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Abstract

The Bogoliubov transformation is the starting point for the Hartree-Fock-Bogoliubov method

and thus for many theoretical approaches that describe heavy nuclei. This transformation is

based on two matrices, denoted by U and V , which are called Bogoliubov amplitudes. In this

paper the properties of these matrices are investigated. Bogoliubov amplitudes are gener-

ated using BCS wavefunctions. The Bloch-Messiah theorem and the resulting Bloch-Messiah

decomposition are discussed as well as a newfound restriction on the transformation matrix

D from the BM decomposition. Different formulas are presented to compute the overlap

between the generated wavefunctions.



Contents

1 Introduction 2

2 Method 4

2.1 Theoretic background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Second quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 BCS pairing theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.3 Bogoliubov transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Bloch-Messiah theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Overlap formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Results 15

3.1 BCS vacuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Generating non-canonical Bogoliubov vacua . . . . . . . . . . . . . . . . . . . . . 16

3.3 Observations for different calculation methods for the overlap of two BCS vacua 17

3.3.1 Observations of the overlap between different BCS states . . . . . . . . . 18

3.3.2 Cutoffs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.3 Overlap as described by F. Dönau in the canonical basis . . . . . . . . . . 20

3.3.4 Restrictions on the matrices D and D′ . . . . . . . . . . . . . . . . . . . . 22

4 Conclusion and Outlook 24

A Appendix 26

A.1 Appendix A: Fermion Anti-commutation . . . . . . . . . . . . . . . . . . . . . . . 26

A.2 Appendix B: Unitarity of the transformation matrix . . . . . . . . . . . . . . . . 27

A.3 Appendix C: Slater determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

A.4 Appendix D: Transformation of tridiagonal matrix into canonical form . . . . . . 28



Abbreviations

BM Bloch-Messiah

BCS Bardeen-Cooper-Schrieffer

HFB Hartree-Fock-Bogoliubov

GCM Generator Coordinate Method

1



1 Introduction

The theoretical description of nuclei and other many-fermion systems has advanced considerably

during recent times. Computational technology and refined methods allow for an accurate picture

of atomic nuclei. In comparison to real world experiments, computational models have the

advantage that they are able to predict properties of nuclei in extreme conditions or during

fission processes, that are difficult to observe in an experiment.

In many cases, in theoretical nuclear physics the aim is to solve a Hamiltonian to describe

different nuclei. The Hartree–Fock method is the central starting point for most approaches that

describe the many-nucleon system more accurately. Starting from a Slater determinant which is

an antisymmetric linear combination of products of independent single particle wavefunctions,

the variational principle is applied, which means that the energy is varied to find the Slater

determinant that minimizes the energy. This solution is a good approximation for the actual

wavefunction, for few particularly stable nuclei.

A more accurate method based on the Hartree-Fock approach is the Hartree-Fock-Boguliubov

method. Its starting point is the Bogoliubov (or Bogoliubov-Valatin) transformation which trans-

forms a single particle wavefunction into a quasi-particle wavefunction, where a quasi-particle

represents a linear combination of particles and holes. This transformation, which was devel-

oped independently by Nikolay Bogolyubov and John George Valatin in 1958 ([1, 2]) finds a

convenient basis to solve the nuclear many-body problem as we will show for the simple case of

a BCS wavefunction. The BCS formalism was proposed by Bardeen, Cooper and Schrieffer in

1957 ([3]). The essential insight that time-reversed particles interact strongly made it possible

to describe superconductivity through the formation of Cooper pairs. However, as the pairing

interaction is a key attribute not only of electrons but of all fermions, this theory is applicable

to nuclei as well. A generalization of the BCS approach is the Hartree-Fock-Bogoliubov (HFB)

method [4] which is the core of many recent models describing heavy nuclei. In addition to that,

the Bogoliubov transformation is useful for the description of many other processes in physics

like for example Hawking radiation [5].

In a recent Model [6] developed in Lund nuclear spectra are computed using an effective

Hamiltonian which is then solved using the Generator Coordinate method (GCM) [6, 7]. This

framework of the GCM allows the implementation of collective and single particle dynamics, such

as pair vibrations and shape transition starting from the HFB method. In this approach the

actual wavefunction is calculated as the superposition of a weighted set of basis wave functions.

Those trial wave functions, in most cases HFB states, can be freely chosen to define properties

which are relevant for the actual state of the many-body system. This includes for example

symmetries with respect to particle number, parity, rotational symmetry, etc [8]. Essentially,

one uses the Generator Coordinate Method to define a certain set of basis wavefunctions that

do not obey the symmetries that the final wavefunction needs to have. They can for example
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describe a many body system with different numbers of particles. This symmetry breaking is

useful, since it allows to reduce the number of basis states considerably, without diminishing

the accuracy. The weighing of the basis wavefunctions then restores the broken symmetries. A

recurring problem for the implementation of this method is finding the exact weight that each

basis wavefunction needs to be multiplied with, this requires the calculation of overlaps between

two different basis wave functions. Most approaches calculate the overlaps using the Bogoliubov

amplitudes, matrices U and V , that describe the relation between different sets of creation and

annihilation operators. Important is the formula by Onishi and Yoshida [9] from 1966 as well as

similar approaches by F. Dönau [10] and J. Dobaczewski [11, 12]. More recent formulations focus

on the description of the phase of the overlap and include the formula by Bertsch and Robledo

[13] as well as the formula derived by Carlsson and Rotureau [14].

An important tool when working with the Bogoliubov amplitudes is the Bloch-Messiah

theorem [15] which describes the decomposition of the matrices U and V into more convenient

matrices, a diagonal matrix Ū and a matrix V̄ in a special canonical form. The theorem uses

the results of a theorem by B. Zumino [16] which shows that skew-symmetric matrices can be

brought into the canonical form. In the canonical basis it is possible to order the eigenvalues of V̄

and cut off the eigenvalues with the smallest absolute values, thereby reducing the computational

cost immensely. Apart from its applications in nuclear physics, the BM decomposition can also

be used to determine eigenmodes for optical parametric amplifiers.

In this thesis, the Bogulibov amplitudes, their canonical basis and the calculation of overlaps

will be studied. In the method section the concepts of second quantization, BCS pairing theory

and HFB theory are introduced. The Bloch-Messiah theorem is stated and proven, in a complete

and pedagogical way as an extension of the existing proofs in the literature ([15, 4]). Bogoliubov

amplitudes in canonical form are created using BCS-theory combined with the potential of a 3D

harmonic oscillator. Then a reverse process to the Bloch-Messiah decomposition is performed

such that the matrices U and V are not in canonical form anymore. After artificially creating

the U and V matrices, the BM decomposition is found again. Having established the BM-

decomposition different approaches to calculate overlaps are described.

