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Abstract

This master thesis project explores the possibility of using deep learning
to segment individual fibers in three-dimensional tomography images of paper-
board fiber networks. We test a method which has previously been used to
segment fibers in images of glass fiber reinforced polymers. The method relies
on a neural network which produces an embedding for each voxel in the input
image, such that the embeddings corresponding to a given fiber should form
a cluster in the embedding space. Individual fibers can then be identified by
applying a clustering algorithm to the embeddings. Although the method is
able to identify some more easily distinguished fibers, the achieved accuracy is
insufficient. We find that the main difficulty lies in acquiring training data of
high enough quality, and that future work concerning this task is required. In
this work, the use of different types of data, including synthetically generated
data, and what we refer to as a type of semi-synthetic data, have been tested.
Although we do not reach any satisfying results, this work may serve as a base
for future research.
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1 Introduction

This project has been carried out at the division of Solid Mechanics, Lund University,
in collaboration with Tetra Pak. Tetra Pak is the world’s largest producer of paper-
board based packages, with hundreds of billions of packages produced every year. A
good understanding of paper properties is important for the packaging industry, as
it allows for using raw material more efficiently, producing more durable packages,
etc. The properties of paper, both mechanical and optical, depend on the internal
structure of the material. Tensile strength and fracture toughness are two examples
of important properties of packaging materials.

With few exceptions, the raw material used for producing paper is wood. The wood
is chopped into small wood chips, and these are converted to free fibers. A suspension
of water and wood fibers is sent into a paper machine, where it is turned into paper
through several steps of forming and removing of water. The structure and properties
of the resulting fiber network follow from the pulp used, and different factors in the
paper machine operations.[1]

The essential characteristics of paper are the fiber structural properties and network
connectivity[2]. Being able to model the fiber networks it is essential to have reliable
estimations of these characteristics. In one way or another, all mechanical properties
are controlled by the inter-fiber bonds in the fiber network. Typically, there are be-
tween 10 and 40 such bonds per fiber[3]. This number can influence both the stiffness
and tensile strength.

X-ray micro-CT imaging has become a valuable and widely used tool for the analysis
of structural materials[4]. By identifying and isolating each individual fiber in the 3D
network, it is possible to get access to fiber properties such as length, cross-section
area and orientation, as well as certain network level properties such as the number
of bonds between fibers. Doing this manually is a very time-consuming task, and it
would be valuable if this identification of fibers could be done automatically.

There have been attempts to identify each individual fiber using traditional image
analysis methods. For example, Sharma et al. (2015)[5] presented a method based on
tracking the hollow part of each fiber, called the lumen, using a modified connected
components algorithm. Aronsson (2002)[1] used a combination of two methods de-
veloped for segmentation of arteries in medical images; Ordered Region-Growing and
SeparaSeed. However, no method has been able to accurately segment a large fraction
of the fibers in an image.

Deep learning has previously been used for segmentation of fiber-reinforced composites[6][7].
In paper, the fiber density is higher, and there is larger variation in shape, size and
orientation of fibers, making the segmentation of paper fibers a more challenging prob-
lem. However, due to its successful application to similar problems, it seems that deep
learning has the potential of segmenting fibers with higher accuracy than what has
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been achieved using traditional image analysis methods. The aim of this project has
been to examine the possibility of using deep learning to identify individual fibers in
tomography images of paper fiber networks.

1.1 Image Segmentation

Image segmentation is a subdomain of image analysis, consisting of methods for par-
titioning an image into different segments, where each segment represents a certain
category or object. There are two main types of image segmentation; semantic segmen-
tation and instance segmentation. In semantic segmentation, each pixel is assigned
a label representing a certain category of objects it belongs to. E.g., in the case of
fiber networks, the goal of semantic segmentation can be to label a pixel as a ’fiber
pixel’, or as a ’background pixel’. In instance segmentation, the goal is to identify
which category a pixel belongs to, and also differentiate between different objects, or
instances, in that category.

In this project the goal has been to perform instance segmentation on tomograms
of fiber networks, i.e. to label each voxel depending on whether it is a fiber voxel,
and also depending on which fiber it is part of. Voxels belonging to the same fiber
should be given the same label, and voxels belonging to different fibers should be given
different labels.

