

Department of Automatic Control

Anomaly detection
on a hybrid kinematic machine

Henrik Paldán

MSc Thesis
TFRT-6188
ISSN 0280-5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2022 by Henrik Paldán. All rights reserved.
Printed in Sweden by Tryckeriet i E-huset
Lund 2022

Abstract

Detecting anomalies is a promising and current research subject that can have useful
applications, for example in the field of robotics. In this thesis, anomaly detection
is investigated using a hybrid kinematic machine, which is a pick-and-place robot
that excels at moving objects at high speed and with great reach. Three different
types of anomalies have been chosen to be studied in this thesis; collision, the robot
dropping an object, and weight offset between the expected weight that the robot is
carrying and the actual weight being carried.

The data were gathered from the robot control system, as well as sensors on the
robot when the robot was moving in a specified trajectory cycle. Then, the previ-
ously mentioned anomalies were introduced to the robot.

The anomaly detection was conducted by using different anomaly detection
models which have certain characteristics. The models were first trained using nor-
mal data. Then the trained models and a devised threshold value were used to eval-
uate how well the models were able to detect the anomalies.

The results are promising, especially for collision detection and weight offset
detection. Detecting an object being dropped, however, seems more challenging.
The experiments also indicate that a good model of the robot dynamics is of great
importance when detecting anomalies. The results also indicate that the most im-
portant features for detecting anomalies are the torque data from the control system
and data from an accelerometer at the endpoint of the robot. The most promising
models for anomaly detection are the local outlier factor model and the autoencoder,
which is a type of artificial neural network.

Further work could investigate more varied anomalies that are harder to detect
with more advanced models, while also focusing on the models being computation-
ally fast enough to be applicable in a real-time system.

3

Acknowledgements

I would like to give a big thank you to Björn Olofsson, my supervisor at LTH, for
always taking the time to give input, feedback and answer all questions that arose
during this work. Another big thanks to Olle Hedbrant, my assistant supervisor from
Cognibotics for always having good input regarding the robot and its application.
I’m also grateful to all the other people at Cognibotics that helped me both prac-
tically and by answering all kinds of questions during my time working on this
thesis. Finally, thank you Katja Eftring for great support, both emotionally and by
supplying coffee and sweets when things were dire.

5

Contents

1. Introduction 9
1.1 General introduction . 9
1.2 Academic relevance of the problem and previous research on the

subject . 10
1.3 Problem description . 11
1.4 Outline of thesis . 11

2. Background 12
2.1 The Hybrid kinematic machine (HKM) 12
2.2 Available data . 13

3. Theory 14
3.1 Time series . 14
3.2 Anomaly detection . 15

Data labels and anomaly detection 16
Output of anomaly models . 16

3.3 Anomaly detection models . 17
The local outlier factor (LOF) model 17
The isolation forest (iForest) model 18
The autoencoder (AE) model . 19
The vector autoregression (VAR) model 22
The one class support vector machine (OCSVM) model 22

3.4 Evaluation metrics . 23
4. Method 25

4.1 Data gathering . 25
Collision detection . 25
Object drop detection . 28
Weight offset detection . 30

4.2 Data management . 31
Preprocessing . 32
Reference values . 32
Performance evaluation of the models 35

7

Contents

4.3 Data analysis . 37
Comparison between models . 37
Expanded performance evaluation on the autoencoder 38
Feature evaluation using feature groups 39

5. Result and analysis 40
5.1 Comparison between anomaly detection models 40

Collision detection . 41
Object drop detection . 43
Weight offset detection . 45

5.2 Expanded evaluation of the autoencoder model compared to the
control error . 46

5.3 Feature importance for detecting anomalies in collision detection 47
Analysis . 49

6. Discussion 51
6.1 Comparison between models 51
6.2 Is an anomaly detection model necessary? 54
6.3 Uncertainties and sources of error 55

7. Conclusion 57
Future work . 58

Bibliography 59
A. Hyperparameters used for models 62

A.1 Comparison between anomaly detection models 63
Collision detection . 63
Object drop detection . 64
Weight offset detection . 64

A.2 Expanded evaluation of the autoencoder model compared to the
control error . 65

A.3 Feature importance for detecting anomalies in collision detection 66

8

1
Introduction

1.1 General introduction

Anomaly detection means to identify rare groups of data or individual data points
that deviate significantly from the majority of the data in a dataset. A thorough re-
view of anomaly detection can be found in the article [Chandola et al., 2009]. In
the case of a moving robot that could be any number of things such as the mechan-
ics being broken, the robot not functioning properly, or that it has collided with
something. It could also be more closely related to the specific task of one robot.

The hybrid kinematic machine (HKM) [Cognibotics, 2022] shown in Figure
1.1 is the robot on which this project is carried out. It specializes in pick-and-place,
meaning it excels at picking up and moving objects at high speed with long reach. In
this context three different types of anomalies have been chosen to be investigated;
collisions on the robot, the robot dropping an object that it is carrying, and offset
between the expected weight carried by the robot and the actual weight carried.

The benefits of identifying these anomalies are in the case of collisions that it
can improve the reaction time for the robot when a collision occurs and therefore
reduce the damage to the robot or other objects in the environment. Improved colli-
sion detection could also make the robot safer for humans to be close to. Detecting
if the robot has dropped an object can be used to notify an operator that something
has gone wrong. Weight offset in what the robot is carrying could indicate that the
robot has not picked up an object or picked up the wrong object than it is supposed
to, which also indicates that something has gone wrong in its normal procedures
which should be notified to an operator.

9

Chapter 1. Introduction

Figure 1.1 Illustration of the HKM robot.

1.2 Academic relevance of the problem and previous
research on the subject

Anomaly detection in multivariate time series is a current research field that has
gained much of attention recently, mostly because big datasets are becoming more
easily available. The possible application areas are broad from fault detection in the
industry to fraud detection in finance [Audibert et al., 2022].

In the field of robotics, a common task is to detect collisions, largely because of
the increasing use of cobots and the safety requirements that come with them. Tra-
ditionally collisions are detected by offset in expected and measured torque based
on models [Min et al., 2019], but recently a wide variety of methods most con-
cerning some sort of machine learning have been researched. Some examples of
different approaches are using vibration analysis in detecting a collision [Min et
al., 2019], using neural networks as a virtual torque sensor [Czubenko and Kowal-
czuk, 2021], unsupervised collision detection with normal data training [Park et al.,
2022], and using accelerometer values that already are installed to be used in reduc-
ing link vibrations [Pucher et al., 2019]. This project is closely related to several of
the above-mentioned examples and papers on these topics but using both available
data from the control system such as reference and feedback position, speed, ac-
celeration, and torque together with acceleration data from the robot endpoint in a
machine-learning context seems to be unexplored. There is also limited research in

10

1.3 Problem description

detecting other anomalies than collisions, such as the robot dropping an object and
offset in expected weight.

1.3 Problem description

The purpose of this thesis is to investigate if it is possible to identify anomalies that
occur on the HKM robot using the data from the sensors and the control system that
is available. Three different types of anomalies have been chosen to be experimented
with, collisions with an object, dropping off an object, and offset between expected
and carried weight.

The models used have different characteristics and utilize different aspects of
what characterizes an anomaly which leads to another interesting question to ex-
plore, what model is most proficient at detecting anomalies. The research questions
for this thesis are:

• What types of anomalies are possible to detect on the HKM using the data
available?

• What model is most proficient in detecting anomalies in this setting?

• Which type of data is most significant in detecting anomalies?

Delimitations. An important aspect of an anomaly detection model for it to be
applicable in a real time-system, is the computation time. This is especially relevant
for critical events like collisions. There are many aspects that affect this, such as
what hyperparameters that are used and the available hardware. Since this thesis
does not include an actual test on the real system, the computation time is an aspect
that is not covered in depth in this thesis.

1.4 Outline of thesis

Chapter 2 gives an overview of the Hybrid kinematic machine that anomaly detec-
tion is performed on. It also describes the data available from the system to detect
anomalies. In Chapter 3 theory regarding time series and anomaly detection is pre-
sented together with a general description of the anomaly detection models and the
evaluation metric used to evaluate the performance of the models.

Chapter 4 explains the method for performing the experiments on the robot as
well as data management. The analysis that has been done on the gathered data with
the models is also explained.

In Chapter 5 the result is presented and analyzed for each experiment conducted
and Chapter 6 consists of a more in-depth discussion about some aspects of the
result. Finally, in Chapter 7 a conclusion and a summary of the result are given as
well as suggestions for further work.

11

2
Background

This chapter presents a more thorough background on the robot the project is con-
ducted on as well as what data are available from the system.

2.1 The Hybrid kinematic machine (HKM)

The hybrid kinematic machine [Cognibotics, 2022] used in this project is a robot
developed at the company Cognibotics that specializes in an area called pick-and-
place, meaning that it excels at picking up and placing objects which is a common
task in especially e-commerce. The robot has a unique and patented design and
stands out from other robots with its long reach and speed. The long reach and speed
are because of that the majority of the weight is centered on the base and not on its
moving parts. A drawback with this is that it creates flexible modes in the structure,
which are suppressed with a control design that uses a model of the flexible modes,
the motor torque as control signal and data from the endpoint accelerometer as
feedback.

12

2.2 Available data

2.2 Available data

The control system for the HKM is developed at the company, which means that all
feedforward and feedback signals used to move the robot are available. The signals
used in this project from the control system are the feedback and feedforward values
for the position, velocity, and acceleration for all the motors and the torque for three
out of four motors. The feedforward values are calculated using a mathematical
model of the dynamics of the HKM.

The data from the accelerometer at the endpoint of the robot described in the
section above are also directly available to use.

Finally, there are also sensors integrated into the gearboxes attached to two of
the motors; these sensors measure the acceleration in the gearboxes. The gearboxes
are at the center of the robot and while all values used in the control system have
a sampling rate of 1000 Hz the sensors have a slower sampling rate of 200 Hz. In
total 35 features are used in training the models.

13

3
Theory

In this chapter, a brief introduction to time series and anomaly detection is pre-
sented. There is also an overview of the different types of strategies for detecting
anomalies and the underlying theory of each of the models used. Lastly, the evalu-
ation metric, the F1-score, used to evaluate the performance of the models is pre-
sented.

3.1 Time series

The following definition is taken from [Audibert et al., 2022].

Definition 3.1.1 (Time series). A time series is defined as a sequence of data vectors
T = {x1,x2, ...,xT}, xt ∈ Rm, ∀t,1 ≤ m that are measured in time where t is the
specific time point for that measurement. In the special case when m = 1 it is a
univariate time series and otherwise, it is a multivariate time series

In the case of this thesis, the data gathered can be defined as a multivariate time
series. This data are presented in Chapter 2.2 about available data.