In the result section the restrictions on the matrix D, that have not yet been described

in literature, are discussed as well as the observations of different overlaps using the different

approaches.
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2 Method

2.1 Theoretic background

2.1.1 Second quantization

If a quantum many-body system contains several indistinguishable particles it is not possible

to label each particle. Hence, it is logical to introduce a formalism which only describes how

many particles occupy each basis quantum state of the single particle basis. This is called the

second quantization method. Another advantage is that it allows for the number and type of

particles to change dynamically. It introduces creation and annihilation operators a+µ and aµ

where the index µ specifies a single particle state. Depending on the context the states can be,

for example, the levels of a harmonic oscillator or any other potential. This is the starting point

for the nuclear shell model.

By acting on a vacuum state |0⟩ the creation operator creates a particle,

a+µ |0⟩ = |ψµ⟩ ≡ |µ⟩. (1)

In a similar way the annihilation operator takes away a particle from the state µ. We naturally

have that

aµ|0⟩ = 0, (2)

since no particle can be taken away from the vacuum.

We will consider the fermionic case, where we also have that the same quantum state cannot

be occupied twice due to the Pauli exclusion principle and thus

a+µ |µ⟩ = 0. (3)

This implies that the wavefunction has to be antisymmetric which requires that the creation

operators of two different basis states anti-commute and similarly the annihilation operators,

{a+µ , a+ν } = 0, {aµ, aν} = 0. (4)

Together with the additional condition,

{aµ, a+ν } = δµν , (5)

the above equations (4,5) are called fermion anti-commutation Relations (see Appendix A).

The wavefunction of a single particle (1) is defined as a vector in a Hilbert space H (the

so-called ket). The Hilbert space of an A-particle system then becomes

HA = H⊗H⊗ . . .⊗H, (6)

where ⊗ denotes the usual tensor product. We then divide the new Hilbert space HA into an

asymmetric space H(−)
A for fermions, a symmetric space H(+)

A for bosons and the remaining
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orthogonal complement which until now does not have any connection to physical wavefunctions

of elementary particles. We can see, however, that the creation and annihilation operators do

not operate in a single space HA but send wavefunctions from HA to HA+1 or HA−1. To solve

this problem we can introduce the Fock space

F (±) := C⊕H(±)
1 ⊕H(±)

2 ⊕ . . .⊕H(±)
n ⊕ . . . , (7)

where ⊕ denotes the direct sum. The Fermion creation and annihilation operators described

above are now a simple transformation in the antisymmetric Fock space F (−).

2.1.2 BCS pairing theory

The Bardeen–Cooper–Schrieffer theory (BCS) [3, 17] was introduced in solid state physics to

explain phenomena like superconductivity and superfluidity. The essential insight is that any

fermion interacts strongly with its time-reversed counterpart, i.e. a particle in a degenerate

state but with the spin and the angular momentum pointing in the opposite direction. Since

neutrons and protons are fermions, the same formalism has been applied immediately after to

nuclei as well [18]. When it comes to superconductivity the strong attraction between such pairs

is generally attributed to electron-lattice interactions, namely the interaction between lattice

vibrations (the phonons) and electrons. A similar explanation can be made for the pairing in

nuclei, the difference is that the interaction happens between nucleons and core vibrations.

For a single particle Hamiltonian any state |µ⟩ and the time-reversed counterpart, denoted

by |µ̄⟩ have the same energy. Thus eµ = ⟨µ|H|µ⟩ = ⟨µ̄|H|µ̄⟩ which gives

Hsp =
∑
ν

eν(a
+
ν aν + a+ν̄ aν̄). (8)

A general two particle operator in the second quantization formalism, given a potential V

of the interaction strength, is given by

V =
∑

k,l,m,n

a+k a
+
l aman⟨kl|V |nm⟩. (9)

The only interactions that are considered in BCS are the ones between time-reversed particles

which specifies that the non-zero indices in equation (9) are a+µ a
+
µ̄ aν̄aν⟨µµ̄|V |νν̄⟩. We will work

with the seniority scheme which uses the first order term for this type of two body interaction.

This term is constant and will be denoted by −G.

We thus have a two particle contribution to the Hamiltonian of the form

V2P = −G
∑
µ,ν

a+µ a
+
µ̄ aν̄aν . (10)

Hence, the total Hamiltonian is given by

H =
∑

eν(a
+
ν aν + a+ν̄ aν̄)−G

∑∑
a+µ a

+
µ̄ aν̄aν . (11)
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Bardeen, Cooper and Schrieffer proposed a trial wavefunction to solve this Hamiltonian,

|BCS⟩ =
∏
ν

(uν + vνa
+
ν a

+
ν̄ |0⟩), (12)

with the restriction v2ν+u
2
ν = 1. The solution of the given Hamiltonian finally gives the occupation

probabilities v2ν for the different single particle states as

v2ν =
1

2

(
1− Eν√

E2
ν +∆2

)
, (13)

where Eν = ϵν − ϵf denotes the energy of the state ν relative to the Fermi energy ϵf and

∆ = G
∑
uνvν is the pairing gap, a parameter that describes the energy to break a pair of

fermions. This implies that

u2ν =
1

2

(
1 +

Eν√
E2

ν +∆2

)
. (14)

The sum of the occupation probabilities vν has to equal a predetermined particle number,

which gives

n =
∑
ν

v2ν . (15)

The coefficients uν and vν define a transformation of the single particle ν into a quasi-particle

which is a linear combination of a particle and a hole. This defines new creation and annihilation

operators

α+
ν = uνa

+
ν − vνaν̄ (16)

and

αν = uνaν − vνa
+
ν̄ . (17)

This is in essence a change of basis and the BCS theory uses a special case of the Bogoliubov

transformation.

