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Abstract
The purpose of this project is to investigate the performance of a spectrometer capable of meas-

uring both momentum and spin of particles. More specifically, we investigated what parameters are
required in order to separate particles with opposite spins at least 1 mm. This project can serve as
the first step in the process of building such a spectrometer.

This spectrometer takes the core principles of the Stern-Gerlach device and the modern time-of-
flight spectrometer and combines them in order to measure spin in an alternative way; the device
would contain, extract and measure particles in the same manner as the time-of-flight spectrometer.
However, it would do so by using an inhomogeneous magnetic field rather than a homogeneous one.
This separates particles with spin up and down, similar to what was done in the original Stern-Gerlach
experiment.

During this project, a numerical simulation was developed to identify and test the simplest,
realistic design. It was discovered that helium ions require a time of flight of ∼ 1 ms in order to
reach a 1 mm spin separation. In this case, a light source with a repetition rate of 1 kHz or slower
is required for operation. For electrons, it was found that they require a time of flight ∼ 10 µs in
order to achieve the target separation. In this case, the upper limit on the repetition rate of the light
source is 100 kHz. Lastly, a set of prescriptions were made for how to improve the simulation and
how to operate the device under different conditions.
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1 Introduction
1.1 Motivation
At the time of writing, the most recent Nobel prize in physics was awarded to Alain Aspect, John Clauser
and Anton Zeilinger for their work with entangled photons. It is clear that entanglement in quantum
information is a growing field of study and so new techniques for the measurement of entanglement
between massive particles is becoming of importance. One relevant line of inquiry is how can entangle-
ment of charged particles be measured? More specifically: Is it possible to measure the entanglement in
spin between electrons and ions created by photoionization?

The spin of massive particles was experimentally discovered by Otto Stern and Walter Gerlach one
century ago. In their experiment, a beam of neutral atoms was deflected by a strong in-homogeneous
magnetic field, revealing that atoms possess a magnetic moment. In the case of silver atoms, this magnetic
moment could only originate from the spin angular momentum of the valence electron.

The spin of the electron upon photoionization is usually investigated with a Mott spin-polarimeter
[1]. In this setup, an electron beam of uncertain polarity is scattered off a solid state target, usually
made of gold, who acts as a polarimeter. Due to spin-orbit coupling, the scattering potential will not
be the same for different spin polarities and the scattering angle will differ, achieving thereby a spin
separation in space. Hence the electron beams with different spins can be analysed. This approach
is used at synchrotron facilities, for instance at the BLOCH beamline of the MAX-IV laboratory for
material science. However, this method suffers from a very low efficiency since most of the electrons are
not scattered by the target, and efforts are made to improve this instrument by developing new design
or fabricating new solid target material [2].

For measuring the spin of the ions, the Penning trap is often used for high precision measurements
of the magnetic moments [3, 4]. This trap confines particles with electrostatic and magnetostatic fields,
a technique which has proven successful for measuring g-factors [5]. However, in the process of enclosing
the particles inside the trap they are removed from any prior context and so this method cannot easily
take measurements in dynamic situations, such as ionization event at a high repetition rate of 1kHz.

Over the past two decades, the development of charged particle spectrometers in the field of atomic
and molecular physics has made it possible to measure not only the kinetic energy of the electron
or the mass of the ions but also the momentum of these particles. To this end, the spectrometers
are equipped with specialized detectors which can measure both the impact position and the time of
flight simultaneously. With the help of a homogeneous electric extraction field, sometimes paired with
a homogeneous magnetic field for confinement, the complete kinematics of emitted electrons and ions
can be determined. As these charged particles have a magnetic moment, a natural extension of these
spectrometers could be to use an inhomogeneous magnetic field, with a strong gradient, to measure the
spin of electrons and ions. This approach would be similar to the method seen in the Stern-Gerlach
experiment but, crucially, it could work for charged particles rather than a neutral atomic beam.

However, studying charged particles in this manner presents a substantial challenge. Indeed, given
a 1 T magnetic field, a singly charged ion moving with a thermal speed around 500 − 1000 m/s would
feel a Lorentz force of 10−16 N. On the other hand, the force due to the interaction between the spin
magnetic moment and the gradient of an inhomogeneous magnetic field, assuming a gradient around
∼ 1 T/cm, is only around 10−22 N. In this case, the Lorentz force dominates by 6 orders of magnitude,
which illustrates the difficulty with this type of measurement. In order to use this principle to measure
the spin, the force acting on the spin must be distinguished from a force upwards of one million times
stronger.

The aim of this project is to numerically explore the trajectories of charged particles as they interact
with the combined Lorentz-Stern-Gerlach force. Ultimately, this study should be able to identify the
range of parameters that are feasible and what types of constraints are required in order to simultaneously
measure the spin of electrons and ions.

1.2 Background
In the following sections, the principle of modern time-of-flight spectrometer, used in atomic and molecu-
lar physics, is explained as well at the original Stern-Gerlach apparatus. Lastly, these ideas are combined
when discussing the working principles of the proposed design for the new spectrometer.
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1.2.1 Double time-of-flight spectrometer

Figure 1: A 3D rendering of a double time-of-flight spectrometer, adapted from [6]. Incoming light,
marked in blue, enters the spectrometer and ionizes an atom. The electrons are separated from the
ion by the electric field, which accelerates the particles in opposite directions. The electrons, here seen
as orange trajectories, follow a helical path and complete several periods before impacting the detector
screen. This cyclotron motion is induced by the magnetic field. The ion, seen in red, follows a path that
is only slightly curved.

Modern time-of-flight spectrometers can measure the initial 3D momentum of all charged particles after
an ionization event by recording the impact coordinates on detectors and measuring the time it took to
reach the detector, the time of flight. One example, built in-house at the department of physics [7], is
presented in figure 1. The electron trajectories are contained within the detector by a cyclotron motion
induced by the magnetic field, preventing the electrons from colliding with the spectrometer wall. The
ion also follows a helical trajectory but due to its heavy mass the cyclotron period is longer. As such,
the ion does not have time to complete a single full revolution before coming to a stop.

The spectrometer is in a vacuum chamber containing two detectors, consisting of a microchannel
plate and a delay-line detector each, and a set of electrodes that apply a weak homogeneous electric field
along the principal axis of the spectrometer, with a typical strength of ≤ 1000 V/m. The electric field is
used to separate particles according to their charge. If the field persists throughout the spectrometer, it
is known as a single-field configuration. If the field instead terminates at some point before the detectors,
it is known as a two-field configuration, where the field-free region is denoted as the drift tube. The
length of the active region and the drift tube can be chosen such that a time-focusing condition is fulfilled
[8]. For the purposes of this project, only the single-field configuration is considered. In addition to the
electric field some devices, such as the one in Lund, also employ a homogeneous magnetic field in order
to radially confine the particles in a cyclotron motion.

While in operation, a pulsed light source will intersect an atomic or molecular beam. When the
particles are ionized the dissociation products interact with the external fields via the Lorentz force:

FFFL = qEEE + qvvv × BBB. (1)
Here it is useful to define the cyclotron radius as:

R = mvt

|q|B
. (2)

where m is the mass of the charged particle, q its charge and vt its transverse velocity with respect to the
magnetic field. For the interested reader, the solutions to the equations of motion are given in appendix
A.1 When a charged particle eventually reaches a detector it strikes microchannel plates which sets of
an electron cascade that is projected onto a delay-line detector behind the microchannel plates. The
delay-line detector then records the impact coordinates of the particle. With each laser pulse, a start
signal is sent to a time-to-digital converter and when a particle reaches the detector, the microchannel
plates provide the stop signal; it is in this manner that the time of flight is measured. With these data
points in hand, that is the impact position and the time of flight, it is then possible to calculate all
components of the initial momentum.
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1.2.2 The Stern-Gerlach apparatus

The Stern-Gerlach device is, like the time-of-flight spectrometer, situated inside an evacuated chamber
with an injection port in one end, a detector in the other and a pair of magnets between these. I diagram
of the setup can be found in figure 2. When in use, a particle beam of neutral particles is shot in through
the port and pass through a gap between the magnets, finally impacting the detector on the other side.
Since the particles are neutral, the only force acting on them will be due to the interaction between their
dipole moments and the magnetic field gradient. It was in this way Stern and Gerlach first showed the
quantization of the magnetic moment of silver atoms [9].

