one batch, the weights are updated. When the whole data set has been used
for training one epoch has been completed. The number of epochs used in the model
usually depends on the validation loss, the loss function from the validation data set.
The number of epochs to be run is chosen before the training process and early stopping
can be implemented to stop the model when the validation loss is no longer improving
[6].
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Learning Rate and Optimization Techniques
The learning rate is a positive value, usually between 0 and 1, used in the optimizing
technique to decide how much the weights should be updated per batch during training.
There are different optimizing techniques when training a model and a common one is
stochastic gradient decent. The method minimizes the loss function from the gradient
of P examples, one batch, in the training data [34]. Equation (2.7) displays the weight
update from one sample i in the batch. η is the learning rate and δE

δwi
is the gradient of

the loss function with weight wi .

wi → wi − η
δE
δwi

(2.7)

Another optimization technique is Adaptive Moment Estimation (ADAM), which have
shown success in multiple areas including image classification with CNN. ADAM is
similar to the stochastic gradient descent method but updates the learning rate of the
model depending on the past gradients [51].

Class Weights
Class weights is a hyper parameter that allows all classes to be equally important dur-
ing training. It is also possible to make one class more important then others if needed.
Class weights is useful when the data set is imbalanced since the most frequent class
naturally will influence the result more. To make all classes influence the result equally
much the less frequent classes will be weighted up [47]. In this thesis, the classes will be
weighted based on the frequency of their occurrence by using the argument ’balanced’
the scikit-learn build in method ’compute_class_weights’ [27].

2.3.5 Python
Python is a popular programming language to use when developing deep learning
projects, one reason for it being the large amount of available libraries and frameworks.
This allows the user to access many functions that makes it easier to solve the given
problem. A commonly used framework in deep learning projects is Keras [21] and it
is also used in this project. Some standard libraries in python that is commonly used
in deep learning is
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NumPy [32] for computations and Scikit-Learn [40] for data mining and analyzing
[33].

2.4 Evaluation Metrics

2.4.1 Sensitivity, Specificity and Accuracy
Sensitivity and specificity are often used as validation or test performance measures.
To calculate these metrics true positives (TP), true negatives (TN), false positives (FP) and
false negatives (FN) are needed [34]. Sensitivity is defined as the fraction of actual positives
that were correctly predicted and the definition is shown in Equation (2.8). Specificity
is defined as the fraction of actual negatives that were correctly predicted, definition in
Equation (2.9).

Sensitivity =
TP

TP + FN
(2.8)

Speci f icity =
TN

TN + FP
(2.9)

2.4.2 Confusion Matrix and Accuracy
A confusion matrix is another method for evaluating the performance of a model, for
example the performance on the validation or test set. In binary classifications, the
confusion matrix displays the number of TP, TN, FP and FN [34]. This can be seen in
Figure 2.11 (a). Figure 2.11 (b) displays a confusion matrix of three classes. Accuracy is
another common evaluation metric and it is defined as the fraction of correct predictions
out of all predictions and the definition is shown in Equation (2.10) [34].

Accuracy =
TN + TP

TN + FP + TP + FN
(2.10)

In order to calculate the accuracy from Figure 2.11 (b), the number of correct classi-
fications are divided by the total amount of predictions, as can be seen in Equation
(2.11). If the number of samples differ between classes, the weighted accuracy can be a
better performance measurement.
The weighted accuracy is calculated by taking the sensitivity for each class divided by
the total number of classes. Equation (2.12) displays the calculation of the weighted
accuracy for the confusion matrix in Figure 2.11 (b).
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(a) (b)

Figure 2.11: Confusion matrix with true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN), for a binary classi-
fication problem.

Accuracy :
3 + 16 + 4
6 + 18 + 8

= 0.72 (2.11)

Weighted Accuracy :
0.5 + 0.89 + 0.5

3
= 0.63 (2.12)

2.4.3 ROC Curve and AUC
The Receiver Operator Characteristic (ROC) curve is another way to measure the perfor-
mance in binary classification problems as well as the Area Under the ROC Curve (AUC).
The ROC curve is created by changing the threshold of predicted classes and plotting
the sensitivity against 1-specificity for each change in threshold value [34]. Threshold
is the value that decides which class a sample should belong to. The AUC value is the
area under the plotted curve and a higher value implies a better classifying model. The
AUC value is in the range 0 to 1 where a value of one implies a perfect classifier. Fig-
ure 2.12 illustrates three different ROC curves and their AUC values where the yellow
curve represents the best classifier and the green represents random guessing.
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In order to plot the ROC curve with three classes in this thesis, the malignant class was
plotted against the benign and normal class. This was done in all parts of the project.