There are several different ways of detecting anomalies in time series, the ones
that are used in this thesis are presented in the chapter about anomaly detection
models. An important concept in anomaly detection on time series is utilizing a
time frame window as a data point. This allows methods that are not specifically
designed for time series to exploit that data in time series usually are related in
time. Instead of only using data from a single time point as a data point, we take a
frame that includes previous data in time and call this a data point instead. We then
consider whether this frame is an anomaly or not. Mathematically, a frame in a time
series is presented as follows.

Definition 3.1.2 (Time frame window). We define a time frame window wt with
length K such that wt = {xt−k+1,xt−k+2, ...,xt},K ≤ t.

A time series can then be described as a sequence of windows W =
{w1,w2, ...,wT}.

14

3.2 Anomaly detection

A multivariate time series with T time points and m dimensions which we
rewrite as a series of time frames will have T − K + 1 time frames because we
cannot use the first K time points since we lack previous values to insert into the
frame. However, each frame will have a dimension of size mK, because for each
dimension we include previous values K time steps back [Audibert et al., 2022].

3.2 Anomaly detection

An anomaly is defined as a data point that does not conform to a well-defined no-
tion of normal behaviour [Chandola et al., 2009]. This is exploited in this thesis by
collecting a large amount of data when the robot is behaving normally to teach a
model this normal behavior. As for anomalies, there are several different types of
anomalies to account for, the most important ones are presented below [Chandola
et al., 2009]. In Figure 3.1 all types of anomalies are presented graphically.

Definition 3.2.1 (Point anomalies). A point anomaly is when a single data point
is classified as an anomaly. This is the simplest type of anomaly and also the type
subjected to most research [Chandola et al., 2009].

An example of a point anomaly is fraud where a person’s spending would in-
crease significantly from how much the person normally spends.

Definition 3.2.2 (Contextual anomalies). Contextual anomalies are when the value
of data in itself does not appear out of the ordinary from other data but the context
in which it is in makes it an anomaly.

To determine contextual anomalies one needs attributes that give structure to the
data. In time series, time is a typical contextual attribute [Chandola et al., 2009]. An
example of a contextual anomaly is snowing which is considered normal beaviour
(at least in many places) during winter but something strange during the summer.

Definition 3.2.3 (Collective anomalies). Collective anomalies are a group of data
points that do not stand out separately but form an anomaly when put together. To
have collective anomalies one needs a relation between data points. In time series
the data points are related by time [Chandola et al., 2009].

15

Chapter 3. Theory

Figure 3.1 Illustration of different types of anomalies. A point anomaly (purple),
contextual anomaly (red) and collective anomaly (green) [Audibert et al., 2022].

Data labels and anomaly detection
It is generally hard to obtain labeled data for anomalies. By its nature anomalies
are rare compared to the rest of the data and can be unpredictable in the way they
manifest. In this thesis, something called semi-supervised anomaly detection is con-
ducted. Semi-supervised means that data labeled as normal are available and since
all anomalies are inflicted superficially, we can safely assume that no anomalies oc-
cur when normal data gathering is taking place. The approach in this case is to build
a model with the available normal data and then consider data points that do not
conform to this model as anomalies [Chandola et al., 2009].

Output of anomaly models
Two main types of output can be generated by anomaly detection models: scores
and labels. The score is a value for each data point of how much of an anomaly the
data point is, and labels are a direct label of if a data point is a normal point or an
anomaly point. Given some information about the data, it is possible to go from a
score output to a label output, for example, if it is known in advance that a certain
ratio of the data are anomalies.

In the experiments in this thesis, it is hard to know exactly when the system re-
acts to the anomaly, and therefore to label the data to be an anomaly or a normal data
point the scoring system is used. A high score that happens in close proximity to
a reference value of an anomaly event is considered a detected anomaly [Chandola
et al., 2009].

16

3.3 Anomaly detection models

3.3 Anomaly detection models

This section introduces the models that are used to detect anomalies in the dataset.
There are different strategies to detect anomalies, the presented models are each a
representative of a specific type of strategy. The selection of models is inspired by
the paper [Audibert et al., 2022], which compares more traditional statistical models
with machine learning and deep learning models in detecting anomalies in multi-
variate time series. Also, the hyperparameters, meaning manually tuned parameters,
are presented for each model.

The local outlier factor (LOF) model
The local outlier factor method belongs to a category of methods called
neighbourhood-based methods [Audibert et al., 2022]. Neighbourhood-based meth-
ods investigate the neighborhood of each data point to determine whether it is an
anomaly or not. The principle is that an outlier would be more isolated compared
to normal data points. The approach makes it easy to assign a score for each point
[Audibert et al., 2022].

The key concepts and the equation for the local outlier factor model is presented
in the following way:

Definition 3.3.1 (k-distance of object p). The k-distance is a distance d(p,o) be-
tween objects p,o ∈ D such that:
(i) for at least k objects o′ ∈ D\{p} it holds that d(p,o′)≤ d(p,o)
(ii) for at least k−1 objects o′′ ∈ D\{p} it holds that d(p,o′′)< d(p,o)

The k-distance of object p will further on be notated as kd(p). The k-distance
could be explained as the radius in a sphere that encloses at least the k− 1 closest
objects and is equal to the distance to the k:th closest object [Breuniq et al., 2000].
Then there may be several objects that are of equal distance as the k:th object from
object p.

Definition 3.3.2 (k-distance neighborhood of object p). Given the previously de-
fined kd(p), the k-distance neighborhood is the set of all objects q such that

Nkd(p)(p) = {d(p,q)≤ kd(p)} and {q ∈ D\{p}} (3.1)

These objects are called the k-nearest neighbours of p.

Definition 3.3.3 (Rechability distance of an object p with respect to o). The reach-
ability distance is defined in the following way:

reachability_distancek(p,o) = max{kd(o),d(p,o)}) (3.2)

Definition 3.3.4 (Local reachability density of an object p). Local reachability is a
way of measuring a local density in the dataset. The definition is:

σk(p) =
|Nkd (p)|

∑o∈Nk(p) reachability_distancek(p,o)
(3.3)

17

Chapter 3. Theory

where the local reachability density is notated as σk(p) [Breuniq et al., 2000]. In
equation (3.3), |Nkd (p)| is the absolute value of Nkd (p). Now all pieces of the local
outlier factor have been defined and all that is left is to put them together. The local
outlier factor is defined in the following way:

Definition 3.3.5 (Local outlier factor of object p).

LOFk(p) =
∑o∈Nk(p)

σk(o)
σk(p)

Nk(p)
(3.4)

Equation (3.4) outputs an anomaly score for each point p. It can be described
as the ratio between the average local reachability density of k points close to p and
the local reachability density of point p. So, if the local reachability density of p is
low and the local reachability density of points close to p is high, then the anomaly
score for point p is high. This way we get a distance-based anomaly detection model
that adjusts how much of an anomaly a distance is based on the neighborhood of
the point [Breuniq et al., 2000].

Hyperparameters. The only hyperparameter to tune for the model is k, the number
of points close to point p that are being compared to p [Breuniq et al., 2000].

The isolation forest (iForest) model
Isolation forest is an isolation-based type of anomaly detection. Isolation-based
means that the model relies on the fact that anomaly points in a dataset typically
have two characteristics. They are generally much fewer than normal points and
their attributes typically differ significantly from other points. These characteristics
make anomaly points easy to isolate [Liu et al., 2012].

This is exploited by the isolation forest model by partitioning data using several
binary search trees and then based on the number of partitions required to isolate a
data point determining if the data point is an anomaly or not [Liu et al., 2012]. The
procedure for the iForest algorithm is explained here.

Training phase. The algorithm divides the dataset into subsets of data. For each
subset, a feature from the data is selected and a binary tree is used to partition the
data points in the subset based on the value of this specific feature. The binary tree
continues to divide the subset until all points are either isolated or all datapoint in
one partition has the same value (so that the group cannot be divided further). The
same procedure is done with several binary trees, each dividing a randomly selected
subset of the data based on a randomly selected feature. All of these binary trees and
the values they use to split the data are saved [Liu et al., 2012].

Evaluation stage. The dataset to be investigated is then used on the selection of
trees that were previously created by partitioning the training data. The evaluation
of a single data point works as follows. The data point is evaluated in all binary
trees created in the training phase, and the average value of the path length taken to

18

3.3 Anomaly detection models

isolate the data point in each tree is saved. This mean value is then fed into equation
(3.5) which is used to account for normalisation and the subsampling size:

s(x,Ψ) = 2−
E(h(x))

c(Ψ) (3.5)

In equation (3.5), E(h(x)) is the average path length for data point x, Ψ is the sub-
sampling size that is used for each binary tree, c(Ψ) is the average path length based
on Ψ which works as a normalisation factor and finally s(x,Ψ) is the anomaly score
[Liu et al., 2012].

Hyperparameters. The hyperparameters for the isolation forest method are Ψ, the
size of the subsample that is used for each tree, and t the number of trees used in
the isolation forest [Liu et al., 2012].

The autoencoder (AE) model
The autoencoder is a type of feedforward artificial neural network which first re-
duces the dimension of the data, called the encoder part, and then expands the data
back to the original number of dimensions, called the decoder part. It works as an
outlier detector by training on normal data which leads to that the model outputs
low loss on normal data, while anomalous data that the model have not trained on
will give a larger loss value [Ohlsson and Edén, 2021].

Artificial neural network. An artificial neural network is a model inspired by neu-
roscience that aims at getting a certain input x to produce a desired output y. This
desired output is learned by giving the network training data with a known output
and then progressively improving the network. There are several different types of
neural networks but only the feedforward network will be covered here since the
autoencoder is based on the feedforward network [Ohlsson and Edén, 2021].

The feedforward network consists of layers of nodes, the first layer is called the
input layer where the input data go in and the last layer is called the output layer
where the derived output y comes out [Ohlsson and Edén, 2021].

The node is the core of a neural network, and a single node consists of a linear
function and an activation function. The linear function is linear, and the activation
function is typically non-linear. Because of the nonlinearity in the activation func-
tion, a large enough neural network can approximate any function according to the
universal approximation theorem [Goodfellow et al., 2016].

19

Chapter 3. Theory

An illustration of the components of a single node in an artificial neural network
is presented in Figure 3.2 and in equations (3.6) and (3.7). The variables in equation
(3.6) and (3.7) are the same as are shown in Figure 3.2, ωk are the weights of a
single node, xk is the input that can be the input data if the node is in the input layer,
otherwise it is the output from the previous layer, b is the bias for the node, φ is the
activation function used in this node and y is the output from the node [Ohlsson and
Edén, 2021].

a =
K

∑
k=1

ωk ∗ xk +b (3.6)

y = ϕ(a) (3.7)

Figure 3.2 Descriptive overview of a node in a neural network [Ohlsson and Edén,
2021].