Figure 2: Simple diagram of a Stern-Gerlach device. The two magnets, labeled as north and south,
produce an inhomogeneous magnetic field in the region between them marked by the transparent gray
field lines. This deflects the trajectories of the neutral particles that are ejected from the furnace. The
turqoise curve represents the trajectory of a particle with spin up with respect to the magnetic field
while the red curve represents a particle with spin down. The particles interact with the field gradient
as they pass through region d and then drift in the region L before impacting the detector, producing a
spin separation ∆z.

It is well-known that inside a homogeneous external field, a magnetic dipole may experience a torque
but never a net force. Once a field gradient is introduced, however, this changes. Here the magnetic
field gradient refers to the gradient of the scalar product of the magnetic moment and the magnetic field
divided by the magnitude of the magnetic moment. That is

1
|µµµ|

∇(µµµ · BBB) = 1
µ

∇(µB cos θ) = ∇B cos θ. (3)

Here µµµ is the magnetic moment of the particle, BBB is the magnetic field and θ is the angle between them.
The force on a magnetic dipole in an inhomogeneous external field takes the following form:

FFFSG = ∇ (µµµ · BBB) . (4)

It is this force that is utilized in a Stern-Gerlach device in order to separate particles according to
their spins. Perhaps the most obvious example of this force is when two ordinary bar magnets attract
one another. Interestingly this expression holds for quantum particles as well, though, in this case the
direction and magnitude of the magnetic moment are both quantized.

1.3 The Stern-Gerlach spectrometer for charged particles
Now the principles of measurement of charged particles in (E,B) fields and techniques for how spin can
be measured have been reviewed. This project proposes to study the motion of charged particles in
the presence of an inhomogeneous magnetic field. The inhomogeniety of the field produce a difference
between the case where the particle has a spin up (parallel to the magnetic field) and when the spin
is down (antiparallel to the magnetic field), given otherwise identical initial conditions, similarly to the
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Stern-Gerlach experiment. In this work, only particles with a magnetic moment such that µµµ = (0, 0, ±µ)
are considered.

The conceptual setup that was studied is depicted in figure 3, where the motion of an ion in a magnetic
and electric field is illustrated. A simple coil is used to adjust the parameter of the magnetic field. The
purpose of this setup is not to precisely measure natural constants, such as the Bohr magneton, but rather
to investigate spin in dynamic situations while simultaneously recording the kinematics of the particle.
The plan is to extract and measure particles in the same manner as the time-of-flight spectrometer. Due
to time constraints only a simplified setup with a single-field time-of-flight spectrometer is considered.

Figure 3: Schematics of the proposed setup to measure the spin of a positively charged particle. The
turquoise particle beam, with a velocity v0v0v0, intersects with the red pulsed laser that produces an ion.
The ion then moves along the green, helical trajectory until it reaches the gray detector plate. The white
ring denotes the coil which produces a strong inhomegenous magnetic field. Both magnetic and electric
fields are aligned along the spectrometer axis which is denoted by the black line.

Let the electric and magnetic fields take the following forms in Cartesian coordinates:

EEE = (0, 0, E), BBB = (0, 0, B), B = B
(
z(t)

)
, (5)

with a gradient
∇ (µµµ · BBB) = µ∇B cos θ = µ

dB

dz
cos θ ẑ̂ẑz. (6)

In reality it can be difficult to construct such a magnetic field; the magnetic field gradient necessarily has
components in two, or more, Cartesian directions. However, assuming a coil to be infinitely large with
respect to the cyclotron radius this approximation should be satisfied, providing the essential results
regarding the spin separation in space. The other components of the gradient would complicate the
transverse equations of motion but it would not impact the longitudinal motion or the spin separation.
In this context, given these fields and a magnetic moment such that θ = 0 or θ = π, the force on some
particle becomes

FFFtot = FFFB + FFFE + FFFµ = qvyB x̂̂x̂x − qvxB ŷ̂ŷy +
(

qE ± µ
dB

dz

)
ẑ̂ẑz. (7)

The total force, FFFtot, constitutes of the Lorentz force, FFFB +FFFE , and the Stern-Gerlach force, here denoted
FFFµ. m and q are the mass and charge of the particle respectively. From this, the equations of motion
can be formulated:

v̇x = q

m
vyB, v̇y = − q

m
vxB, v̇z = qE

m
± µ

m

dB

dz
. (8)

Here vi are the Cartesian components of the velocity of the particle. No obvious analytical solutions were
found (see appendix A.2), but it is possible to numerically integrate these equations, which is in essence
all that is needed for this project. One difficulty with this approach, however, is that the Stern-Gerlach
force is around five orders of magnitude smaller than the Lorentz force and, as such, high precision is
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required for the numerical approach to work. In order to be considered successful, the simulations would
need to produce an observable spin separation between spin up/down cases given reasonable parameters.

As mentioned earlier, a simple coil made circular loop of current is used to produce a magnetic field.
On the symmetry axis of the coil, the magnetic field takes the following form:

BBB = µ0I

2
R2

(R2 + z2)3/2 ẑ̂ẑz = B0R3

(R2 + z2)3/2 ẑ̂ẑz. (9)

where I is the current through the loop, R is the radius of the loop, B0 is the magnetic field strength at
the center of the loop and z is the height at which the field is being evaluated. Furthermore, µ0 is the
permeability of free space. As soon as there is some transverse deviation, call it ε, from the z-axis, the
expression in equation (9) should be corrected [10]. However, as long as ε ≪ R, this can still be used
as an approximation. To artificially increase the magnetic field gradient, it is worth considering a more
general expression as well:

BBB = B0R2λ

(R2 + z2)λ
ẑ̂ẑz. (10)

In this project, the primary focus lies on the simple coil design, although, the impact of varying λ is also
considered.

Finally, another approximation done was in regards to the size of the source volume, i.e. the region
of intersection between the particle beam and the laser. The size of the volume was neglected, that is, it
was regarded as point-like. However, in reality this intersection will span some finite volume. In practice,
the finite extension of the source volume will cause a blurring effect in the detector readout.

1.4 This work
As many factors can influence the final realization of an instrument measuring the spin of electron
and ions simultaneously, the numerical simulation created for this project considers an idealized system
described in 1.3 to address two objectives:

• Find conditions where a 1 mm spin separation can be achieved. This limit is set by the typical size
of a source volume for the particles which should be ≤ 1 mm3. If the spin separation is less than
this, it will be obscured by the blurring effect caused by the source volume.

• Identify the (E,B) field configurations that produce well-behaved trajectories that can easily be
measured. This objective is essential for any practical realization of the device as it enables the
installation of a microchannel plate and a delay-line detector with a suitable geometry.

Aside from these objectives, a set of limitations is imposed:

• The trajectory should not span more than one meter along the spectrometer axis (the z-direction)
as to not make the device overly large;

• The magnetic field strength should not exceed 1 T, which can be achieved with regular electromag-
net at room temperature;

• The electric field used to extract particles should be ≤ 1000 V/m in order to measure both electrons
and ions simultaneously.

These objectives and limitations set the boundary of what is to be considered the practical regime.
This regime is of importance as it would be difficult to build and operate a device beyond these conditions.
Of all these conditions, the most strict is that of the spin separation. Furthermore, another important
requirement for the project is that the repetition rate of the pulsed light source should be inversely
proportional to the time of flight or lower as to allow for consecutive measurements. This condition
will define the practical regime where an experiment measuring electron and ions simultaneously can be
performed with the light source available at the department of physics in Lund. The sought solutions
are those where the time of flight do not exceed 10 µs.
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2 Method
In this section an outline of the simulation is presented, followed by a description of the adjustable
settings. The full code listing is detailed in appendix B. Lastly, the numerical convergence is discussed.