Figure 2.12: Image of three different ROC curves and their AUC values
[2]
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Chapter 3

Data

Two types of data sets were used in this thesis, one ultrasound data set and one pocket
ultrasound data set. Both data sets consist of three classes, malignant, benign and
normal images. A detailed description of the data sets will be given in the section
below.

3.1 Ultrasound Data Set
Ultrasound data was collected retrospectively from three different sources: Swedish,
Egyptian and Dutch data. The ultrasound data set consisted of three different ultra-
sound data sets, one Dutch, one Swedish and one data set from Egypt.

3.1.1 Swedish Data Set
The Swedish data set consisted of 481 images acquired from women in Malmö, Sweden
year 2018 and retrieved during spring 2022. The study was approved by the Ethics
Review Authority (2019-04607) and informed consent was waived for retrospectively
collected ultrasound data. The ultrasound images were acquired with the ultrasound
system Logiq E9 och Logiq E10 by Unilabs Mammography Unit at Skåne University
Hospital. Table 3.1 displays the distribution of the different classes in the data set.
Some patients from spring 2022 were also retrieved.
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For these patients, pocket ultrasound images were also captured. Table 3.1 displays the
distribution of the Swedish data set.

Table 3.1: Class distribution of the Swedish data set.

Class Number of images
Malignant 164
Benign 121
Normal 196
Total 481

Figure 3.1: Example of a malignant, benign and normal image from the
Swedish data set.

3.1.2 Egyptian Data Set
The Egyptian data set consists of 780 images taken from 600 women by Cairo Uni-
versity at Baheya Hospital in Egypt 2018 [1]. Table 3.2 displays the distribution of the
Egyptian data set.
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3.1 Ultrasound Data Set

Table 3.2: Class distribution of the Egyptian data set.

Class Number of images
Malignant 210
Benign 437
Normal 133
Total 780

Figure 3.2: Example of a malignant, benign and normal image from the
Egyptian data set.

3.1.3 Dutch Data Set
The Dutch data set consists of 801 breast ultrasound images collected from the website
ultrasoundcases.info with permission from the owners. The website is a collaborative
work between FUJIFILM Healthcare Europe and Sonoskills. Sonoskills is the leading
ultrasound learning provider in Europe and FUJIFILM is a medical imaging company.
The data set only contained benign and malignant images and the normal images were
created by cropping normal parts of the benign and malignant images with consulta-
tion from radiologist Kristina Lång. Table 3.3 displays the distribution of the Dutch
data set.

Table 3.3: Class distribution of the Dutch data set.

Class Number of images
Malignant 388
Benign 312
Normal 101
Total 801
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Figure 3.3: Example of a malignant, benign and normal image from the
Dutch data set.

3.2 Pocket Ultrasound Data Set
The pocket ultrasound data set were collected prospectively during January-March
2022 at Unilabs Mammography Unit at Skåne University Hospital in Sweden. The
study was approved by the Ethics Review Authority (2019-04607) and written in-
formed consent was obtained for the pocket ultrasound acquisition. The images were
taken by the Vscan Air pocket ultrasound probe manufactured by GE and the images
are classified by radiologist Kristina Lång. Table 3.4 displays the distribution of the
pocket ultrasound data set. To my knowledge, this is the largest breast pocket ultra-
sound data set collected.

Table 3.4: Class distribution of the pocket ultrasound data set.

Class Number of images
Malignant 91
Benign 167
Normal 340
Total 598

Figure 3.4: Example of a malignant, benign and normal image from the
pocket ultrasound data set.
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Chapter 4

Methods

The project was divided into four different parts. The first part consisted of creating
CNN’s and training them on ultrasound data only. The two best performing models on
the pocket validation set were chosen for further evaluation and were used in all parts
of the project. In the second part, differences in the pocket ultrasound and ultrasound
images were examined and the two CNN’s from part one were trained on augmented
ultrasound images. The third part consisted of partly training on ultrasound images
and partly training on pocket ultrasound images using transfer learning. In the last
part of the project, the CNN’s were trained on pocket ultrasound images only. In all
parts of the project k-fold cross validation was used and the models were validated and
tested on ultrasound and pocket ultrasound images.