2 Theoretical Background

2.1 Artificial Neural Networks

An artifical neural network (ANN) is a type of machine learning model which takes
an input, and produces an output. Typically, an ANN consists of layers of nodes,
successively transforming the input data. Figure 1 shows an illustration of a simple
network, which takes four values as input and produces two output values. Each node
weights and sums the outputs from the previous layer, adds a bias term, and applies
a nonlinear function f , often referred to as the activation function. I.e., the output y
from a node is calculated as

y = f(wTx+ b), (1)

where x is the input to the node, w is the weight vector, b is the bias, and f is the
activation function. One commonly used function is the rectified linear unit (ReLU):

f(x) = max(0, x)

The activation function in the output layer defines the types of predictions the model
can be used for. For example, a neural network that is used for binary classification
often has an output layer with the sigmoid activation function:

f(x) =
1

1 + e−x
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Figure 1: Illustration of how data propagates through a simple ANN with four input
nodes, one so-called hidden layer with three nodes, and two output nodes. Each node
has its own weight vector and bias, and performs the calculation in eq. (1).

This function gives an output value between 0 and 1, which can then be compared to
a classification threshold.

2.1.1 Training

When used to make inference, a neural network takes an input X and makes a pre-
diction of a variable Y . To be able to make accurate predictions, the network first
has to be trained on a training data set. Such a data set consists of a number of data
points with inputs Xi and corresponding target values Yi. The model is trained by
adjusting the values of the parameters in the network so that it performs well on the
training data, i.e. by fitting the model to the training data.

More precisely, the inputs are run through the network, and the resulting outputs
are passed to a loss function, which is a function that takes on a value based on how
close the outputs are to the desired values. Generally, a loss function takes on lower
values for more desirable outputs. This means that the network parameters can be
adjusted using gradient descent, or a variation thereof. The described procedure is
repeated for a, typically large, number of iterations.

It is possible to overfit a model to the training data, meaning that the model starts
to fit to the inherent noise, or randomness, in the training data. This can negatively
impact the generalization, i.e. the ability of the model to perform well on new, unseen
data. In order to observe how the generalization is affected during training, a set of
validation data can be used. The model is not trained on this data, i.e. the data does
not affect the updates of the network weights, but it can be used to calculate some
performance metric that gives an indication of how the generalization changes during
training.
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Figure 2: Illustration of the operation performed by a 2D convolutional layer that
takes a single-channel input, and has a 3x3 kernel. Each 3x3 patch in the input
is multiplied element-wise by the convolution kernel, and the resulting values are
summed up, yielding the value in the corresponding position in the output feature
map. E.g. the highlighted value in the image is calculated as 1 · 4 + 2 · 9 + 3 · 1− 4 ·
1 + 7 · 4 + 4 · 4 + 2 · 1− 5 · 2 + 1 · 9 = 66. The image is taken from [8].

Figure 3: The same operation as in figure 2, but with the input padded with zeros.
The padding leads to the output feature map having the same height and width as
the input. Image taken from [8].

2.1.2 Convolutional Neural Networks

A convolutional neural network (CNN) is a neural network that contains at least one
convolutional layer. In the last decade, CNNs have come to be widely used in the field
of image analysis[9]. They are mostly used for dealing with 2D-images, but can also
be used with 3D-images. In the 2-dimensional case, a convolutional layer takes an
input of dimensions CxHxW . If the input is an image, C is the number of channels,
and H and W are the height and width, respectively.

The operation that the layer performs can be viewed as sliding a filter, i.e. a ten-
sor of dimensions CxSxS, along the width- and height dimensions of the input, and
at each position calculating the dot product of the filter and the corresponding patch
of the input. The filter is often referred to as the kernel. Figure 2 illustrates the
operation, for the case of a single-channel input and a 3x3 kernel. Here, each 3x3
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patch in the input is multiplied element-wise by the kernel and the resulting values
are summed up, yielding the value in the corresponding position in the output feature
map. I.e. each value in the output is a weighted sum of the values in a patch of the
input, with the weights being defined by the kernel. The operation of calculating this
weighted sum is called convolution.