2.1 Simulation
The program for the simulation has been written in the programming language Python. The simulation
takes the known acceleration of the particle and numerically integrates it two times in order to calculate
the final position of the particle. The simulation runs for both the spin up and spin down case simultan-
eously such that the two cases may be compared side by side. What follows is a description of how the
simulation works.

The simulation employs a modified fourth order Runge-Kutta method. The Runge-Kutta had to be
modified from its classical version since the dependent variable (that is time) is absent from all equations
of motion and the equation for z is a second order equation rather than a first order one. Before the
method is presented in full, however, an argument is made for why the magnetic field and its gradient
can be considered as constant throughout one step. For simplicity, consider a case when the electric field
is set to zero such that, according to equation (8),

v̇z = βz

(R2 + z2)λ+1 . (11)

The first Runge-Kutta coefficient for z then is

k1z = βz

(R2 + z2)λ+1 dt. (12)

The second coefficient becomes

k2z = β(z + k1z dt)(
R2 + (z + k1z dt)2

)λ+1 dt. (13)

A typical time step in these simulations is on the order of nanoseconds or lower and, as such, all the
coefficients for z can be approximated to be the same:

dt2 = 10−18 s2 ⇒ k1z dt ≈ 0 ⇒ k1z ≈ knz, n = 2, 3, 4. (14)

Furthermore, the impact on the transverse components is also negligible; take v̇x2 as an example:

v̇x2 = κ

(
vy + ky1

2

)
1(

R2 +
(

z + kz1 dt

2

)2
)λ

≈ κ

(
vy + ky1

2

)
1

(R2 + z2)λ
. (15)

The contribution from the z-coefficients is vanishingly small, hence magnetic field and its gradient are
considered as constant during one Runge-Kutta step. With this in mind, the procedure takes the following
form:

v̇x1 = αvy, (16)

v̇y2 = −αvx, (17)

v̇z = γ ± µ

m

dB

dz
⇒ (18)

kx1 = v̇x dt, (19)
ky1 = v̇y dt, (20)
kz = v̇z dt. (21)
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With the first order coefficients a new acceleration is found:

v̇x2 = α

(
vy + ky1

2

)
, (22)

v̇y2 = −α

(
vx + kx1

2

)
, (23)

kx2 = v̇x2 dt, (24)
ky2 = v̇y2 dt. (25)

Repeating the same procedure to find the third order coefficients:

v̇x3 = α

(
vy + ky2

2

)
, (26)

v̇y3 = −α

(
vx + kx2

2

)
, (27)

kx3 = v̇x3 dt, (28)
ky3 = v̇y3 dt. (29)

Lastly, the fourth order coefficients are computed with a slight difference to the previous two steps:

v̇x4 = α
(
vy + ky3

)
, (30)

v̇y4 = −α (vx + kx3) , (31)

kx4 = v̇x4 dt, (32)
ky4 = v̇y4 dt. (33)

Now, finally, the new velocity can be computed:

vxnew = vx + kx1 + 2kx2 + 2kx3 + kx4

6 , (34)

vynew = vy + ky1 + 2ky2 + 2ky3 + ky4

6 , (35)

vznew = vz + kz, (36)
vvvnew = (vxnew, vynew, vznew). (37)

The new position is then calculated with an ordinary Euler step:

rrrnew = rrrold + vvvnew dt. (38)

The reason why the new position is calculated using an Euler step, rather than another Runge-Kutta
step, is due to the fact that the velocity is not explicitly known. It is a requirement that the derivative
is known when using the Runge-Kutta method, hence it is not used in this last step. This constitutes
the core process of the simulation. In addition to this, several other methods are implemented to record
and monitor different aspects of the particle motion.

Worth noting is the fact that no matter where in the xy-plane the particle finds itself, the expression
for the magnetic field does not change; the particle is always treated as if it is on the z-axis by the field.
This simplification ignores the transverse components of the magnetic field, and so the trajectories for
large cyclotron radii will not be accurately represented. Importantly, however, this does not affect the
spin separation. Furthermore, this can be remedied by a larger loop radius with a larger current running
through it, as to decrease the relative deviation from the z-axis while keeping the magnetic field strength
constant.
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2.2 Settings
The simulation has several settings that can be adjusted freely, both for the particles, the detector and
the simulation itself. The available spectrometer settings are:

• Electric field strength,

• Magnetic field strength,

• Coil radius,

• Falloff exponent.

For all simulations, the loop radius is held fixed at 1 m. The settings for the particle are:

• Mass, which was held at four proton masses or one electron mass.

• Charge, held at one positive or negative elementary charge.

• Magnetic moment, set as one negative Bohr magneton [11].

• Initial transverse kinetic energy along the x-axis. The particle always started out with an energy
perfectly collimated along the x-direction.

• Starting position along the z-axis.

For the ions, two different cases are considered for the kinetic energy: the thermal case, where the
ions have an energy of 25 meV and the high-energy case, where their kinetic energy is 3 keV. Electrons
can, in principle, have a distribution of kinetic energy, Ek, according to

Ek ≤ hν − VIP, (39)

where hν is the photon energy, and VIP is the ionization potential of the atom [12]. For sake of simplicity,
the kinetic energy of the electron was set to 10 eV.

The primary settings for the simulation are the time of flight and the recording parameter. When
plotting the trajectory, the position of the particle is recorded at regular intervals; the size of these
intervals is controlled by the recording parameter. The reason for not recording and plotting the position
of every time step is in order to limit the run time and to make the graphs easier to view.

2.3 Numerical convergence
2.3.1 Ions

Although the transverse components of the particle motion takes advantage of a Runge-Kutta method,
the longitudinal component uses a simple Euler method. The numerical convergence of the spin separa-
tion can be seen in figure 4 and figure 5 for high energy ions and thermal ions respectively.
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(a) (b)

Figure 4: Shown to the right is the numerical convergence of the position for high energy ions. The
case shown is for spin up, although the plot for spin down is identical. All three dimensions seem to
stabilize at dt = 10−10. The location of all three curves have been adjusted in order to make them easier
to view and compare. To the left the convergence of the spin separation can be seen. Note that the
graph is adjusted slightly upwards for dt = 10−12, something that is barely visible in the graph. For this
simulation, the magnetic field is B0 = 1 T, the electric field is E = 100 V/m, the initial kinetic energy is
3 keV, the starting height is z0 = 48 cm, the falloff exponent is λ = 3/2 and the time of flight is 10 µs.

(a) (b)

Figure 5: The numerical convergence for thermal ions. The settings, a part from the kinetic energy, are
identical to that of the high energy case. As can be seen, there is no change in the behaviour of the
longitudinal motion as the convergence of both the spin separation and the z-position looks identical to
the high energy case. The transverse components, however, are now smaller. Once more, all components
along with the spin separation seem to converge well beyond dt = 10−10.

2.3.2 Electrons

The electron case is somewhat more intricate than that for ions; in an ionization event, due to the
comparatively heavy mass of ions, the momentum is largely unaffected and the ion continues along its
original path. In contrast, electrons do not generally stay true to the path of the atom after ionization.
Rather, they may fly off in any direction and, as such, it cannot be assumed that they remain collimated
after the event. For this reason, all the components of the velocity become relevant to the subsequent
behaviour of the electron. Even though the position seem well-behaved for dt ≤ 10−12, this is contradicted
by the lack of convergence for the spin separation as seen in figure 6.
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(a) (b)

Figure 6: To the left, the numerical convergence of the position for electrons is shown. The curves have
been adjusted along the vertical axis for a better view. Notably, the points at dt = 10−10 are missing for
x and y. This is because they diverged to a value > 1030 m and so they could not be viewed in the same
graph. To the right, the convergence of the spin separation is shown. It does not converge. As for the
settings, the magnetic field is 1 T, the electric field is off, the initial kinetic energy is 10 eV, the starting
height is 50 cm, the falloff exponent is 3/2 and the time of flight is 1 ns.
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3 Results
In this section, a set of typical ion trajectories are presented at first as to give a sense of how the
simulation behaves. After this, the impact of varying different settings is shown for ions. Lastly, the
electron case is discussed.