2.1.3 Bogoliubov transformation

The general Bogoliubov transformation defines new operators as a linear combination of creation

and annihilation operators which also fulfil the Fermion anti-commutation relations. As in BCS,

the new operators do not represent the creation and annihilation of real particles anymore but

are analogous to independent particles and are thus called quasi-particles,

β+
k =

∑
l

Ulka
+
l + Vlkal (18)

and

βk =
∑
l

U∗
lkal + V ∗

lka
+
l . (19)

The transformation matrices U and V are called Bogoliubov amplitudes.
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From the Fermion anti-commutation relations (Appendix B) we can show that in a model

with M basis states the transformation

(a1, . . . , aµ, a
+
1 , . . . , a

+
µ ) −→ (β1, . . . , βµ, β

+
1 , . . . , β

+
µ ) (20)

which acts in a 2M-dimensional space is unitary. β

β+

 =

U† V †

V T UT

 a

a+

 =W †

 a

a+

 (21)

Here a, a+, β and β+ are column vectors of the form a = (a1, . . . , aµ)
T . Since equation (21) is a

unitary transformation it is a simple rotation in the antisymmetric Fock space. This new basis is

used in the Hartree-Fock-Bogoliubov method, a variational method which determines the single

Slater determinant that minimizes the energy in the quasi particle basis and therefore finds the

best approximation to the full wavefunction. The computational cost for the HFB method is

relatively low, which is why it is the starting point for most theoretical approaches to describe

heavy nuclei.

2.2 Bloch-Messiah theorem

The Theorem of Bloch and Messiah [15] now states that every unitary matrix of the form

W =

U V ∗

V U∗

 (22)

can be decomposed into three matrices of the form

W =

D 0

0 D∗

Ū V̄

V̄ Ū

C 0

0 C∗

 , (23)

where D and C are unitary and the matrices Ū and V̄ are of the form

Ū =



0

. . . 0

0

u1 0

0 u1
. . .

un 0

0 un

1

0
. . .

1



(24)
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and

V̄ =



1

. . . 0

1

0 v1

−v1 0

. . .

0 vn

−vn 0

0

0
. . .

0



. (25)

In nuclear physics, where the matrices U and V in the BM theorem are the Bogoliubov

amplitudes, it is a great advantage to be able to find their simplified forms (24,25). This makes

it possible to reduce the matrix size by cutting away the beginning and tail of zeroth respectively

ones on the diagonals of Ū and V̄ . The remaining 2×2 boxes represent a quasiparticle state and

its time-reversed counterpart. This explains why the values ui and vi appear in pairs. The basis

in which the Bogoliubov amplitudes are in the from of (24,25) is called the canonical basis.

2.2.1 Proof

The theorem is proved in [15, 4], however, here a more pedagogical proof is provided with many

details. Furthermore, this proof, in contrast to existing proofs, is treating the general case

without any assumptions. This means in particular that higher degeneracies and nonhermitian

matrices U are considered. To prove the Bloch-Messiah theorem we need to show the spectral

theorem for Hermitian matrices [19].

Lemma 1 (Göllmann [19]). A Hermitian matrix Q ∈ Cn×n can be diagonalized by a unitary

matrix U such that

Q̄ = U†QU (26)

is diagonal with real eigenvalues and an orthonormal set of eigenvectors.

Proof. First we show that the eigenvalues of a Hermitian matrix H are real. Let Qv = λv, where

v is an eigenvector and λ is an eigenvalue. We have

λ⟨v, v⟩ = ⟨λv, v⟩ = ⟨Qv, v⟩ = ⟨v,Qv⟩ = ⟨v, λv⟩ = λ∗⟨v, v⟩. (27)

Hence λ is real. We will show by induction that the eigenvectors of Hermitian matrices can be

chosen to be orthogonal. Let Q be a n × n Hermitian matrix. The characteristic polynomial

det(Q−λI) = 0 has at least one solution, which means that there exists at least one eigenvector,

thus the base case is established.
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In the induction step let n < m be an integer. We want to show that if we know n − m

orthogonal eigenvectors which span the space W we can always find another eigenvector that

is orthogonal to the previous ones. Let u1, . . . , um be an orthonormal basis of the orthogonal

complement W⊥ of W in the vector space Cn and let U be the n ×m matrix with columns u1

to um. Now let w be an eigenvector of U†QU with eigenvalue µ. Then

U†QUw = µw =⇒ UU†QUw = µUw. (28)

We define v = Uw which gives

UU†Qv = µv. (29)

Thus v is clearly a linear combination of the basis vectors of W⊥. Thus v is orthogonal to any

other eigenvector x with eigenvalue λ and since Q is Hermitian

⟨λx, v⟩ = 0 =⇒ ⟨Qx, v⟩ = ⟨x,Qv⟩ = 0. (30)

Hence Qv is a linear combination of basis vectors of W⊥, Qv = Uy for some vector y. Thus

UU†Qv = UU†Uy = UImy = Uy = Qv. (31)

Combining this result with (29) we find a new orthogonal eigenvector,

Qv = µv. (32)

Hence by induction for any Hermitian matrix there exist an orthogonal and hence orthonormal set

of eigenvectors. Let us call this set of eigenvectors t1, . . . , tn and the corresponding eigenvalues

λ1, . . . , λn. Let Q̄ be the diagonal matrix with λ1, . . . , λn as entries and T the matrix with

t1, . . . , tn as columns. The matrix T is unitary because the columns ti are orthonormal. Then

for any eigenvector ti we have Tei = ti =⇒ ei = T †ti and thus

TQ̄T †ti = TQ̄ei = λiTei = λiti = Tti. (33)

Since the vectors t1, . . . , tn span the whole space we have

TQ̄T † = Q. (34)

We also need to show the following lemma.

Lemma 2 (Becker [20, 16]). Any skew-symmetric matrix P can be brought into the canonical

form P̄ as

P̄ = S†PS∗, (35)
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where P̄ is of the form

P̄ =



0 s1 0

−s1 0

0 s2

−s2 0

. . .

0 sk

−sk 0

0

0
. . .

0



(36)

and s1, s2, . . . are real numbers.

Proof. If a matrix P is skew symmetric (PT = −P ) then P †P is Hermitian,

(P †P )† = ((P †P )T )∗ = (PTP ∗)∗ = P †P. (37)

Hence it has an orthonormal system of eigenvectors vi. we define for each eigenvector vj with

eigenvalue λj ̸= 0 a new vector given by

wj =
1√
|λj |

P †v∗j = − 1√
|λj |

P ∗v∗j . (38)

We notice that this vector is normalized and orthogonal to vj . The orthorgonality follows since

⟨wj , vj⟩ = − 1√
|λj |

⟨P ∗v∗j , vj⟩ =
1√
|λj |

⟨v∗j , Pvj⟩, (39)

where we used that (P ∗)† = −P . The last two inner products have to be the same which is only

possible if ⟨wj , vj⟩ = 0. We proceed to show that wj is an eigenvector of P †P ,

P †Pwj =
1√
|λj |

P †PP †v∗j =
1√
|λj |

P †(P †Pvj)
∗ =

1√
|λj |

P †λjv
∗
j = λjwj . (40)

Thus every eigenvalue has an even degeneracy as both vj and wj are eigenvectors for the same

eigenvalue. Higher degeneracies are possible, as long as they are a multiple of two. We create a

matrix S where the eigenvectors are the columns such that all the vj are odd columns and the

corresponding wj are the subsequent even columns. Also all eigenvectors with eigenvalue zero

vα are placed at the end of the ordering. Now for the eigenvectors with eigenvalue zero we have

⟨vα, P †Pvα⟩ = ⟨Pvα, Pvα⟩ = 0 =⇒ Pvα = 0. (41)

And for the vj and wj we get (see equation (38))

Pvj = −
√

|λj |w∗
j (42)
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and

Pwj =
√

|λj |PP †v∗j =
√
|λj |v∗j (43)

This clearly gives

P̄ = S†PS∗ (44)

to be in the canonical form (36), with si =
√
|λi|.