There are many different types of activation functions that are conventionally
used, the ones that are being used in this thesis are the tanh and rectified linear unit
(ReLu) functions defined in Table 3.1.

Table 3.1 The common activation functions in neural networks tanh and ReLu.

ϕ(a) = tanh(a) = exp(a)−exp(−a)
exp(a)+exp(−a)

ϕ(a) = ReLu(a) = max(0,a)

The goal when training an artificial neural network is to tune the parameters ωk
and b for each node. This is done by defining a loss function L(ω,b) and then finding
parameters ω and b that minimize L(ω,b). Commonly this is done by exploiting

20

3.3 Anomaly detection models

the gradient of the loss function L(ω,b). The loss function L(ω,b) is also a way to
measure how well our model performs. With a training set we have a known output
dn given an input x, which we then compare to the actual output of the model yn.
A common loss function that is also used in this thesis is the mean squared error
defined as

L(ω,b) =
1
N

N

∑
n=1

(dn − yn)
2 (3.8)

where N is the total number of data points in the dataset [Ohlsson and Edén, 2021].

Autoencoder. The autoencoder is a type of feedforward network with a distinct
design of the network. It takes an input and then through one or several layers re-
duces the number of nodes to a bottleneck that is smaller than the number of input
nodes, this part is called the encoder part. Then it increases the number of nodes
again through one or several layers until it has the same number of nodes as the
input layer, this part is called the decoder part. An illustration of an autoencoder
neural network can be seen in Figure 3.3.

Figure 3.3 Illustration of an autoencoder artificial neural network [Ohlsson and
Edén, 2021].

In the context of an autoencoder the loss function described in equation (3.8)
becomes:

L(w,b) =
1
N

N

∑
n=1

(xin − xout)
2 (3.9)

where xin is the input to the network and xout the output [Ohlsson and Edén, 2021].
An autoencoder can be used for several things, one of them being the detec-

tion of anomalies in a dataset. With semisupervised learning where normal data are
available for training, the neural network can train on that dataset and optimizes on

21

Chapter 3. Theory

reconstructing normal data. This will, in turn, result in the loss function becoming
small for normal data. Then if the network is given anomalous data on which it has
not trained the loss will be higher so the anomalous score here is the loss for the
network [Ohlsson and Edén, 2021].

Hyperparameters. There are many ways of constructing an artificial neural net-
work. The only thing granted in an autoencoder network is that the size of the input
layer should be the same as for the output layer and that the middle layer should be
smaller. Other than that, the number of layers and the number of nodes in each layer
can be adjusted. There are also other parameters such as the activation functions,
the optimization method, and batch size that are more centered around the training
performance that also can be adjusted [Ohlsson and Edén, 2021].

The vector autoregression (VAR) model
A vector autoregression model is a model that aims to model and forecast multivari-
ate time series based on statistics. The model takes previous values of all features
and then predicts the next value. The number of previous values that are being used
is called lag and is up to the creator of the model. A model of p:th order looks the
following way:

yt = c+A1yt−1 +A2yt−2 + ...+Apyt−p + et (3.10)

where c is a constant vector working as the bias for the model, the matrices An are
time-invariant matrices, e is an error term, and yt is the next predicted value in the
time series [Petropoulos et al., 2022].

A time series process has to fulfill two conditions to be modeled with VAR, the
first one is that there has to be a correlation between the different features in the time
series, otherwise they are just individual time series. The second one is that because
the matrices An are time-invariant the time series has to be stationary, meaning that
their underlying statistical properties do not change over time [Petropoulos et al.,
2022]. The first condition, that there is a correlation between time series, can be
checked by using a cointegration test. The cointegration test is not covered in this
thesis but can be read about in [Johansen, 1991]. The second condition that the
time series has to be stationary can be checked by using a Dickey-Fuller test, which
is also not covered in this thesis but is described in the paper [Dickey and Fuller,
1979].

Hyperparameter. The only hyperparameter for a VAR model is the number of
previous data points used to predict the next value, which is also called lag. There
is a test that can be used on different lags to determine which one works best, the
test is called the Akaike information criterion and is presented in [Akaike, 1974].

The one class support vector machine (OCSVM) model
A one-class support vector machine is a special kind of support vector machine that
is specifically designed to identify outliers [Schölkopf et al., 2000]. The method is

22

3.4 Evaluation metrics

domain-based and tries to create a boundary around all normal points in a feature
space and then classify all points outside of the boundary as outliers [Schölkopf
et al., 2000].

Support vector machine (SVM). A regular support vector machine is a classifier
that aims at creating a boundary between all classes of data in a feature space. It
does this by maximizing the distance between the closest data point from each class
and putting the boundary at that distance. SVM is typically a linear classifier but
by projecting the data to higher dimensions using a kernel, one can also create non-
linear boundaries [Lindholm et al., 2022a]. The kernel used in this thesis is the radial
basis function (RBF) kernel [Lindholm et al., 2022a].

The one-class support vector machine differs from typical SVMs by only having
one class that represents the normal data points. So the model aims at creating a
boundary as close as possible around the normal data points and all points that are
outside of that boundary are considered outliers [Schölkopf et al., 2000].

Hyperparameters. According to the original paper about the one class support
vector machine [Schölkopf et al., 2000], the algorithm has a built-in factor ν that
sets a threshold for how many datapoints in the training set that are anomalies and
should be outside of the boundary. The RBF kernel also has a parameter γ that
decides how much influence a single training example has [Lindholm et al., 2022a].

3.4 Evaluation metrics

To objectively evaluate a model, an evaluation metric is needed. A common one that
is also used in this thesis is the F1-score. To understand the F1 score one needs to
start with the following key concepts:

True positive (TP). True positive is when an anomaly occurs, and the model can
detect it.

False positive (FP). A false positive is when no anomaly occurs, but the model
still signals that an anomaly has happened.

False negative (FN). A false negative is when an anomaly occurs, but the model
is not able to detect it.

Intuitively based on these definitions, many true positives and few false positives
and false negatives is an indicator that a model performs well [Lindholm et al.,
2022b]. Furthermore, precision and recall are used to weigh true positives and false
positives as well as true positives and false negatives. These concepts are presented
next.

23

Chapter 3. Theory

Precision. Precision measures the ratio of relevant instances and the total number
of instances. Precision is defined by the following expression:

precision =
T P

T P+FP
(3.11)

Recall. Recall, also known as sensitivity, describes the division between relevant
instances retrieved and the total number of instances. Recall is defined by the fol-
lowing expression:

recall =
T P

T P+FN
(3.12)

F1-score. Recall and precision are both metrics that could be misleading if one
does not have the full picture. As an example related to the topic of this thesis,
a high precision but a low recall could mean that the system is too sensitive and
would likely to signal a collision or other anomaly when none have happened. A
system with a high recall but low precision would instead mean that it rarely gets it
wrong when signaling an anomaly but that it also misses a high rate of anomalies
[Lindholm et al., 2022b]. Both are of course unwanted properties of an anomaly
detection model. Therefore there is another metric called the F1-score which takes
both of these into account and balances them. The F1-score is defined in the follow-
ing way

F1 = 2
precision · recall

precision+ recall
(3.13)

The F1 score returns a value between 0 and 1 where 0 means that no anomalies
have been detected and 1 means that the model detects all anomalies and gives zero
false alarms [Lindholm et al., 2022b]. In the rare case that the model does not detect
a single correct value, the F1-score will be a value divided by zero and therefore
undefined.

24

4
Method

This chapter is divided into three parts, the first one describes the method of data
collecting and how the experiments were carried out. The second part describes the
data management, the procedure used to define when the anomalies occur based on
reference values and how a threshold value was calculated for the different experi-
ments. The third part describes how the analysis was done using the models on the
data.

4.1 Data gathering

Since the robot is running on programmable logic controllers (PLCs) and software
from Beckhoff, an automation company, all data gathering was done with the Beck-
hoff software TwinCat scope [Beckhoff, 2022]. The data gathering for the training
data were recorded in intervals of 20 minutes and these datasets were then divided
into two 10-minute sequences each to be able to export them. After that they were
exported as a comma separated values (csv) file, then read into the Julia program-
ming language [Bezanson et al., 2017] as a DataFrame datatype. All data gathering
was done with a 1 millisecond sample period.

Collision detection
Training data gathering. The training data for the collision tests were gathered
by creating a trajectory for the robot which fulfilled two criteria: the first one was
that it should be a trajectory similar to its real application, so a pick and place cycle,
and the second criterion was that it should excite all joints of the robot to get a
good overall representation of its movements. Since for collisions, the speed and
therefore the force of the robot is of great interest this trajectory was run at three
different speeds. The robot controller is designed in a way that a maximum velocity
is set when executing a movement. The maximum velocities used were 2.7 m/s,
1.8 m/s and 0.9 m/s. The robot was then run for 4 hours for each velocity to gather
a sufficient amount of data.

25

Chapter 4. Method

Testing data. The obstacle was created using aluminum bars, some foam, and duct
tape. The obstacle also had an accelerometer attached to it that was connected to the
Beckhoff software together with all other data to be used as reference data to detect
when the collision takes place. A close look at the obstacle can be seen in Figure
4.1. The first 100 collisions for each velocity were recorded at the endpoint and the
tool of the robot. For these 100 collisions the resistance, meaning the tension of the
screws attaching the obstacle, as well as the height of the obstacle were varied to get
a variation in the collision data. An overview of the experiment setup can be seen in
Figure 4.2.

Figure 4.1 Close look at the construction of
the collision obstacle. The red circle encircles
the whole collision object and the red arrow
points at the accelerometer used to get a ref-
erence signal.

Figure 4.2 Overview picture of the colli-
sion obstacle and the robot. The blue circle
encircles the HKM, the red circle encircles
the collision object and the red arrow points
at the accelerometer used to get a reference
signal.

After the collisions at the endpoint of the robot were performed, the obstacle was
reconfigured to record collisions closer to the center of the robot. Then 40 collisions
were recorded in the same way for each velocity at different points between the
endpoint and the center of the robot. This setup can be seen in Figure 4.3.

26

4.1 Data gathering

Figure 4.3 Overview picture of the reconstructed collision obstacle for inner col-
lisions and the robot. The red circle encircles the reconstructed collision object and
the red arrow points at the accelerometer that gives the reference signal.

27

Chapter 4. Method

In total 140 collisions were recorded for each velocity, 100 at the endpoint of
the robot and 40 closer to the center of the robot.

Object drop detection
Training data. The data for the object drop experiment was gathered in a similar
way as the collision data. A path that is both realistic as to the robot’s area of use
and excites all joints was produced. The difference here is that the robot is moving
a package back and forth along its path. The robot is equipped with vacuum suction
that it uses to pick up objects.