4.1 Pre-Processing Data

4.1.1 Data Set
The three ultrasound data sets were added together to one with the specifications
presented in Table 4.1. In this thesis I will refer to the joined ultrasound data set as
’the ultrasound data set’.

4.1.2 Zero Padding Images
The ultrasound and pocket ultrasound images are rectangular and differ in size. Since
the neural networks used takes quadratic images, the size of the ultrasound and pocket
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Table 4.1: Class distribution of joined ultrasound data set.

Class Number of images
Malignant 762
Benign 870
Normal 430
Total 2062

ultrasound images were modified. In order to resize the images from rectangular to
quadratic form without effecting the biological properties in the images, zero padding
was used. Figure 4.1 illustrates an image before and after zero padding.

Figure 4.1: Image before and after zero padding.

4.1.3 K-fold Cross Validation and Test Sets
Two test sets were set aside, one from the joined ultrasound data set and one from the
pocket ultrasound data set. The ultrasound test set consisted of 10% of the ultrasound
data set, 206 images, and the pocket ultrasound test set consisted of around 25% of the
pocket ultrasound data set, 152 images. After setting aside the test sets, the ultrasound
and pocket ultrasound data set was divided into five parts using the k-fold cross vali-
dation method. In all parts of the project the ultrasound data set folds were tied to the
pocket ultrasound data set folds, for example when training model 1, the ultrasound
validation set comes from joined fold 1, the ultrasound training set comes from what
is left after setting aside fold 1 and the pocket ultrasound validation set comes from
fold 1 in the pocket ultrasound set of images. A graphical explanation for this can be
seen in Figure 4.2.
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Figure 4.2: Illustration of the training process with 5-fold cross validation
on data sets joined and pocket. One model consists of a training set of
either ultrasound images or pocket ultrasound images or both, two vali-
dation and test sets, one ultrasound and one pocket.

4.2 Part 1: Training on Ultrasound Images
In this part of the project the models were trained on zeropadded ultrasound im-
ages. Multiple different neural networks were created and tested, among them were
transfer networks InceptionV3, InceptionResNetV2, Xception and VGG16. The two
models with most potential on the pocket ultrasound validation set was selected for
further optimization. The architecture of these models is described and illustrated
in the sections below. During training, the pocket ultrasound validation set was used
to determine hyper parameters and optimal epoch to stop the training. Five models
were created for each type of network, one for each fold in 5-fold cross validation.
The average pocket ultrasound and ultrasound validation accuracy for the five models
was calculated as well as the standard deviation of the pocket ultrasound validation
set and the ultrasound training accuracy. The models were then tested on the two test
sets. From testing the average pocket ultrasound and ultrasound accuracies for the five
models were calculated as well as the weighted pocket ultrasound accuracy, standard
deviation and AUC value. The confusion matrix and ROC curve was plotted from the
pocket ultrasound test predictions.

4.2.1 Architecture of the Simple CNN
In this report I will refer to the simple convolutional neural network used as ’the simple
CNN’. The hyper parameters used in this part was the following: input size 180x180x3,
activation function was ReLU on hidden layers and softmax on output layer. Kernel
size 3x3 in convolutional layers and and pool size 2x2 in max-pooling layers. Dropout
layer had 0.5 probability, batch size was 32 and early stopping was used. Figure 4.3
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displays the architecture of the simple CNN.

Figure 4.3: Illustration of the simple CNNs’ architecture.

4.2.2 Architecture of VGG16
The neural network trained after the VGG16 network had the following hyper pa-
rameters: Input size 5x5x512, same as the output from VGG16, activation function
was ReLU on hidden layers and softmax on output layer, kernel size was 3x3 and 2x2,
batch size was 32 and early stopping was used. Figure 4.4 displays the architecture of
the network trained after the VGG16 network.

