
MASTER’S THESIS 2022

Modelling photoswitching dye
memory for path integration
Nils Ceberg, Jacob Säll Nilsson

ISSN 1650-2884
LU-CS-EX: 2022-58

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY





EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2022-58

Modelling photoswitching dye memory for
path integration

Modellering av photoswitch-molekyler som
minne för vägintegrering

Nils Ceberg, Jacob Säll Nilsson





Modelling photoswitching dye memory for
path integration

Nils Ceberg
ni7228ce-s@student.lu.se

Jacob Säll Nilsson
ja0877ni-s@student.lu.se

November 23, 2022

Master’s thesis work carried out at

the Department of Computer Science, Lund University.

Supervisors: Stanley Heinze, stanley.heinze@biol.lu.se
Barbara Webb, bwebb@inf.ed.ac.uk

Examiner: Jacek Malec, jacek.malec@cs.lth.se

mailto:ni7228ce-s@student.lu.se
mailto:ja0877ni-s@student.lu.se
mailto:stanley.heinze@biol.lu.se
mailto:bwebb@inf.ed.ac.uk
mailto:jacek.malec@cs.lth.se




Abstract

The central complex region of insect brains contains neural circuitry suitable
for performing path integration, used for example by bees in order to find their
way home after foraging. An artificial neural network based on this anatomy
has previously been successfully modelled, but without considering the memory
mechanism in detail.

We explore, using computational modelling, the idea of using photoswitch-
ing dye molecules as synaptic weight-based memory in a physical nanowire-based
realisation of such a neural network.

With a simplified model of the dye molecule dynamics and minimal changes
to the network we perform a brute force parameter optimization and find that
we can get a barely functional path integrator within the realistic parameter
ranges of the dye molecules. We go on to suggest some additional changes to the
network that increase performance to levels comparable to the previous model.

Finally, we also find that the nonlinearity of the dye memory has negative
consequences for the prospect of being able to use this circuitry for more general
vector-based navigation, and briefly discuss how our work may relate to biolog-
ical memory mechanisms.

Keywords: memory, path integration, neural networks, nanowire, photoswitches, neu-
romorphic computing
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Chapter 1

Introduction

When foraging for nectar, bees travel along convoluted paths that may reach multiple kilo-
metres away from their nest. Despite this, they are able to fly in a straight line back home
for their return journey. This is an old observation, and has even given rise to the expression
”beeline” for describing a straight path to a target [1].

There is evidence that they do this by visually estimating self-motion in relation to an
external compass based on celestial cues, such as the sky’s polarisation pattern. In the central
complex (CX), a brain region that is highly conserved among many insect species, it is thought
that this self-motion is integrated – in the mathematical sense – to maintain a home-pointing
vector, in a process aptly known as path integration [9].

A circuit that has the components necessary to be able to perform such path integration
has been identified in the bee brain and successfully modelled as an artificial (recurrent) neu-
ral network, which we will refer to as the Stone model [22]. In this model, however, the actual
memory has only been implemented abstractly as a generic integrator, and the underlying
mechanism is unknown.

Meanwhile, in a separate field, nanowire-based optoelectronic neural devices (that com-
municate using light) have been developed whereby artificial neural networks can be im-
plemented physically on micrometer scales and at nanowatt energy use. Previous work has
proposed a version of the Stone model where the ring attractor subnetwork has been imple-
mented using such devices [23]. This is the first step toward constructing a full path inte-
gration circuit in this manner. Still, the memory mechanism remains a missing part of this
puzzle.

In yet another area of research, so-called photo-switching dye molecules (which we will refer
to as simply dyes) are being developed [8][14]. A key property of these dyes is that their
transparency to light depends on the amount of light they have previously absorbed. In effect,
the attenuation of a light signal passed through them will represent a memory of previous
signals. Because one likely biological memory mechanism is the plasticity (i.e. changeability) of
the synaptic weights between neurons, and because the nanowire neural devices communicate
using light, these dyes are an interesting candidate for implementing such memory.

7



1. Introduction

Thus, in our thesis, we explore the idea of using dye molecules placed as an optical
medium between some of the nanowire neurons to act as plastic synaptic weights. There
are many challenges in realising this concept in an actual circuit, including the physical ge-
ometry of the connections. Our project focuses on the initial plausibility of a dye-based
memory by making modifications to the Stone model aimed at replacing the generic inte-
grator with synaptic weights with dynamics that attempt to model the dye behaviour. As
criteria for success we consider how well the dye-based model recreates the behaviour of the
original Stone model (quantitatively and qualitatively), and whether the required parameter
settings fall within realistic ranges for the real dyes.

Finally, we also try to relate the behaviour of the dye-based memory to more detailed pro-
posals of biological memory mechanisms, in the hope that the development of the nanowire
implementation and continued biological research might help inform each other.

1.1 Goals & research questions
As described above, the thesis explores the following three research questions:

1. Can the Stone model be implemented using a memory that models candidate photo-
switching dye molecules?

2. What modifications to the topology of the network are required?

3. Can our results be related to plausible biological memory mechanisms?

To answer these questions, we set up the following sub-goals:

• Create a framework that allows for implementing and evaluating variations of the
Stone model.

• Create a conceptual model of the memory as synaptic weights.

• Implement such a model using a mathematical model of the candidate dye molecules.

• Evaluate performance of models, quantitatively and qualitatively, using the Stone model
as a benchmark.

• Compare to biological memory mechanisms whose dynamics can be compared to ours.

1.2 Divison of work
Most parts of the work were produced as a pair. The ideas were produced as a collaborative
effort and all parts have been thoroughly discussed. If not otherwise specified, the work for
a particular section was divided equally.

Nils had primary responsibilty of the qualitative evaluation of the results, and was the
main contributor to the methods, the results up until section 4.2.6, and much of the discus-
sion. Jacob’s primary responsibility was the quantitative evaluation, and he also performed
the experiments on obstacle avoidance and holonomic movement. He was the main contrib-
utor to the background on physics and the results from section 4.2.6 and onwards.
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Chapter 2

Background

2.1 Computational neuroscience and
biological basis

This first section aims to introduce a simple mathematical model of neurons and neural net-
works, as well as some general biological background on memory and the central complex
brain region.

2.1.1 Neurons
Neurons are complex cells, receiving inputs from many other neurons and providing outputs
to many others still. They communicate using action potentials – spikes in the cell’s electric
potential that carry information which is propagated to its post-synaptic partners. While
these spikes have precise timings, we employ an abstraction: we deal only with firing rates,
i.e. the frequency of spikes. Additionally, since neurons have a saturation level in the form
of a maximum firing rate, we normalise each neuron’s firing rate to a dimensionless number
between 0 and 1, representing the degree of activity [3]. Throughout this thesis, we will use
the term activity to refer to a neuron’s normalised firing frequency.

In theoretical neuroscience, as well as in the artificial neural networks used in machine
learning, the simplest model of a neuron multiplies each input with a corresponding weight
(the strength of the synapse), sums them, and passes the sum through an activation function,
which is typically nonlinear.

The sum of the weighted inputs (the total synaptic current), I , is thus

I =
∑

i

wiui = w · u (2.1)

where w is the weight vector (synaptic strengths) and u is the input firing rate vector.

9



2. Background

The output firing rate v is then simply

v = f (I) (2.2)

where f is the activation function (also known as the f-I curve, as it relates input current
to firing rate). Note that I , u and v are implicitly functions of time.

Additionally, real brains exhibit significant noise. To reflect this, we can add some ran-
domness to the value of v at each point in time. Exploring the resilience of model circuits in
the face of such noisy conditions is an important part of their evaluation.

In the description above, u and v are used to denote input and output firing rates for a
single neuron. When later describing the neural network model, we will usually refer to the
(output) firing rate of a layer L as a whole as the vector rL, and its total synaptic current as
IL. The firing rate of a single neuron i in that layer would be denoted as rLi .

This is the neural model used in the Stone model of the path integration circuit. In the
Stone model, the simulation is stepped forward in discrete time units, and propagation of
signals is instant and synchronous. In particular, this means that recurrent connections use
the output from the last time step. For example, a neuron’s activity might be a function of
itself at the previous time step like so:

v(t) = f (v(t − 1)) (2.3)

2.1.2 Population coding
While a single neuron’s rate-based activity level is a scalar, populations of multiple neurons
can together encode higher-dimensional information, which is known as population coding.

Consider for example a vector representing the current head direction. With a population
of neurons where each cell is tuned to a certain direction (i.e. it is most active when the head
direction matches its preference angle), the head direction vector can be represented by its
projections onto the unit vectors with those angles [3]. This forms a population vector code,
and has the advantage of redundancy.

When the activities of an infinite population of neurons are plotted against their prefer-
ence angles spanning from 0° to 360°, this results in a sinusoid whose amplitude and phase
represent the length and angle of the represented vector, respectively (since a firing frequency
cannot be negative, the sinusoid is shifted ”upward” so that its mean is 0.5). We will thus of-
ten refer to the population-encoded vector as a ”sinusoidal bump”. Figure 2.1 attempts to
illustrate the idea.

Since the projection of a vector onto the preference vectors is a linear operation, this
encoding has the crucial property that two populations can be summed to represent the sum
of the vectors they encode, and in the continuous case, they can be integrated. Viewed as
sinusoids, this is equivalent to the fact that adding sinusoids of the same frequency yields a
sinusoid with the same frequency, but with a change in phase and amplitude [22].

2.1.3 Memory
One widely hypothesised mechanism by which a neural network can exhibit memory is per-
sistent recurrent activity, i.e. neurons firing in a loop. For example, a simple integrator based

10



2.1 Computational neuroscience and
biological basis

Figure 2.1: An illustration of population vector coding. (a)The black
vector’s representation as its projection (orange) onto the preference
vectors of a population (violet). (b) The same projection illustrated
as a sinusoid.
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2. Background

on a single neuron with a recurrent connection and a single external input can be modelled
by

τ
dv
dt
= hv + u − v (2.4)

where hv represents recurrent connections with a net gain of h, and u is an external
input firing rate. However, this circuit requires said gain to be very close to 1 in order to
constitute a sufficiently stable memory. Note how h = 1 corresponds to perfect integration
of u: τdv/dt = 1 · v + u − v = u.

However, if h is even slightly mistuned, the integrator will either rapidly ”forget” (if
h < 1) or accumulate until it reaches saturation (h > 1). This may be suitable for short-
term memory (perhaps on the scale of seconds to minutes) [3], but as path integration needs
to work on timescales from hours to days, other mechanisms may be more likely. Further-
more, placing path-integrating insects under anesthesia that disrupts neural activity does not
necessarily cause them to entirely lose the memory of their home vector [20]; instead, recent
work has shown that the home vector degrades gradually, again suggesting that there may
be another mechanism at play. Interestingly, the length of the vector is lost faster than the
direction, which is consistent with the population vector coding.

One such alternative mechanism is memory that is stored in the synaptic weights, i.e.
the strength at which a signal is propagated from one neuron to the next. This forms the
biological argument for the dye-based memory that we attempt to model. While the Stone
model (described below) assumes that the PFN cells have the ability to themselves accumu-
late activity, we will instead explore the idea that the accumulation happens in the synapses
between PFN and their post-synaptic partners.