For this data the velocity is of less importance and was therefore chosen to be
constant. Instead, the weight of the object that is moved around is of more interest.
Two different weights were used, 2.5 kg and 7.5 kg, the weights were chosen be-
cause the robot’s nominal payload is 2 kg and 2.5 kg was close enough to it and its
maximum payload is 7.5 kg. The velocity for the respective weight was 1.8 m/s for
2.5 kg and 1.35 m/s for 7.5 kg. The reason different velocities were used is because
the data for a 2 kg weight were gathered first, and the robot was unable to keep a
grip on the heavier 7.5 kg object at that velocity so it had to be lowered.

The same package was used for both tests, so the volume is constant for both
tests. A picture of the package can be seen in Figure 4.4. A complete overview of
the experimental setup can be seen in Figure 4.5. Data were gathered for two hours
for each weight and then split up into datasets of 10 minutes in the way described
at the beginning of the chapter.

The suction cups kept dropping the carbon box with the 7.5 kg weight so during
the last 20 minutes of data gathering a plastic lid was attached to the top of the box
to get a better grip.

Testing data. The test data were gathered by using the same path as for the normal
data with the object but then the vacuum was switched off manually at different
instances of the cyclic path. For the heavier load of 7.5 kg a plastic lid was used
for all data gathered. This plastic lid was so well attached to the vacuum cups so
that it sometimes took a long time to let go of the object. Because of this, a blowout
function was also used on some of the datasets, this blowout function makes the
robot drop the object faster. The vacuum system also logs the vacuum pressure
which was used as a reference signal to when the robot drops the object.

28

4.1 Data gathering

Figure 4.4 Close look at the object used for drop experiment, in this picture the lid
used for the heavier load of 7.5 kg is on.

29

Chapter 4. Method

Figure 4.5 Overview picture of the robot carrying the object used in object drop
experiments. The blue circle encircles the HKM robot, and the red circle encircles
the object used for the experiment.

Weight offset detection
The control system that plans the trajectory of the robot uses a mathematical model
of the robot dynamics to calculate the feedforward signal. With this comes the op-
tion to take into account the weight and center of mass of any object attached to
the robot or carried by it to keep the model of the system closer to the real physical
system. In this way, the control error is minimized. This experiment was conducted
to see whether it is possible to detect deviations between the adjusted weight of an
object and the actual object weight. The experiment here is that the adjusted weight
is set to a certain weight while the real robot does not carry any weight at all.

Training data gathering. The training data were gathered by attaching a test ob-
ject of a predetermined weight on the robot and adding the weight of the test object
into the model of the robot dynamics that is used when computing a feedforward
signal to the controller. Then a trajectory that realistically simulates a pick-and-
place cycle and excites all the joints of the robot was chosen and the robot ran this
trajectory for 2 hours while data were gathered on all parameters. Two different test
objects with a weight of 2 kg and 7.5 kg, respectively, were chosen since this is the

30

4.2 Data management

nominal and the maximum payload of the robot. The objects can be seen in Figure
4.6 and Figure 4.7. The maximum velocity of the robot was chosen to be 3.6 m/s for
the weight 2 kg and 3.15 m/s for the weight 7.5 kg. The reason to using these max-
imum velocities were to use as high maximum velocity as possible without risking
breaking the robot since this is how the robot would be used in a practical setting.

Testing data gathering. The data gathering for data used in evaluating the per-
formance was done a bit differently in this experiment than the previous two. For
this experiment, two different types of test data were collected, firstly anomalous
data were gathered by having the robot to move along the same trajectory as for the
training data and with the same weight setting but without any object attached. So,
the weight offset between the model used in the control system and the real system
was 2 kg and 7.5 kg, respectively. The second type of test data were gathered in the
same way as for the training data with the object attached. This way the anomalous
data were be used to investigate if the models can detect if it is an anomaly and the
data gathered the same way as the training data were used to see if the robot detects
any false positives. Both types of data were gathered for 2 hours, respectively. The
data were then split into small parts that correspond to one trajectory cycle, for the
experiment with 7.5 kg it was roughly 4.5 seconds and with the 2 kg weight it was
roughly 2.6 seconds.

Figure 4.6 7.5 kg weight used in the weight
offset experiment.

Figure 4.7 2 kg weight used in the weight
offset experiment.

4.2 Data management

The data were processed using the Julia programming language and packages avail-
able in Julia, mainly the package DataFrames [Bezanson et al., 2017].

31

Chapter 4. Method

Preprocessing
For the training and evaluation of all the models except the VAR model, the data
were normalised by using pre-computed values to get the mean value of the training
data to 0 and the standard deviation to 1. The pre-computed values were derived
using all training data for each experiment and each subcategory. This means that
for example for collisions the normalisation was done separately for each maximum
velocity and for the drop experiment and weight offset experiment the normalisation
was done for each weight separately. The values used were calculated by using all
available training data for each test, even if only a subset of the data were used in
the training of the models.

Reference values
To evaluate whether a model can detect an anomaly or not one needs to know for
sure when the anomaly event is happening. For this, a reference signal was used to
extract the relevant information. In this section the reference values for the collision
and the drop experiment are explained. For the weight offset no reference signal is
used, instead normal data were used to compare whether the model would give a
higher anomaly score to anomalous data than to normal data.

Collisions. The object that was used for colliding with the robot had an accelerom-
eter attached to it. The data from the accelerometer were stored the same way as the
data for the system. The accelerometer data, acceleration along the x, y, and z -axes
were all put together into a single vector with a root mean square (RMS) value for
each time point. The root mean square value is calculated for each time point with
the following equation

χn =

√
1
3
(x2

n + y2
n + z2

n) (4.1)

where χn is the RMS value for a single time point, n is the specific time point
and xn, yn and zn are the accelerometer values in each spatial direction from the
accelerometer. A value is calculated from the RMS vector for each time point by
first calculating the difference between the average of the previous ten values and
the current value and then caluclating the absolute value of this, this is the final
reference value used. Then a threshold value was identified for the collisions so
that when the calculated value was above that threshold value it would imply a
collision. The same threshold value was used for all collisions, except for the inner
collisions where more disturbance occurred in the accelerometer because of the new
position so a slightly higher threshold value had to be used. The RMS value from
the accelerometer is shown in Figures 4.8 and 4.9, the red line seen in the figures is
an indicator that the method described in this section has identified a collision.

32

4.2 Data management

Figure 4.8 This is the RMS value calculated from the accelerometer attached to
the collision object during a collision.

Figure 4.9 This is a closeup near the collision of the RMS value of the accelerom-
eter data from the sensor attached to the collision object.

33

Chapter 4. Method

Object drops. The robot picks up an object by using vacuum and suction cups. On
the device that is used to create a vacuum there is a vacuum sensor that measures
the pressure when picking an object. This value is stored together with the other
signals for the control system. When an object is starting to fall the pressure drops
and when the object has fallen off completely the vacuum value is zero.

If an object is held tightly by the suction tool it might take a few seconds from
that the vacuum is turned off until the object drops. It is also uncertain when ex-
actly the anomaly would be registered by the anomaly detection models, when the
vacuum is turned off or when the object has completely fallen off from the suction
tool. Therefore, two indicators were used instead of one. The first one is when the
pressure value drops below a threshold value derived by taking the lowest pressure
value from a dataset of normal data which was 10 minutes. The other indicator was
set to when the pressure value is zero, which indicates that the object has let go from
the suction tool completely. These two indicators are marked in the figures with a
red line shown in Figure 4.10. For some test cases, a function that blows out air was
used to make the object drop almost instantly. This can be observed in Figure 4.11
where the first and second indicators occur almost at the same time.

Figure 4.10 This is how the data from the vacuum sensor on the robot look like
when the vacuum device is turned off normally and no blow out is used.

34

4.2 Data management

Figure 4.11 This is the reference value from a test data where blow out is used to
drop the object faster.

Performance evaluation of the models
To objectively evaluate the model, a procedure with a set of rules was used. The
main task is to get a threshold value of the anomaly score that is used to decide
whether a datapoint is an anomaly or not. The method to calculate the threshold
value was derived with the goal to maximize the number of true positive values and
minimize the number of false negatives and that a perfect model should produce a
perfect F1-score.

The collision data.

1. First, the model was used on a dataset taken from the training data where the
robot operates normally. The size of that dataset was set equal to the size of
the training data. The highest anomaly score output when using the model on
this dataset was saved.

2. Then 30 percent of the testing data with anomalies was set aside. The current
model was used to get an anomaly score for each time series. Then all these
time series with an anomaly score were iterated through and for each time
series the highest value within 500 milliseconds after a collision was saved.
Then, from all these values the lowest one was selected.

3. Then finally, the mean value between the two saved values was calculated as
the threshold value.

35

Chapter 4. Method

4. Then, the model was used on the remaining test data (70 %) to convert each
datapoint into an anomaly score. If an anomaly score above the threshold
value occurs within 500 milliseconds after the collision it counts as a true
positive, if it does not occur it counts as a false negative. If the anomaly score
is above the threshold value anywhere else other than after a collision it counts
as a false positive.

5. All the true positives, false positives and false negatives were then used to
calculate the precision, recall, and F1 score for that model.

The drop data.

1. A first value was computed by first using the model on a dataset taken from
the training data where the robot operates as normal. The size of that dataset
was set equal to the size of the training data. The highest anomaly score output
was saved.

2. Then 30 % of the test data with anomalies was set aside and the current model
was used to turn each datapoint into an anomaly score. From these time series
with anomaly score the highest value within an interval that was set between
500 milliseconds before the first indicator and 500 milliseconds after the sec-
ond indication was saved. From all these values the lowest one was used.

3. Finally the mean value between these two saved vales was calculated as the
threshold value.

4. Then the model was used on the remaining anomaly data (70 %). If an
anomaly score above the threshold value occurs within the interval 500 mil-
liseconds before the first indicator and 500 milliseconds after the second one
it counts as a true positive, if it does not occur it counts as a false negative. If
the anomaly score is above the threshold value anywhere else other than after
an object drop it counts as a false positive.

5. All the true positives, false positives and false negatives were then used to
calculate the precision, recall and F1 score for that model.

The weight offset data. For the weight offset test an equal amount of normal and
anomaly data were used to evaluate the performance.

1. A first value was found by using the model on a training dataset of 5 minutes
with normal data and saving the mean value of the anomaly score of this
dataset.

2. A second value was found by using the model on an anomaly dataset of 5
minutes and saving the mean value of the anomaly score of this dataset.