Bloch-Messiah theorem.

Proof. Let

Q = V ∗V T = I − UU†, (45)

which follows from the unitary of W and

P = V ∗UT . (46)

We can see that Q is hermitian since

Q† = V ∗V T = Q. (47)

The skew-symmetry of P immediately follows from the unitarity of W (see Appendix B)

UV † + V ∗UT = 0 =⇒ PT =
(
V ∗UT

)T
= UV † = −V ∗UT = −P (48)

Furthermore we have that

QP = V ∗V TV ∗UT = −V ∗V TUV † = V ∗UTV V † = PQ∗, (49)

since UTV = −V TU (see Appendix B).

We want to show that P can be brought into canonical form and Q can be diagonalized

simultaneously. Let B be the unitary matrix that diagonalizes Q and puts the eigenvalues

in descending order for simplicity, i.e. Q̄ is diagonal with Q̄ = B†QB = BTQ∗B∗ and real

eigenvalues qi. We now apply B† from the left side and B∗ from the right side to equation (49).

This results in

B†QPB∗ = B†PQ∗B∗ ⇐⇒ B†QBB†PB∗ = B†PB∗BTQ∗B∗

⇐⇒ Q̄B†PB∗ = B†PB∗Q̄.

Let now P̄ = B†PB∗. Thus Q̄P̄ = P̄ Q̄ and since Q̄ is diagonal we have

P̄ijqi = P̄ijqj ⇐⇒ P̄ij(qi − qj) = 0. (50)

This implies that the elements of P̄ are nonzero for all i and k where the eigenvalues qi ̸= qj .

Thus we only need to consider the subspaces of degenerate eigenvalues which we denote by Q̄i

and P̄i. We know that P̄T = B†PTB∗ = −B†PB∗ = −P̄ is skew symmetric and thus all the
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subspaces are skew symmetric as well. Now from Lemma 2 we now that for each subspace P̄i

there exists a unitary matrix Si such that S†
i P̄iS

∗
i is in canonical form. Furthermore the diagonal

character of Q̄ is unchanged since S†
i Q̄iSi = S†

i qiISi = qiS
†
i Si = qiI. Hence the matrix S which

transform P̄ for every subspace Q̄i of Q̄, i.e. the block-diagonal matrix with Si on the diagonal,

leaves Q̄ untouched. Now let A be the real matrix that reorders the columns of P̄ such that all

zero columns are at the end. We then have that

D = BSA (51)

simultaneously transforms P into canonical form and diagonalizes Q.

From equation (45) we know that D†UU†D is diagonal as well. Let D†U = ŪC be the RQ

decomposition, where Ū is upper triangular and C is unitary. Since

D†UU†D = ŪCC†Ū† = Ū Ū† (52)

is diagonal Ū has to be diagonal as well. Furthermore C can be chosen such that the entries of

Ū are real. This allows to define Ū = D†UC†.

Furthermore D†PD∗ = D†V ∗UTD∗ is in canonical form. Rewriting we get

D†V ∗UTD∗ = D†V ∗CTC∗UTD∗ = D†V ∗CT Ū . (53)

Since Ū is diagonal and real, D†V ∗CT has to be in canonical form with real entries. We define

V̄ = DTV U†. We consider now the eigenspace of U with eigenvalues 0, in this space Ū has

zeros on the diagonal. Then equation (45) shows that V is unitary in this subspace and that in

the Bloch Messiah decomposition this part of V̄ can be represented by a unity matrix. On the

other hand, in the subspaces of V that have eigenvalue zero, where V̄ is zero, requires Ū to have

ones on the diagonal such that equation (45) is satisfied. Thus the matrices V̄ = DTV U† and

Ū = D†UC† are of the form seen in equations (24,25). The Bloch-Messiah decomposition of the

matrices U and V is hence U = DŪC and V = D∗V̄ C.

2.3 Overlap formulae

The calculation of overlaps between different (basis) wavefunctions is a recurring task within the

Generator Coordinate Method and thus an integral part of most theoretical models. Generally,

the phase of the overlap needs to be considered as well, but for simplicity’s sake we will focus

on the absolute value of the overlap. There are different ways to calculate the overlap between

two Bogoliubov vacua. One generally defines one vacuum to be a bra vector while the other one

is a ket vector. This means that for two Bogoliubov vacua |Z ′⟩ and ⟨Z| the overlap is ⟨Z ′|Z⟩.

The Onishi Formula [4, 9] gives a simple way to calculate this overlap as the square root of

the determinant of a certain matrix A. This matrix arises as a combination of the Bogoliubov

transformation matrices U , V , U ′ and V ′, representing the vacua |Z⟩ and |Z ′⟩ respectively. The
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formula reads

⟨Z ′|Z⟩ =
√
detA =

√
det(U†U ′ + V †V ′). (54)

Because of the square root the Onishi Formula allows two possible solutions, thus being ambigu-

ous about the sign. To remove this problem Bertsch and Robledo [13, 14] derived an expression

using the pfaffian of the skew-symmetric matrix V TU V TV ′∗

−V ′†V U ′†V ′∗

 . (55)

Furthermore the transformation matrices C and C ′ from the Bloch-Messiah decomposition

are required, as well as the eigenvalues from the matrices V and V ′. Those are the numbers vi

(respectively v′j) that can be found in the canonical form. The formulation is then given by

⟨Z ′|Z⟩ = (−1)
N
2
(detC)∗ detC ′∏

i vi
∏

j v
′
j

pf

 V TU V TV ′∗

−V ′†V U ′†V ′∗

 . (56)

Since the matrices C and C ′ are unitary and we are foremost interested in the absolute value of

the overlap we may ignore the nominator of the fraction in (56).