By applying the same calculations using a number Cout of different kernels, an output
with Cout channels is obtained. Each channel contains what is often referred to as a
feature map. A feature map can be thought of as a one-channel image, obtained by
filtering the input image, using the corresponding kernel. This image contains repre-
sentations of different features that the filtering has extracted from the input. When
a CNN is trained, the kernel values are tuned such that the kernels are able to extract
meaningful features.

The feature maps obtained from the above procedure are of smaller size than the
input. To prevent this, the input can be padded with values along the edges, before
the calculations. The values to use for padding can be chosen in different ways, but
the most common method is to simply pad with zeros, as illustrated in figure 3.

2.1.3 Hardware

The training of a neural network is generally a computationally demanding task, and
often has rather high memory requirements. Since the performed calculations are
conceptually simple to parallelize, the training process can be sped up significantly
by using a GPU. Compared to a CPU, a GPU contains a large number of (slow)
cores, making it efficient at performing a large number of simple computations, such
as those involved in training a neural network, in parallel. However, this comes at a
cost, as the amount of video random access memory (VRAM) in a GPU is generally
more limited than the amount of RAM available to a CPU. This is of relevance in the
memory-demanding case of dealing with 3D-images.

It is possible to use more than one GPU simultaneously. One way of doing this is using
data parallelism. This means that the data in each minibatch, and the corresponding
calculations, are distributed across multiple GPUs.

2.2 DBSCAN

Density-Based Spatial Clustering of Applications with Noise, or DBSCAN, is, as the
name suggests, a density-based clustering algorithm. This means that it identifies
areas of high density, i.e. areas containing many neighboring data points, in the data
space. It depends on two parameters, ε and minSamples. ε defines the maximum
distance, usually the Euclidean one, between two samples for the samples to be con-
sidered neighbors. Samples with at least minSamples neighbors are considered core
samples. All samples (including ones that are core samples themselves) that are neigh-
bors to a given core sample are labeled as belonging to the same cluster. If a sample
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is a neighbor of two core samples that belong to different clusters, the cluster it will
be assigned to will depend on the order in which the data is provided to the algo-
rithm. Samples that are not neighbors to any core sample (and are not core samples
themselves) are considered outliers.

3 Related Work

3.1 Deep Learning-Based Methods

Using ANNs for instance segmentation is not as straightforward as for semantic seg-
mentation. The semantic segmentation problem can be seen as a classification problem
for each pixel, or voxel, with a predefined number of possible classes. Instance seg-
mentation, on the other hand, can be viewed as a classification problem where the
number of classes is not known beforehand, as each instance can be considered its own
class. In a litterature review, two methods relevant to this project could be found;
Mask R-CNN and the method presented in [10].

3.1.1 Mask R-CNN

The most well-known architecture for instance segmentation is Mask R-CNN, intro-
duced by He et al. (2017)[11]. Mask R-CNN consists of a few stages. The first stage
is a backbone which extracts feature maps from the input image. The second stage is
known as a Region Proposal Network (RPN). The Region Proposal Network analyses
the extracted features for each of a large number of predefined rectangular regions
in the image; the implementer selects a few different aspect ratios and sizes for the
rectangles, and then a large number of such rectangles, evenly spread out across the
image, are analysed. For each region, the RPN attempts to determine the likelihood
that the region contains an object. The regions that are the most likely to contain
one object are passed along to the subsequent stages, where the objects are classified
(possibly as ’background’, if the region proposed by the RPN did not actually contain
an object), and a mask for each object is generated. A mask is a binary image, with
all pixels belonging to the object in question having the value ’1’, and all other pixels
having the value ’0’.

However, Mask-RCNN does not work very well with fibers, or elongated objects in
general. This is due to the method being region-based. In a quadratic region cov-
ering a fiber, the fiber contributes very little information. The features that can be
extracted from such a region are not informative enough for reliably segmenting the
fiber.[12]

3.1.2 Approach Based on Clustering

In 2018, Konopczyński et al.[10] presented an approach for instance segmentation of
fibers in low resolution 3D X-ray computed tomography scans of short glass fiber
reinforced polymers. Below, this approach will be referred to as Approach Based
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on Clustering (ABC). ABC relies on a CNN with two separate branches. The two
branches are independent of each other which means that they can be viewed as two
different networks entirely, as will be the case in the following.