2.1.4 Central complex
The central complex is a collection of distinct regions in the brain of all insects that has a key
role in navigational tasks. The neurons in the central complex are characterized by columnar
organization and interhemispheric connections [19]. Sensory information, especially from
visual systems, converge in the central complex. Different species can make use of different
sensory information, but both external cues, such as visual landmarks, wind direction, polar-
ized light patterns or the earth’s magnetic field, and internal cues, for example optic flow or
proprioception, have been shown to play a role in navigation. The difference in sensory in-
formation presents itself as different navigational strategies, such as straight-line orientation,
long-distance migration, landmark based navigation and path integration, which is what this
project is focused on [6].

While the central complex is highly conserved across insects species, it has been studied
separately in different species which has given rise to some discrepancies in terminology.
The Stone paper uses cell type names specific to the Megalopta, but as the field is moving
towards standardising on using Drosophila-based (a common model species in neurobiology)
terminology, we have chosen to use the latter as well. To aid in relating our model to previous
work, table 2.1 provides a translation key.

12



2.2 The Stone model of path integration

Drosophila Megalopta
ring neurons TL2

EPG CL1
Δ7 TB1

LNO TN
PFN CPU4
PFL CPU1
hΔ pontine

Table 2.1: Translation key of cell types (layers) between Megalopta
and Drosophila [9][5].

2.2 The Stone model of path integration
What we refer to as the Stone model [22] is a model of a neural circuit that contains all
necessary components to be able to perform path integration and is anatomically constrained
by central complex connectomics from Megalopta genalis (the sweat bee). The model is a rate-
based neural network whose high-level connectivity is outlined in 2.2. It consists of eight
layers (translated from the original paper according to the key in table 2.1), listed here and
explained in more detail below:

• Ring neurons that represent the compass input, which is passed through the EPG layer
for completeness,

• Δ7 cells which make up a ring attractor that stabilises noisy compass input,

• LNO cells that are sensitive to optic flow and whose activities reflect the speed of the
bee through its environment,

• PFN cells where speed input is converted to velocity and integrated (i.e. constitutes
the actual memory),

• hΔ which is required for memory balance,

• PFL which compares the PFN memory with the current head direction,

• and finally the motor layer which uses the PFL output to generate a steering signal.

2.2.1 Speed neurons: LNO
A crucial requirement for path integration is the ability to estimate the speed at which you
are travelling. In the Stone model, this ability stems from LNO neurons that are sensitive to
optic flow in such a way that their activities encode the bee’s speed through the environment,
thereby acting as a visual odometer.

Optic flow refers to the global motion patterns that appear to your eyes as you move
around in space. An example is that as you walk on a path, looking the same direction that you
are moving, the environment around you appear to move outward into the periphery of your

13



2. Background

Figure 2.2: A high level schematic of the layers in the Stone model.
An arrow represents an excitatory connection, and a flat end repre-
sents inhibition.

field of vision. Just as when spaceships move into hyperspace in Star Wars, all objects around
you move radially from a point ahead where you are moving (and looking). As you walk, if
you would move from side to side, or rotate, this radial pattern would change accordingly.
This optic flow can be used by the observer to discern the direction and speed of self motion
[18].

There are two types of LNO neurons (called TN1 and TN2 in Megalopta) that are sensitive
to translational optic flow, that is to say they are sensitive to forwards and backwards motion.
TN2 cells were found to be excited by forward motion, while TN1 cells are inhibited by
forwards motion, and instead excited by backwards motion. There are one of each type in
each hemisphere of the brain. Each LNO neuron has a preferred angle of expansion [0, 2π),
which is a point of expansion of optic flow that generates the largest response in that cell.
In the Stone model, these angles are ±π4 to the left and right of the body axis for forward
motion, and ±3π

4 for backward motion [22].

Together, a pair of these neurons (one in each hemisphere), represents the bee’s velocity
through space as Cartesian coordinates. Being able to represent a velocity that is not directly
aligned with the head direction is important, as not all movement is strictly in the forward
direction; for example, a bee is easily swept sideways by a gust of wind (known as holonomic
movement). Note, however, how this coordinate system is egocentric – the velocity is expressed
in terms relative to the bee’s orientation. As long as it travels in its forward direction at a
constant speed, the LNO cells will represent the same forward vector even when turning, as
the coordinate system turns along with it (just like the notions of left and right).

14



2.2 The Stone model of path integration

Figure 2.3: Δ7 neuron ring attractor. The figure illustrates how one
neuron inhibits other neurons in the ring. The neuron opposite,
which has the opposite preference angle, is the most inhibited, and
the inhibition is weaker as the preference angle is closer to that of
the neuron itself. All neurons in the ring exhibit this pattern.

2.2.2 Head direction system: ring neurons, EPG, and
Δ7

For path integration, we need to be able to express movements in an allocentric coordinate
system, i.e. one that is not relative to the current head direction (like the notions of north,
east, south and west). The head direction system consists of ring neurons, EPG neurons, and
Δ7 neurons that make up an internal compass, based on celestial cues such as polarized light
from the sky. The ring neurons are also called compass neurons in [22], since they provide the
actual compass input to the network. In the model, 16 ring neurons (of which there are a lot
more in the actual brain) are each sensitive to one of the eight cardinal directions, in pairs of
two. The compass input from the ring neurons pass via the EPG neurons and then connect
to the eightΔ7 neurons.

The Δ7 are assumed to inherit the directional tunings from the EPG neurons, meaning
they are sensitive to one direction each, separated by 45° (their preference angles). Apart
from having forward connections, they also have recurrent connections between themselves
which is visualized in figure 2.3, where the thickness of the line represent how weighted the
connection is, the neuron tuned to the opposite direction being the most inhibited. With
these properties, the Δ7 neurons are proposed to form a ring attractor, allowing for noisy
compass inputs to generate a stable sinusoid pattern with a bump in the direction of the
current head direction. This can be interpreted as a population-encoded unit vector repre-
senting the direction in which the head is pointing.

15



2. Background

Figure 2.4: The computation performed by the PFN layer in the
Stone model.

2.2.3 Memory: PFN
With the speed and the compass inputs, the egocentric motion vector can effectively be repro-
jected using the head direction system to construct a population-coded vector representing
the allocentric velocity.

The PFN layer consists of eight neurons in each hemisphere (which is again a simplifi-
cation, and each neuron really represents a column of many cells in the real brain), and is
excited by the speed-encoding LNO neurons and inhibited by the Δ7 neurons, which lets
them approximate a multiplication: when the speed input is 0 there is nothing to inhibit and
the result is 0, and when it is 0.5 the result is an approximated sinusoid (the inverted head
direction with its phase shifted 180°) of amplitude 0.5. This happens separately in the dif-
ferent hemispheres: in the left hemisphere, the egocentric motion vector component in the
forward-left direction is ”multiplied” by the head direction vector to result in a population-
coded vector representing the velocity in the forward-left direction, and vice versa in the
right hemisphere. This results in a ”distributed” representation of the actual velocity vector,
which corresponds to the sum of the two hemispheres’ vectors. Additionally, because theΔ7
neurons inhibit the PFNs, the vector is really inverted, representing the negative velocity (i.e.
it points backwards). This computation is illustrated in figure 2.4, where the green line shows
the allocentric population-coded motion vector.

Additionally, these cells are proposed to be the possible integrator cells, meaning that
they accumulate the result of this computation and as such constitute the circuit’s ”memory”.
The end result is that the memory held in the PFN is a population-coded representation of
the home vector, i.e. a vector that points towards the bee’s nest, where the outbound journey
started.

A figure of the memory representation can be seen in figure 2.5. The horizontal axis is the
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2.2 The Stone model of path integration

Figure 2.5: Conceptual memory representation. Both sets of 8 PFN
cells hold one such representation each, one in each hemisphere.

different columns of PFN and the vertical axis represents activity. The sinusoidal bump will
grow in amplitude as the bee forages further away from the nest, and then during homing the
memory representation will rebalance and flatten out. Crucially, for our project, the Stone
model implements the PFN cells as generic integrators (i.e. activity simply accumulates in a
variable for each time step), and does not go into any detail concerning the mechanism by
which they integrate their activity as the underlying biological mechanism is unknown.

2.2.4 Steering system: hΔ, PFL, and motor output
The memory of the home vector, i.e. the output from the PFN layer, connects with excitatory
synapses to the steering system with a one-column shift (corresponding to 45°) to the left in
one hemisphere, and to the right in the other. This input is inhibited by the head direction
cells (theΔ7 output), which effectively compares the alignment between the two vectors: if
the head direction is aligned with the home vector, the PFL cells in the two hemispheres will
be, in total, equally inhibited. However, if the shift to the right results in a better alignment,
that side will be more inhibited, resulting in a surplus of activity on the left side (and vice
versa). The idea is illustrated in figure 2.6, where the green shaded area represents a surplus
in the right hemisphere, driving steering to the right.

The sum of the PFL outputs on either side can thereby be used to generate a steering
signal. When homing is activated in the simulation, it uses this steering signal to drive ro-
tation of the agent (i.e. the virtual bee), which will cause it to turn toward the home vector
until it aligns with the current head direction. When equally aligned in the left and right
hemispheres, the steering system will no longer produce a steering signal. When the agent
gets close to the nest, the memory will have seen the opposite activity and have levelled out,
no longer having any discernible bump. At that point noise will dominate the system and a
search pattern will emerge where the bee circles the nest.

A requirement for being able to perform the above comparison is that the memory bumps
in the two hemispheres have the same mean. Since holonomic movement may result in an
imbalance in the memory buildup between the hemispheres, this means that they need to be
balanced before being compared. This is accomplished using a layer of hΔ pontine cells that
shifts the PFN output by four columns (180°) and also inhibits the PFL layer, resulting in a
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Figure 2.6: Illustration of comparison between home vector and cur-
rent head direction in order to generate a steering signal.

Figure 2.7: Illustration of memory balancing.

memory bump with a mean of zero. The effect of this balancing is illustrated by figure 2.7.

2.3 Physics

2.3.1 Nanowires
A nanowire is, as the name suggests, a structure in the size range of nanometers. Thanks
to their small dimensions, and other preferential properties, semiconductor nanowires are
highly considered for electronic, photonic and opto-electronic applications [11]. III-V nanowires
is an especially mature platform of nanowires, that is versatile and can be created with a wide
variation of electronic and optical properties [23]. The III-V in the name comes from the fact
that they are made from materials found in the 3rd to 5th row in the periodic table [2].

The use of photonics for neural networks is something that has gained interest lately, as
communicating with light is both efficient and fast[4]. Nanowires present a way to realize
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this idea in a way with low power consumption and an incredibly small footprint, moving
significantly closer to the power usage of an actual neuron as compared to traditional com-
puters. Small neural networks such as the Stone model, which is based on an insect brain,
were chosen as a good starting point for testing the potential of nanowires in this field. In-
sect brains are a good choice as they are comparably low in numerical complexity but still
perform tasks that are very advanced, using very few neurons and incredibly low amounts of
energy [23].

Optoelectronic neural units based on these III-V nanowires have been used to simulate
the ring attractor part of the Stone model. The neural units communicate using light, and
they have an LED in one end to output signals, and two photo-transistors that absorb light
in the other end, one being excitatory and one being inhibitory. The neural units can add
and subtract the inputs, process the result through a nonlinear activation function, and then
output the appropriate amount of light from the LED. They are then put in a 2-dimensional
waveguide where they can communicate without any wiring, further reducing the footprint
of the network implementation [23].