A third possibility to calculate the overlap makes use of the Thouless representation of Slater

determinants or other product wave functions (see Appendix C). Thouless’ Theorem [4, 21] states

that we can express a general product wave function |Z⟩ in terms of a quasi-particle vacuum |−⟩

for quasi-particle operators β and β+ as long as |−⟩ and |Z⟩ are not orthogonal.

The ket and bra vectors of the overlap ⟨Z|Z ′⟩ in the usual representation and in the Thouless

representation, which uses the exponential function, are

⟨Z|= ⟨Z|−⟩⟨−|
∏
i<j

(1 + Z∗
ijβiβj) = ⟨Z|−⟩⟨−|e

1
2

∑
i,j Z∗

ijβiβj (57)

and

|Z ′⟩ = ⟨−|Z ′⟩
∏
i<j

(1 + Z ′
ijβ

+
i β

+
j ) = ⟨−|Z ′⟩e

1
2

∑
i,j Z′

ijβ
+
i β+

j |−⟩. (58)

For the calculation of the overlap to be numerically stable, it is necessary that the overlaps ⟨−|Z ′⟩

and ⟨Z|−⟩ are sufficiently big (> 0.001).

The skew-symmetric matrix Z, and similarly Z ′, are obtained through the matrices A and

B which depend on the U and V transformation matrices for |Z⟩ (respectively |Z ′⟩) and |−⟩,

where the latter are indexed with a zero. The matrices are

A = U†
0U + V †

0 V, (59)

which we recognize from the Onishi formula if the unprimed state is considered to be the vacuum,

and

B = V T
0 U + UT

0 V. (60)
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The matrix Z, and likewise Z ′, is now given as

Z = (BA−1)∗. (61)

The matrix A is invertible since the state |Z⟩ was required to be not orthogonal to the vacuum.

The overlap can now be calculated as

⟨Z|Z ′⟩ = ⟨Z|−⟩⟨−|Z ′⟩
√
det(I + Z†Z ′). (62)

However, F. Dönau [10] and J. Dobaczewski [11, 12] recognized that if Z and Z ′ were brought

simultaneously into canonical form the calculation of the overlap would be greatly simplified.

If both matrices are in canonical form we have

|Z ′⟩ = ⟨−|Z ′⟩e
∑

i z
′
iīβ

+
i β+

ī |−⟩ = ⟨−|Z ′⟩
∏
i

(1 + z′īiβ
+
i β

+
ī
) (63)

and

⟨Z|= ⟨Z|−⟩⟨−|Z⟩e
∑

i z
∗
iīβīβi = ⟨Z|−⟩⟨−|

∏
i

(1 + z∗īiβīβi). (64)

This simplifies the calculation of the overlap since

⟨Z|Z ′⟩ = ⟨Z|−⟩⟨−|Z ′⟩
∏
ij

[(1 + z∗īiβīβi)(1 + z′jj̄β
+
j β

+
j )] = ⟨Z|−⟩⟨−|Z ′⟩

∏
i

(1 + z∗īiz
′
īi). (65)

However to arrive at this simple solution one has to find Z and Z ′ in canonical form first.

Let E = Z†Z ′, then

EZ† = Z†Z ′Z† = Z†ET (66)

and

Z ′E = Z ′Z†Z ′ = ETZ ′. (67)

Now, if E can be diagonalized with ei on the diagonal by a transformation S then

S−1ESS−1Z†(ST )−1 = S−1Z†(ST )−1STET (ST )−1. (68)

Let aik be the elements of S−1Z†(ST )−1 then

(ei − ek)aik = 0. (69)

This means that if the eigenvalues of E are not the same, ei ̸= ek, then aik = 0. A similar

argument can be made for the matrix STZ ′S. However, since Z and Z ′ are skew-symmetric

STZ ′S and S−1Z†(ST )−1 have to be skew-symmetric as well. This implies that the diagonal

elements are zero. If each eigenvalue of E was only twofold degeneracy this would imply that

STZ ′S and S−1Z†(ST )−1 would be in canonical form. Since we know the structure of the U and

V and hence Z and Z ′ matrices we know the degeneracies of the eigenvalues of E. They are the

same degeneracies of the eigenvalues of U and V . The degeneracies are thus higher than two for

some eigenvalues. This means that instead of the canonical form the matrices Z and Z ′ will be

in block diagonal form.
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3 Results

The following section discusses the results of a computational model that was created using the

programming language Python.

3.1 BCS vacuum

As an example to study the Bloch-Messiah decomposition and the described overlap functions,

we solve the BCS equations for the energy levels ϵn of the 3-dimensional harmonic oscillator

which are given by,

ϵ(n) = h̄ω

(
n+

3

2

)
− V0.

This simple case can approximate real medium-sized low energy nuclei (but is inadequate for

some bound neutron states) [22]. The constant h̄ω is defined in terms of the mass number A,

h̄ω = 41A− 1
3MeV, (70)

and the depth V0 of the harmonic oscillator is set as V0 = 57MeV. Since we want to use the BCS-

theory approach we need to find the relative energy and thus a suitable Fermi energy. The n-th

energy level has a degeneracy of (n+1)(n+2) which means that vn has to appear (n+1)(n+2)

times in the sum in equation (15). The particle number can now be calculated iteratively for

different Fermi energies until a suitable Fermi energy with the desired particle number is found.

Using the BCS approach we then get the coefficients uk and vk in the canonical basis. Thus,

the matrices Ū and V̄ can already be found since the elements on the diagonal of Ū are the

coefficients uk, similarly ±vk are the real numbers in V̄ (see section 2.2). The coefficients uk and

vk are plotted in figure 1 for different values of ∆ and one can clearly see how the occupation

probabilities vk follow a Fermi-Dirac-like distribution.
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Figure 1: Coefficients u2k (blue asterisk) and v2k (red cross) for energy-gap parameters ∆ =

2Mev(upper plot) and ∆ = 16Mev (lower plot) in terms of absolute energy. The Fermi energy

is shown as a vertical green line.