Figure 4.4: Illustration of the VGG16 architecture.
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4.3 Part 2: Analyzing Properties in Ultrasound
and Pocket Ultrasound Images

4.3.1 Histogram
In order to analyze the intensity difference between the two types of images, intensity
histograms were made. Two images, one ultrasound and one pocket ultrasound image,
were collected from the same patient on the same area for each class malignant, benign
and normal. Two normalized pixel intensity histograms, one for ultrasound and one
for pocket ultrasound, were made for each class and compared. Another two average
pixel intensity histograms were made over all ultrasound and pocket ultrasound images
and the result was compared to the single class and image histograms.

4.3.2 Intensity and Noise Augmentation
Before augmenting the data set, k-fold cross validation was done and the validation sets
for each fold was not included in the augmentation process since the validation sets
should resemble the test sets. The intensity in the five training ultrasound folds were
then brightened and darkened using the ’ImageEnhance.Brightness’ method from the
’PIL’ library [37]. The pixel intensity was changed to 0.8 times the original value and 1.2
times the original value. The augmented images was added together with the original
ultrasound images to a new data set, keeping the 5 folds separate. Two types of noise
was also added to the ultrasound folds, gaussian noise and local variance (localvar)
noise by using the ’random_noise’ method in the ’skimage’ library [39]. Local variance
noise is gaussian distributed noise with a variance dependant on the intensity of the
image [39]. The images with gaussian and local variance noise were added to the new
data set containing the original ultrasound images, brighter and darker ultrasound
images and gaussian and local variance noise ultrasound images. The new data set was
thereby five times the size of the original ultrasound data set with five training folds,
zero padding was added after the augmentation of the images to avoid changing the
black pixels outside of the image. Figure 4.5 displays an example of an ultrasound
image before and after adding gaussian and localvar noise.

4.3.3 Training on Augmented Ultrasound Images
The two models described in section 4.2.1 and 4.2.2 were trained on zeropadded and
augmented ultrasound images. The unaugmented pocket ultrasound validation set
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Figure 4.5: Illustration of how an image can look with gaussian and local-
var noise.

was used to optimize the models and the same evaluation metrics as in part one was
produced for validation and testing and the results were compared.

4.4 Part 3: Training using Transfer Learning
In the third part, the ultrasound images were used as well as the pocket ultrasound
images during training using transfer learning. The models from part one were used
and the last layers of the models were re-trained on the pocket ultrasound images.
Figure 4.7 displays a graphical explanation of the transfer learning in part three. The
evaluation metrics produced in part one and two were produced after validation and
testing and the results were compared.

4.5 Part 4: Training on Pocket Ultrasound Im-
ages

In the last part of the project the two types of networks were trained solely on pocket
ultrasound images and then validated and tested on both pocket ultrasound and ul-
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Figure 4.6: Illustration of transfer learning in the simple CNN.

Figure 4.7: Illustration of transfer learning in the VGG16 network.

trasound images. The same evaluation metrics as in the other parts, were produced.
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Chapter 5

Results

5.1 Part 1: Training on Ultrasound Images
The simple CNN and the transfer network VGG16 was used in all 4 parts of the
project. In the first part of the project, where the networks were trained on ultra-
sound images, the VGG16 got the highest accuracy on the validation pocket data set,
which is displayed in Table 5.1. It also has the lowest standard deviation, meaning
the pocket validation accuracy of the five models in VGG16 differ less from model to
model then the five simple CNN models.

Table 5.1: Results from training the simple CNN and VGG16 on ultra-
sound images and validating on ultrasound and pocket ultrasound images.

Network Accuracy Accuracy Accuracy Standard Deviation
Training Validation Validation Validation

Ultrasound Ultrasound Pocket Ultrasound Pocket Ultrasound

Simple CNN 0.811 0.709 0.792 0.099
VGG16 0.817 0.740 0.802 0.051

Table 5.2 shows the results from the test set on the simple CNN and the VGG16 trans-
fer network. The table displays the accuracy on the pocket ultrasound test set and the
ultrasound test set as well as the weighted accuracy, standard deviation and AUC value
of the pocket ultrasound test set.
The highest accuracy, AUC value and the best ROC curve, shown in Figure 5.1, was
given by the VGG16 as well as a lower standard deviation on the five models’ test
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Table 5.2: Results from testing the simple CNN and VGG16 on ultrasound
and pocket ultrasound images.