2.3.2 Molecular dyes
A photoswitch is a molecule that can change its molecular structure, and in so affect its
properties, when exposed to light. These kind of molecules have two different states: a ther-
modynamically stable state and a metastable photostationary state [8].

The candidate dye molecules for our project are, in their thermodynamically stable state,
hereafter referred to as the on state, opaque and absorb light. When a molecule absorbs
a photon, there is a probability ϕ – known as the quantum yield – that the molecule will
switch to its metastable photostationary state, the off state (otherwise the energy is simply
lost as heat). In the off state, the molecules are transparent, but will after some exponentially
distributed time spontaneously turn back into theiron state, meaning that molecules in their
off state have a half-life T 1

2
. This process of returning to the on state is dependent on the

temperature, but can also be affected by irradiation by light of a different wavelength [8].
For a long time the research surrounding photoswitches was surrounding molecules that

required UV light to switch to the off (photostationary) state, which limited the possi-
ble applications due to the possible damage and limited penetration depth [7]. Recently
more research has been done surrounding molecules sensitive to visible light wavelengths
around 450-700nm [8], which also better coincides with the wavelengths of light that the
III-V nanowires explored in [23] can operate at.
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Chapter 3

Methods

As mentioned, we attempt to answer our primary research question first and foremost by
way of simulation. To do so we create a simple framework in which we can easily define
a variety of (primarily neural network-based) models of the central complex, make these
control a virtual bee that moves according to rudimentary physics, and run trials to test path
integration performance. The technical details of this framework are described in the first
section below.

To quantify said performance we also need a suite of evaluation measures. The second
and third sections describe how we can make sense of the memory and what measures we
use, for evaluating individual trials, a model as a whole, and comparisons between models.

The mathematical model of the actual dye mechanics is described in the fourth section.
Finally, we briefly discuss performing a grid search to find working parameter settings.

3.1 Framework
To run computational experiments with variations of the Stone model we created a frame-
work in Python 3 with the following features (explained in the following sections):

• Flexible networks

• Simulation using simple physics

• Declarative experimental setups

• Separate data collection and analysis

• Usable both from command line and from Jupyter Notebooks

The main usage pattern is to define experiments using JSON to configure parameters.
Such experiments can then be run using a command-line interface. The data collected can
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then be analysed in a Jupyter Notebook environment. Notebooks were also used for creating
many of the figures for this report.

The full framework code can be found on GitHub1.

3.1.1 Neural networks
To be able to easily test different kinds of changes to the neural network, we implemented a
flexible network model consisting of abstract Network and Layer classes. These can then be
specialised depending on the kind of network. The work we present is mostly based on the
RecurrentForwardNetwork implementation, which behaves like a feed-forward network
but uses values from the last time step for recurrent connections.

The layers are typically FunctionLayers that take some input, compute a weighted
sum, and pass that sum through an activation function (as described in equations 2.1 and
2.2). These functional layers are mostly directly adapted from the Stone code2, and use a
sigmoid activation function with parameters a and b for slope and bias respectively. On top
of this, we add normally distributed noise to reflect the noisy nature of real brains:

f (I) =
1

1 + exp(−(aI − b))
+ s, where s ∈ N(0, noise) (3.1)

As firing rates are normalised to the interval [0, 1], the noise can be directly interpreted
as the proportion of the maximal (saturation) activity that is made up of noise. For example,
a standard deviation of 0.1 represents a noise level of 10 %.

Additional layers that we have introduced are MemorylessCPU4Layer, which performs
the PFN computation without integration, PlasticWeightLayer for the weight-based
memory proof of concept, and DyeLayer for simulation of the dyes, as described below.

3.1.2 Central complex models
The CentralComplex model consists of a neural network as described above. For each time
step it computes the inputs to the neural network based on current heading and velocity, in
the form of head direction and speed neuron activity. With these inputs the neural network
is then stepped forward one time unit. Finally, the motor output computed by the neural
network is returned as the output.

3.1.3 Numerical methods
For solving differential equations we use the simple Euler method

y(t + ∆t) = y(t) + ∆t
dy
dt

(t, y(t)) (3.2)

where ∆t is the step size (typically 1 time step in our case) [21]. We found that this was
sufficient for accuracy by comparing with SciPy’s solve_ivp, while also being faster.

1Our GitHub repository: https://github.com/nilsceberg/path-integration-memory
2Stone’s Github repository: https://github.com/InsectRobotics/path-integration
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3.1.4 Simulation
Random outbound paths of length Toutbound are generated in the same way as in the Stone
implementation: rotation speeds are sampled from a von Mises (circular normal) distribution
and low-pass filtered to generate smooth turns. The acceleration is also randomly varied
between a number of randomly selected key levels. The rotation speed ω and acceleration a,
along with current heading θ and velocity v, are then used by a simple physics simulation to
compute the heading and velocity at the next time step like so

θ(t + ∆t) = θ(t) + ω∆t (3.3)

v(t + ∆t) = (v(t) +
[
sin θ
cos θ

]
a∆t)(1 − d)∆t (3.4)

where d is a drag constant.
Alternatively, hand-crafted paths can also be specified using waypoints that the agent

will navigate to in order.
The headings and velocities representing the random outbound path are fed to the cen-

tral complex model, which steps the neural network as described above. For the outbound
journey, the motor signal returned from the central complex is ignored.

For the homing phase, whose duration is Tinbound, the central complex is stepped forward
in the same way. Acceleration is kept constant, and the motor signal produced by the CX
is used as the turn speed (multiplied by some ”motor factor”) that is passed to the same
rudimentary physics simulation as above.

The paths (headings and velocities), and optionally direct ”recordings” of neural network
layer outputs and internal states (for example the molecule concentrations in the dye layer),
can then be saved to disk as a result file, or analysed immediately.

3.1.5 Analysis
For analysis, data is loaded from disk as a SimulationResults object. This class provides
analysis methods, such as reconstruction of paths from velocities and headings, and error
metrics used for evaluation, as will be described below.

3.1.6 Setups
The computational experiments run using this framework are specified declaratively using
JSON configuration files. These files allow specifying for example the number of trials, length
of the outbound and inbound phases, and what kind of network model to use for the CX,
and its parameters.

An important feature is that we can specify ranges for parameters: for example, we might
want to evaluate the performance at different noise levels. This can specified as "noise":
{ "linspace": [0.1, 0.5, 5] }, resulting in the same experiment being run for each
of the noise levels 0.1, 0.2, 0.3, 0.4, and 0.5. We will use this for performing parameter
searches, and the experiments used for our results are listed in Appendix A.
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3.2 Constructing and decoding population
vectors

A population vector code is constructed by simply projecting a Cartesian vector v onto the
preference vectors ci . In other words, the value of unit i is

mi = v · ci. (3.5)

When v and ci are unit vectors with angles θ and θi respectively, this is equivalent to

mi = cos(θ − θi). (3.6)

As firing rates cannot be negative, to capture the entire shape of this sinusoid it can be
centered around 0.5:

mi = 0.5 cos(θ − θi) + 0.5. (3.7)

Although the ring attractor output is a unit vector with the representation above, the
computation in the PFN layer results in a sinusoid whose bottom half is clipped, which can
be better approximated as3

mi = [cos(θ − θi)]+ (3.8)

and is the signal that we would like to integrate.
When exploring readout behaviour, we would like be able to give the network arbitrary

home vectors. Due to noise and the specific behaviour dynamics of the memory the actual
shape will likely depend somewhat on the specific path taken to get to a certain point. How-
ever, for this purpose we will be using idealised constructed memory vectors with an angle
θ, amplitude A and a constant B like so:

mi = A[cos(θ − θi)]+ + B (3.9)

These population vectors can be decoded in different ways. In the Stone model paper, it is
done using a Fourier transform to get the phase and amplitude of the fundamental frequency.
While this is useful, it does throw away higher-frequency information. To take the actual
shape of the vector into account, we will use a simpler method known just as the vector method
[3], whereby the linear combination of column preference vectors ci using corresponding
memory values mi as coefficients:

vpop =

16∑
i=1

mici. (3.10)

The decoded vector is parallel to the vector that is represented. Due to the nonlinear
memory we will be exploring, we consider the amplitude to be unimportant.

3[x]+ = max (0, x)
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Figure 3.1: An illustration of the memory error metric.

3.3 Evaluation
To be able to quantitatively evaluate models and their variations and compare them against
eachother, we establish a number of key metrics in this section. Using these, we also compile
an evaluation suite which we will use to evaluate all models.

3.3.1 Error metrics
Evaluation of a model as a whole can be done by simply running simulations and examin-
ing metrics describing the resulting behaviour of the bee, such as closest distance to home
achieved during the homing phase.

However, this will not reflect only the memory performance, but also that of the steering
system. While we ultimately do want a memory that works well with the model of the steering
system, it is also useful to evaluate the memory itself more directly (such as in section 4.2.3
on nonlinearity).

To this end, we use the vector method in equation 3.10 above to directly decode the
memory. Because the steering system does not directly depend on the amplitude of the vector,
but only the phase of the sinusoidal bump, we are only interested in the heading it represents.
On the other hand, a simple angular error does not give an accurate picture, as the same
angular error is much more catastrophic at a large distance from home. Therefore, we use
the following metric: given a decoded heading θd , how close to home is the closest point
along the ray determined by θd? This is illustrated geometrically in figure 3.1.

With the true angle to home θh and true distance to home d, we let α = α(θd , θh) be the
(positive) angular error. The memory error e (i.e. smallest distance to home along the ray)
can then be computed as

e =

d sin α if α < π2
d if α > π2 .

To evaluate the steering system, the quality of the memory readout, we also introduced
the heading error. This is measured in the same way as the memory error, except it compares
the head direction to the home vector. This metric is only relevant during the inbound path,
since the steering is only active when homing.

Another interesting metric is the straightness of homing paths, which is referred to as
tortuosity. This metric is used by Stone et al. [22], so we borrow their definition to allow
comparison between results. We measure this by looking at the deviation from the best pos-
sible path when homing, i.e. the straight line path to home. With the straight line distance
defined as L, and C as the distance covered toward the nest after L steps, the tortuosity met-
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ric can be calculated as T = L
C . The optimal path home then has minimal tortuosity, T = 1,

and paths that do not go as straight has tortuosity of T > 1.
From Stone [22] we also borrow a metric for how well aligned the bee is with the actual

home vector after homing is engaged. This is done by measuring the angular deviation after
crossing a 20 step radius from where the bee was when starting to home.

3.3.2 Evaluation suite
We developed a suite for evaluating a single model at a time, showing a comprehensive view
of a few different error metrics. As an example we ran the neural model from Stone et al.
[22] through the suite, which is presented in figure 3.2. The metrics that are included are
explained earlier in this section. Figure 3.2 (c)-(f) show mean ± 1 standard deviation (SD).

3.4 Dyes
To simulate the plastic weights based on dye molecule dynamics, we use a simplified math-
ematical model in the form of a differential equation to describe how the concentration of
the dye molecules in the two states changes, together with the light transmittance as a func-
tion of this concentration. The transmittance is the fraction of light that passes through the
sample; i.e. given an incident (pre-synaptic in our terms) intensity I0 and the attenuated
(post-synaptic) intensity I , the transmittance T is defined by

I = T · I0 (3.11)

and as such represents our weight w = T . In subsequent parts of this report, we will
mostly stick to the notation w, except when talking about the transmittance as a function of
concentration.