One of the networks performs semantic segmentation, and the other network pro-
duces an embedding for each voxel in the image. An embedding is a representation,
in this case of a voxel, in the form of a vector. Konopczyński et al. used embeddings
of length 16. The CNN is trained such that embeddings corresponding to the same
fiber should form a cluster in the embedding space. To segment an image, a cluster-
ing algorithm (DBSCAN) is applied to the embeddings corresponding to those voxels
which the semantic segmentation has identified as being ’fiber voxels’.

The network architectures are illustrated in figure 4, and will be referred to as the
semantic segmentation network and embeddings network, respectively. Both architec-
tures consist of a chain of residual blocks, followed by an output layer. A residual
block, introduced by [13], consists of one or a few nonlinear layers and a skip connec-
tion, meaning that the input to the nonlinear layers is simply added to the output.
All convolutions in the networks use kernels of size Cx3x3, where C is the number of
channels in the input to the convolution, and padding of 1 to maintain the image size.

Figure 5 illustrates the residual block that we have used in this work. In this block,
the convolution operation is applied twice. As in figure 4, the number of input and
output channels, i.e. feature maps, are denoted i and o, respectively. The first convo-
lution operation is followed by the rectified linear unit. Since the number of channels
is not the same after the first convolution, the skip-connection must include a (linear)
transform. This transform ensures that the operands in the addition following the
second convolution are of the same dimensions, so that the addition is possible. The
addition is followed by batch normalization, which normalizes the data as described
in [14], before the rectified linear unit is applied.

The output layer in the semantic segmentation network is a convolution layer which
produces a one-channel output. The sigmoid activation function is used to scale
the output values to the interval (0, 1). To classify each voxel as a ’fiber voxel’ or
’background voxel’, the network output is compared to a threshold of 0.5. The only
difference between the architectures of the two networks is found in the output layers,
as the embeddings network yields a 16-channel output and has no activation function.

Konopczyński et al. refer to the chains of residual blocks as the backbones of the
networks. As can be seen in figure 4, these are identical in both architectures. Due
to instability in the training of the embeddings network, Konopczyński et al. first
trained the semantic segmentation network, and initialized the embeddings network
backbone with the resulting backbone weights.

The semantic segmentation network is trained using voxel-wise cross-entropy error.
With a total of Nv voxels in a minibatch, and numbering these voxels as 1, ..., Nv, the
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loss is defined as

LCE =
1

Nv

Nv∑
i=1

yi log ŷi − (1− yi) log (1− ŷi),

where ŷi is the network output for voxel i. The ground truth yi is 1 if voxel i is a fiber
voxel, and 0 otherwise.

The embeddings network is trained using the loss function described in [10]. The
loss for a single image is a weighted sum of three terms: Lv, Ld and Lr. As explained
by the authors, ”Lv keeps voxels belonging to the same object close to each other,
Ld (...) forces a minimal distance between clusters of different objects, and Lr (...)
regularizes the cluster centers to be close to the origin”. The loss terms are defined as

Lv =
1

C

C∑
c=1

1

Nc

Nc∑
i=1

[||µc − x
(c)
i || − δv]

2
+,

Ld =
1

C(C − 1)

C∑
cA=1

C∑
cB=1,cA ̸=cB

[δd − ||µcA − µcB ||]2+,

Lr =
1

C

C∑
c=1

||µc||,

where C is the number of fibers in the image and Nc is the number of voxels belonging
to fiber c. µc is the mean of the embeddings corresponding to fiber c, and x

(c)
i is

the embedding for a single voxel. The parameters δd and δv affect the distances
between different clusters and the distances between embeddings belonging to the
same clusters, and can be assigned any values deemed appropriate. The total loss for
the image is given by the weighted sum

Limg = αLv + βLd + γLr,

where α, β and γ can be chosen arbitrarily. Konopczyński et al. used the values
α = 1, β = 1 and γ = 0.001. Denoting the loss for image i in a minibatch by Li, the
total loss is obtained as the mean;

L =
1

N

N∑
i=1

Li,

where N is the minibatch size. Konopczyński et al. applied the described method
to overlapping 32x32x32 patches of their images, and then used a merging algorithm
described in the paper to obtain the final segmentation.
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Figure 4: The two network architectures used in ABC, with embeddings of length 16.
For each residual block and convolutional layer, the number of channels in the input
and output is denoted i and o, respectively. The number of channels in the network
input and network output is denoted ch, and the image size is denoted s. A residual
block is illustrated in figure 5.