Network Accuracy Accuracy Weighted Accuracy Standard Deviation AUC
Test Test Test Test Test

Ultrasound Pocket Ultrasound Pocket Ultrasound Pocket Ultrasound Pocket Ultrasound

Simple CNN 0.674 0.817 0.794 0.095 0.91
VGG16 0.718 0.825 0.728 0.037 0.94

pocket accuracy. Although, the weighted accuracy is higher for the simple CNN thus
entailing this model to have a higher accuracy on malignant images.

Figure 5.1: ROC curve on the pocket ultrasound test set for the simple
CNN and VGG16 after training on ultrasound images.

Figure 5.2 displays the confusion matrix on the pocket ultrasound test set from part
one. The figure shows the simple CNN having a higher accuracy on malignant images
then the VGG16 which supports the weighted accuracy in Table 5.2 being larger for
the simple CNN.

5.2 Part 2: Augmentation of ultrasound images

5.2.1 Histogram
The images used for making a histogram of the same patient and respective area are
displayed in Figure 5.3 and 5.4 where Figure 5.3 shows the pocket ultrasound images
and Figure 5.4 shows the ultrasound images.
The histograms corresponding to the images in Figure 5.3 and 5.4 are displayed in
Figure 5.5. In this figure, the pocket ultrasound images seem to have more black pixels
in both the malignant, benign and normal image. The ultrasound images on the other
hand seem to have a higher frequency in the middle of the gray scale.
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Figure 5.2: Confusion matrix on the pocket ultrasound test set for the
simple CNN and VGG16 after training on ultrasound images.

Figure 5.3: Malignant, benign and normal pocket ultrasound images.

Figure 5.4: Malignant, benign and normal ultrasound images.

The histograms of pixel intensity in all ultrasound and pocket ultrasound images are
showed in Figure 5.6. The figure displays the pocket ultrasound images having slightly
higher intensity and twice as many black pixels then the ultrasound images. The ultra-
sound images are more evenly distributed and have more white pixels then the pocket
ultrasound images. This conforms with the results from the histograms in Figure 5.5.
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Figure 5.5: Histograms over pixel intensity in malignant, benign and nor-
mal ultrasound and pocket ultrasound image. The green line corresponds
to the ultrasound image and the purple line corresponds to the pocket
ultrasound image.

Figure 5.6: Average histogram over pixel intensity in ultrasound and
pocket ultrasound images.

5.2.2 Resolution
The resolution in an ultrasound image is highly dependent on the user, in real time
the doctor often changes the image view of the ultrasound probe. In order to see
deeper into the mass the frequency needs to decrease for the sound waves to penetrate
deeper. This will entail a decrease of resolution. Therefore it is hard to determine the
difference in frequency and resolution between the pocket ultrasound and ultrasound
probe. The frequency range of the pocket ultrasound on the linear probe side is 3-
12MHz with a center frequency of 7.7MHz and the Logiq E9 uses the frequency range
6-15MHz [9] [38].

5.2.3 Training on Augmented Ultrasound Images
Table 5.3 shows the results from training on augmented ultrasound images which dis-
plays the simple CNN performing better on the pocket ultrasound validation set. It
also has a lower standard deviation then the VGG16 model. The training accuracy and
ultrasound validation accuracy is however higher for the VGG16 model.
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Table 5.3: Results from training the simple CNN and VGG16 on aug-
mented ultrasound images and validating on ultrasound and pocket ul-
trasound images.

Network Accuracy Accuracy Accuracy Standard Deviation
Training Validation Validation Validation

Ultrasound Ultrasound Pocket Ultrasound Pocket Ultrasound

Simple CNN 0.770 0.702 0.778 0.068
VGG16 0.887 0.806 0.758 0.1285

After testing, the simple CNN still performed better then the VGG16 in terms of
accuracy and weighted accuracy. However, the AUC value is larger and the ROC
curve in 5.7 is better for VGG16.

Table 5.4: Results from testing the simple CNN and VGG16 on aug-
mented ultrasound and pocket ultrasound images.