3. Finally the mean of these two values was calculated as the threshold value.

36

4.3 Data analysis

4. This threshold was then used together with the model to evaluate the remain-
ing datasets.

5. Step 4 was done by dividing both normal data and anomaly data into small
datasets that represent one movement cycle. For the 7.5 kg weight it was
approximately 4.5 seconds and for the 2 kg weight it was approximately 2.6
seconds.

6. Then the model was used to get an anomaly score for the small datasets and
the mean value of this anomaly score was calculated.

7. The mean anomaly score was then compared to the previously calculated
threshold score for both normal datasets and anomaly datasets.

8. If a normal dataset was classified as anomalous by the mean anomaly score
being higher than the threshold value it was registered as a false positive,
if it instead was classified as a normal data point it was registered as a true
positive.

9. If an anomaly dataset was noted as anomalous by the mean anomaly score
being higher than the threshold value it was registered as a true positive and
if it was not classified as an anomaly it was registered as a false negative.

10. Finally the F1 score was calculated from all the true positives, false positives,
and false negatives.

4.3 Data analysis

In this section the different tests conducted on the data gathered are described. The
models one class support vector machine, isolation forest and local outlier factor
comes from a julia package called OulierDetection.jl [Muhr et al., 2022]. The vector
autoregression model comes from the python package statsmodels [Seabold and
Perktold, 2010]. Finally, the autoencoder model was created using a package for
artificial neural networks in Julia called Flux [Innes et al., 2018].

Comparison between models
When comparing the models to investigate which one performs best, the same
data were used on all the models. Because some models were considerably time-
consuming only 5 minutes of recorded data were used for each test. This data were
randomly selected from the total data available for all experiments.

For all models except the vector autoregression model, several different hyper-
parameters were used in an interval which was chosen so that the performance of the
model started to decrease when increasing or decreasing the hyperparameter values

37

Chapter 4. Method

and so that the training time was within reasonable bounds. For the vector autore-
gression model, instead the Akaike information criterion was used which measures
the prediction error for a given model. Different sizes of previous datapoints be-
tween 1–30 were used on the training data for each test and the model with the
number of previous values that gave the best result was used.

A comparison was made between the best performance for each model and the
result from using only the torque control error (see the following section). This was
done for all three experiments using the same data and the same evaluation rules.
For the collision test the data gathered from the inner collisions were not included.
No windowing of the data was used here because of the considerable increase in
training time.

Anomaly detection using the torque control error. To evaluate the benefit of us-
ing an anomaly detection model compared to using only the data already available
from the control system, another method was also used in the comparison between
models. This method was to use the control error from the torque data instead of
an anomaly score derived from an anomaly detection model. The control error was
computed to be the absolute value of the difference between the feedback and feed-
forward values of the torque in the control system.

The procedure for evaluating the models described in the previous section was
followed with the only difference that the control error was used instead of an
anomaly score.

The reason why using the torque control error can be a good method in anomaly
detection is because when everything works as intended the mathematical model of
the robot dynamics will be close to what is happening, but when an anomaly occurs
the mathematical model will no longer fit as well with what the physical system of
the robot and therefore the control error is likely to increase.

This method is from here on referred to only as the control error.

Expanded performance evaluation on the autoencoder
In the previous test, a comparison between models was done with a small amount
of data because of the high computational time for some of the models. Because of
this, another test was performed where a larger amount of data were used. This test
was only performed on the collision data but the data from the inner collisions were
also included. However, the inner collision data were only used to verify the model,
no change was done in computing the threshold value.

For this test, only the autoencoder model was used because it was able to utilize
the graphical processing unit instead of the central processing unit when performing
calculations and therefore had considerably more computing power.

For this test, 60 minutes of data were used on a few different types of autoen-
coder networks and the best one was selected for comparison with the result using
only the control error. No windowing was used in this test either because of the
large expansion of data when using windows.

38

4.3 Data analysis

Feature evaluation using feature groups
One more test, referred to as the feature evaluation test was performed in order to
evaluate the importance of different features when detecting anomalies. The features
were divided into six different groups which can be seen in Table 5.2. Then an
autoencoder model was trained on the data, first on all available features and then
using only five of the six groups of features in order to investigate the decrease in
performance when excluding one group. This was done only on the data from the
collision experiment. In total 60 minutes of training data were used in the training
and no windowing was used.

Table 4.1 Overview of the grouping of features when evaluating importance of
different features.

Feature groups
Group 1. Motor acceleration data
Group 2: Endpoint accelerometer data
Group 3: Motor positional data
Group 4: Motor velocity data
Group 5: Gearboxes accelerometer data
Group 6: Motor torque data

39

5
Result and analysis

In this chapter, the result from the experiments described in Chapter 4 is presented.
First off is the comparison between the different anomaly detection models. Then
follows the test in which the autoencoder model was trained with more training
data are compared with the control error data on the collision dataset. Finally, the
test comparing different feature groups is presented. Each result is followed by a
short analysis.

5.1 Comparison between anomaly detection models

In this section, the result from the comparison between models is presented. The
cases of collision detection, object drop detection, and weight offset detection are
presented separately. For each test, the F1-score for all models is presented together
with the result of using only the control error for the torque data instead of using
an anomaly score derived from a model. The control error follows the same rules
in computing a threshold value and evaluating the performance as for the anomaly
detection models. The evaluation score using the control error from the torque data
is referred to as the control error.

40

5.1 Comparison between anomaly detection models

Collision detection

Figure 5.1 F1 score for collision test with maximum velocity 2.7 m/s.

Figure 5.2 F1 score for collision test with maximum velocity 1.8 m/s.

41

Chapter 5. Result and analysis

Figure 5.3 F1 score for collision test with maximum velocity 0.9 m/s.

Analysis. The result shown in Figures 5.1, 5.2 and 5.3 gives a clear indication that
the system is affected by the collision and that it is possible to detect both using
only the control error of the torque and with the anomaly detection models. The
high performance using only the control error shows that there is a larger error in
the control system than usual during a collision. It also seems like there is a positive
connection between the maximum velocity of the robot and the likelihood to detect a
collision. This seems intuitive because a higher velocity also means a greater impact
on the robot during the collision.

The performance of using the control error is slightly higher at a maximum ve-
locity of 1.8 m/s than at 2.7 m/s. A possible reason for this is that at higher velocity,
dynamic effects not included in the mathematical model of the robot such as elas-
ticity in the joints plays a larger role and therefore increase the control error. A
higher velocity could also increase the risk of values becoming very off for some
data points since the overall energy in the system is higher.

Even though the result is promising, collision detection is a critical anomaly to
detect since it concerns the safety of both the robot as well as people close to the
robot. Therefore, the requirement for the performance of a model detecting colli-
sions is higher than for the other types of velocities and it would need to be even
better, also for a low velocity to be practically useful.

42

5.1 Comparison between anomaly detection models

Object drop detection

Figure 5.4 F1 score for models on the dropping object experiment for 7.5 kg
weight.

Figure 5.5 F1 score for models on the dropping object for 2.5 kg weight.

43

Chapter 5. Result and analysis

Analysis. The result shown in Figure 5.4 and 5.5 indicates that it is possible to
detect when the robot unexpectedly drops an object. The task seems significantly
harder than the collision test, however. In particular the performance of the control
error is drastically lower.

A possible explanation for the low performance of the control error is because of
something during the gathering of data for this experiment, the model of the robot
did not include the weight of the object being carried. The assumption was that
including the weight would not have a significant impact on the control system, but
based on the performance it seems that was not the case. Also, figures of the control
error during the drop detection test show that the control error is lower after the
object has been dropped than before. This fact makes it hard for the control error to
identify the anomaly. However, the result for a heavier object in Figure 5.4 shows a
higher evaluation score than for a lighter object shown in Figure 5.5. Assuming that
the disturbance of dropping a heavier object is true, would indicate that the event of
an object being dropped can still be noticed by the system.

The fact that the weight of the objects was not included in the model has likely
decreased the performance of the other models as well since they also use the feed-
back and feedforward torque values as features. This is an indication that for optimal
performance in detecting anomalies, great care needs to be taken to ensure that the
model is good.

Another interesting aspect is that the best performing models perform better on
the 2.5 kg weight than on the one with 7.5 kg. A possible explanation here is again
because of how the data were gathered. A carbon box was used as an object when
collecting data and for the test with 7.5 kg, the vacuum was unable to carry the box
because the carbon box surface not being stiff enough. Because of this, a plastic
lid was attached for the test on 7.5 kg which was not used for 2.5 kg. The plastic
lid had the unintended consequence that the time between the vacuum pressure was
turned off and the robot dropping the object was considerably longer than for the
test with the 2.5 kg weight. This in turn might have dampened the effect of the
object dropping and therefore made it harder to detect.

44

5.1 Comparison between anomaly detection models

Weight offset detection

Figure 5.6 F1 score for model on weight offset test for a 7.5 kg weight.

Figure 5.7 F1 score for models on weight offset test for a 2 kg weight.

Analysis. The results in Figures 5.6 and 5.7 show that all models perform excep-
tionally well in detecting whether the set weight on the model corresponds to the
real system or not. One possible explanation of the good results is that in calculating

45

Chapter 5. Result and analysis

the threshold value and in evaluating the performance the mean value of one trajec-
tory cycle is used. This could mean that unintended outlier data points do not give
such a big impact on the evaluation as might be the case in the previous tests. The
data gathering is also done differently in this experiment compared to the other two.
With the other two many short time series of a few seconds where the anomaly oc-
curs were recorded, this increases the risk of an error happening when starting and
stopping the recording. In this experiment instead a long time series of 10 minutes
was recorded and then afterwards divided into small parts which reduces the risk of
error.

An interesting part of the result is that using only the control error does not give
a better result than the anomaly detection models, this is especially interesting since
a weight offset should give the biggest impact on the control error data compared
to the other features. A possible explanation is that a difference in weight settings
for the model also has a large effect on the features other than the control error,
such as more vibrations at the end effector that gets picked up by the models. The
conclusion seems to be that having a small weight attached to the robot increases
the control error, even if the weight is included in the model of the dynamics. This
could be because a weight partly impacts the system in a way that is not included in
the model and therefore increasing the control error compared to having no weight
attached at all.

Finally, looking at Figure 4.7 we see that the lighter weight has a larger gravity
point offset than the heavier weight. The adjustment that is made on the model by
adding this weight should take this into account but perhaps it still creates a larger
control error than anticipated.

5.2 Expanded evaluation of the autoencoder model
compared to the control error

An additional evaluation was done only on the collision experiment data but includ-
ing the data from the inner collisions, which the previous test on model comparison
did not. This means that this result can not be directly compared to the previous
one. However, since this test includes collisions on other parts than the end point of
the robot this is a more conclusive evaluation of how well the models can detect a
collision with the robot.

Table 5.1 F1 score of the autoencoder model and control error on collisions and
inner collisions at all velocities.