Figure 5: Illustration of a residual block.

4 Methodology

4.1 Data

Due to difficulties in labeling data, as explained in the following section, a central
issue in this project has been the aquisition of training data of adequate quality. Five
different data sets have been used to train models, and two additional data sets have
been used for validation. The different data sets contain different types of data. First,
tomograms of paperboard samples obtained from X-ray microtomography. Second,
synthetic data which has been generated algorithmically to resemble real tomograms
of fiber networks. Third, a type of ’semi-synthetic’ data, and fourth, preprocessed
tomography data. The data sets presented below will be named according to what
type of data they contain. The data sets containing tomography data will be referred
to as data sets T1 and T2, the data sets containing synthetic data will be referred to
as data sets S1 and S2. The data sets with semi-synthetic data will be referred to
as data sets SS1 and SS2, and the data set containing preprocessed tomography data
will be referred to as data set B. Each example in the data sets consists of an image,
and one binary image for each fiber in the image. All input images are grayscale.

4.1.1 Data From Tomography Experiments

Figure 6a shows a 2D slice of a tomogram with voxel size 1.61 µm and figure 6b
shows a slice from a tomogram with voxel size 3.5 µm. The former comes from the
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(a) (b)

Figure 6: Slices of 3D tomograms with voxel size (a) 1.61 µm and (b) 3.5 µm. The
images come from the work in [15] and [16], and have been taken using a synchrotron
and laboratory-based X-ray tomography, respectively.

(a) (b)

Figure 7: (a) Slice of an image in data set T1, and (b) the corresponding labeling.
Each color represents one fiber.

experimental work in [15], and the image was taken using a synchrotron. The latter
is from the work described in [16], and the image was taken using laboratory-based
X-ray tomography. A number of such images from these experiments have been avail-
able and used for this project. The tomograms have dimensions 151x1010x964 and
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(a) (b)

Figure 8: (a) Slice of an image in data set T2, and (b) the corresponding labeling.

400x2016x2016, respectively. Due to computational- and memory constraints, smaller
sections of such images have been used. Data set T1 consists of 12 images of size
5x80x80, obtained by selecting patches from tomograms of voxel size 1.61 µm. Data
set T2 consists of 12 patches of size 5x80x80 from tomograms of voxel size 3.5 µm.
An example of a 2D slice from each data set is show in figure 7a and figure 8a, re-
spectively. Data of higher resolution was available, but such data was presumed to be
of too high resolution, and therefor was not used. A 5x80x80 patch would likely be a
too small part of the image, not containing enough information.

Data sets T1 and T2 were manually annotated using the program ITK-SNAP. Figures
7a and 8a illustrate why the labeling is inherently difficult, even though the images
in the data sets were included due to being relatively easy to annotate. In many
cases it is difficult to follow a fiber, and see which segments belong to the same one.
This means that when manually annotating, care needs to be taken when it comes to
selecting which parts of images to label. Data sets T1 and T2 have been labeled using
slightly different approaches. In T1, a higher number of fibers have been labeled, in-
cluding fibers that are not easily distinguished. In T2, the annotation has been more
selective, only including more well-defined fibers. Examples of the labeling are shown
in figure 7b and figure 8b.

4.1.2 Synthetic Data

As described above, a central issue in this project has been the challenges involved in
manually labeling data. An alternative approach is to train models using synthetic
data, i.e. computer generated images. The idea is that if the generated images are
similar enough to the real-world tomograms, the models should be able to perform
well when tested on real images. Using synthetic data, it is easy to acquire an arbi-

11



trary amount of data, with completely accurate annotations.

Data set S1 consists of 400 generated images of size 5x80x80. Figure 9 shows an

Figure 9: Slice of a synthetically generated image in data set S1.

example of a slice of such an image. The images are generated by stacking 2D images
on top of each other; First, a 2D image is generated. Each fiber is a circular arc,
generated as follows: Coordinates for a circle of a randomly selected radius, centered
at the origin, are obtained using the mid-point circle drawing algorithm[17]. Then,
a section of this circle is randomly selected and inserted at a random location in the
image. The circular arc is repeated horizontally to increase the thickness of the fiber.
When a number of fibers have been added, the image is repeated a few times in the
depth-dimension, adding depth to the fibers. Two such 3D-images are generated, one
of depth 3 and the other of depth 2, and these are stacked two yield a resulting image
of depth 5. Finally, random noise is added to the image. This method of generating
images implies that all fibers are oriented perpendicularly to the ’depth-dimension’.
Data set S2 consists of 16 images of the same type, and has been used for validation.