Network Accuracy Accuracy Weighted Accuracy Standard Deviation AUC
Test Test Test Test Test

Ultrasound Pocket Ultrasound Pocket Ultrasound Pocket Ultrasound Pocket Ultrasound

Simple CNN 0.684 0.818 0.761 0.039 0.88
VGG16 0.791 0.811 0.647 0.036 0.92

Figure 5.7: ROC curve on the pocket ultrasound test set for the simple
CNN and VGG16 after training on augmented ultrasound images

The confusion matrix in Figure 5.8 displays the simple CNN performing better on the
malignant class then the VGG16. However, VGG16 seem to perform better on the
benign and normal class.
When comparing the results from part one and part two, the augmentation of the
images does not seem to have a large impact on the generalized performance of the
models. The VGG16 shows slightly better results in terms of pocket ultrasound test
accuracy in part one as well as the ROC value and curve shown in Figure 5.1 and
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Figure 5.8: Confusion matrix on the pocket ultrasound test set for the
simple CNN and VGG16 after training on augmented ultrasound images.

5.7. The augmentation does therefore not seem to help the neural networks to better
classify the pocket ultrasound images.

5.3 Part 3: Training on Ultrasound and Pocket
Ultrasound Images

In part three, where transfer learning was used, the generalized performance is in-
creased noticeably. Table 5.5 displays a higher training accuracy for both VGG16 and
the simple CNN than the other parts of the project. The simple CNN is also slightly
higher in training accuracy and pocket validation accuracy then the VGG16 models.

Table 5.5: Results from training and validating the simple CNN and
VGG16 on both ultrasound and pocket ultrasound images.

Network Accuracy Accuracy Accuracy Standard Deviation
Training Validation Validation Validation

Ultrasound Ultrasound Pocket Ultrasound Pocket Ultrasound

Simple CNN 0.927 0.511 0.797 0.082
VGG16 0.890 0.673 0.787 0.079

After testing, the VGG16 performs noticeably better then the simple CNN on all
accounts, as Figure 5.6 displays. The ROC curve and AUC value are also better for the
VGG16 then for the simple CNN as can be viewed in Figure 5.9.
The VGG16 also performs good on all three classes as can be seen in the right confusion
matrix in Figure 5.10 whereas the simple CNN has trouble classifying malignant and
normal images as benign, as can be seen in the left confusion matrix.
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Table 5.6: Results from testing the simple CNN and VGG16 on ultra-
sound and pocket ultrasound images.

Network Accuracy Accuracy Weighted Accuracy Standard Deviation AUC
Test Test Test Test Test

Ultrasound Pocket Ultrasound Pocket Ultrasound Pocket Ultrasound Pocket Ultrasound

Simple CNN 0.478 0.795 0.777 0.070 0.89
VGG16 0.662 0.868 0.849 0.04 0.93

Figure 5.9: ROC curve and AUC value on the pocket ultrasound test set
for the simple CNN and VGG16 after training on ultrasound and pocket
ultrasound images.

Figure 5.10: Confusion matrix on the pocket ultrasound test set for the
simple CNN and VGG16 after training on ultrasound images and pocket
ultrasound images.

When comparing the results from part three with the first two parts of the project,
the VGG16 in part three seems to have the best overall performance. The pocket
ultrasound test accuracy and weighted accuracy in Table 5.6 is better then in the other
parts, as viewed in Table 5.4 and 5.2. The ROC curve and value from Figure 5.9 is better
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or approximately the same compared to the one in part one and two shown in Figure
5.1 and 5.7.

5.4 Part 4: Training on Pocket Ultrasound Im-
ages

The last part of the project where the networks were trained on only pocket ultrasound
images, the validation accuracy is quite low for both pocket ultrasound and ultrasound
images.
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Table 5.7: Results from training the simple CNN and VGG16 on pocket
ultrasound images and validating on ultrasound and pocket ultrasound
images.

Network Accuracy Accuracy Accuracy Standard Deviation
Training Validation Validation Validation

Ultrasound Ultrasound Pocket Ultrasound Pocket Ultrasound

Simple CNN 0.808 0.315 0.741 0.041
VGG16 0.935 0.528 0.768 0.049

After testing, the pocket validation accuracy and weighted accuracy is better for the
VGG16 then the simple CNN, as Table 5.8 displays. The standard deviation of the five
VGG16 models is also noticeably lower then the five simple CNN models.

Table 5.8: Results from testing the simple CNN and VGG16 on ultra-
sound and pocket ultrasound images.