F1 score result for control error and autoencoder on collisions experiment
Control error Autoencoder

2.7 m/s 0.836 0.9
1.8 m/s 0.824 0.865
0.9 m/s 0.654 0.667

46

5.3 Feature importance for detecting anomalies in collision detection

Analysis. The result shown in Table 5.1 shows that the autoencoder model per-
forms slightly better on this test when compared with the control error. This could
be an indication that a bigger training set can further improve the model and out-
perform using only the control error, but it could also be that other features than the
feedforward and feedback values from the torque are more important in detecting
collisions that occur closer to the center of the robot.

5.3 Feature importance for detecting anomalies in
collision detection

Figures 5.8, 5.9 and 5.10 represent the score from the autoencoder when removing
one feature group for the collision experiment data. The feature groups are presented
in the method section and shown here again in Table 5.2.

Table 5.2 Overview of the grouping of features when evaluating importance of
different features.

Feature groups
Group 1. Motor acceleration data
Group 2: Endpoint accelerometer data
Group 3: Motor positional data
Group 4: Motor velocity data
Group 5: Gearboxes accelerometer data
Group 6: Motor torque data

47

Chapter 5. Result and analysis

Figure 5.8 Evaluation of the significance of different feature groups when detect-
ing collisions at maximum velocity 2.7 m/s. The x-axis label indicates the feature
group excluded.

Figure 5.9 Evaluation of the significance of different feature groups when detect-
ing collisions at maximum velocity 1.8 m/s. The x-axis label indicates the feature
group excluded.

48

5.3 Feature importance for detecting anomalies in collision detection

Figure 5.10 Evaluation of the significance of different feature groups when detect-
ing collisions at maximum velocity 0.9 m/s. The x-axis label indicates the feature
group excluded.

Analysis
The evaluation score is overall even when excluding a feature group, so one should
be careful making too large conclusions based on this test. At least it seems like no
single feature group is solely responsible for detecting collisions.

In Figure 5.9, which shows the evaluation for a maximum velocity of 1.8 m/s,
the result is similar and these variations could just be a result of the natural random-
ness that occurs when training an artificial neural network.

At a higher maximum velocity of 2.7 m/s shown in Figure 5.8 we see a slightly
lower result when excluding the torque data, this could imply that this feature group
is slightly more important when detecting anomalies at a high velocity. This could
be because the endpoint accelerometer is noisier at a high velocity and less useful
in detecting collisions and a higher velocity means a greater impact which should
influence the torque data more.

At a lower maximum velocity of 0.9 m/s shown in Figure 5.3, we see that the
evaluation score is higher when removing some feature groups, the difference is not
high so it is hard to conclude from this but it could be because it is generally more
difficult detecting collisions at a lower velocity. Therefore, removing the feature
groups that contribute the least in detecting collisions namely group 3, the motor
positional data, group 5, the gearbox accelerometer data, and perhaps also group 4
the velocity data improves the model in detecting anomalies.

Another interesting aspect with the result shown in Figure 5.3 is that the model

49

Chapter 5. Result and analysis

performs worse when removing the endpoint accelerometer data. This could be be-
cause at a lower velocity there are no large vibrations that need to be dampened
which means that there is less noise in the data and that the accelerometer data are
more sensitive than for example the motor torque data. This means that the end-
point accelerometer data are more important than the others in detecting a collision
at lower velocities.

50

6
Discussion

This chapter contains a more in-depth discussion of some interesting questions
based on the previously presented result. First, a deeper investigation of the dif-
ference between the models is presented, and why they produce so different results
in detecting anomalies. Then the question of whether it is necessary at all to use
anomaly detection models and not simply use the control error from the control
system is investigated more deeply. Lastly, uncertainties and potential sources of
error in this study are presented.

6.1 Comparison between models

The two superior models for detecting the anomalies studied in this thesis are the
local outlier factor and the autoencoder.

The principle of the local outlier factor is that it compares the data points close
to a data point to determine its anomaly score. A problem with this is that all data
points used in the training stage need to be saved for when detecting the anomaly.
It also seems like the more training data that are used, the longer it takes to evaluate
each data point. This could prove to be a problem in a real application where mem-
ory and computing time are limited, especially if the task becomes more complex
and more training data than were used in this thesis are needed.

The autoencoder on the other hand also has a constant evaluation time regardless
of how much training data it has trained on because the only thing that happens
with more training data are better-tuned weights in the artificial neural network. One
potential problem with the autoencoder is that it would not be complex enough to be
able to detect anomalies when the anomaly detection task becomes more complex
with for example more variation in trajectory and movement of the robot, a possible
way to counteract this is to expand the number of layers used but this comes with
the drawback of a longer computation time in the evaluation stage so a compromise
would have to be found here.

It is hard to pinpoint exactly why some of the models perform so poorly com-
pared to the best-performing ones. One explanation is of course that the hyperpa-

51

Chapter 6. Discussion

rameters were not well enough tuned. Figures 6.1, 6.2, and 6.3 show the anomaly
score for different models on the same dataset, a collision with maximum velocity
1.8 m/s. In Figure 6.1, which depicts the anomaly score for an autoencoder model,
we see that the anomaly score after the collision is considerably higher than other
values. For the isolation forest in Figure 6.2 on the other hand, it can be seen that the
model is able to detect the collision but also that the model does not score that much
higher than other data that are to be considered normal data. The conclusion here is
that this model is not complex enough to encompass all the normal data and there-
fore has difficulties distinguishing these from anomalous data. The VAR model on
the other hand in Figure 6.3 also reacts to a collision but reacts considerably more
to other data points. This also shows that the model is not sufficiently tuned to what
data points count as normal data. Another aspect could be that some models are
better at identifying what features are most important in detecting anomalies. In
Figure 6.2 it seems like the anomaly score follows a pattern that could be the po-
sitional data from the robot or other data that is cyclic. This pattern is non-existent
in Figure 6.1 with the anomaly score for the autoencoder where it gives all normal
data points roughly an equal score. Thus, it encompasses all data in a trajectory
cycle more or less equally normal and the isolation forest model does not.

Figure 6.1 Anomaly score for the dataset CL220718-40-36 using the autoencoder
model. The red line is the indication from the reference signal that the collision has
occurred.

52

6.1 Comparison between models

Figure 6.2 Anomaly score for the dataset CL220718-40-36 using the isolation for-
est model. The red line is the indication from the reference signal that the collision
has occurred.

53

Chapter 6. Discussion

Figure 6.3 Anomaly score for the dataset CL220718-40-36 using the vector au-
toregression model. The red line is the indication from the reference signal that the
collision has occurred.

6.2 Is an anomaly detection model necessary?

An interesting question is whether an anomaly detection model is necessary at all
or if one can simply use the control error to identify anomalies. The result from the
collision detection test shown in Figures 5.1, 5.2 and 5.3 shows that the performance
of using only the torque control error is even better than the other models.

The result from the object drop experiment in Figures 5.4 and 5.5 can not be
used to conclude that the control error is ineffective at detecting object drops since
the model of the robot dynamics was off. It shows, however, the importance of
having a representative model of the system to effectively use the control error. If
the control error would be used in a practical setting it would be imperative that the
model of the robot dynamics is as good as possible, and accounts for the payload.

Several of the experiments performed indicate that using the control error per-
forms worse when the anomaly could be considered harder to detect, for example
in detecting weight offset and at object drop detection for a 2.5 kg weight compared
to a 7.5 kg weight, and the result for the collision experiment at a lower velocity is
also worse for using the control error. This is especially interesting since Figure 5.10
seems to indicate that the end-point accelerometer data are more useful in detecting

54

6.3 Uncertainties and sources of error

more subtle anomalies.
Finally, the result from the expanded test with the autoencoder that used more

data, which is presented in Table 5.1, shows that the autoencoder is on equal footing
with using the control error when given more training data.

To summarize, the control error data are an important part of detecting anoma-
lies, and using only the control error without any anomaly detection model works
decently in detecting anomalies but it requires that the model being used is good.
Also, when the anomalies are more subtle it seems like other data play a larger role
compared to the control error in detecting anomalies.

6.3 Uncertainties and sources of error

The method used for finding a threshold value that decides whether a data point
is an anomaly or not is rather blunt. Because it selects the highest value from the
reference dataset and the lowest value from a set of testing data it ironically becomes
quite susceptible to outliers. The basic principle of the method used to select a
threshold value is that a perfect model will give a perfect score but, likely, a more
advanced method for selecting a threshold value that uses some form of averaging
of data would improve the evaluation score for the models.

Since it is not possible to know exactly when an anomaly occurs, in the process
of detecting whether the model has successfully detected an anomaly or not, an
interval around where the anomaly has occurred is used. The interval is chosen by
a careful study of how the system reacts to the anomaly but could be too generous
which would imply that false positives would be wrongly labeled as true positives
if they occur within that interval. Also, there is no way of knowing if something
other than the anomaly triggers a false positive inside of the interval, this will count
as a true positive only because it is within the aforementioned interval, even if the
high anomaly score is not because of the anomaly. This is why the evaluation score
presented only is an indication of how well the models perform and should not be
taken as the true performance of a model.

All data are recorded by manually making the robot move, adjusting the veloc-
ity, adjusting all settings in the software, and making a program record the data,
this opens up the possibility that some of the data might not have been recorded
properly. During the collision data gathering, some collisions have been recorded
with a tool equipped on the robot and others have been recorded without a tool to
prevent damage to the robot. These small modifications might have slightly altered
the physical robot from the model used in the control system. Possible errors in
recording data may have affected the result and may account for some of the false
positives of the models. Since the steps where an error occurs happens at the begin-
ning and end of a data recording, this has most likely only affected the test data and
not the training data since there are so many short instances of data recordings for
the test data compared to the recording of the normal data.

55

Chapter 6. Discussion

The object drop experiment was done with two different weights which is the
main interesting aspect but because of that, the 7.5 kg object kept dropping uninten-
tionally at the higher velocity and a lower velocity had to be used in data gathering
for the drop of the heavier object. This extra variable might affect the comparison
between the two different experiments. The fact that a plastic lid was used with the
heavier object might also have affected the result and made it more difficult in de-
tecting this anomaly. This might have affected the comparison in detecting object
drop with different weights since several factors were involved but the evaluation
of each anomaly is not affected, and the weight difference is still a major difference
between the two experiments.

56

7
Conclusion

The overall result of this thesis is that the system; the robot, and its sensors are
affected when being introduced to external anomalies and that it is possible to detect
them using anomaly detection models. This is also possible to some extent, using
only the torque data from the control system.

The result from the comparison between models shows good results in detecting
weight offset and collisions. The result from the object drop experiment is not as
good but this might be because the model is not being adjusted for the weight carried
during the experiment.