3.1 Ions
To start with, typical trajectories of helium atoms for different time-of-flights and electrical fields are
illustrated. These trajectories are summarized in the figures in table 1, where the trajectory for spin up
is shown in blue, and spin down is shown in red. One important thing to note is that when the electric
field is turned on, the spin up path is almost not visible; because the spin up trajectory nearly coincides
with the spin down trajectory, it becomes hard to see on the scale of the figures.

Table 1: Some typical ion trajectories with the electric field on and off. Except for the electric field and
time of flight the settings for all these simulations are the same, and they are as follows: The kinetic
energy is 3 keV, initially perfectly collimated along the x-axis; the maximum magnetic field strength is
B0 = 1 T at the center of the current loop; the falloff exponent is set 3/2; and the particle starts of at
z0 = 50 cm above the plane of the loop. The electric and magnetic fields are always directed upwards,
along the z-axis.

TOF
E

E = 0 E = 100 V/m

1 µs

10 µs

50 µs
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When the electric field is off the trajectories retain the shape of a circular helix. Ions with different
spins are spatially separated: spin up moves upward while the spin down moves downward. As the time
of flight increases, the separation increases as seen by the longitudinal scale which is larger but remains
below 1 µm. Under this condition, when the change in height is small, the B-field is essentially constant,
making the change in Larmor radius indistinguishable. Furthermore, the gaps between the cyclotron
laps appear progressively smaller, and finally, the trajectory looks like a solid shape when the time of
flight reaches 50 µs.

When the electric field is on, even for the shortest time of flight, that is 1 µs, the trajectory takes on
macroscopic proportions in order of 1 mm. As previously stated, the spin separation is too small to be
seen on this scale. The helical trajectory as a whole looks similar to its counter part where the electric
field is off, meaning that the change in the magnetic field has no noticeable effect on the Larmor radius.
Increasing the time of flight to 10 µs, the change in radius is now visible and it appears linear. In regards
to the practicality, this would be close to an ideal trajectory shape; the height is shorter than one meter,
it has a macroscopic radius and the gap between the cyclotron periods is reasonably wide. However,
the spin separation is around four orders of magnitude smaller than the target value of 1 mm. When
the time of flight is 50 µs, the trajectory is becoming increasingly loosely bound. Notably, the particle
ends up several meters above its starting point. At this scale it is clear that the increase in radius is not
linear.

For all of these trajectories the spin separation never exceeds 10 µm, which is two orders of magnitude
smaller than the target separation of 1 mm. It seems that, on the face of it, the objective is not achievable
with ions within a few tens of µs. In the following, the separation between particles of different spins as
a function of different settings is qualitatively investigated.

3.1.1 Time of Flight

The results of the simulations for high energy ions are reported in figure 7. The values for thermal ions
are identical and thus it can be inferred that the transverse energy of the ions have no impact on the
spin separation. This spin separation increases non-linearly for a short time of flight, as seen in figure
7 (a), whether or not the electric field is on. However when the time of flight is longer, as in figure 7
(b), as soon as the electric field is enabled the spin separation takes on a linear behaviour. This can
be explained as the particle becoming unbound by the magnetic field such that the spin trajectories are
linearly drifting apart. In other words, the gradient of the B-field is negligible. It was found that the
spin separation reaches upwards of 10 µm.

(a) (b)

Figure 7: The affect of a varying time of flight. In (a), for shorter times of flight, the trajectories remain
largely unaffected by the electric field strength. In (b), for longer times of flight, the presence of an
electric field has a noticeable impact on the spin separation. Note that the two graphs have different
vertical scales: In (a) the separation is measured in nanometers, in (b) the separation reaches the order
of micrometers. The maximum magnetic field strength is B0 = 1 T, the starting height is at z0 = 48 cm,
the falloff exponent is λ = 3/2 and the time step size is dt = 10−10 s.
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3.1.2 Starting position along the z-axis

During this study, it was found that the electrical field had an influence on the optimal initial position
along the z-axis. The spin separation as a function of the starting position is shown in figure 8. When
the electric field is off, the optimal point for the particle to start at is at (0, 0, 0.5), represented by the
green curve. As shown in appendix A.3, the Stern-Gerlach force reaches its maximum at

z = 1√
1 + 2λ

, (40)

which means that z = 50 cm when λ = 3/2. Since the particle is basically stationary when the electric
field is off, the optimal starting height is where the force is strongest.

In contrast, when the electric field is on the particle will quickly move through the region where the
force is strong and, as such, a downward offset in the starting position is required to optimize the spin
separation. This offset preempts the movement due to the electric field and maximizes the time spent
where the Stern-Gerlach force is strong.

Figure 8: When the electric field is off the maximum separation is achieved at z0 = 50 cm where the
Stern-Gerlach force is the strongest. When E = 100 V/m the optimal offset is 2 cm downward and the
maximum separation less than 1 nm smaller than when the field is zero. When E = 1000 V/m the
optimal offset is between 11 − 12 cm down and the separation is visibly lower. The maximum magnetic
field strength is B0 = 1 T, the falloff exponent is λ = 3/2, the time step size is dt = 10−11 s and the time
of flight it set to be 10 µs. The black curve shows the Stern-Gerlach force for reference. As seen in the
scale to the right, the force is given in units of Newtons per Bohr magneton. The maximum separations
have been marked by vertical dashed lines in the same color as the graph they belong to.

3.1.3 Magnetic field strength

The spin separation as a function of the magnetic field strength is presented in figure 9 below. It follows
a linear trend, though, for a high electric field the slope is diminished.

Figure 9: The spin separation depends linearly on the magnetic field strength. The electric field is off,
the starting height is z0 = 50 cm, the falloff exponent is λ = 3/2, the time step size is dt = 10−11 s and
the time of flight it set to be 10 µs.
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3.1.4 Falloff exponent

When considering the case of a field gradient generated via a simple loop current, it may also be worth
exploring similar cases. In this subsection a magnetic field of the form seen in equation (10) is examined.
For the falloff exponent λ, as outlined in appendix A, the optimal value in terms of spin separation when
R = 1 is

λ = ln−1
(

1 + z2
)

. (41)

In the case where z = 50 cm this becomes λ ≈ 4.48. Setting λ = 4.48 increases the force one and a half
times compared to the current loop, where λ = 3/2. As seen in figure 10, the simulations agree with the
theoretical result. This shows that, for something similar to a loop current, it is not possible to increase
the spin separation indefinitely by increasing the falloff exponent.

Figure 10: The spin separation increases from just below 120 nm to 183 nm as λ moves from 3/2 to its
optimal value around 4.48. The maximum magnetic field strength is B0 = 1 T, the electric field is off,
the starting height is z0 = 48 cm, the kinetic energy is 3 keV, the time of flight is held at 10 µs and the
time step size is dt = 10−11 s.

3.2 Electrons
Electrons are several thousand times lighter than ions, and so it seems plausible that the smaller mass
may make it possible to reach the target separation. However, the smaller mass means that the Larmor
radius becomes smaller as well, meaning sharper turns and a need for increased numerical precision. So
much so that the required step size becomes too small for Python. An illustration of the problem is
found in figure 11.

(a) dt = 10 ps (b) dt = 1 ps (c) dt = 0.1 ps

Figure 11: The simulation for electrons with increasingly small time steps. The time of flight is limited to
0.1 ns, the magnetic field strength is B0 = 1 T, the electric field is off, the starting height is z0 = 50 cm, the
kinetic energy is 10 eV and the falloff exponent is λ = 3/2. In the first case, the simulation simply breaks.
In the second case trajectory is generated, although the radial motion is jagged. The last trajectory looks
smooth, but the movement in the longitudinal direction is no longer accurately simulated.
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For the first trajectory in figure 11, the time steps is clearly too large, as well as in the second one.
At first glance, the third one looks smooth and so should produce an accurate result in the full scale. On
closer inspection, however, it is seen that the spin separation is zero for the first part of the simulation
after which there is a sharp onset. Furthermore, there seems to be an asymmetry between spin up and
down. Inspecting the longitudinal step size dz reveals that it is too small for Python; the steps are
simply truncated to zero for the first part of the simulation until they reach a threshold value and are
suddenly no longer neglected. This might explain the lack of numerical convergence, but prohibitively
long run times prevents further investigation.