As described in 2.3.2, the dye molecules have two states which we call on and off. The
transmittance T is a function of the concentration of molecules in these states. The molecules
that are not in the on state are of course in the off state, and vice versa, i.e.

con = ctot − coff, (3.12)

where ctot is the total concentration of dye molecules.
For brevity, we take a non-subscript c to mean the off-state concentration coff. The

change in this concentration is the result of two effects: the spontaneous back-reaction into
the on state and the switching to off in response to absorbed light:

dc
dt
= −kc + uϕ(1 − T ) (3.13)

where

• −kc represents the first-order back-reaction, and k is its rate coefficient (related to the
half-life as k = log 2

T 1
2

),

• u is the PFN output, i.e. its normalised activity,
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Figure 3.2: Evaluation suite for Stone model. (c)-(f) show mean ± 1 SD. (a) Example path.
Outbound/inbound time = 1500 steps each. Noise=10%. (b) Closest distance histogram.
N=100 runs. Outbound/inbound time = 1500 steps each. Noise=10%. (c) Closest distance for
differing outbound length, at 4 noise levels. N=100 runs for each outbound time and noise
level. (d) Memory error during outbound and inbound journey at 4 noise levels. Avg. over
N=100 runs. (e) Heading error during inbound journey at 4 noise levels. Avg. over N=100
runs. (f) Deviation from best possible route for N=100 runs. Outbound/inbound time = 1500
steps each. Noise=10%. (g) Head direction deviation from actual home vector after crossing
20 step radius, after homing is engaged. Distribution over N=100 runs each for 4 noise levels.
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• ϕ is the proportion of the absorbed light that leads to switching,

• T is the transmittance.

Note that u here is still dimensionless, and that ϕ is therefore not really the quantum
yield (but we have co-opted the notation); it also has a built-in conversion factor from nor-
malised light intensity to photons per second. Leaving u dimensionless means we generalise
our results for varying time and power scales.

The transmittance T , in turn, is a function of the concentration of absorbent on-state
molecules con as per the Beer-Lambert law. The absorbance A is

A = ϵ lcon = ϵ l(ctot − c) (3.14)

where

• ϵ is the molar absorption coefficient,

• l is the optical path length through the sample,

and finally the transmittance is expressed as

T = 10−A. (3.15)

This can further be combined into a single equation expressed as dT
dt , which we will do

in the results to more directly relate the dye mechanics to weight memory. However, for
numerical reasons the simulation is expressed in off-state dye concentration as its rate of
change does not vary as much.

3.5 Parameter search
With the model above, we have five parameters, and in the results we will introduce a sixth:
k, ϕ, ϵ , l, ctot, and β (background activity).

Luckily, ϵ and l only ever occur as their product ϵ l, which can thus be considered a single
parameter. For the models where k = 0, we can disregard that as well. On the other hand,
the optimal setting will also depend on parameters external to the model, such as outbound
path length Toutbound. With this, we end up with a total of five parameters that are of interest
to map out: ϕ, ϵ l, ctot, β, and Toutbound.

Ultimately, the purpose of the path integration circuit, when used for homing, is to help
navigate home. With this in mind we mainly use closest distance to home as the performance
metric for the search for optimal settings.

To perform the search, we run a brute force grid search using experiment setups using
parameter ranges, with N trials (whose performance metrics are averaged, as there is stochas-
ticity in both outbound paths and in noise in the network) for each combination of param-
eter settings. For parameters that span several orders of magnitude, such as ϕ, k and ϵ l, we
typically use logarithmic ranges for the parameters; the rest are linear ranges.

When plotting the closest distance metric with varying Toutbound, we normalise it by the
”turning point distance” (i.e. the distance from the point where homing was activated to
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home) which is on average proportional to the outbound path length, to avoid a bias in favor
of shorter outbound paths.

Since there are more parameters than spatial dimensions, visualising them all in one plot
is difficult; however, as we gain a good understanding of roughly how each parameter affects
the others, we do not find that strictly necessary. To fit as many parameters into a single plot
as possible, we use 2- or 3-dimensional heat maps with the color representing performance,
and the spatial axes the parameters.
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Chapter 4

Results

In this chapter we present our results, beginning with the conceptual changes whereby we
move the memory from integrator neurons to the synaptic weights interconnecting them,
and then going on to implementing this with the dye-based dynamics, including insights
regarding further improvements and the consequences for behaviour. These first two parts
employ mostly qualitative reasoning and reflect our process in reaching these results. The last
section finally presents a quantitative comparison between the Stone model and our models.

4.1 Memory in plastic synaptic weights
In the Stone model, the PFN layer plays two roles: firstly, it ”reprojects” the egocentric Carte-
sian self-motion inputs onto an allocentric population-coded vector, using the head-direction
input state from theΔ7 ring attractor. Secondly, it integrates this information and thus also
functions as the memory. Figure 4.1 zooms in on the PFN layer in the Stone model.

As a first step in the process of implementing the memory using dye molecules, we would
like to separate these roles. The PFN layer is thus only tasked with performing the reprojec-
tion. The second role is instead filled by a second layer whose output is strictly its inputs
multiplied by a set of weight – however, the weights themselves are also changed in the pro-
cess. The dynamics of how these weights change depend on the type of memory.

One important consequence of making this change is that the activation function on the
PFN output in the Stone model is now applied to the integrand, as opposed to the integral.
This activation function approximates a rectified linear activation function by having a slope
of 5 and a bias of 2.5, as well as being noisy. When applied to the integral as in Stone, this
error does not accumulate, but as we apply it before the integration, it does.

Figure 4.2 demonstrates the conceptual design we have concentrated on, where the inte-
gration is done by plastic weights on the output of the PFN layer.

The dye mechanics, along with the fact that we would like to remain somewhat consistent
with anatomy if possible, place the following constraints on how this may work:
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Figure 4.1: The location of the PFN cells in the Stone model.

Figure 4.2: Variation of the Stone model with plastic weights be-
tween the PFN and PFL/hΔ layers (”steering”).
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1. The weights can only attenuate the signal, i.e. each weight must be between 0 and 1.

2. The weights must be ”self-modulating”, i.e. the signal passed through a weight must
also be the one used to modulate it.

Constraint 2 in particular poses a fundamental problem to consider: the same signal must
be used for both modulation and readout. Specifically, if ui(t) is the pre-synaptic activity for
column i (i.e. the firing rate of one PFN neuron, ui(t) = rPFNi (t)), then the corresponding
weight wi(t) changes as a function of ui(t) and its current value:

dwi

dt
= f (ui(t),wi(t)) (4.1)

The synaptic current contribution to downstream neurons vi(t) (PFL and hΔ input) is
then the product of ui(t) and wi(t):

vi(t) = wi(t)ui(t) (4.2)

In other words, since it is the weight that represents the memory, we cannot read the
memory directly – we can only see the result of the multiplication of the signal by the weight,
but we also cannot choose the signal freely.

In previous work, a weight-based memory in a Stone-inspired model has been accom-
plished by modulating the weights between the head direction layer and the steering layer
with a one-column shift to the left and right (depending on hemisphere), which results in
the weighted signal effectively being a measure of whether a left or right turn would result
in better alignment with the home vector [5]. This cannot be done when adhering to this
second constraint, and thus a somewhat different approach is required.

4.1.1 Readout
As the buildup of the dye transmittance is a form of integration, our focus is on how to get
a working readout without destroying the memory. This section will outline a few different
ideas on how this might be accomplished, leading onto the next section (4.1.2) where we
construct a proof of concept of weight-based memory with linear dynamics.

Compensation
An initial, simple idea would be to use some kind of compensating process to account for the
varying u: since v = wu, v̂ = v

u = w would be a perfect readout of the weights.
This would require some kind of computational unit that takes u and v as separate inputs

and effectively computes their quotient. The idealised model of a neuron from 2.1.1 cannot do
this, as its inputs are simply summed. However, in the work implementing the ring attractor
subnetwork using a model of nanowire units [23], the excitatory and inhibitory inputs to a
neuron are really two separate input channels. While they approximate the model neuron,
the total synaptic current does not strictly depend only on the sum of the inputs, but on the
absolute values of the excitatory and inhibitory inputs, resulting in a 2-dimensional function
I of the inputs (figure S9 in supplemental information for [23]).

It might be possible to tune this function differently in order to achieve the required
compensation, which would look something like figure 4.3. However, since it is not clear
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Figure 4.3: A two-dimensional activation function depending on
two inputs, x and y, computing their quotient.

whether or not this can actually be done, we have left this idea here and not explored it
further.

Alignment
While we cannot get a readout that itself represents whether a left or right turn would re-
sult in a better alignment as in [5], the output is in some sense a measure of alignment. An
instantaneous readout is difficult to make sense of, as there is nothing to compare it to (the
two hemispheres perform essentially the same calculation).

However, the alignment might in a sense be compared over time, by letting high align-
ment of the backwards-pointing PFN vector and the home vector result in faster turning.
This should presumably result in a tendency to move towards the nest, although it seems un-
likely to produce any sort of straight paths. An initial attempt at implementing this solution
(figure 4.4) is in line with this expectation.

While this would make the phase comparison system accomplished by column offsets
and the PFL layer in the Stone model superfluous, it does not strictly speaking violate its
anatomical constraints as it simply does away with a part of the network. Still, our primary
concern is modelling memory that could work as input to that steering system, so this idea
was also left without further consideration.

Background activity
With rPFNi denoting the PFN output activity (that we would like to integrate), we can intro-
duce ui = rPFNi + β, where ui is the signal that is actually passed through the weights and
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Figure 4.4: Resulting homing when using only the sum of weighted
PFN outputs as the motor output.

Figure 4.5: Activation function for PFN layer with background ac-
tivity.

includes some background activity β.
If β ≈ 1, i.e. completely dominates the signal, then vi = wiui ≈ wi . In general,

vi = wiui = wiβ + wirPFNi , (4.3)

meaning that a portion of the readout signal is proportional to the weights, with a known
proportionality constant (β). The other part of the signal, wirPFNi , would, in this view, con-
stitute noise.

This sort of background activity corresponds to shifting the whole activation function
for the PFN layer upwards, as is illustrated in figure 4.5. We still clip the output to between
0 and 1, meaning that if the background activity is too high in relation to the actual signal,
information will be lost. This may or may not be realistic based on how the background
activity is actually implemented, but should be the most conservative assumption.
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Figure 4.6: Output phase-shifted toward home vector. Note that
there are only 8 data points; the linear interpolation between the
points is only to better illustrate the sinusoid shape.

Phase shift
Consider that since all that is really needed in order to turn in the right direction is a motor
signal of the correct sign, it should in theory be enough to get a memory readout that is
shifted from the current head direction toward the home vector. In terms of sinusoids, the
only important property is the phase of the memory bump’s fundamental frequency, not its
exact shape or amplitude.

When the PFN output is multiplied by the synaptic weight, the weighted activity of each
column depends on how aligned the (inverted) head-direction bump and the memory bump
are. If they are close to perfectly aligned (or exactly opposite), the resulting bump is at the
same location. If they are misaligned, though, the greatest activity will be in the columns
with the greatest overlap, essentially resulting in a shift in the phase towards the phase of the
home vector. Figure 4.6 illustrates this idea with a simplified model of the memory and head
direction bumps.