The models showing the most promise from the ones studied are the local outlier
factor model and the autoencoder model. Out of these two, the local outlier factor
model has some drawbacks such that the computation time in detecting an anomaly
increases with more training data, which could lead to a problem when using the
model in a real-time application. The autoencoder performs well and does not have
a computation time in detecting anomalies that depends on the amount of training
data.

Based on the feature group evaluation presented in the result and analysis chap-
ter the most important feature groups to use in detecting anomalies are the feedback
and feedforward torque data from the control system and the end-point accelerom-
eter data normally used to reduce vibrations in the robot. It seems like the end-point
accelerometer is most important to detect collisions at a lower velocity, which is a
more subtle anomaly than a higher velocity impact. The torque data, on the other
hand, seems more important in detecting anomalies at higher velocities. However,
the result only gives small indications of this and there might also be a more intri-
cate interplay between the different groups of features that are not captured in this
study.

57

Chapter 7. Conclusion

Future work
Because of the positive result in this thesis a natural progression is to increase the
complexity of the anomaly to be detected with for example more variation in the
trajectory and velocity. It would also be interesting to find the lower limit for when
it becomes harder to detect collisions, object drops and weight offset.

Furthermore, the goal is to make an anomaly detection system practically viable.
This means that more focus needs to be put on implementation. For an anomaly
detection model to be able to be implemented in a real-time system focus need to
be put on the time complexity of the model and this needs to be balanced with the
performance of the model. The autoencoder was one of the best performing models
in this thesis which is promising and there are also more advanced variations of the
autoencoder like the convolutional variational autoencoder that seems to perform
well in a real-time setting [Chen et al., 2020]. Another model with similarities to
the autoencoder is the convolutional neural network (CNN) model which also shows
promise in real-time anomaly detection [Wyk et al., 2020] and could be investigated
further.

58

Bibliography

Akaike, H. (1974). “A new look at the statistical model identification.” IEEE Trans-
actions on Automatic Control 19:6, pp. 716–723. ISSN: 0018-9286. DOI: 10.
1109/TAC.1974.1100705.

Audibert, J., P. Michiardi, F. Guyard, S. Marti, and M. A. Zuluaga (2022). “Do
deep neural networks contribute to multivariate time series anomaly detection?”
Pattern Recognition 132, p. 108945. ISSN: 0031-3203. DOI: https://doi.
org/10.1016/j.patcog.2022.108945.

Beckhoff (10, 2022). Te1000, twincat 3 engineering. Version 3.1. URL: https:
//www.beckhoff.com/en-en/products/automation/twincat/texxxx-
twincat-3-engineering/te1000.html.

Bezanson, J., A. Edelman, S. Karpinski, and V. B. Shah (2017). “Julia: a fresh ap-
proach to numerical computing”. SIAM review 59:1, pp. 65–98. DOI: https:
//doi.org/10.48550/arXiv.1411.1607.

Breuniq, M., H.-P. Kriegel, J. Sander, and R. Ng (2000). “LOF: Identifying density-
based local outliers.” SIGMOD Record (ACM Special Interest Group on Man-
agement of Data) 29:2, pp. 93-104 –104. ISSN: 01635808. DOI: 10.1145/
335191.335388.

Chandola, V., A. Banerjee, and V. Kumar (2009). “Anomaly detection: a survey.”
ACM Computing Surveys 41:3. ISSN: 0360-0300. DOI: 10.1145/1541880.
1541882.

Chen, T., X. Liu, B. Xia, W. Wang, and Y. Lai (2020). “Unsupervised anomaly
detection of industrial robots using sliding-window convolutional variational
autoencoder.” IEEE Access 8, pp. 47072–47081. ISSN: 2169-3536. DOI: 10.
1109/ACCESS.2020.2977892.

Cognibotics (2022). Hkm product information. https://cognibotics.com/wp-
content/uploads/2022/04/200669-HKM-1800-Product-sheet-rev-
AD.pdf. (Visited on 2022-12-08).

59

https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/https://doi.org/10.1016/j.patcog.2022.108945
https://doi.org/https://doi.org/10.1016/j.patcog.2022.108945
https://www.beckhoff.com/en-en/products/automation/twincat/texxxx-twincat-3-engineering/te1000.html
https://www.beckhoff.com/en-en/products/automation/twincat/texxxx-twincat-3-engineering/te1000.html
https://www.beckhoff.com/en-en/products/automation/twincat/texxxx-twincat-3-engineering/te1000.html
https://doi.org/https://doi.org/10.48550/arXiv.1411.1607
https://doi.org/https://doi.org/10.48550/arXiv.1411.1607
https://doi.org/10.1145/335191.335388
https://doi.org/10.1145/335191.335388
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1109/ACCESS.2020.2977892
https://doi.org/10.1109/ACCESS.2020.2977892
https://cognibotics.com/wp-content/uploads/2022/04/200669-HKM-1800-Product-sheet-rev-AD.pdf
https://cognibotics.com/wp-content/uploads/2022/04/200669-HKM-1800-Product-sheet-rev-AD.pdf
https://cognibotics.com/wp-content/uploads/2022/04/200669-HKM-1800-Product-sheet-rev-AD.pdf

Bibliography

Czubenko, M. and Z. Kowalczuk (2021). “A simple neural network for collision de-
tection of collaborative robots.” Sensors 21:12, p. 4235. ISSN: 14248220. DOI:
10.3390/s21124235.

Dickey, D. and W. Fuller (1979). “Distribution of the estimators for autoregressive
time series with a unit root”. JASA. —Journal of the American Statistical Asso-
ciation 74. DOI: 10.2307/2286348.

Goodfellow, I., Y. Bengio, and A. Courville (2016). Deep Learning. MIT Press.
URL: http://www.deeplearningbook.org (visited on 2022-10-01).

Innes, M., E. Saba, K. Fischer, D. Gandhi, M. C. Rudilosso, N. M. Joy, T. Kar-
mali, A. Pal, and V. Shah (2018). “Fashionable modelling with flux”. CoRR
abs/1811.01457. arXiv: 1811 . 01457. URL: https : / / arxiv . org / abs /
1811.01457.

Johansen, S. (1991). “Estimation and hypothesis testing of cointegration vectors
in gaussian vector autoregressive models”. Econometrica 59:6, pp. 1551–1580.
ISSN: 00129682, 14680262. DOI: https://doi.org/10.2307/2938278.

Lindholm, A., N. Wahlström, F. Lindsten, and T. Schön (2022a). Machine learning :
a first course for engineers and scientists. Cambridge University Press, pp. 192–
196. ISBN: 9781108919371.

Lindholm, A., N. Wahlström, F. Lindsten, and T. Schön (2022b). Machine learning
: a first course for engineers and scientists. Cambridge University Press, pp. 86–
88. ISBN: 9781108919371.

Liu, F. T., K. M. Ting, and Z.-H. Zhou (2012). “Isolation-based anomaly detection”.
ACM Transsactions on knowledge discovery from data 6:1. ISSN: 1556-4681.
DOI: 10.1145/2133360.2133363.

Min, F., G. Wang, and N. Liu (2019). “Collision detection and identification on
robot manipulators based on vibration analysis.” Sensors 19:5. ISSN: 14248220.
DOI: 10.3390/s19051080.

Muhr, D., M. Affenzeller, and A. D. Blaom (2022). “Outlierdetection.jl: a modular
outlier detection ecosystem for the julia programming language”. arXiv preprint
arXiv:2211.04550.

Ohlsson, M. and P. Edén (2021). Introduction to artificial neural networks and deep
learning. Course manuscript in EXTQ40 at Faculty of Engineering, Lund Uni-
versity.

Park, K. M., Y. Park, S. Yoon, and F. C. Park (2022). “Collision detection for robot
manipulators using unsupervised anomaly detection algorithms”. IEEE/ASME
Transactions on Mechatronics 27:5, pp. 2841–2851. DOI: 10.1109/TMECH.
2021.3119057.

Petropoulos, F., N. Kourentzes, and F. Ziel (2022). International Journal of Fore-
casting 38:3. ISSN: 0169-2070. DOI: 10.1016/j.ijforecast.2021.11.001.

60

https://doi.org/10.3390/s21124235
https://doi.org/10.2307/2286348
http://www.deeplearningbook.org
https://arxiv.org/abs/1811.01457
https://arxiv.org/abs/1811.01457
https://arxiv.org/abs/1811.01457
https://doi.org/https://doi.org/10.2307/2938278
https://doi.org/10.1145/2133360.2133363
https://doi.org/10.3390/s19051080
https://doi.org/10.1109/TMECH.2021.3119057
https://doi.org/10.1109/TMECH.2021.3119057
https://doi.org/10.1016/j.ijforecast.2021.11.001

Bibliography

Pucher, F., H. Gattringer, and A. Müller (2019). “Collision detection for flexible link
robots using accelerometers”. IFAC-PapersOnLine 52:16. 11th IFAC Sympo-
sium on Nonlinear Control Systems NOLCOS 2019, pp. 514–519. ISSN: 2405-
8963. DOI: https://doi.org/10.1016/j.ifacol.2019.12.013.

Schölkopf, B., R. Williamson, A. Smola, J. Shawe-Taylor, and J. Piatt (2000). “Sup-
port vector method for novelty detection.” In: Advances in Neural Informa-
tion Processing Systems. 12 - Proceedings of the 1999 Conference, NIPS 1999.
(1)Microsoft Research Ltd., pp. 582-588 –588. ISBN: 0262194503.

Seabold, S. and J. Perktold (2010). “Statsmodels: econometric and statistical mod-
eling with python”. In: 9th Python in Science Conference.

Wyk, F. van, Y. Wang, A. Khojandi, and N. Masoud (2020). “Real-time sensor
anomaly detection and identification in automated vehicles.” IEEE Transactions
on Intelligent Transportation Systems 21:3, pp. 1264–1276. ISSN: 1524-9050.
DOI: 10.1109/TITS.2019.2906038.

61

https://doi.org/https://doi.org/10.1016/j.ifacol.2019.12.013
https://doi.org/10.1109/TITS.2019.2906038

A
Hyperparameters used for
models

In this appendix the hyperparameters for the best performing models are presented.
The best performing models are the ones used when the result is presented in Chap-
ter 5. The hyperparameters for each model are presented in the Chapter 3 but a short
summary is given here.

Table A.1 Hyperparameters for each model used in this thesis.

Anomaly detection model hyperparameters
LOF Number of points close to point p: k

iForest Subsample size: Ψ and number of trees: t
Autoencoder Layer size and activation function: ϕ

VAR model Previous datapoints used in prediction: lag
OCSVM Anomaly ratio: ν and RBF kernel parameter: γ

62

A.1 Comparison between anomaly detection models

A.1 Comparison between anomaly detection models

Collision detection
Maximum velocity 2.7 m/s.