4 Discussion
Our results show that it is not possible to reach the target separation for ions within the sought practical
regime. The spin separation within the practical regime is generally around ∼ 100 nm. In order to meet
the set target of 1 mm it needs to increase by four orders of magnitude, something which is not possible
even if the starting position and the falloff exponent are optimized since this does not significantly boost
separation. Full scale simulations show that it takes the ion 916 µs, just under 1 ms, to reach a 1 mm
separation while otherwise staying within the practical regime. The settings in this case are: B0 = 1 T,
E = 0, z0 = 0.5 m and λ = 3/2. In order to achieve the separation target, either the gradient or the time
of flight would have to increase. In figure 12 the required time of flight required for a 1 mm separation
for a specific field gradient can be seen, along with the upper limit on the repetition rate of the light
source.

Figure 12: Log-log scaled graph of the time of flight as a function of the field gradient when the spin
separation is held fixed at 1 mm. The green line represents ions, the blue dashed line represents electrons
and the red triangle denotes the Stern-Gerlach device available at Fysicum. On the scale to the right,
the maximum repetition rate of the light source usable in such an experiment is given. It is inversely
proportional to the time of flight, as to allow a particle to fully complete its journey before the next laser
pulse is emitted.

The quadratic dependence of ∆z as function of the time of flight, T , in Figure 7 suggests that if the
force on the particle is constant for the duration of the flight, the spin separation follows the impulse-
momentum theorem. Indeed, in this case

FFFSG∆t = m∆vvv, (42)

with
∆z = (∆vvv · ẑ̂ẑz)∆t. (43)

It can then be deduced that
∆z = FFFSG · ẑ̂ẑz

m
T 2 = µ

m

∂B

∂z
T 2. (44)
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Assuming that
∆z = 1 mm,

∣∣∣∣∂B

∂z

∣∣∣∣ ∼ 1,

∣∣∣∣ µ

m

∣∣∣∣ ∼ 1000,

then

T =

√
∆z

(
µ

m

∂B

∂z

)−1
= 1 ms. (45)

This agrees well with full scale simulations when the electric field is off; the particle will not move
significantly and the force can be approximated as constant. According to this model, in the case of
electrons,

∆z = 1 mm,

∣∣∣∣∂B

∂z

∣∣∣∣ ∼ 1,

∣∣∣∣ µ

m

∣∣∣∣ ∼ 107 ⇒ T = 10 µs.

This shows that, when doing experiments on electrons, it should indeed be possible to operate within the
practical regime using the proposed design. Furthermore, any laser with a repetition rate of 100 kHz, or
slower, would be sufficient to carry out the experiment. However, this represents a scenario with ideal
conditions; in practice the spread in momentum for the electrons will blur the readout and, as such, a
separation > 1 mm would likely be necessary.

5 Conclusions and Outlook
For ions, it is clear that a spin separation of 1 mm cannot be achieved within the practical regime. In
order to achieve the goal, the time of flight needs to be in the order of milliseconds or the magnetic field
would have to be changed into something other than that of a loop current, such that the field gradient
can be increased by several orders of magnitude. Another, less practical, solution is to decrease the size
of the source volume and so lower the restriction on the spin separation.

For the electrons, it seems that the lack of numerical convergence is due to the numerical limits of
Python; the longitudinal steps are truncated at the beginning of each simulation, which has no noticeable
effect on the convergence of the position but does affect the convergence of the spin separation. This
should have little impact when the time of flight is greater than 1 µs and so a full-scale simulation should
converge, although this could not be confirmed. However, a simple impulse model, validated by the
results for ion simulations, reveals that it is possible to achieve the target separation within the practical
regime when performing experiments on electrons.

In order to accurately simulate the electron case, the following changes are suggested: The size of the
time step dt should be expressed as a function of, for example, z, t or the cyclotron radius rather than as
a constant in order to allocate the precision to the beginning of the simulation, where it is most needed;
the units should be rescaled as to avoid numbers that are too small; a different method for numerical
integration is needed in order to avoid Euler steps completely; and the program should be converted to
C++ in order to improve performance.

Furthermore, electrons, due to their light mass, cannot be presumed to continue to move along
the direction of the particle beam once they have disassociated from the atoms. Instead they will be
ejected into the spectrometer at all possible angles. This phenomenon will have a blurring effect on the
spectrometer readout, something that further studies will have to grapple with in addition to the issues
discussed above.
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A Appendix - Theory
In this section two cases are considered. In the first case the magnetic field is constant and in the second
case the magnetic field is inhomogeneous. In both cases the initial expressions for the equations of motion
are the same. Consider the total force on some particle:

FFFtot = FFFB + FFFE + FFFµ = qvyB x̂̂x̂x − qvxB ŷ̂ŷy +
(

qE ± µ
dB

dz

)
ẑ̂ẑz, (46)

where BBB = (0, 0, B) with a gradient along the z-direction only and EEE = (0, 0, E). In reality, it is
impossible to generate a magnetic field gradient along only one Cartesian direction. For the purposes
of these calculations, however, the other components have been neglected. Let vn and v̇n be the nth
component of the velocity and the acceleration respectively. The equations of motion are, in Cartesian
coordinates, as follows:

v̇x = q

m
vyB(t), (47)

v̇y = − q

m
vxB(t), (48)

v̇z = qE

m
± µ

m

dB

dz
. (49)

For ease of reading, let
α = qB(t)

m
, γ = qE

m
.

The equations of motion then become

v̇x = αvy, (50)
v̇y = −αvx, (51)

v̇z = γ ± µ

m

dB

dz
. (52)

A.1 A constant magnetic field
The longitudinal equation, that is the one along the z-direction, can be solved straightforwardly by
integration:

dB

dz
= 0 ⇒ v̇z = γ ⇒ vz = γt + v0z ⇒ z = γt2

2 + v0zt. (53)

Here v0z is the initial longitudinal velocity. This can be rearranged to generate an expression for v0z

given a known time of flight T and a distance between the source point and the detector L:

v0z = L

T
− γT

2 . (54)

As for the transverse components, the time derivative of equation (50) is

v̈x = d
dt

αvy = αv̇y ⇔ v̇y = v̈x

α
. (55)

This expression can now be equated to equation (51):

v̈x

α
= −αvx ⇔ v̈x = −α2vx ⇒ (56)

vx = C1 cos (αt + ϕ) + C2 sin (αt + ϕ) (57)

With this result in mind, equation (50) can be written as

αvy = v̈x = d
dt

(
C1 cos (αt + ϕ) + C2 sin (αt + ϕ)

)
= α

(
C2 cos (αt + ϕ) − C1 sin (αt + ϕ)

)
⇒ (58)

21



vy = C2 cos (αt + ϕ) − C1 sin (αt + ϕ). (59)

In order to find these constants, consider the initial conditions where

vx(t = 0) = v0x, vy(t = 0) = v0y.