3.2 Generating non-canonical Bogoliubov vacua

The Bloch-Messiah transformation takes matrices U and V , usually not in canonical form, as

input. We will therefore artificially create such matrices by performing a random rotation in

Fock space of the matrices Ū and V̄ , which means multiplying them with two random unitary

matrices D and C such that U = DŪC and V = D∗V̄ C. To create a random unitary matrix a

random complex matrix was generated in the code, which then was made hermitian. The unitary

matrix was then found by matrix exponentiation. Let the Hermitian matrix be called H, then

D = eiH =

∞∑
k=0

ikHk

k!
(71)

is unitary. This is true since eAeB = eAB for commuting matrices and thus

DD† = eiH
(
eiH
)†

= eiHe−iH = e0 = I. (72)

Through this process the random transformation matrices U and V were created. We are

now able to look at the desired process of finding the Bloch-Messiah decomposition. The first step

is to find the hermitian matrix Q = V ∗V T in its diagonal form. To group degenerate eigenvalues

we will sort them in descending order. The corresponding eigenvectors form the transformation

matrix D. The diagonal matrix Q̄ can be computed as Q̄ = D†QD. Since Ū is in diagonal
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form as well and Q̄ = 1 − Ū Ū† = 1 − Ū Ū , the diagonal elements uk of Ū are determined by

the diagonal elements qk of Q̄, where uk =
√
|1− qk|. Applying the equation V ∗V T + UU† = I

will give the real numbers in the canonical form of V as vk = ±
√

|1− u2k|. This process finds

the decomposition of U and V into the diagonal and canonical form respectively. However, the

matrix P = V ∗UT is not necessarily in canonical form. In fact the matrix D†PD∗ is in block

diagonal form such that each subspace of degenerate eigenvalues is a skew-symmetric square

matrix Pj on the diagonal and any other values are zero. These square matrices are brought

into tridiagonal form (using the skew tridiagonalize command from the pfapack package by M.

Wimmer [23]). Thus for each block Pj the package provides a matrix Sj such that

S†
jPjS

∗
j (73)

is tridiagonal. Creating another block-diagonal matrix where the matrices Sj are on the diagonal

gives a matrix S that brings D†PD∗ into tridiagonal form. Thus

S†D†PD∗S∗ (74)

is tridiagonal. To transform the skew-symmetric tridiagonal matrix into canonical form a simple

transformation J is required, which is described in Appendix D. Then this gives

J†S†D†PD∗S∗J∗ (75)

in canonical form. Finally we can define a proper D matrix, where

Dnew = DSJ (76)

brings P into canonical form and Q into diagonal form.

The matrix C can then be found using the formula

C = (Ū + V̄ )T (D†U +DTV ). (77)

Since D†UC† = Ū as well as DTV C† = V̄ we have

(Ū + V̄ )T (D†U +DTV )C† = (Ū + V̄ )T (Ū + V̄ ) = I. (78)

Since inverses are unique the equation (77) is verified. A simpler method would be to avoid the

degeneracies that are higher than 2 by introducing a small perturbation in the energy.

3.3 Observations for different calculation methods for the overlap of

two BCS vacua

To test the different strategies of computing the overlap two different sets of wavefunctions were

chosen. Firstly the overlap was computed between states with different pairing gap parameter

∆ and secondly between states with different particle number. In this section the square of the

overlap is plotted since the overlap itself has, depending on the formula, a complex phase.
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3.3.1 Observations of the overlap between different BCS states

The different overlap formulas were tested and the difference of results was of the order of 10−29.

In figure 2 the square of the overlap ⟨Ψ(∆1)|Ψ(∆2)⟩ between the BCS state with ∆1 = 7MeV

and a second state with varying ∆2 is shown. The particle number is for both states 20 and,

if considered in the context of nulcear physics, using this wavefunction for both neutrons and

protons, would correspond to a nucleus of 40Ca . Naturally, the overlap ⟨Ψ(∆1)|Ψ(∆1)⟩ between

a state with itself is 1. On both sides of this maximum the overlap decreases. It decreases faster in

the left side as the overlap ⟨Ψ(∆1)|Ψ(2MeV)⟩ is considerably smaller than ⟨Ψ(∆1)|Ψ(12MeV)⟩,

for example.

Figure 2 also shows the results using the Onishi formula if the D and D′ matrices that are

used to generate both states are chosen separately at random. This shows that the restrictions

on the matrices D and D′ are necessary. If one wanted to use two states generated by two not

related unitary matrices D and D′ it would be necessary to bring the U and V matrices into

canonical form before calculating the overlap.

Figure 2: Overlap squared between state 1 with ∆1 = 7MeV and state 2 with varying ∆2. All

approaches for the overlap provide the same data points plotted in red as long as the matrix D

and D′ are related as shown in section 3.3.4. If the D matrices are randomly generated the result

becomes very small the bigger the matrix size. The blue set of data points shows the result one

would get when using the Onishi formula with randomly generated matrices D and D′ for a very

small matrix size (12× 12).

In figure 3 the square of the overlaps ⟨Ψ(N1)|Ψ(N2)⟩ between the BCS state with particle

number N1 = 20 and states with different particle number N2 are displayed both for ∆ = 1MeV

and ∆ = 5MeV. Figure 3 shows that states with different particle number are generally not

orthogonal in the Bogoliubov basis. For this reason, in the GCM, wavefunctions can be written as

a superposition of wavefunctions with different particle number. Similarly to figure 2 the overlap

decreases as the parameters become more different, in this case the particle number. Additionally

the plot shows that for a bigger pairing gap the distribution becomes more stretched out. As
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shown in figure 1 the occupation probabilities vi tend from 1 to 0 slower, the bigger the pairing

gap which exemplifies why the overlaps are bigger and hence the distribution wider. In other

words, BCS wavefunctions are wave packets in particle number, and the pairing gap ∆ identifies

their width.

Figure 3: Overlap squared between state 1 and state 2 with particle number N1 = 20 and varying

particle number N2 plotted for ∆ = 1MeV (red cross) and ∆ = 5MeV (blue plus).

3.3.2 Cutoffs

For a nonzero gap parameter ∆ the coefficients vi asymptotically approach zero. It is therefore

sensible to introduce a cutoff to the V̄ and Ū matrices. The cutoff was set such that any

vi < 0.001 would be cut off. This results in differently sized U and V matrices depending on the

gap parameter. To calculate the overlap the smaller size of the matrices was chosen for both BCS

states. The BM decomposition is extremely useful here in order to reduce the size of the U and

V matrices to enhance the computational efficiency. Just cutting away two rows and columns

from the original matrices completely changes the calculation of the overlap. However, in the

canonical basis it is possible to reduce the size of the matrices from 70× 70 matrices to 20× 20

matrices with little effect. This is demonstrated in figure 4.
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Figure 4: Square of the overlap between state 1 with ∆1 = 10 and state 2 with varying ∆2. The

Onishi formula has been used to calculate the overlap without any cutoffs, i.e 70 × 70 matrices

(red crosses), with reduced 20× 20 matrices in the canonical form (blue plus) and with reduced

40× 40 matrices not in the canonical form (green asterisk).

This confirms that Bloch-Messiah decomposition is useful to derive a physically meaningful

representation. The newfound canonical basis is computationally convenient, as most elements

of the matrices are zero and because one can reduce the matrix size with only a minimal loss in

precision, when calculating the overlap.