Table A.2 Hyperparameters used in result for the test collision at maximum veloc-
ity 2.7 m/s.

Model Hyperparameter values
LOF k : 600

iForest Ψ : 1500, t : 1500
Autoencoder Layer size: (35, 33, 31, 29, 28, 29, 31, 33, 35), ϕ: tanh
VAR model lag : 3

OCSVM ν : 0.01, γ : 0.2

Maximum velocity 1.8 m/s.

Table A.3 Hyperparameters used in result for the test collision at maximum veloc-
ity 1.8 m/s.

Model Hyperparameter values
LOF k : 600

iForest Ψ : 3000, t : 1500
Autoencoder Layer size: (35, 33, 31, 29, 28, 29, 31, 33, 35), ϕ: tanh
VAR model lag : 3

OCSVM ν : 0.01, γ : 0.2

Maximum velocity 0.9 m/s.

Table A.4 Hyperparameters used in result for the test collision at maximum veloc-
ity 0.9 m/s.

Model Hyperparameter values
LOF k : 600

iForest Ψ : 3000, t : 750
Autoencoder Layer size: (35, 33, 31, 29, 28, 29, 31, 33, 35), ϕ: tanh
VAR model lag : 3

OCSVM ν : 0.01, γ : 0.2

63

Appendix A. Hyperparameters used for models

Object drop detection
Object weight 7.5 kg.

Table A.5 Hyperparameters used in result for the test object drop at object weight
7.5 kg.

Model Hyperparameter values
LOF k : 600

iForest Ψ : 3000, t : 750
Autoencoder Layer size: (35, 40, 40, 30, 20, 30, 40, 40, 35), ϕ: relu
VAR model lag : 4.

OCSVM ν : 0.01, γ : 0

Object weight 2.5 kg.

Table A.6 Hyperparameters used in result for the test object drop at object weight
2.5 kg.

Model Hyperparameter values
LOF k : 300

iForest Ψ : 3000, t : 3000
Autoencoder Layer size: (35, 40, 30, 20, 30, 40, 35), ϕ: relu
VAR model lag : 4

OCSVM ν : 0.01, γ : 0.2

Weight offset detection
Weight offset 7.5 kg.

Table A.7 Hyperparameters used in result for the test weight offset with a 7.5 kg
offset.

Model Hyperparameter values
LOF k : 200

iForest Ψ : 750, t : 750
Autoencoder Layer size: (35, 33,31 29, 28, 29, 31, 33, 35), ϕ: tanh.
VAR model lag : 3.

OCSVM ν : 0.01, γ : 0

64

A.2 Expanded evaluation of the autoencoder model compared to the control error

Weight offset 2 kg.

Table A.8 Hyperparameters used in result for the test weight offset with a 2 kg
offset.

Model Hyperparameter values
LOF k : 50

iForest Ψ : 3000, t : 3000
Autoencoder Layer size: (35, 33,31 29, 28, 29, 31, 33, 35), ϕ: tanh
VAR model lag : 3

OCSVM ν : 0.01, γ : 0.2

A.2 Expanded evaluation of the autoencoder model
compared to the control error

Collision at maximum velocity 2.7 m/s.

Table A.9 Hyperparameters used in result for the test expanded evaluation of au-
toencoder model compared to the control error, for collision at maximum velocity
2.7 m/s.

Model Hyperparameter values
Autoencoder Layer size: (35, 31, 28, 24, 28, 31, 35), ϕ: tanh

Collision at maximum velocity 1.8 m/s.

Table A.10 Hyperparameters used in result for the test expanded evaluation of
autoencoder model compared to the control error, for collision at maximum velocity
1.8 m/s.

Model Hyperparameter values
Autoencoder Layer size: (35, 33, 31, 29, 28, 29, 31, 33, 35), ϕ: tanh

Collision at maximum velocity 0.9 m/s.

Table A.11 Hyperparameters used in result for the test expanded evaluation of
autoencoder model compared to the control error, for collision at maximum velocity
0.9 m/s.

Model Hyperparameter values
Autoencoder Layer size: (35, 33, 31, 29, 28, 29, 31, 33, 35), ϕ: tanh

65

Appendix A. Hyperparameters used for models

A.3 Feature importance for detecting anomalies in
collision detection

Because this test was done only with the autoencoder model the first table will
instead show which feature group that was removed.

Collision at maximum velocity 2.7 m/s.

Table A.12 Hyperparameters used in result for the test feature importance for col-
lisions at maximum velocity 2.7 m/s.

Removed feature group Hyperparameter values
All data Layer size: (35, 31, 28, 24, 28, 31, 35), ϕ: tanh

Feature group 1 Layer size: (35, 31, 28, 24, 28, 31, 35), ϕ: tanh
Feature group 2 Layer size: (35, 33, 31, 29, 28, 29, 31, 33, 35), ϕ: tanh
Feature group 3 Layer size: (35, 33, 31, 29, 28, 29, 31, 33, 35), ϕ: tanh
Feature group 4 Layer size: (35, 33, 31, 29, 28, 29, 31, 33, 35), ϕ: tanh
Feature group 5 Layer size: (35, 31, 28, 24, 28, 31, 35), ϕ: tanh
Feature group 6 Layer size: (35, 33, 31, 29, 28, 29, 31, 33, 35), ϕ: tanh

Collision at maximum velocity 1.8 m/s.

Table A.13 Hyperparameters used in result for the test feature importance for col-
lisions at maximum velocity 1.8 m/s.

Removed feature group Hyperparameter values
All data Layer size: (35, 28, 21, 14, 21, 28, 35), ϕ: tanh

Feature group 1 Layer size: (35, 28, 21, 14, 21, 28, 35), ϕ: tanh
Feature group 2 Layer size: (35, 33, 31, 29, 28, 29, 31, 33, 35), ϕ: tanh
Feature group 3 Layer size: (35, 33, 31, 29, 28, 29, 31, 33, 35), ϕ: tanh
Feature group 4 Layer size: (35, 33, 31, 29, 28, 29, 31, 33, 35), ϕ: tanh
Feature group 5 Layer size: (35, 28, 21, 14, 21, 28, 35), ϕ: tanh
Feature group 6 Layer size: (35, 33, 31, 29, 28, 29, 31, 33, 35), ϕ: tanh

66

A.3 Feature importance for detecting anomalies in collision detection

Collision at maximum velocity 0.9 m/s.

Table A.14 Hyperparameters used in result for the test feature importance for col-
lisions at maximum velocity 0.9 m/s.

Removed feature group Hyperparameter values
All data Layer size: (35, 33, 31, 29, 28, 29, 31, 33, 35), ϕ: tanh

Feature group 1 Layer size: (35, 33, 31, 29, 28, 29, 31, 33, 35), ϕ: tanh
Feature group 2 Layer size: (35, 28, 21, 14, 21, 28, 35) , ϕ: tanh
Feature group 3 Layer size: (35, 33, 31, 29, 28, 29, 31, 33, 35), ϕ: tanh
Feature group 4 Layer size: (35, 31, 28, 24, 28, 31, 35), ϕ: tanh
Feature group 5 Layer size: (35, 31, 28, 24, 28, 31, 35), ϕ: tanh
Feature group 6 Layer size: (35, 31, 28, 24, 28, 31, 35), ϕ: tanh

67

Lund University
Department of Automatic Control
Box 118
SE-221 00 Lund Sweden

Document name
MASTER’S THESIS
Date of issue
December 2022
Document Number
TFRT-6188

Author(s)

Henrik Paldán
Supervisor
Olle Hedbrant, Cognibotics, Sweden
Björn Olofsson, Dept. of Automatic Control, Lund
University, Sweden
Anton Cervin, Dept. of Automatic Control, Lund
University, Sweden (examiner)

Title and subtitle

Anomaly detection on a hybrid kinematic machine
Abstract
Detecting anomalies is a promising and current research subject that can have useful applications, for
example in the field of robotics. In this thesis, anomaly detection is investigated using a hybrid
kinematic machine, which is a pick-and-place robot that excels at moving objects at high speed and
with great reach. Three different types of anomalies have been chosen to be studied in this thesis;
collision, the robot dropping an object, and weight offset between the expected weight that the robot
is carrying and the actual weight being carried.
 The data were gathered from the robot control system, as well as sensors on the robot when the robot
was moving in a specified trajectory cycle. Then, the previously mentioned anomalies were
introduced to the robot.
 The anomaly detection was conducted by using different anomaly detection models which have
certain characteristics. The models were first trained using normal data. Then the trained models and
a devised threshold value were used to evaluate how well the models were able to detect the
anomalies.
 The results are promising, especially for collision detection and weight offset detection. Detecting an
object being dropped, however, seems more challenging. The experiments also indicate that a good
model of the robot dynamics is of great importance when detecting anomalies. The results also
indicate that the most important features for detecting anomalies are the torque data from the control
system and data from an accelerometer at the endpoint of the robot. The most promising models for
anomaly detection are the local outlier factor model and the autoencoder, which is a type of artificial
neural network.
 Further work could investigate more varied anomalies that are harder to detect with more advanced
models, while also focusing on the models being computationally fast enough to be applicable in a
real-time system.
Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
1-67

Recipient’s notes

Security classification

http://www.control.lth.se/publications/

	Title Page
	Contents
	Introduction
	General introduction
	Academic relevance of the problem and previous research on the subject
	Problem description
	Outline of thesis

	Background
	The Hybrid kinematic machine (HKM)
	Available data

	Theory
	Time series
	Anomaly detection
	Data labels and anomaly detection
	Output of anomaly models

	Anomaly detection models
	The local outlier factor (LOF) model
	The isolation forest (iForest) model
	The autoencoder (AE) model
	The vector autoregression (VAR) model
	The one class support vector machine (OCSVM) model

	Evaluation metrics

	Method
	Data gathering
	Collision detection
	Object drop detection
	Weight offset detection

	Data management
	Preprocessing
	Reference values
	Performance evaluation of the models

	Data analysis
	Comparison between models
	Expanded performance evaluation on the autoencoder
	Feature evaluation using feature groups

	Result and analysis
	Comparison between anomaly detection models
	Collision detection
	Object drop detection
	Weight offset detection

	Expanded evaluation of the autoencoder model compared to the control error
	Feature importance for detecting anomalies in collision detection
	Analysis

	Discussion
	Comparison between models
	Is an anomaly detection model necessary?
	Uncertainties and sources of error

	Conclusion
	Future work

	Bibliography
	Hyperparameters used for models
	Comparison between anomaly detection models
	Collision detection
	Object drop detection
	Weight offset detection

	Expanded evaluation of the autoencoder model compared to the control error
	Feature importance for detecting anomalies in collision detection

	Tom sida