However, as is evident in the figure, the output signal is often very weak. Additionally,
when close to aligned, there is already a lot of overlap, and the shift is less pronounced.
By giving the system an arbitrary home vector, such as the most pronounced one possible
constructed using equation 3.9 (i.e. A = 1, B = 0), we can plot the motor output as a function
of the misalignment, which is done in figure 4.7. Indeed, this figure seems to even suggest
that the motor output has entirely the wrong sign at some misalignments, and plateaus when
close to being aligned. We shall see soon that this readout does in fact result in a tendency to
travel towards home, but not very reliably.

4.1.2 Proof of concept with linear dynamics
To begin evaluating the readout, we consider a memory that accumulates in constant pro-
portion ϕ to its input u, and also has a constant decay of −kϕ (i.e. an appropriate function f
for equation 4.1):

dwi

dt
= ϕ(−k + ui(t)) (4.4)
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Figure 4.7: Plot of motor output as a function of misalignment.

To achieve memory dynamics equivalent to those in the original model, we simply let ϕ be
equal to the memory gain of 0.0025, and k be the constant decay factor of 0.125 – numbers
that will, roughly, keep the memory balanced around the starting point, which we set to 0.5
(the middle of the range).

By making no other modifications to the network than separating the roles of the PFN
layer as described above, we can test the performance of the readout based only on the phase
shift effect described above. This results in an example path that is visualised in figure 4.8.
The path is not very straight, but it does very clearly go in the direction of home, which is a
promising first result.

While relying only on the phase shift may not result in an entirely satisfactory readout,
it does mean that the wirPFNi portion is not merely useless noise and thus an approach using
background activity does not actually require that β dominate the PFN output. Instead, we
can choose a background activity that results in a better readout, but does not result in the
actual information needing to be exceedingly small in amplitude. In the same way that a
background activity-less readout would result in a bump close to the PFN bump but slightly
shifted towards the memory bump, a readout with background activity can be understood as
resulting in a bump close to the memory bump but shifted slightly towards the PFN bump.

With a background activity, even if small, the signal is a lot less weak, as it does not depend
solely on the overlap of the two bumps. In effect, background activity should be better for the
readout, as is illustrated figure 4.9 as compared to figure 4.6. Again, using the same arbitrary
home vector as earlier, we can plot motor output as a function of misalignment, but also
include the effects of β, as in figure 4.10 which suggests that the most pronounced motor
signal is achieved around β = 0.3.

Tweaking the PFN activation function as in figure 4.5 with β = 0.5 and balancing k so
that −k + β = −0.125, are minor changes that result in homing that looks like 4.11.

This is a great improvement and looks comparable to the paths produced by the Stone
model (in section 4.3 we will compare the performances quantitatively). Finding that it is
possible to get a readout that is usable for steering by using background activity, it is evident
that a plasticity-based memory can be used in the existing model without any other modi-
fications to the network. As such, this is what we consider our ”baseline” model going into
the next section: dye-based dynamics.
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Figure 4.8: (a) Pathing with only phase shift readout. The blue
line is the outbound path, and the orange line is the inbound path.
The green star represents home. (b) Recorded memory weights over
time. In the upper plot, each colored line represents one column.
The lower plot shows the same weights but as a heat map where the
columns are laid out along the vertical axis. Note how the points
where the agent is close to home can be identified by the smaller
differences in activity between columns (such as around t ≈ 0 and
t ≈ 2400).

Figure 4.9: Readout with background activity β = 0.5; cf. figure 4.6.
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4.1 Memory in plastic synaptic weights

Figure 4.10: Motor output as function of misalignment and back-
ground activity.

Figure 4.11: (a) Pathing with background activity. (b) Recorded
memory weights. See figure 4.8 for elaborated figure text.
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4.2 Dye-based plastic synaptic weights

The full dye model described in 3.4 can be rewritten on the same form as equation 4.1 (again,
w = T ):

dwi

dt
= ln(10) · ϵ · l · wi · (−k · c(wi) + ϕ · ui · (1 − wi)) (4.5)

With a weight layer that is based on these mechanics, we are presented with some addi-
tional constraints.

First, the memory decay is no longer constant. In the dye-based model, the decay of the
weight corresponds to the decreased transmittance as molecules that had been switched to
their transparent off state spontaneously switch back to their opaque on state. Since this
back-reaction is stochastic with a constant probability of switching back per time unit, the
decrease in off-state concentration is proportional to that same concentration (i.e. exponen-
tial decay). In effect, the memory of movements that occurred earlier is weaker than memory
of movements that occurred later.

Second, the memory also no longer accumulates in constant proportion to the input. The
accumulation corresponds to the increase in off-state concentration due to photons being
absorbed by the on-state molecules. Thus, as more molecules become transparent, less are
available to absorb a photon and switch into the off-state; in other words, the accumulation
of memory becomes slower and slower.

Both of these facts have the consequence that we can no longer balance the accumulation
against the decay across the whole range of concentrations. For this reason, we have focused
on the case where k = 0, i.e. the molecules switch to their OFF state semi-permanently
(requiring some external reset, for example by increasing the surrounding temperature to
increase the decay rate). This comes with the obvious drawback that the memory will even-
tually reach saturation, as it only ever accumulates. The PFN background activity, which is
all but required for a decent readout, is especially problematic in this regard, as it means that
there is some max time period after which the memory will have become saturated from β
alone, even if the bee stood still the entire time.

Furthermore, even after disregarding k, the fact remains that the change in concentration
and transmittance is a nonlinear process. The transmittance changes very little in the begin-
ning but soon goes faster and faster until a plateau is reached near 100% transmittance. Which
behaviour dominates depends on the parameters, especially ϵ l; typically, transmittance over
time (i.e. the solution to equation 4.5 above) takes the shape of a sigmoid: it remains low
until the concentration hits a soft threshold value where it starts to increase rapidly until
most molecules are transparent and a plateau (saturation) is reached.

While the concentration begins to change immediately, the memory it represents is es-
sentially hidden and cannot be read out until it reaches the soft threshold where the transmit-
tance actually starts to increase. Consequently, there is a window between the point where
transmittance starts to noticeable increase and the point of saturation where homing actually
works.
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4.2 Dye-based plastic synaptic weights

Figure 4.12: Closest distance to home as function of (ϵ l, ϕ, β)
(smaller is better).

4.2.1 Parameter search
With the same idea as in section 4.1.2, we can run simulations to map out the performance
across the parameter space using a grid search. Fixing k = 0, ctot = 0.3 (the maximum
realistic value), and Toutbound = 1500, we map in figure 4.12 the performance as a function of
(β, ϕ, ϵ l).

This map reveals a sliver of deep violet where the agent manages to get home. The min-
imum point in this search was approximately (ϵ l, ϕ, β) ≈ (15, 0.0003, 0.3) resulting in a
closest distance to home of about 7.2 distance units. The clearest relationship is that be-
tween ϕ and β: a higher ϕ is good for maximising utilisation of the memory capacity, while
a higher β is better for the readout. However, both contribute to saturation of the memory.
Maximizing performance at only one Toutbound thus runs the risk of ”overfitting” to that path
length, by resulting in the maximum βϕ that does not saturate too quickly, thus not working
well for longer paths.

By instead varying Toutbound we can compare the effects of different levels of background
activity on the path lengths that can be handled; this is plotted in figure 4.13. For a small β the
readout is worse and it takes longer before the readout window is reached and performance
is therefore bad for short paths, but saturation is not a problem. A larger β has the opposite
issues.

Using these parameters we get a dye model that does manage to get back home, with an
example trial in figure 4.14. Again, a quantitative comparison will be done in section 4.3,
but we consider this model to barely work: its paths are not very straight, it is sensitive to
parameter changes (the sliver of violet is thin), it is near the saturation limit at the end of the
example trial, and it is not very good close to the edges of the readout window.
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Figure 4.13: Normalised closest distance to home as a function of
(β,Toutbound).

To be able to also handle longer paths and have a wider readout window, we can manually
adjust these parameters by lowering the background activity and ϵ l and increasing ϕ. With
(ϵ l, ϕ, β) = (10, 0.00045, 0.1) we remain in the violet area, and get an example trial depicted
in figure 4.15. Note how the memory is not as close to saturation.

4.2.2 Further improvements

Variable background activity

The background activity that is used to get a decent readout above is, as mentioned, prob-
lematic since it contributes to quicker saturation of the memory. However, since it is really
only required for the homing phase, it can be disabled during the outbound journey without
affecting the readout during homing. In fact, this instead leaves us with more room to use a
larger β during the homing phase, improving performance (see figure 4.16).

While this is conceptually fairly trivial, it does place some additional constraints on how
the background activity can be implemented (i.e. it needs to be dynamically controllable).
More generally, background activity could be activated only periodically (e.g. a sinusoidal
function of time) to reduce its accumulating effect while still resulting in net homeward
turns.
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Figure 4.14: (a) Dye model pathing with grid search parameters
(ϵ l, ϕ, β) = (15, 0.0003, 0.3). (b) Recorded memory weights (trans-
mittances). See figure 4.8 for elaborated figure text.

Figure 4.15: (a) Dye model pathing with adjusted parameters
(ϵ l, ϕ, β) = (10, 0.00045, 0.1). (b) Recorded memory weights
(transmittances). See figure 4.8 for elaborated figure text.

43



4. Results

Figure 4.16: (a) A dye model trial with beta activated at T = 1500
layer. (b) Recorded memory weights. See figure 4.8 for elaborated
figure text.

Amplification layer
Even with the PFN background activity, the readout signal can be quite weak, in the sense
that the differences between peaks and troughs are small enough to make the bump indistin-
guishable. A sufficiently steep activation function with a bias corresponding to the mean of
the sinusoidal bump could be used to amplify those differences. Unfortunately, that mean is
not constant, and depends on the current state of the memory.

However, the PFL layer in the original Stone model computes rPFN − rhΔ, before this
result is compared to the current head direction. This computation results in the average
being shifted to 0, in order to balance the memory bumps between the two hemispheres so
that they can be compared, as described in section 2.2.4. This would be the perfect place to do
the amplification of the difference between peaks and troughs, as this balancing eliminates
the need for a bias: it simply needs to amplify positive values and silence negative ones. The
amplification is illustrated in figure 4.19.

The full PFL layer computation is

rPFL = f (0.5WPFN-PFLrPFN − 0.5WhΔ-PFLrhΔ −WΔ7-PFLrΔ7). (4.6)

The amplification described above can be accomplished by adding a amplification layer
between the hΔand PFL layers, with a very steep activation function g like so:

ramp = g(0.5WPFN-amprPFN − 0.5WhΔ-amprhΔ) (4.7)
rPFL = f (Wamp-PFLramp −WΔ7-PFLrΔ7) (4.8)

Adding such an amplifying layer significantly improves performance, as can be seen in
the trial in figure 4.17. The paths are straightened and the window is widened, as will be
seen in the quantitative evaluation, and the parameters are less sensitive, which is illustrated
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4.2 Dye-based plastic synaptic weights

Figure 4.17: (a) A dye model trial with the pontine amplification
layer. (b) Recorded memory weights. See figure 4.8 for elaborated
figure text.

by the increased volume of the violet area of high performance in figure 4.18 compared with
figure 4.12 from earlier.