3.3.3 Overlap as described by F. Dönau in the canonical basis

A disadvantage of the overlap formula in [10] is that the diagonalization of Z†Z ′ is computation-

ally costly. Since the BM decomposition can be more efficient one could avoid the diagonalization

of Z†Z ′ by transforming all Bogoliubov amplitudes into canonical form. Then

A = Ū†
0 Ū + V̄ †

0 V̄ (79)
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is in diagonal form except if the number of ones on the diagonal varies for V̄0 and V̄ . In this case

a number of anti-diagonal 2× 2 boxes will remain. Thus the matrix A will be of the form

A =



1

. . . 0

1

0 a1

−a1 0

. . .

0 ak

−ak 0

αl 0

0 α1

. . .

αl 0

0 α1

1

0
. . .

1



. (80)

Similarly, the matrix

B = V̄ T
0 Ū + ŪT

0 V̄ (81)

is in canonical form similar to V̄ except for the same amount of boxes with coefficients bi on the
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diagonal,

B =



0

. . . 0

0

b1 0

0 b1
. . .

bk 0

0 bk

0 β1

β1 0

. . .

0 βl

β1 0

0

0
. . .

0



. (82)

Recognizing that the inverse of A has to be of exactly the same form as A it follows that

Z = (BA−1)∗ is of the exact same form as V̄ (25), i.e the canonical form. This implies that

diagonalization of Z†Z ′ is no longer required. The strategy of bringing all Bogoliubov amplitudes

into canonical form first was tested and worked for the simple BCS wavefunction setup, where

Ψ and Ψ′ show the same basis for the canonical form, which is the original single particle basis.

However, this is not generally true for HFB. In order to apply this formula it is necessary that the

Z† and Z ′ are canonical in the same basis. Any matrix in canonical form however is relatively

well defined, as only the order of the antidiagonal 2× 2 boxes can vary. Even though it has not

been tested one could keep track of the reordering of eigenvalues of V ∗V T and thus make sure

that the the antidiagonal 2× 2 boxes are in the right order. This could be the starting point for

other investigation regarding an efficient implementation of the formula in [10] for HFB states.

3.3.4 Restrictions on the matrices D and D′

It was discovered that it is necessary to impose certain restriction on the matrices D and D′

in order for the calculation of the overlap to work. When generating Bogoliubov amplitudes

starting from a BCS wave function, this has to be taken into account. Considering the Onishi

formula we want that the resulting overlap should be the same in the canonical as well as in the

original bases. Thus√
det(Ū Ū ′ + V̄ T V̄ ′) =

√
det(Ū Ū ′ − V̄ V̄ ′) =

√
det(U†U ′ + V †V ′). (83)
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Rewriting the expression on the right side using the BM decomposition, i.e. U = DŪC and

V = D∗V̄ C, we get√
det(U†U ′ + V †V ′) =

√
det(C†ŪD†D′Ū ′C ′ + C†V̄ DTD′∗V̄ ′C ′)

=
√
det(ŪD†D′Ū ′ + V̄ DTD′∗V̄ ′).

Since C and C ′ are unitary they can be removed from the equation and for that reason the

overlap does not depend on them. Thus they can be randomly chosen. The D matrices on the

other hand do not cancel out. In fact, if one considers two unitary matrices D and D′ = eiϕD

the equation becomes√
det(ŪD†D′Ū ′ + V̄ DTD′∗V̄ ′) =

√
det(Ū Ū ′eiϕ + V̄ V̄ ′e−iϕ). (84)

But this means that the U and V matrices are multiplied by different factors eiϕ and −e−iϕ and

thus √
det(Ū Ū ′ + V̄ T V̄ ′) =

√
det(Ū Ū ′eiϕ + V̄ V̄ ′e−iϕ) (85)

does not hold. The important result is that the unitary matrices D and D′ cannot be chosen

randomly when generating U and V . That does not imply though that the matrices D and D′

have to be identical. We consider two D matrices D and D′ = DA, where A is unitary. Let

DAŪC = U, D∗A∗V̄ C = V. (86)

Then if AŪ = ŪA and A∗V̄ = V̄ A we have

DŪAC = U, D∗V̄ AC = V. (87)

This shows that both D and D′ are part of a valid Bloch-Messiah decomposition for the same

state. To show that such a matrix A exist and does not have to be the identity matrix we observe

the subspace of a single 2× 2 block. Then Ūi = uiI and AiŪi = ŪiAi follows trivially. Now let

Ai =

 a b

−b∗ a∗

 , (88)

then

A∗
i V̄i = vi

a∗ b∗

−b a

 0 1

−1 0

 = vi

−b∗ a∗

−a −b

 = vi

 0 1

−1 0

 a b

−b∗ a∗

 = V̄iAi. (89)

Note that

A†
iAi =

a∗ −b

b∗ a

 a b

−b∗ a∗

 =

a2 + b2 0

0 a2 + b2

 , (90)

which gives the restriction a2 + b2 = 1. This shows that A in block diagonal form with 2 × 2

blocks Ai as described above fulfills all conditions.
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4 Conclusion and Outlook

Using BCS wavefunctions to simulate Bogoliubov wavefunctions is a simple way to study the

properties of Bogoliubov amplitudes. Using a reverse process to the BM decomposition allows

the close inspection of the matrices involved. Thus the BM decomposition and the BM theorem

could be studied. A pedagogical and complete proof of the BM theorem was provided. The

usefulness of the BM decomposition was then demonstrated, when it comes to simplifying the

form as well as the size of the involved matrices. A disadvantage of the approach of using the

BCS wave function for a harmonic oscillator is that high degeneracies appear. Those degeneracies

complicate the computation of the canonical form for example in the BM decomposition. The

discussed overlap formulas are reliably implemented, even though more than twofold degenerate

eigenvalues complicate the process of finding the canonical form for Z and Z ′ as the computation

has to be slightly adapted. It was found that not any rotation in the Fock-space is allowed, as the

unitary transformation matrix D can not be chosen randomly. As the Bogoliubov amplitudes

are found as a solution to the HFB equations this restriction on the matrices D and D′ has to be

a result of those calculations. Since the calculation of overlaps is essential in the determination

of nuclear wavefunctions it is a rewarding research topic.