Now equations (50) and (51) become

v̇x(t = 0) = αv0y = α (C2 cos ϕ − C1 sin ϕ) , (60)
v̇y(t = 0) = −αv0x = −α (C1 cos ϕ + C2 sin ϕ) . (61)

Starting with equation (60):

v0y = C2 cos ϕ − C1 sin ϕ ⇒ C2 = v0y sec ϕ + C1 tan ϕ. (62)

Inserting this into equation (61) yields that

v0x = C1 cos ϕ +
(
v0y sec ϕ + C1 tan ϕ

)
sin ϕ = C1 (cos ϕ + tan ϕ sin ϕ) + v0y tan ϕ. (63)

There is, as always, a trigonometric trick available to simplify this. Consider the following sleight of
hand:

cos ϕ + tan ϕ sin ϕ = sec ϕ, sec ϕ − sin ϕ tan ϕ = cos ϕ. (64)

Subsequently,
v0x = C1 sec ϕ + v0y tan ϕ ⇔ C1 = v0x cos ϕ − v0y sin ϕ ⇒ (65)

C2 = v0y sec ϕ +
(
v0x cos ϕ − v0y sin ϕ

)
tan ϕ = v0x sin ϕ + v0y cos ϕ. (66)

And so the velocities can be written as

vx =
(
v0x cos ϕ − v0y sin ϕ

)
cos (αt + ϕ) +

(
v0x sin ϕ + v0y cos ϕ

)
sin (αt + ϕ), (67)

vy =
(
v0x sin ϕ + v0y cos ϕ

)
cos (αt + ϕ) −

(
v0x cos ϕ − v0y sin ϕ

)
sin (αt + ϕ). (68)

Since α̇ = 0 in this case, the coordinates can be found by direct integration:

x =
ˆ

vx dt =
ˆ (

C1 cos (αt + ϕ) + C2 sin (αt + ϕ)
)

dt = (69)

C1

α
sin (αt + ϕ) − C2

α
cos (αt + ϕ) = −vy

α

and, similarly,
y =
ˆ

vy dt =
ˆ (

C2 cos (αt + ϕ) − C1 sin (αt + ϕ)
)

dt = (70)

C2

α
sin (αt + ϕ) + C1

α
cos (αt + ϕ) = vx

α
.

Note that the integration constants have been scaled away. In conclusion

x = −vy

α
= α−1 (v0x cos ϕ − v0y sin ϕ

)
sin (αt + ϕ) − α−1 (v0x sin ϕ + v0y cos ϕ

)
cos (αt + ϕ), (71)

y = vx

α
= α−1 (v0x cos ϕ − v0y sin ϕ

)
cos (αt + ϕ) + α−1 (v0x sin ϕ + v0y cos ϕ

)
sin (αt + ϕ). (72)
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A.2 A variable magnetic field
A.2.1 The longitudinal equation

For ease of reading, let v̇z = z̈. The equation of motion is

z̈ = qE

m
± µ

m

dB

dz
. (73)

Assuming that the loop radius R is much greater than the Larmor radius r, the eleptical integrals that
are otherwise present in the expression for the magnetic field can be neglected:

r ≪ R ⇒ BBB ≈ µ0I

2
R2

(R2 + z2)3/2 ẑ̂ẑz = B0
R3

(R2 + z2)3/2 ẑ̂ẑz. (74)

It is possible to modify the shape of this field, for example by adding more closely packed loops. In order
to encapsulate these situations in this calculation, consider a more general form of the field:

BBB ≈ B0R2λ

(R2 + z2)λ
ẑ̂ẑz ⇒ (75)

dB

dz
= − 2λB0R2λz

(R2 + z2)λ+1 . (76)

Defining a constant β = ∓2λµB0R2λ

m
, the equation of motion then becomes

z̈ = γ + βz

(R2 + z2)λ+1 . (77)

In order to progress the problem, note that

g = ż ⇒ z̈ = g
dg

dz
. (78)

This then leads to
g

dg

dz
= γ + βz

(R2 + z2)λ+1 ⇒ (79)

g2

2 + J1 =
ˆ (

γ + βz

(R2 + z2)λ+1

)
dz = γz − β

2λ (R2 + z2)λ
+ J2 ⇒ (80)

ż = g =
√

2γz − β

λ (R2 + z2)λ
+ J3 ⇔ dt = dz√

2γz − β

λ (R2 + z2)λ
+ J3

⇒

t =
ˆ dz√

2γz − β

λ (R2 + z2)λ
+ J3

. (81)

Here Jn denotes integration constants. It is straightforward to find J3 from boundary conditions, however,
evaluating the integral is proving difficult.

A.2.2 The transverse equations

Letting the magnetic field now be a function of time means that α is also a function of time. As in the
previous section, start out by deriving equation (50), rearranging and equating to (51):

vy = v̇x

α
⇒ v̇y = v̈x

α
− v̇x

α2 α̇ ⇒ v̇y + αvx = v̈x

α
− v̇x

α2 α̇ + αvx = 0 ⇔ v̈x − α̇

α
v̇x + α2vx = 0. (82)
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This is a second order, linear, ordinary differential equation with variable coefficients, arranged in a
canonical form. Let vx(t) = u(t)p(t), then (82) can be written as

p̈ +
(

2u̇

u
− α̇

α

)
ṗ +

(
ü

u
− α̇

α

u̇

u
+ α2

)
p = 0. (83)

Now choose u such that
2u̇

u
− α̇

α
= 0 ⇒ d

dt
ln
(

u2
)

= d
dt

ln (α) ⇒ u =
√

α. (84)

With this choice of u, equation (83) takes the following form:

p̈ +
(

α2 −
(

α̇

2α

)2
+ 1

2
d
dt

(
α̇

α

))
p = 0,

d
dt

(
α̇

α

)
= α̈

α
−
(

α̇

α

)2
⇒ (85)

p̈ +
(

α2 −
(

α̇

2α

)2
+ α̈

2α
− 1

2

(
α̇

α

)2
)

p = 0 ⇔ p̈ +
(

α2 − 3
4

(
α̇

α

)2
+ α̈

2α

)
p = 0. (86)

Separating p and α, this becomes

p̈

p
= −

(
α2 − 3

4

(
α̇

α

)2
+ α̈

2α

)
. (87)

Neglecting the deviation from the z-axis once more and defining a constant κ such that

α = qB

m
= qB0

m

R2λ

(R2 + z2)λ
= κ

(R2 + z2)λ
. (88)

The time derivatives can then be written as

α̇ = − 2λκżz

(R2 + z2)λ+1 , α̈ = 2λκ

(R2 + z2)λ+2

(
(1 + 2λ) ż2z2 − z̈z3 − R2z̈z − R2ż2

)
. (89)

This means that
α̇

α
= − 2λżz

R2 + z2 ,
α̈

2α
= λ

(R2 + z2)2

(
(1 + 2λ) ż2z2 − z̈z3 − R2z̈z − R2ż2

)
. (90)

With this in mind, euqation (87) takes the following form:

p̈

p
= −

(
κ2

(R2 + z2)2λ
− 3

4

(
− 2λżz

R2 + z2

)2
+ λ

(R2 + z2)2

(
(1 + 2λ) ż2z2 − z̈z3 − R2z̈z − R2ż2

))
. (91)

It is possible to proceed from here by substituting in the expressions for z̈ and ż according to equations
(77) and (80). Before doing so, however, drop the subscript from the integration constant and rewrite β
in terms of κ, such that

J3 → J, β = ∓2λµ
B0R2λ

m
= ∓2λµ

q
κ ⇒

ż2 = 2γz ± 2µκ

q (R2 + z2)λ
+ J, z̈ = γ ∓ 2λµκz

q (R2 + z2)λ+1 . (92)

Thus the final expression turns out to be
p̈

p
= (93)

∓2λ2µκ

q

z4 + R2z

(R2 + z2)λ+5 ± 2λµκ

q

R2

(R2 + z2)λ+4 +
λ
(
γz3 + 2γR2z + γR2 + JR2)

(R2 + z2)4 +
λ (λ − 1)

(
2γz3 + Jz2)

(R2 + z2)2 .

It is unclear how to move forward from here, though if the integral in (81) can be evaluated, a solution
may follow.
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A.3 Falloff exponent and optimal starting position
Looking at the expression for the Stern-Gerlach force, it seems like it is possible to increase the force by
simply increasing the falloff rate by, in turn, increasing the exponent λ. Consider the force,

FSG = mβz

(R2 + z2)λ+1 . (94)

Now let mβz = Kλ, A = R2 + z2 and R = 1, then

d
dλ

FSG = d
dλ

Kλ

Aλ+1 = K

Aλ+1 (1 − λ ln A) . (95)

Thus, for a given z the greatest force is achieved when λ = ln−1 (1 + z2). As an example, when the
electric field is off and the particle spends the entire flight time around z = 0.5, an optimal exponent
would be λ = ln−1 (1.25) ≈ 4.48. The force is, in this case, around one and a half times greater than the
simple loop current. Hence, it seems that optimizing the exponent will not increase the spin separation
even one order of magnitude, though this example alone is not entirely exhaustive.