Network Accuracy Accuracy Weighted Accuracy Standard Deviation AUC
Test Test Test Test Test

Ultrasound Pocket Ultrasound Pocket Ultrasound Pocket Ultrasound Pocket Ultrasound

Simple CNN 0.310 0.797 0.682 0.114 0.85
VGG16 0.533 0.825 0.814 0.027 0.90

Figure 5.11: ROC curve and AUC value on the pocket ultrasound test
set for the simple CNN and VGG16 after training on pocket ultrasound
images.

The confusion matrix in Figure 5.12 display the VGG16 being good at classifying all
classes whereas the simple CNN have trouble classifying malignant images and benign
images as normal.
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Figure 5.12: Confusion matrix on the pocket ultrasound test set for the
simple CNN and VGG16 after training on pocket ultrasound images.

Comparing the results from part four to the other parts of the thesis, the pocket val-
idation accuracy, in Table 5.8, is approximately the same as in part one and two. The
standard deviation of the five VGG16 models, shown in Table 5.8, is lower than in any
other part of the project. Furthermore, the ROC curve and AUC value displayed in
5.11 are worse then in the other parts of the project.
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Chapter 6

Discussion

6.1 Discussion of Performance
From the results in chapter 5 one can see that training on ultrasound images helps to
classify the pocket ultrasound images but it seems the differences of the two types of
ultrasound images is too great to get a good accuracy by solely training on ultrasound
images. Training on only pocket ultrasound images is not optimal with the amount of
data available but considering the accuracy given, it could be the best approach if more
data is collected. The best approach from this thesis, given the amount of data, would
reasonably be to train the model partly on ultrasound images and then optimizing the
model features on pocket ultrasound data, i.e. using transfer learning. When looking
at the results, the VGG16 model in part three seems to perform best on the pocket
ultrasound data which agrees with the theory mentioned above.

6.2 Evaluation of Data sets

6.2.1 Egyptian Data Set
Many images in the Egyptian data set contains annotations of findings and the size of
findings. This can affect the result of the classification since only benign and malignant
images can have annotations, there is nothing to annotate in a normal image. The
algorithm can therefore learn that annotations and marks in the image is a feature
for malignant or benign images. The images tested by the algorithm might not have
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annotations and could therefore be wrongly classified as normal. However since the
ultrasound data set consists of three different data sets where two of them are lacking
annotations this will probably not affect the overall result.

6.2.2 Dutch Data Set
The online data set only contains images of benign and malignant findings. The nor-
mal images was created by cropping normal parts of the existing images. The data
set is therefore not balanced, only 1/6 of the images are normal and these images are
more zoomed in than the rest. This could lead to the algorithms finding features based
on the zoom of the image and not the actual important features. However since the
other data sets contain normal images the algorithm should not choose features of the
normal class based solely on the cropped normal images in the Dutch data set.

6.2.3 Swedish Data Set
Some of the patients the pocket ultrasound images were taken from also had ultra-
sound images that were used in the project as well. They were mainly used to make
the pixel intensity histograms but they were also included in the joined ultrasound
data set during training. There is therefore a possibility that a pocket ultrasound im-
age in the validation set is similar to an image in the ultrasound training data set since
the images could be taken on the same patient and finding. This can entail a better
result on the validation due to the algorithm recognizing an image from the training
data set. It could also entail the algorithm to not learn and find important features
from the similar image since it already knows the answer. The pocket ultrasound pa-
tients’ images in the test set is however not present in the ultrasound training set.
Therefore the effect of the matter is unessential to the results produced since the ef-
fect only occurs to the validation data. It can however entail the validation data to be
a worse representation of the test data and therefore the best model selected from the
validation data may not be the best model for the test data.

6.2.4 Pocket Ultrasound Data Set
Since multiple images were taken on the same patient, the data sets were divided so
that one patients’ images would not exist in both training and testing sets. This avoids
bias problems where the algorithm has already seen similar data in the training set.
The method was also used when creating the validation sets since they should repre-
sent the test data. Since the data set is so small and many images were taken from the
same patient, some of the pocket validation sets only consists of one patient in the
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malignant class. The validation results will therefore be highly effected by how diffi-
cult that specific finding is. Some images were also taken from patients with unusual
findings, such as scar tissue from mastectomy or inflammations and since the data set
is small these images could be hard for the algorithm to classify due to lack of such
images in the training set. When training the model, this was the case on one of the
five validation sets which constantly on all parts of the project gave significantly lower
results than the other validation sets due to it randomly happen to have hard patients
to classify. The overall validation results would therefore be lower since it is calculated
by taking an average over all validation results. This could explain why the validation
results are lower then the test result in almost all parts of the project. The problem
would probably be solved with the use of more pocket ultrasound data. The collection
of large data sets of pocket ultrasound images is cumbersome, timewise, since it is not
part of routine health care and requires informed consent. Furthermore, the pocket
ultrasound images were classified by one radiologist. To be more sure of the true class
of the images, two radiologist should preferably classify the images. However, if un-
certainty existed regarding the diagnosis of a finding, samples are taken. In this thesis,
the classes of these ’uncertain’ images were determined after the sample results were
known.