4.2.3 Non-linearity
A classical example from control theory involves regulating the water level in a tank using a
pump [12]. If the tank has vertical sides, then pumping in some fixed amount of water will
have the same effect on the water level regardless of the starting point. This is a linear system.
If, instead, the tank is in the shape of an inverted cone, the same amount of water will have
a very large effect on the water level if the tank is nearly empty, but a very small effect if the
tank is close to full – thus, the system is nonlinear. The transmittance of our memory units
works similarly, and can be compared to the water level in an hourglass-shaped tank.

Figure 4.20 illustrates the memory dynamics (off-state concentration and transmittance)
at typical (constant) PFN activities, and figure 4.17 shows the transmittances of each dye unit
during an actual simulation.

A key property of linear systems is additivity. If we denote the memory of a vector a by
M(a), then a linear memory would, by additivity, mean that the memory of location a and
the memory of location b can be summed to represent the memory of location a + b:

M(a) + M(b) = M(a + b). (4.9)

This seems like a very important property for performing path integration. For example,
moving θ degrees along the arc of a circle with radius r1 needs to have the same effect on the
home vector phase as moving the same angular distance along a circle of a different radius r2.

Still, when running simulations with the described nonlinear memory dynamics, the inte-
gration does seem to be able to capture these movements correctly. After all, for the memory
to become rebalanced, all columns need to see the same total activity. As such, it appears that
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Figure 4.18: Closest distance to home as function of (ϵ l, ϕ, β) using
the amplification layer (smaller is better).

Figure 4.19: Illustration of amplification layer effect on the memory
bump (after normalisation, c.f. figure 2.7).
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4.2 Dye-based plastic synaptic weights

Figure 4.20: How the concentration and transmittance change over
time with a constant input u(t) (ϕ = 0.00045, ϵ l = 10, ctot = 0.3).
(a) The off-state concentration changes in varying proportion to u.
(b) Transmittance, or weight, as a function of off-state concentra-
tion. (c) The derivative of the transmittance with respect to time.
(d) The weights over time.

47



4. Results

Figure 4.21: Homing for outbound paths with sharp turns to test
integration of two distinct movement vectors at different distances
from home.

the reason the homing works is that the weights are a function of the linear integral of the
PFN outputs. To return to the water tank analogy, as long as no water leaks from the tank (in
our case, k = 0), the total amount of water pumped in can be inferred from the water level.

To more qualitatively explore whether the memory captures the movements correctly,
figure 4.21 shows a outbound paths meant to test how well the integration deals with specific
situations of summing movement along two distinct vectors. We can look both at the actual
routes taken during homing, but also decode the memory and plot the errors over time. We
expect to see that even if the decoded memory error is greater at times, the final path still
eventually reaches home, even if the path there is not entirely straight. This does appear
to be the case: while the error is on the whole comparable between the different models,
the nonlinear one (dye) exhibits a more pronounced spike in the memory error metric after
turning, but the agent still homes successfully.

4.2.4 Background activity and readout window
As mentioned above, β – while it helps with readout – has the side effect of being constantly
accumulated in memory, even when the agent does not move at all. Saturation at some point is
of course unavoidable (there is a limit to the distance that can be represented by the memory),
but a constant β without the ability to balance it out results in saturation after a certain time,
in addition to just distance.

As a consequence, the choice of β depends on the length of the outbound path (Toutbound).
For longer paths, a smaller β may be required in order to not reach saturation too early.
Conversely, on shorter paths, there is more room for a larger β.

We must also consider its effects on the readout window: the time at which it is reached
depends both on how far from home the agent has travelled, as well as on β, which can
to some extent be used to control when the readout window is reached. For short paths,
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Figure 4.22: Vector-based navigation with linear dynamics. (a) First,
the agent integrates the forced outbound (blue) path. (b) The mem-
ory that is generated of the location marked with a ”+” is saved.
(c) The agent is then given the vector memory and navigates to it.
(d) Similarly, if made to move to another location, the agent takes a
”shortcut” to the remembered location, demonstrating vector addi-
tion.

the performance improvement where the background activity is disabled for the outbound
phase may not be desirable (unless ϕ can be increased instead), as that may delay the readout
window by too much.

4.2.5 Consequences for vector-based navigation

Another recently suggested [15] extension of the path integration circuit is the addition of
arbitrary vector memories, such as those of previously visited feeding locations. To recall
these memories, populations of cells representing them are made to inhibit the output from
the PFN cells, changing the effective vector that is passed as input to the steering system.

This can be replicated by making some smaller changes to the network. When the agent
is at a location it should remember, it reads the home vector weights (for example by a ”flash”
of maximal activity on all PFN cells). We add an additional weight layer that stores this
vector memory, getting a readout in the same manner as the readout of the integrator, i.e.
by weighting the PFN output. This is then passed as an additional inhibitory input to the
amplification layer and hΔlayer.

With linear memory dynamics this works well: the memory of location a, M(a), can be
summed with the memory of location b, M(b) to represent the memory of location a + b,
M(a + b). Figure 4.22 illustrates the idea using the linear memory model from 4.1.2.

When attempting to do the same with the dye memory, however, the fact that it is not
additive becomes very clear, demonstrated by figure 4.23. In (c), the agent starts to move
toward the remembered location, but after a while it turns back home. Similarly, in (d),
it starts off heading towards the remembered location, but gradually deviates to the right,
eventually returning home.

The explanation for this ought to be that the amplitude of the vector memory is static,
while the home vector grows nonlinearly. The scales of the two vectors are therefore not
comparable, and the vector memory will quickly become very small in relation to the home
vector.
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Figure 4.23: Unsuccessful vector-based navigation with dye dynam-
ics.

4.2.6 Obstacle avoidance
We tested how our models would react if there were obstacles on the way home, which they
would need to go around to get to the nest. Obstacles are added as an option to the frame-
work, defined as a line segment between two points. During simulation, collision detection
is done between the agent and each obstacle. This is done by checking if the simulated agent
would cross the obstacle between the last timestep and the current, if movement was sim-
ulated normally. It will then instead receive a heading perpendicular to the obstacle, and a
velocity pointing in that direction for that timestep. This makes the agent move along the
obstacle until it can go around it. In figure 4.24 we can see the result of this test, comparing
the basic version of our dye model to the benchmark model from [22]. It appears to work as
well as expected of the basic model: the path is not very straight, which we attribute to the
nonlinear memory, but it does eventually home in on a point close to the home.

4.2.7 Holonomic movement
Figure S7 (D-F) in the supplemental information for Stone [22], show some test for holo-
nomic movement, i.e. moving in one direction while facing another. We performed similar
testing to our dye model, with the same additions as the fully holonomic model in F from
Stone. We chose the dye model with the added amplification layer, as it performs the best
of our dye models for an outbound time of 1500 steps. The reason we did not use variable
background activity for this example is that those models suffer from not being in the read-
out window when beginning to home, resulting in the agent not turning very fast toward the
home vector as homing is engaged. The result in figure 4.25 shows that our model is success-
ful in performing path integration even when moving holonomically on the outbound path,
performing about the same as the model in [22] did.

4.3 Quantitative performance
In this section we compare the different models that we have developed. One of the models
that we are comparing is our proof-of-concept synaptic weight model, nicknamed weights.
We also have our dye model at its most basic, nicknamed dye basic, as well as the dye model
with background activity deactivated on the outbound journey, nicknamed dye var beta, and
our dye model with the added amplification layer, nicknamed dye amp. In addition to these,
we have one model that combines the variable background activity and the amplification
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Figure 4.24: Simulation with, and without, obstacles put in the path
of the agent while homing. On the left, benchmark model from [22].
On the right, our dye model without further improvements.
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Figure 4.25: The dye amp model testing holonomic movement, us-
ing six different approaches during the outbound journey. In the
first plot the agent is moving in the direction that it is facing, which
would be the regular behaviour. In the second plot, the agent is al-
ways facing north while moving north-east. The arrows in the plots
represent the current heading of the agent at that step.

52



4.3 Quantitative performance

layer, nicknamed dye var beta + amp. To compare against previous work, we have included the
neural model that was shown in Stone et al. [22], nicknamed stone, as a benchmark.

4.3.1 Parameter settings
As per the parameter search in section 4.2.1, we chose the parameters that yielded the closest
distance to home to be as fair as possible to the dye basic model, with which the parameter
search was performed, even though they may be somewhat ”overfit”. For the other dye models,
we based them upon these parameters with a few changes. The dye amp model used the same
parameters as the dye basic model. The dye var beta model was given an increased background
activity, since the perk of disabling β on the outbound path is the ability to use higher β while
homing to improve readout. We also increased the ϕ, to increase accumulation of memory,
since the model didn’t seem to reach the readout window very fast. For the dye var beta +
amp model, we increased only the ϕ. Finally, it showed that these models gained performance
from lowering epsilon, so that was decreased.

We recognize that especially the dye basic model has been overfitted to a certain path
length due to our parameter search focusing on 1500 outbound and inbound steps each. To
achieve performance that is better across many outbound path lengths, one could balance
ϕ and β differently; it is a question of resolution versus capacity. Lowering ϕ and β can
improve performance on longer paths, but will decrease the performance for shorter paths.
The models using variable background activity addresses this problem by a change in the
network instead of varying parameters.

The setup for each model, showing all the parameters, is available in Appendix A.

4.3.2 Cross-model comparison
Our main quantitative result can be seen in figure 4.26, where we compare the four main
metrics we have chosen for N = 1000 simulations of each model.

We can see that our weights model is very close to the performance of the stone model in
all metrics, showing that moving the location of the memory (from PFN to synaptic weights)
works without really worsening the performance of the path integration. The combination
model dye var beta + amp shows essentially the same performance as the dye amp at all metrics,
or a little worse. What the dye var beta + amp model offers in improvement is discussed further
in section 4.3.3, where we look deeper into each model separately.

Closest distance
The closest distance is our most important metric, and shows the biggest differences between
our models. The weights model is comparable to the benchmark stone model in this metric,
showing that moving the memory to synaptic weights works without really worsening the
performance of the path integration The difference is small, but statistically significant (p =
6.33 · 10−11). Our dye basic is the worst, with the widest distribution and more extreme
outliers. Our dye var beta model seems to be performing a bit worse than dye basic, but a t-
test suggests that the difference is not statistically significant (p = 0.072). The dye amp model
shows that the amplification layer is our most effective addition to the model, showing no
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Figure 4.26: Comparison for the 4 main metrics between our dye
model variations, our conceptual weights model and one of the neu-
ral models from [22]. N=1000 runs for each model. Noise=10%. Out-
bound/inbound time = 1500 steps each.
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significant difference compared to the weights model (p = 0.627). The difference between
dye amp and dye var beta + amp is also small, but in this case it is significant (p = 9.91 · 10−6).

Memory error
The memory error metric shows the quality of the internal memory representation. There
is almost no difference in our four versions of the dye model, meaning that the performance
gain in closest distance from our additions to the dye basic model does not stem from any
improvement of the memory.

Not being restricted by the nonlinear dye mechanics, the weights model is visibly better
than the dye based models. There is in fact no statistically significant difference to the bench-
mark stone model (p = 0.633). Between the linear and nonlinear models, such as weights and
dye basic, there is a significant difference (p = 3.56 · 10−25).

Heading error
While the memory error is very similar, the heading error shows that our additions to the dye
model result in a better readout of the memory. A better memory readout means that our
steering system performs better, and the agent will follow the home vector better. It is then no
surprise that we see a correlation between this and the closest distance metric. Worth noting
is that there is no statistically significant difference between dye amp and weights (p = 0.166)
in this metric.