The height where the force is strongest can be calculated from

d
dz

FSG = mβ

(R2 + z2)λ+1 − 2mβ(λ + 1)z2

(R2 + z2)λ+2 = (96)

mβ + mβz2 − 2mβλz2 − 2mβz2

(R2 + z2)λ+2 =
mβ

(
1 − 2λz2 − z2)

(R2 + z2)λ+2 .

This is zero when
(1 + 2λ)z2 − 1 = 0 ⇒ z = 1√

1 + 2λ
∀ z > 0. (97)

As such, when the electric field is off and the longitudinal movement of the particle is small, the optimal
starting position is z0 = 0.5 m in the case of λ = 3/2 (a loop current field).
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B Appendix - Code
Presented below is the code used to generate the results. There are some blocks that have been com-
mented out; the program has several features used to troubleshoot, to sanity check the output and to
investigate different aspects of the simulation, though they are not needed when gathering the final data.
If this program is run on a device with the Python package Numba installed, it is possible to comment
in the Numba command above most functions in order to make them run faster.

1 import numpy as np
2 import math as math
3 import matplotlib.pyplot as plt
4 # from scipy.optimize import curve_fit
5 # import numba as nb
6 import time
7 # from mpl_toolkits.mplot3d.art3d import Poly3DCollection
8

9 #Timer to measure runtime.
10 start_time=time.time()
11

12 #Natural constants in SI
13 muB=9.274*pow(10, -24)
14 qe=1.602*pow(10, -19)
15 me=9.109*pow(10, -31)
16 mp=1.672*pow(10, -27)
17

18 #Detector properties
19 falloff=3/2
20 E0=0
21 B0=1
22 Lfield=1
23 Ldrift=0
24 R=1
25

26 z_start=0.48
27 Ltot=Lfield+Ldrift
28 B_up=np.array([0,0,B0/(z_start**2+R**2)**(3/2)])
29 B_down=np.array([0,0,B0/(z_start**2+R**2)**(3/2)])
30

31 Bgrad_up=-3*z_start*B0*R**2/pow((R**2+z_start**2),5/2)
32 Bgrad_down=Bgrad_up
33

34 E=np.array([0,0,E0])
35

36 B_start=B_up[2]
37 #Detector plate geometry. Here three corners are defined which will be used to

generate the plane.↪→

38 # p0=np.array([0.05, 0, 0.45])
39 # p1=np.array([0.05, 0, 0.55])
40 # p2=np.array([0.15, 0, 0.55])
41

42 #Particle properties
43 m=4*mp
44 q=qe
45

46 # L=0
47 # S=1/2
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48 # J=1/2
49 # MJ=1/2
50

51 # landeG=1+(J*(J+1)+S*(S+1)-L*(L+1))/(2*J*(J+1))
52

53 # mu=-landeG*muB*MJ
54

55 mu=-muB
56

57 pos_up=np.array([0,0,0])
58 pos_down=np.array([0,0,0])
59

60 Energy_EV=3000
61 Energy_J=Energy_EV*pow(10,-19)
62 v_start=math.sqrt(2*Energy_J/m)
63

64 vx=v_start
65 vy=0
66 vz=0
67

68 v_up=np.array([vx,vy,vz])
69 v_down=v_up
70

71 #Calculating the electric force outside the loop for efficiency since it is
constant.↪→

72 Fe=q*E
73

74 #Step size
75 dt=pow(10, -10)
76

77 #Position, angle and time recorders
78 Prec_up=np.zeros(shape=(1, 3))
79 Thetarec_up=np.array([])
80 Trec_up=np.array([])
81 Radrec_up=np.array([])
82

83 Prec_down=np.zeros(shape=(1, 3))
84 Thetarec_down=np.array([])
85 Trec_down=np.array([])
86 Radrec_down=np.array([])
87

88 #Time of flight
89 T=0
90

91 #Trajectory length
92 S=0
93

94 #Lap separation
95 LapSeps=np.array([])
96 switch=0
97 theta_tol=0.1
98 lap_indeces=np.array([])
99 lap_times=np.array([])

100

101 #Recording parameter
102 N=1
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103

104 #Derivative function used in the Runge-Kutta function
105 # @nb.jit(nopython=True)
106 def derivative(x_speed,y_speed,charge,mass,Efield,Bfield,Bgrad,mag_moment):
107

108 acc_x=charge*y_speed*Bfield[2]/mass
109

110 acc_y=-charge*x_speed*Bfield[2]/mass
111

112 acc_z=charge*Efield/mass+mag_moment*Bgrad/mass
113

114 deriv=np.array([acc_x,acc_y,acc_z])
115 return deriv
116

117 #4th order Runge-Kutta step function which is used to progress the simulation
118 # @nb.jit(nopython=True)
119 def RKstep_v(velocity,charge,mass,Efield,Bfield,Bgrad,mag_moment,timestep):
120

121 slope1=derivative(
122 velocity[0], velocity[1], charge, mass, Efield, Bfield, Bgrad, mag_moment
123 )
124

125 k1x=timestep*slope1[0]
126 k1y=timestep*slope1[1]
127 kz=timestep*slope1[2]
128

129 slope2=derivative(
130 velocity[0]+0.5*k1x, velocity[1]+0.5*k1y, charge, mass, Efield, Bfield,

Bgrad, mag_moment↪→

131 )
132

133 k2x=timestep*slope2[0]
134 k2y=timestep*slope2[1]
135

136 slope3=derivative(
137 velocity[0]+0.5*k2x, velocity[1]+0.5*k2y, charge, mass, Efield, Bfield,

Bgrad, mag_moment↪→

138 )
139

140 k3x=timestep*slope3[0]
141 k3y=timestep*slope3[1]
142

143 slope4=derivative(
144 velocity[0]+k3x,velocity[1]+k3y, charge, mass, Efield, Bfield, Bgrad,

mag_moment↪→

145 )
146

147 k4x=timestep*slope4[0]
148 k4y=timestep*slope4[1]
149

150 vx_new=0
151 vx_new=velocity[0]+(k1x+2*k2x+2*k3x+k4x)/6
152 vy_new=velocity[1]+(k1y+2*k2y+2*k3y+k4y)/6
153 vz_new=velocity[2]+kz
154

155 velocity_new=np.array([vx_new,vy_new,vz_new])
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156 return velocity_new
157

158 #Fast cross product
159 # @nb.jit(nopython=True)
160 def crossprod(a,b):
161 cross=np.cross(a,b)
162 return cross
163

164 #Fast division
165 # @nb.jit(nopython=True)
166 def division(c,d):
167 quotient=c/d
168 return quotient
169

170 #Fast tangent
171 # @nb.jit(nopython=True)
172 def atan(e,f):
173 tanangle=math.atan2(e,f)
174 return tanangle
175

176 #Fast norm
177 # @nb.jit(nopython=True)
178 def norm(g,h):
179 norm=math.sqrt(g**2+h**2)
180 return norm
181

182 #Fast norm 3D
183 # @nb.jit(nopython=True)
184 def norm3D(i,j,k):
185 norm3D=math.sqrt(i**2+j**2+k**2)
186 return norm3D
187

188 #This function appends a 3D vector to an array. It is used to store all
189 #3D positions for the graph. For some reason it doesn't work with Numba.
190 # @nb.jit(nopython=True)
191 def VectorAppend(SomeArray, AppendixVector):
192 AppendedArray=np.append(SomeArray,AppendixVector,axis=0)
193 return AppendedArray
194

195 #This function appends a scalar to the end of an array.
196 # @nb.jit(nopython=True)
197 def ScalarAppend(SomeArray, AppendixScalar):
198 AppendedArray=np.append(SomeArray,AppendixScalar)
199 return AppendedArray
200

201 #Finding the guiding center outside the loop since it only needs to be calculated
twice.↪→

202 vtrans=abs(vx)
203 r=m*vtrans/(abs(q)*B_up[2])
204

205 angle_v=math.atan2(vy,vx)
206 if angle_v<0:
207 angle_v=angle_v+2*math.pi
208