4.1.3 Semi-Synthetic Data

In addition to the data types discussed above, we also used a type of ’semi-synthetic’
data. This data was constructed using parts of real images. Segments corresponding
to single fibers were extracted from tomograms, and these segments were then inserted
at random locations in an image with a noisy background. The reasoning behind this
approach was that, just like using synthetic data, it could be used to quickly generate
a lot of accurately labeled data, but with fibers looking more like those in the real
data. Data set SS1 contains 100 semi-synthetic images of size 5x80x80. Figure 10
shows an example of a 2D slice. Data set SS2 contains 16 such images, and has been
used for validation.
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Figure 10: Slice of an image in data set SS1.

Figure 11: Slice of an image in data set B.

4.1.4 Blurred Tomography Data

Data set B consists of 12 preprocessed tomography images. This data set is identical
to data set T1, with the exception that the parts of the images that have not been
labeled as fibers have been blurred. The reasoning behind this approach is that some
parts of the images which perhaps should have been labeled as fibers but were not,
will be blurred out and thereby not confuse the model. An example slice is shown in
figure 11. This is the blurred version of the image shown in figure 7a.
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4.1.5 Data Augmentation

To effectively increase the amount of available data, data augmentation has been
applied during training. This means that images have been transformed so that they to
some extent appear to be ’new’ images. The annotations are transformed accordingly.
The following transforms, found in the Volumentations 3D library[18] and referred
to by the corresponding class names, have been applied randomly: Rotate, Flip,
RandomBrightnessContrast, GaussianNoise, ColorJitter and RandomRotate90.
The library has not been developed with instance segmentation in mind, but it is
possible to utilize it for this purpose by, instead of passing a semantic mask in the
form of a binary image, passing a mask where each fiber is represented by a unique
number.

4.2 Model Implementations

ABC, as described in section 3.1.2, was implemented using PyTorch. Also, a variant
of the method has been implemented and tested. In this variant, the output of the
semantic segmentation network has been used as input to the embeddings network.
I.e., the embeddings network has essentially been used for instance segmentation of
binary images. In this case, the images in the training data have been transformed
to binary images, where each fiber voxel has the value 1, and all other voxels has the
value 0.

Due to time constraints, as well as poor results in the segmentation of 5x80x80 images,
no merging algorithm was tested.

4.3 Evaluation

Due to the difficulties in labeling data, and the difficulty of achieving high accuracy, the
performances of the models have mainly been evaluated by visualizing the obtained
segmentations, including both semantic segmentations and instance segmentations.
The uncertainty in how images should be annotated means that evaluation based on
a comparison to manual annotations would be misleading. I.e. due to the nature of
the problem, evaluation using visualizations is more illustrative than evaluation using
metrics.

4.3.1 Validation

When training on synthetic or semi-synthetic data, validation data of the same type
has been used to obtain a validation loss, i.e. the value of the loss function applied to
the validation data. By validating on the same type of data, it is possible to get an
idea of how the generalization changes during training, and thereby an indication of
what is a suitable number of iterations, even though the performance on the validation
data is not representative of how the model would perform on real-world data.
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4.4 Model Training

The main focus in this work has been the ABC and the two neural networks have
been trained many times, using different data sets and parameter configurations. The
parameter configurations presented here are the ones that were found to be the most
suitable. All models were trained using the Adam optimizer[19]. For all models pre-
sented here, the learning rate had an initial value of 0.01, and was decreased by a
factor of 2 every 2000th iteration. The models were trained for 10000 iterations. Two
NVIDIA A100 GPUs, each with 40 GB memory, were used, using data parallelism.
In all cases, the batch size was 16. All input images were normalized to unit variance
and zero mean.