Tortuosity
The fourth plot shows the tortuosity of the mean path for the 1000 simulations. The tortu-
osity plot shows us that the stone model was quite close to optimal performance, a tortuosity
score of 1. This metric shows us the weakness of our dye basic and dye var beta model, and
again highlights the amplification layer as a very performance enhancing addition. Due to the
readout window and the readout quality just not being good enough, our dye model simply
does not make very straight homing paths without the added amplification layer.

4.3.3 Single model evaluation
To add to the cross-model comparison, we have run each of the models through the evaluation
suite described in section 3.3.2. The evaluation suite for our dye models and conceptual
weight model can be found in figure 4.27-4.31, while the benchmark stone model can be found
in figure 3.2.

The dye basic model (4.28) has the worst performance in subfigure (c), as it does not enter
the readout window for shorter paths and its memory is saturated for longer paths.

Looking at figure 4.29 and 4.31 (c), we can see where only having background activity
while homing is the most impactful. As the outbound time was increased, the models closest
distance didn’t increase nearly as much as it did for other models. This is where the com-
bination model dye var beta + amp shows that it does offer something compared to just the
dye amp model, as it essentially has the performance of dye amp but with the extra benefit
of managing to return home for longer outbound time. The dye amp model struggles with
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longer paths due to the saturation of memory. The dye amp, dye var beta + amp and the weights
model are all comparable to the benchmark stone model in how quickly the heading error
decreases (subfigure (e)), and they do measure up well in the tortuosity and deviation after
20 step radius too ((f) and (g)).

4.3.4 Parameter noise
We tested how our dye model would work if we applied some noise to the parameters that
control the dye memory. The noise was applied to a parameter p like

p̂ = p + ps, where s ∈ N(0, noise)

This noise was added to the β, ϕ, ϵ , l and k parameters. Since we use k = 0 for all our
models, this parameter is not influenced. The result for our dye basic model can be seen in
figure 4.32. A modest noise level of 1-2% seem to work fine, while increasing it to 10% results
in complete loss of path integration ability. This is not a surprise, as when we performed
a parameter search we saw that we are working with very small ranges of values for certain
parameters to achieve working path integration, especially for ϕ.
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Figure 4.27: Evaluation suite for the weights model, our linear weight
model. Detailed explanation for subfigures (a)-(g) can be found in
figure 3.2.
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Figure 4.28: Evaluation suite for the dye basic model, our dye model
without any network changes.
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Figure 4.29: Evaluation suite for the dye var beta model, our dye
model with background activity deactivated during outbound jour-
ney.
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Figure 4.30: Evaluation suite for the dye amp model, dye model with
added amplification layer.
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Figure 4.31: Evaluation suite for the dye var beta + amp model, dye
model with both background activity deactivated during outbound
and amplification layer.
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Figure 4.32: The dye basic model with noise applied to dye parame-
ters.
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Chapter 5

Discussion

Our results suggest that memory based on photoswitching dyes is plausible. With the memory
moved to the synaptic weights, and using a constant background activity β for the readout,
behaviour close to the original Stone model is achievable with a linear memory process by
balancing β with the memory decay. With the nonlinear dye mechanics, we can no longer
balance β against the decay. This results in a contradiction: we need β to be small in order
to not saturate the memory, but we need it to be large in order to get a good readout. The
most basic model, whose readout is based on a small background activity, works, but further
improvements are possible.

We have not found any clearly identifable effects of nonlinearity on the agent’s ability to
reach home. By directly decoding the population vector stored in the synaptic weights, peaks
in memory error (i.e. how far from home the decoded vector is pointing) can be seen after
turning in figure 4.21, which is consistent with expectations as the initial movement along
the second vector should not be reflected as strongly in the memory as movement along the
first. However, this does not appear to noticeably affect the location to which the agent
navigates; as mentioned in the results, each synapse needs to see the same total activity for
the memory bump to flatten out again. Regardless, while these effects could be analysed
with more rigorous mathematics, the quantitative comparisons suggest that the effects seem
to not be catastrophic for homing performance when quantified by the closest distance to
home that was reached by the agent during simulations. In fact, while the memory error is
higher for nonlinear memory, we found no statistically significant differences between the
dye basic and weights models in the closest distance or heading error metrics. This suggests
that the differences are not caused by the nonlinearity. It should also be noted that even the
peak memory error of around 40 distance units in figure 4.21 is within the radius of around
50 distance units for a typical search pattern judging by examining trials.

In some of the example paths, there is an apparent offset between the point around which
the search pattern is centered and the actual home. While we found that there is a difference
in the memory error metric between the linear and nonlinear models, the linear model also
sometimes exhibits this offset (such as in figure 5.1), suggesting this offset is not caused by the

63



5. Discussion

Figure 5.1: A weights model trial that shows an estimated search pat-
tern (red circle) that is offset form the actual home.

nonlinearity. Rather, we believe it is a consequence of noise accumulation (due to applying
PFN’s noisy sigmoid before integration), holonomic movements due to tight turns (which
are not captured perfectly with only the forward-sensitive speed neurons), and the poorer
readout when compared to the original model.

The main effect of the nonlinearity therefore seems to be less straight paths and the ex-
istence of a readout window. An interesting consequence of this window is that when the
concentration is below the soft threshold value (below which the transmittance barely re-
flects the memory at all), the steering system does not get any usable signal. In effect, there is
an innate threshold at which homing is ”activated”. Before this, the behaviour of the steering
system is dominated by noise, which results in the agent walking randomly, generating its
own exploratory outbound paths.

5.1 Biological plausibility
The main assumption we make is that it is plausible to move the integration of the PFN out-
put to its downstream synapses, and that we can use some kind of background activity to
get a usable readout. In figure 4.9 the background activity is illustrated as a change in the
PFN layer’s activation function (or f-I curve). An alternative mechanism could be that the
background activity comes from another neuron that excites the PFN outputs (comparable in
nanowire terms to a second light source in close proximity to each PFN neural unit). More-
over, it may be feasible for such a neuron to connect to all PFL/hΔcells through synapses
whose strengths are modulated by PFN activity, without the PFN activity directly affecting
the readout. The activity of this neuron would then control whether or not homing is active.
It may even be feasible that a regulator circuit could vary this activity based on the memory
readout in order to compensate for the nonlinear relationship between the total input and
the weights.

For the readout of the memory in our model to work better we introduced a new layer
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of neurons between the PFN and hΔ/PFL layers. While not present in any of the previous
model, Drosophila connectomics suggest that there are actually very few direct connections
between the PFN and PFL neurons [10]. It is therefore not unimaginable that one the layers
of pontine cells between them may have such an amplifying effect. We propose that a type
of neuron could exist between the hΔ and PFL layers, that is excited by PFN and inhibited
by the hΔ. There would be 16 columns, having the same connectivity pattern as the PFL
previously had, and a sharp sigmoidal activation function. Its output would excite the PFLs.

As for plausible biological memory mechanisms, for long-term potentiation (LTP) of
synapses (i.e. persistent strengthening) one molecule of interest is Ca2+/calmodulin-dependent
protein kinase type II (CaMKII) [17][16]. Such molecules could act as bistable switches that
become activated by synaptic input and increase the synaptic weight when active, similarly
to dye molecules. However, their active state is maintained by an autophosphorylation re-
action, which would be consistent with cold-induced anesthesia experiments on real insects
that found gradual loss of the home vector [20] as a lower temperature may reduce the rate
of such a reaction, and thereby increase the rate of decay.

Using only semi-permanent photoswitches as we have done in this project (i.e. k ≈ 0)
means that the memory has to be reset by some process external to the model. With the
photoswitches, the rate of the back-reaction is dependent on temperature: a higher tempera-
ture increases the rate and thereby the memory decay, and a lower temperature would make
memory last longer. Interestingly, such a process is in contrast to the results in [20], which is
also noted therein. That study found that a proportional reduction of the memory was most
consistent with the results, where the length of the home vector degraded faster than the di-
rection. As the concentration of transparent (off-state) dye molecules decay exponentially
with rate k, it would be subject to such proportional reduction. However, as the accumula-
tion of memory is not linear, and the transmittance is not a linear function of concentration,
this does not necessarily correspond to a proportional reduction of the transmittance and of
the distance the agent actually homes.

For homing purposes it seems that any mechanism that can store graded information
that reflects the total amount of past activity, and that works on appropriate time scales, is a
candidate for path integration memory, as it appears to work quite well even with nonlinear
processes. The outlook for using this circuitry for more general vector-based navigation [15]
seems grim for any mechanisms that are not at least approximately linear, however. Perhaps
it may still be plausible with somewhat nonlinear memory, for example with the caveat that
it only works close to or far from the nest. Also, as we have mentioned, the dye memory does
represent a direct function of the total amount (i.e. the actual integral) of PFN activity it has
seen, even if the relationship is not linear. With downstream neurons that perform another
nonlinear computation that represents the inverse of this function, it would be feasible to
”decode” the memory so that it can be used for vector-based navigation.

5.2 Nanotechnical plausibility
While the anatomy of the amplification layer is unclear, that is not an obstacle to imple-
menting such a layer in hardware. Rather, it is a question of whether the steepness of the
activation function is attainable using nanowires.

The parameters we have found to be required for our model appear to fall inside ranges
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that are plausible for the physical dyes. Determining actual quantum yield depends on the
intensity of the PFN layer light sources, which could also be adjusted in order to achieve
the appropriate memory gain. This also depends on the timescales at which the circuit is to
operate. The background activity is expressed as a proportion of the max intensity, and is
thus also generalisable to specific light source intensities. Settings where ϵ l < 1 always have
a transmittance of more than 50% (10−0.3 ≈ 0.5), meaning that they never come close to
100% attenuation and work with a much smaller span of attenuations. Smaller differences
in attenuation between columns results in a poorer readout as the memory bump is not as
distinguished. With ctot = 0.3, our parameter searches suggest that performance is best
around the order of ϵ l = 10. At an optical path length of l = 10−3 cm = 10 µm (which is on
the order of magnitude of the ring attractor network previously modelled using nanowires
[23]), this would entail a molar absorption coefficient of ϵ = 104 m−1 cm−1. The upper limit
of ϵ is in the range of 104 m−1 cm−1 to 105 m−1 cm−1 [14], meaning there may be some room
for shorter optical path lengths or for varying ϵ l. We have found no reason to decrease ctot

from its maximum of 0.3m; to do so ϵ l would also need to be adjusted to compensate.
The geometry of the circuit will likely be a challenge when implementing it in its entirety.

Use of dye deposits for memory may complicate this further; for example, extra care has to
be taken to ensure that crosstalk from other columns or layers does not affect the memory,
even if that signal would not otherwise directly affect the receiver.

Again, using photoswitches with a very slow back reaction, the external reset of the home
vector memory by way of increased temperature would need to be implemented somehow. It
seems reasonable to do this when homing is successful, i.e. in the ”nest”. Something along the
lines of a higher temperature in the nest could be plausible. Ultimately, this would probably
depend on the actual application of the circuit.

5.3 Validity
Again, the dye model is simplified, and how well it captures the actual behaviour of these dyes
has not been verified. It was deemed a reasonable approximation [14], but even regardless of
its accuracy it is remains interesting to explore the effects of such dynamics.

Specifically, the simplified model of the dyes that we employ makes the following as-
sumptions:

1. that the light behaves like a collimated beam with no fall-off, and

2. that the concentration of off-state molecules remains homogeneous throughout the
dye.