In this project the computational cost of the different processes has not been tested, even

though it would be important for example to determine, if a repeated BM decomposition is

computationally more effective than the diagonalization of the matrix Z†Z ′ in [10]. The com-

putation time for each overlap formula for the calculation of the wavefunction of heavy nuclei

could be studied and improved, possibly by implementing the BM decomposition and through

that reducing the size of the matrices. Another approach would be to explore how symmetry

breaking can be used to simplify computations. For that it would be necessary to apply the

formulas and result of this project to the HFB method or a more advanced model which is based

on the HFB theory. The phase of the overlap provided by the different formulas should also be

discussed, as for example the Onishi formula does not provide a phase at all. Additional overlap

formulas, as for example the formulation in [14] have to be taken into account as well. Consid-

ering the found restriction on the transformation matrix D it would be interesting to check how

this transformation manifests itself in the HFB equations and the calculation of wavefunctions

for real world nuclei.
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A Appendix

A.1 Appendix A: Fermion Anti-commutation

The Fermion Anti-commutation relations

{a+µ , a+ν } = 0, {aµ, aν} = 0, {aµ, a+ν } = δµν (91)

can be easily verified by checking the two possibilities of the state ν being occupied or not,

⟨ν|aµa+ν |ν⟩ = 0, (92)

⟨ν|a+ν aµ|ν⟩ = δµν .

This is clear since if the state ν is already occupied the creation operator acting on it gives zero.

However, if the particle in the state ν is annihilated (ν = µ) the solution is nonzero. Similarly,

we know

⟨0|aµa+ν |0⟩ = δµν (93)

⟨0|a+ν aµ|0⟩ = 0.
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Since equation is valid for both possible cases we can conclude that it is true. Fermion Anti-

commutation relations

{a+µ , a+ν } = 0, {aµ, aν} = 0, {aµ, a+ν } = δµν (94)

A.2 Appendix B: Unitarity of the transformation matrix

We want to show that

W †W =

U† V †

V T UT

U V ∗

V U∗

 = I, (95)

where I is the identity matrix. This can be split into the equations

U†U + V †V = V TV ∗ + UTU∗ = I (96)

and

U†V ∗ + V †U∗ = V TU + UTV = 0. (97)

Recognizing that the second term of the equation (100) is just the transpose of the first term

and similarly, the second term of the equation (101) is the complex conjugate of the first term

we only need to show that

U†U + V †V = I and V TU + UTV = 0. (98)

We use the fermion anti-commutation relations for the quasi particle operators to find

δkn = {β+
k , βn} = β+

k βn + βnβ
+
k

=

(∑
l

Ulka
+
l + Vlkal

)(∑
m

U∗
mnam + V ∗

mna
+
m

)

+

(∑
m

U∗
mnam + V ∗

mna
+
m

)(∑
l

Ulka
+
l + Vlkal

)

Since {an, am} = 0 and {a+n , a+m} = 0 only the cross terms remain.

δkn =
∑
l

Ulka
+
l

∑
m

U∗
mnam +

∑
l

Vlkal
∑
m

V ∗
mna

+
m

+
∑
m

U∗
mnam

∑
l

Ulka
+
l +

∑
m

V ∗
mna

+
m

∑
l

Vlkal.

Now we use that {a+n , am} = δnm.

δkn =
∑
l

UlkU
∗
ln +

∑
l

VlkV
∗
ln +

∑
l

U∗
lnUlk +

∑
l

V ∗
lnVlk.

Since the inverse is unique we also have thatU V ∗

V U∗

U† V †

V T UT

 = I, (99)
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which is equivalent to

UU† + V ∗V T = V V † + U∗UT = I (100)

and

V U† + U∗V T = UV † + V ∗UT = 0. (101)

A.3 Appendix C: Slater determinants

A good way to describe the wave function for a system of A is by introducing the concept of

Slater determinants. We would like to write the wave function Φµ1,...,µA
(x1, . . . , xA) of the whole

system as a linear combination of the orthogonal single particle wave functions ϕµi
(xj). Here

µi are the different basis quantum states and xj the single particle coordinates. The simplest

case would be to write the wave function of the system as the product of the single particle wave

functions,

Φµ1,...,µA
(x1, . . . , xA) =

A∏
i

ϕµi
(xi). (102)

It is clear however that this approach results in a symmetric wave function. To achieve an anti-

symmetric wave function the wave function can be written as a determinant with normalization

constant (A! )−1/2,

Φµ1,...,µA
(x1, . . . , xA) =

1√
A!

∣∣∣∣∣∣∣∣∣∣∣∣

ϕµ1
(x1) ϕµ2

(x1) . . . ϕµA
(x1)

ϕµ1(x2) ϕµ2(x2) . . . ϕµA
(x2)

...
...

. . .
...

ϕµ1(xA) ϕµ2(xA) . . . ϕµA
(xA)

∣∣∣∣∣∣∣∣∣∣∣∣
. (103)

A.4 Appendix D: Transformation of tridiagonal matrix into canonical

form

A skew symmetric tridiagonal matrix is of the form



0 a1 0

−a1 0 a2

−a2 0 a3

−a3 0
. . .

0
. . .

. . .


. (104)

To bring it into canonical form one has to iteratively subtract a multiple of the first column

from the third column and a multiple of the first row from the third row such that a2 and −a2
get annihilated [24]. Then the process has to be repeated to remove all even coefficient a2i. This
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is done by using the unitary transformation matrix

J†
1 =



1 0 0

0 1 0

ca2

a1
0 c 0

0 1
. . .

0
. . .

. . .


, (105)

where c = 1√
1+a2

2/a
2
1

is a normalization constant. Indeed



1 0 0

0 1 0

ca2

a1
0 c 0

0 1
. . .

0
. . .

. . .





0 a1 0

−a1 0 a2

−a2 0 a3

−a3 0
. . .

0
. . .

. . .


.



1 0 0

0 1 0

ca2

a1
0 c 0

0 1
. . .

0
. . .

. . .



=



0 a1 0

−a1 0 0

0 0 ca3

−ca3 0
. . .

0
. . .

. . .


.

Through this process all the coefficient a2i with even coefficients get removed by applying

transformations similar to J1. Thus one arrives at an almost canonical form, where the remaining

coefficients (We will now call them si) that build the 2× 2 boxes are not necessarily real which

means that it is necessary to multiply by a phase (ϕ). This is done by creating a diagonal matrix

K. Let si = eiϕs′i, where s
′
i is real and let ai = e−

iϕ
2 be the diagonal elements of K such that

even elements and the following odd element are the same, i.e the values are pairwise degenerate.

Let J be the matrix product that consists of the matrices Ji which removes the even coefficients

of the tridiagonal form and K which corrects the phase, then J = J1J2 . . . Jn/2−1K brings a

skew-symmetric matrix from tridiagonal form into canonical form.
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