The semantic segmentation models (SM) will be referred to as models SM1-SM5,
and the embeddings models (EM) as models EM1-EM6. The training- and valida-
tion data sets for each semantic segmentation model are presented in table 1. Models
SM1 and SM2 were trained on real-world tomography data, using no validation data.
Models SM3 and SM4 were trained on synthetic and semi-synthetic data, respec-
tively. Here, validation data was used to give an indication of how the generalization
changes during training. Model SM5 was trained on data set B, i.e. partially blurred
real-world data.

Model Train data Val. data
SM1 T1 None
SM2 T2 None
SM3 S1 S2
SM4 SS1 SS2
SM5 B None

Table 1: The train- and validation data used for training the five semantic segmen-
tation models. Validation data was used only when training on synthetic or semi-
synthetic data. The data sets are described in section 4.1.

Model Train data Val. data Init. backbone weights Input type
EM1 T1 None SM1 grayscale
EM2 T1 None None grayscale
EM3 T1 None None binary
EM4 S1 S2 None grayscale
EM5 S1 S2 None binary
EM6 B None None grayscale

Table 2: Information about models EM1-EM6. The backbone of model EM1 was
initialized using segmentation model SM1. All other backbones were initialized ran-
domly. The models took one of two types of images as input; grayscale images or
binary images.

15



α β γ δv δd
1 1 0.001 0.01 1

Table 3: Parameter values used when training the embeddings models EM1-EM6.
These are the values that were found to work best.

Table 2 contains the corresponding information about the different embeddings mod-
els. Due to poor performance from the semantic segmentation models trained on data
sets T2, SS1 and B, these data sets were not used for the embeddings network. The
network has been trained on data sets T1 and S1, using both grayscale- and binary
images as input, as well as on data set B using the grayscale images as input. Note
that using data set B with binary input would be equivalent to using data set T1 with
binary input, as data set B is a partially blurred version of data set T1. Initializing
the backbone weights using a semantic segmentation network backbone was not found
to make a significant, systematic difference. Model EM1 have been included here to
demonstrate this, and the rest of the models have been initialized randomly. All the
presented models were trained using the same parameter configuration for the loss
function. The parameter values are given in table 3.

5 Results and Discussion

5.1 Semantic Segmentation

Figures 12b-12f each show a slice of a segmented image of dimensions 5x80x80 and
voxel size 1.61 µm, using the models SM1-SM5. The original 2D slice is shown in
figure 12a. The parts labeled as fibers are marked yellow.

While none of the results are quite satisfying, a few conclusions can be made. It
is clear that the type and quality of the training data plays a large role. Model SM4,
trained on semi-synthetic data, can be seen to perform very poorly, as it labels almost
all voxels as fiber voxels. It can be concluded that the type of semi-synthetic data
used here is not useful, presumably due to the input images being too dissimilar. It
is likely that it is the noise in the semi-synthetic data that is not similar enough to
anything in the real data, and that the model has learned to label everything which
does not look like such noise as a fiber.

Model SM5, trained on partially blurred tomography data, performs better than
model SM4. The partially blurred tomography data is similar to the semi-synthetic
data, in that the images contain ’real’ fibers, surrounded by some form of noise. Pre-
sumably, the main difference is that the blurred parts are more similar to the real
data than the pure noise in the semi-synthetic data.

The models that perform the best are models SM1 and SM3, i.e. those trained on data
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sets T1 and S1, respectively. Model SM2, trained on data set T2, does not perform
as well as model SM1, indicating that the images in data set T2 were too sparsely
annotated. Figure 13 shows a slice of the semantic segmentation of a 5x300x300 image
using model SM3. On such larger images, models trained on synthetic data have been
found to, at least seemingly, perform better than models trained on real-world data.
Looking at close-up images such as those in figure 12, it is not obvious that this is
the case. To some extent, it appears that model SM3 simply performs a thresholding
operation, labeling mostly light voxels as fiber voxels, whereas model SM1 is better
at identifying also the darker parts of a fiber. However, it may not be necessary
to identify all voxels of a fiber for the results to be useful. Hence, to conclude, it
is not clear whether the most suitable approach for semantic segmentation is using
real-world data or using synthetic data.

5.2 Instance Segmentation

Figures 14a-14f each show an instance segmentation of a 5x80x80 image, segmented
using models EM1-EM6. Each figure shows all five slices of the image. The different
colors represent different fibers. The color assigned to each fiber depends on the order
in which clusters have been identified by DBSCAN, and has no further interpretation.