209 theta_start=angle_v+3*math.pi/2
210 if theta_start>2*math.pi:
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211 theta_start=theta_start-2*math.pi
212

213 x_center=r*math.cos(theta_start)
214 y_center=r*math.sin(theta_start)
215

216 #Setting the guiding center to the origin. Manually inputting a slight deviation
from z=0 in order to not get a zero force.↪→

217 pos_up=np.array([0,np.sign(q)*r,z_start])
218 pos_down=np.array([0,np.sign(q)*r,z_start])
219

220 Prec_up[0]=pos_up
221 Prec_down[0]=pos_down
222

223 #Setting the first index to zero since this is where the first lap starts.
224 lap_indeces=ScalarAppend(lap_indeces,int(0))
225

226 #Generating the plane. Beginning with the basis vectors.
227 # u1=p1-p0
228 # u2=p2-p0
229 # DetectorNormal=crossprod(u1, u2)
230 # DetectorNormal=DetectorNormal/norm3D(DetectorNormal[0], DetectorNormal[1],

DetectorNormal[2])↪→

231 # impact=False
232

233 while T<10*pow(10,-6):
234

235 #Position update
236 v_up=RKstep_v(v_up,q,m,E0,B_up,Bgrad_up,mu,dt)
237 dr_up=v_up*dt
238 pos_up=pos_up+dr_up
239

240 v_down=RKstep_v(v_down,q,m,E0,B_down,Bgrad_down,-mu,dt)
241 dr_down=v_down*dt
242 pos_down=pos_down+dr_down
243

244 #Checking if the detector is less that one position step away.
245 # DetectorDistance=abs(np.dot(pos_up-p0,DetectorNormal))
246 # if DetectorDistance<norm3D(dr_up[0],dr_up[1],dr_up[2]) and

norm((pos_up[1]-y_center),(pos_up[0]-x_center))>0.045:↪→

247 # impact=True
248 # print(DetectorDistance)
249

250 #Updating trajectory length
251 # S=S+norm3D(dr_up[0],dr_up[1],dr_up[2])
252

253 #Updating TOF
254 T=T+dt
255 print(T)
256 print()
257

258 #Recording new position, angle, lap separation and time for plot. Not all
positions are recorded for the graph.↪→

259 #This is in order to limit the runtime and to make the plot easier to view.
260 if N%10==0:
261 #Recording position
262 Prec_up=VectorAppend(Prec_up,[pos_up])
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263 Prec_down=VectorAppend(Prec_down,[pos_down])
264

265 #Recording angle
266 theta=atan(pos_up[1],pos_up[0])
267 if theta<0:
268 theta=theta+2*math.pi
269

270 Thetarec_up=ScalarAppend(Thetarec_up,theta)
271

272 #Recording time
273 Trec_up=ScalarAppend(Trec_up,T)
274

275 #Recording current cyclotron radius
276 radius=norm(pos_up[1],pos_up[0])
277 Radrec_up=ScalarAppend(Radrec_up,radius)
278

279 #As soon as the angle moves outside the tolerance the switch is turned on
such that now it is ready to record↪→

280 #when it is within the tolerance again.
281 if switch==0 and abs(Thetarec_up[-1]-theta_start)>theta_tol:
282 switch=1
283

284 # #When the switch is on and the angle moves within the tolerance, a lap is
recorded.↪→

285 if switch==1 and abs(Thetarec_up[-1]-theta_start)<theta_tol:
286 lap_indeces=ScalarAppend(lap_indeces, len(Trec_up)-1)
287 last_lap_index=int(lap_indeces[-2])
288 lap_sep=Prec_up[-1,2]-Prec_up[last_lap_index,2]
289 LapSeps=ScalarAppend(LapSeps,lap_sep)
290 lap_times=ScalarAppend(lap_times,T)
291 switch=0
292

293 #Field update
294 Bnew_up=B0*R**2/((pos_up[2]**2+R**2)**falloff)
295 B_up=np.array([0,0,Bnew_up])
296

297 Bgrad_up=-2*falloff*pos_up[2]*B0*R**2/pow((R**2+pos_up[2]**2),(falloff+1))
298

299 Bnew_down=B0*R**2/((pos_down[2]**2+R**2)**falloff)
300 B_down=np.array([0,0,Bnew_down])
301

302 Bgrad_down=-2*falloff*pos_down[2]*B0*R**2/pow((R**2+pos_down[2]**2),(falloff+1))
303

304 N=N+1
305

306 #Calculating the initial velocities using the formulas derived by Yu-Chen Cheng for
comparison.↪→

307 # omega=(q*B0)/m
308 # vx_calc=omega/2*(pos[0]/math.tan((omega*(T-dt))/2)-pos[1])
309 # vy_calc=omega/2*(pos[1]/math.tan((omega*(T-dt))/2)+pos[0])
310 # vz_calc=pos[2]/T-q*E0*T/(2*m)
311

312 # print("Calculated initial velocity according to Yu-Chen Cheng (x,y,z):")
313 # print(vx_calc)
314 # print(vy_calc)
315 # print(vz_calc)
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316 # print()
317 # print("Number of data points:")
318 # print(len(Prec_up[:,1]))
319 # print()
320 print("Runtime (seconds):")
321 runtime=time.time()-start_time
322 print(str(math.floor(runtime/60))+' minute(s) and '+str(runtime%60)+' seconds')
323 print()
324 # print("Guiding center (x,y):")
325 # print(x_center)
326 # print(y_center)
327 # print()
328 print("Initial and final B-field strength:")
329 print(B_start)
330 print(B_up[2])
331 print()
332 print("Final spin separation:")
333 print(pos_up[2]-pos_down[2])
334 print()
335 print("Position of spin up (x,y,z):")
336 print(pos_up[0])
337 print()
338 print(pos_up[1])
339 print()
340 print(pos_up[2])
341 print()
342 print("Position of spin down (x,y,z):")
343 print(pos_down)
344 print()
345 print("TOF:")
346 print(T)
347 print()
348 print("Initial and final radius:")
349 print(norm(Prec_up[0,0],Prec_down[0,1]))
350 print(norm(pos_up[0],pos_up[1]))
351 print()
352 # print("Final lap separation:")
353 # print(LapSeps[-1])
354 # print()
355 # print("Number of completed laps:")
356 # print(len(LapSeps)-1)
357 # print()
358

359 #Plotting the path of the particle. Display in a separate window in order to
360 #interract with the graph.
361 plt.figure(1)
362 ax=plt.axes(projection='3d')
363 ax.set_xlabel('x (cm)')
364 ax.set_ylabel('y (cm)')
365 ax.set_zlabel('z (cm)-0.5 m')
366 # ax.set_xlim3d(-0.25, 0.25)
367 # ax.set_ylim3d(-0.25, 0.25)
368 # ax.set_zlim3d(0, 0.5)
369 ax.plot3D(Prec_up[:, 0]*100, Prec_up[:, 1]*100,(Prec_up[:, 2]-0.5)*100,

color='blue')↪→
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370 ax.plot3D(Prec_down[:, 0]*100, Prec_down[:, 1]*100,(Prec_down[:, 2]-0.5)*100,
color='red')↪→

371 #Plotting the detector plate
372 # d_x = [-0.04,-0.04,-0.14,-0.14]
373 # d_y = [0,0,0,0]
374 # d_z = [0.35,0.45,0.45,0.35]
375 # verts = [list(zip(d_x,d_y,d_z))]
376 # ax.add_collection3d(Poly3DCollection(verts,facecolors='black',alpha=0.5))
377

378 # plt.figure(2)
379 # plt.ylabel('Radius')
380 # plt.xlabel('Time')
381 # plt.plot(Trec_up,Radrec_up,'-', markersize=0.6)
382 # plt.legend()
383

384 # plt.figure(3)
385 # plt.ylabel('Lap separation')
386 # plt.xlabel('Time')
387 # plt.plot(lap_times, LapSeps,'-')
388 # plt.legend()
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