6.3 Limitations
The created algorithm is made for classifying pocket ultrasound images and is opti-
mized to do so meaning it is not trained to classify ordinary ultrasound images or
pocket ultrasound images in other parts of the body then the breasts. The pocket ul-
trasound images are taken from the Vscan Air probe manufactured by GE, meaning
the results are optimized from this device and is not surely to perform the same on
images from similar devices from different manufacturers.

6.4 Future Development

6.4.1 Double K-fold Cross Validation Loops
In this project, a situation were the validation performance was lower then the test
performance appeared. The validation data is divided, as mentioned before, into five
different parts. The test data however is the same in all five models thus entailing
the images in the test set to be highly influential. Since the data set is small, there is a
possibility that easily classified images randomly happen to end up in the test set. This
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will give a higher test performance which may not agree on new data. A way to avoid
this would be to implement a double k-fold cross validation loop where k different test
sets are produced in the same way as the k validation sets. This method was however
not optimal in this project due to lack of data but could be a future development of this
thesis if more data is collected. Figure 6.1 describes the double k-fold cross validation
method.

Figure 6.1: Illustration of the double k-fold cross validation method. The
image displays an example with 5 folds.

6.4.2 Voting

In this thesis the test set was predicted by all five models and all their predictions were
used to calculate the evaluation metrics in the result chapter. If one model is bad at
classifying a certain image its’ prediction will influence the result. One way to avoid
this is to implement voting of the models. All five models would then classify one image
and the most common classification from the five models would be the predicted class
of that image.

6.4.3 Heatmaps /Grad-CAM

The results from this thesis does not portray what in the images that makes the algo-
rithm classify them a certain way. To understand what features the algorithm finds
fitting to a certain class, Grad-CAM can be used. The grad-CAM creates a heatmap
over a predicted image and displays in a colour scheme what part of the image that is
an important feature in the classification [50]. This would entail better understanding
of the model and possibly also entail better solutions and classification results.
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6.4.4 Evaluation of the needed amount of data
It would be useful to get an understanding of how much pocket ultrasound data is
needed to produce an acceptable accuracy. One way to achieve this is by training,
validating and testing the models on only ultrasound data to get an idea of how good
the model could be with more data available. The number of ultrasound images would
then be reduced to the same amount of images as the pocket ultrasound data set has.
These images would be used in training to get an idea of if the complexity of the
problem is the same for pocket ultrasound and ultrasound images. The amount of
ultrasound images would then be increased step wise and training would occur in every
step. The accuracy can then be plotted against the number of images to get an idea of
how many pocket ultrasound images would be needed to attain a certain accuracy.
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Chapter 7

Conclusion

The results obtained in this thesis suggest that using ultrasound images during training
helps to successfully classify malignant, benign and normal tissue in pocket ultrasound
images. However, the two types of ultrasound images differ to some extent, thus lim-
iting higher performance. Furthermore, using augmented ultrasound images during
training does not affect the overall performance of the models.

Due to limited data, training solely on pocket ultrasound images is not optimal but
could be a good method to use with more data available. The best model obtained
in this thesis was created by using ultrasound and pocket ultrasound images in trans-
fer learning. The test accuracy from this model was 86.8% and the AUC value was 0.93.

From the results in this thesis it seems possible to use deep learning in order to classify
breast cancer in pocket ultrasound images. This method could therefore have a great
impact, especially in low income countries. After collecting more data and the model
is perfected to perform at a high accuracy, the algorithm together with a pocket ul-
trasound probe could possibly provide breast diagnostics in low-resource settings. It
could thereby help reduce the mortality of breast cancer and avoid unnecessary mas-
tectomies of benign breast findings.
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