Models EM1-EM5 were used together with semantic segmentation model SM1, since
SM1 was the semantic segmentation model that worked best together with these em-
beddings models. Model EM6 was used together with model SM5, since this gave a
slightly better result than using EM6 together with SM1. The ϵ values used in the
DBSCAN clustering are given in the figure captions. In all cases, the minSamples
parameter was set to 100.

Whereas models trained on data set T1 and data set S1 performs similarly well in
the case of semantic segmentation, it is clear that the real-world data is more suitable
for training the embeddings network than the synthetic data is. This can be seen by
comparing the results from models EM1 and EM2, which were trained on real-world
data, with those from model EM4, which was trained on synthetic data. Also, it
can be concluded that using the original grayscale images as input to the embeddings
network is better than using binary images; Models EM3 and EM5 take binary im-
ages as input, and they perform worse than the corresponding grayscale input models.

For the example image in figure 14, model EM1 performs best. However, looking
at segmentations of other images it was concluded that there is no systematic dif-
ference in performance between model EM1 and model EM2. I.e, initializing the
backbone weights using a semantic segmentation model does not make a notable dif-
ference. However, the effect such an initialization has may depend on the quality of
the semantic segmentation model.

Although models EM1 and EM2 give the best results, their performances are not
good enough. Compared to when used on other images, the example image in figure
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14 is one that the models are able to segment relatively well. See appendix A for more
examples of segmentations using model EM1. The main reason for the inadequate
results is, presumably, the quality of the training data. Better results could possibly
be achieved by more extensively labeling real-world data. However, it is highly uncer-
tain if a larger quantity of manually labeled data would make a big difference. Due
to the heavy use of data augmentation, the amount of data used here has, effectively,
been quite large. An alternative approach to improve the performance of the models
is to build on the idea of using synthetic data, by using more sophisticated methods
or algorithms to generate data similar to the real-world images.

6 Conclusions and Future Work

It is not clear that any existing method has the potential to segment tomograms of
paper fiber networks with sufficient accuracy. The primary issue is the difficulty in
acquiring training data of high enough quality. Two possible ways of approaching this
issue is to more extensively manually label data, and developing methods to generate
synthetic data more similar to real-world data. Another approach would be to use
images of less complex fiber networks, e.g. from a different type of paper, as training
data. It is possible that models trained on such data could perform reasonably well
also on images of more complex networks. However, it is not clear to what extent it
is possible to improve the results using ABC, even with access to large amounts of
high quality data. The problem is inherently challenging, and it is possible that more
sophisticated segmentation methods are needed.
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(a) 2D slice of original image. (b) SM1

(c) SM2 (d) SM3

(e) SM4 (f) SM5

Figure 12: 2D slice of a segmented tomogram, segmented using models SM1-SM5.
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Figure 13: Slice of a semantic segmentation (right) of a 5x300x300 image. The original
2D slice is shown on the left.
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(a) SM1 and EM1, ϵ=0.1

(b) SM1 and EM2, ϵ=0.09

(c) SM1 and EM3, ϵ=0.09

(d) SM1 and EM4, ϵ=0.12

(e) SM1 and EM5, ϵ=0.08

(f) SM5 and EM6, ϵ=0.08

Figure 14: All five 80x80 slices of instance segmentations of a 5x80x80 tomogram
with voxel size 1.61 µm, using embeddings models EM1-EM6. Models EM1-EM5
were used together with segmentation model SM1. Model EM6 was used together
with model SM5. The ϵ values are given above.
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A Additional Results

Figures A.1-A.5 shows instance segmentations of five different images, segmented using
embeddings model EM1 together with semantic segmentation model SM1.

Figure A.1: Instance segmentation of an 5x80x80 image, using model EM1, with
ϵ = 0.09.

Figure A.2: Instance segmentation of an 5x80x80 image, using model EM1, with
ϵ = 0.1.

Figure A.3: Instance segmentation of an 5x80x80 image, using model EM1, with
ϵ = 0.07.

Figure A.4: Instance segmentation of an 5x80x80 image, using model EM1, with
ϵ = 0.09.
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Figure A.5: Instance segmentation of an 5x80x80 image, using model EM1, with
ϵ = 0.09.
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