Neither of these can be expected to be exactly true in a physical circuit. More accurate
simulation would have to take into account the geometry of the dye and of the light source,
and in general account for more complex interactions between light and the environment;
this additional complexity was determined to be outside the scope of this project and a sim-
plified model was deemed sufficient for exploring the behaviour.

The memory error metric (decoded memory) did not show very clear correlations with
the closest distance to home metric. We expected to see a larger memory error with accumu-
lating noise (as is an important difference between the original Stone model and our models),
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but there was no significant difference in this metric between the stone and weights models
(p = 0.63). As the memory error metric does not take the amplitude of the home vector into
account, it is likely not very useful in capturing small offsets from home.

5.4 Other ideas
As has been explained, we focused on the case of k = 0 for this project, as it is not possible
to balance the back-reaction decay with the input signal from the PFN layer so as to make
the memory stable across the whole range of concentrations. They could be balanced to
result in one fixed point, say at 0.5, towards which the memory would decay. If balanced
against the mean of the PFN signal, this would result in negative modulation for PFN columns
whose activity is below that mean, and positive for those that are above, thereby keeping the
memory sinusoid centered around the fixed point. After some cursory investigation, this
was only achieved with sufficiently long memory by working with very small differences in
transmittance, something that makes readout impossible. It was therefore put aside.

There were some other ideas that were discussed but never explored, due to time con-
straints or because they required greater changes to the network. For example, as described
in 4.1.1, it may be possible to do away with the steering system and use the weighted PFN
signal more directly, or it may be possible to compensate for the weight multiplication in
order to get a perfect readout.

Variable background activity can be taken further than was done in this project: disabling
it for most of the time, but periodically ”flashing” a very high activity (as in the case where
β = 1, resulting in a perfect readout), could conceivably result in a much better readout
while simultaneously affecting the memory less. If this periodic readout is much stronger
than the readout during the rest of the time, it may be enough to create a tendency to follow
the home vector. If the steering system operates only periodically, synchronously with the
flash, it could disregard the signal the rest of the time entirely (perhaps with the trade-off of
making fewer but sharper turns).

Finally, constraint number two in section 4.1 could be alleviated by exploiting dye molecules’
different responses to different wavelengths, such as the fact that ϵ is a function of wavelength
[13]. This could allow for separate ”reading” and ”writing” wavelengths, which would be sim-
ilar to the idea discussed in section 5.1 of having synapses that are modulated by the PFN
activity but read out by another type of cell.

5.5 Future work
This work has only begun to explore the usage of photo-switching dyes as memory in the path
integration circuit, and leaves a lot of room for future work. Firstly, the model needs to be
verified using more detailed simulation of light signals, taking into account the geometry of
the circuit and the dye deposits. The specific geometry may alter the dynamics of the plastic
weights as well as introduce issues such as crosstalk between columns and layers.

Simulating memory is but one part of the much greater process that will hopefully lead
to simulation of the entire path integration circuit implemented using nanowires, and even-
tually the actual construction of physical devices.
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Further, the alternative ideas above and those discarded in the results could be interesting
to explore. As for biological models, it would be interesting to actually implement compu-
tational models of the biological memory mechanisms discussed to determine whether they
can actually function in a similar manner. Similarly, more rigorously identifying the required
memory characteristics would be useful.

The extra layer of pontine cells makes for an interesting hypothesis regarding the connec-
tivity between PFN and PFL cells, which can be studied in greater detail as new connectomics
data becomes available.
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Chapter 6

Conclusions

With minimal changes to the neural network layout we achieve a functioning path integration
circuit where the memory is implemented as plastic synaptic weights using a simple model
of the candidate dye molecules, suggesting that this is a promising way forward and as such
constituting a positive answer to RQ1. Specifically, the parameters settings required for this
to work appear to fall within realistic ranges for the actual dyes. The nonlinear dye dynamics
do not appear to be an issue for homing, but do limit the ability for arbitrary vector-based
navigation.

As for RQ2, we find that with no other changes to the network than moving the memory
to dye-based synaptic weights we get a functioning path integrator, but with relatively poor
performance. Background activity helps, especially if it can be varied during operation, and
an additional pontine amplification layer makes a significant further difference. Such a layer
does not seem entirely implausible from a biological point of view and could constitute a
hypothesis about the pontine cells’ function, which is not thoroughly understood.

In the discussion we briefly consider RQ3, and compare the dye memory to CaMKII-
based mechanisms of plasticity. While they bear an interesting resemblance, they do differ in
the way which memory decays and the dye memory seems inconsistent with decay observed
in actual insects. Due to time constraints we did not explore biological models in more depth.

We also briefly suggest a few possible alternative implementations that could be explored
that make use of more complex dye behaviours and require more significant changes to the
network (likely further complicating the circuit geometry).
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Appendix A

Setups

1 "dye basic": {
2 "comment": "basic dye model",
3 "N": 100,
4 "type": "simulation",
5 "T_outbound": {"list": [500,1000,1500,2000,2500,3000,3500]},
6 "T_inbound": 1500,
7 "min_homing_distance": 0,
8 "motor_factor": 0.25,
9 "record": ["memory"],

10 "cx": {
11 "type": "dye",
12 "output_layer": "motor",
13 "params": {
14 "noise": {"list": [0.1,0.2,0.3,0.4]},
15 "phi": 0.0003,
16 "beta": 0.3,
17 "k": 0,
18 "epsilon": 1.5e4,
19 "length": 1e-3,
20 "c_tot": 0.3,
21 "cheat": false,
22 "start_at_stable": false,
23 "disable_beta_on_outbound": false
24 }
25 }
26 }
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1 "dye var beta": {
2 "comment": "dye model with activatable beta",
3 "N": 100,
4 "type": "simulation",
5 "T_outbound": {"list": [500,1000,1500,2000,2500,3000,3500]},
6 "T_inbound": 1500,
7 "min_homing_distance": 0,
8 "motor_factor": 0.25,
9 "record": ["memory"],

10 "cx": {
11 "type": "dye",
12 "output_layer": "motor",
13 "params": {
14 "noise": {"list": [0.1,0.2,0.3,0.4]},
15 "phi": 0.0005,
16 "beta": 0.5,
17 "k": 0,
18 "epsilon": 0.5e4,
19 "length": 1e-3,
20 "c_tot": 0.3,
21 "cheat": false,
22 "start_at_stable": false,
23 "disable_beta_on_outbound": true
24 }
25 }
26 }

1 "dye amp": {
2 "comment": "dye model with amplification layer",
3 "N": 100,
4 "type": "simulation",
5 "T_outbound": {"list": [500,1000,1500,2000,2500,3000,3500]},
6 "T_inbound": 1500,
7 "min_homing_distance": 0,
8 "motor_factor": -0.25,
9 "record": ["memory"],

10 "cx": {
11 "type": "dye",
12 "output_layer": "motor",
13 "params": {
14 "noise": {"list": [0.1,0.2,0.3,0.4]},
15 "phi": 0.0003,
16 "beta": 0.3,
17 "k": 0,
18 "epsilon": 1.5e4,
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19 "length": 1e-3,
20 "c_tot": 0.3,
21 "cheat": true,
22 "start_at_stable": false,
23 "disable_beta_on_outbound": false
24 }
25 }
26 }

1 "dye var beta + amp": {
2 "comment": "dye model with activatable beta and amplification layer",
3 "N": 100,
4 "type": "simulation",
5 "T_outbound": {"list": [500,1000,1500,2000,2500,3000,3500]},
6 "T_inbound": 1500,
7 "min_homing_distance": 0,
8 "motor_factor": -0.25,
9 "record": ["memory"],

10 "cx": {
11 "type": "dye",
12 "output_layer": "motor",
13 "params": {
14 "noise": {"list": [0.1,0.2,0.3,0.4]},
15 "phi": 0.0005,
16 "beta": 0.3,
17 "k": 0,
18 "epsilon": 0.5e4,
19 "length": 1e-3,
20 "c_tot": 0.3,
21 "cheat": true,
22 "start_at_stable": false,
23 "disable_beta_on_outbound": true
24 }
25 }
26 }

1 "weights": {
2 "comment": "proof-of-concept weight model",
3 "N": 100,
4 "type": "simulation",
5 "T_outbound": {"list": [500,1000,1500,2000,2500,3000,3500]},
6 "T_inbound": 1500,
7 "min_homing_distance": 0,
8 "motor_factor": 0.25,
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9 "record": ["memory"],
10 "cx": {
11 "type": "weights",
12 "output_layer": "motor",
13 "params": {
14 "noise": {"list": [0.1,0.2,0.3,0.4]},
15 "beta": 0.5,
16 "mem_gain": 0.0025,
17 "mem_fade": 0.625
18 }
19 }
20 }

1 "stone": {
2 "comment": "stone's rate pontine model",
3 "N": 1000,
4 "type": "simulation",
5 "T_outbound": {"list": [500,1000,1500,2000,2500,3000,3500]},
6 "T_inbound": 1500,
7 "min_homing_distance": 0,
8 "record": ["memory"],
9 "cx": {

10 "type": "pontine",
11 "params": {
12 "noise": {"list": [0.1,0.2,0.3,0.4]}
13 }
14 }
15 }
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Färgämnen som minns vägen hem

POPULÄRVETENSKAPLIG SAMMANFATTNING Nils Ceberg, Jacob Säll Nilsson

Artificiella neurala nätverk som efterliknar insekter skulle kunna vara grunden för
framtidens navigationsteknologier. Vi har undersökt om färgämnen med varierbar
genomskinlighet kan utgöra minnet i sådana nätverk.

Inom många områden, däribland artificiell intelli-
gens, är det ofta ett användbart tillvägagångssätt
att låta sig inspireras av naturens lösningar. En
sådan är de neurala kretsar i hjärnan hos ett bi
som låter det hitta hem efter att ha varit på jakt
efter nektar. Man tror att de bland annat använ-
der synintryck för att hålla koll på sina rörelser
och därmed alltid vet vilket håll som är hemåt, i
en process som kallas för vägintegration. En krets
som skulle kunna ligga till grund för detta har
tidigare rekonstruerats i en dator, i form av ett
artificiellt neuralt nätverk.

Samtidigt har framsteg inom nanoteknik lett till
att man tagit fram koncept för att utav så kallade
nanotrådar konstruera artificiella neuroner som
kommunicerar med hjälp av ljus. Därför under-
söker man nu möjligheten att konstruera en fy-
sisk version av en sådan vägintegreringskrets, på
skalor som mäts i mikrometer – så litet att det
enkelt skulle få plats i en riktig bihjärna!

Det saknas dock en viktig pusselbit: den
mekanism som ligger bakom kretsens faktiska
minne. Inom biologin finns ett antal sådana
möjliga mekanismer, men det verkar troligt att
det här handlar om synapser – det vill säga kop-
plingar mellan hjärncellerna – som kan variera
i styrka. Eftersom nanotrådneuronerna kommu-
nicerar med hjälp av ljus skulle sådana synapser
kunna motsvaras av att materialet mellan dem
kan göras mer eller mindre genomskinligt.

I detta examensarbete undersökte vi med hjälp
av datorsimulering om det skulle kunna gå att an-
vända en typ av färgämne som har egenskapen
att dess genomskinlighet beror på hur mycket ljus
det tidigare har absorberat. Man skulle alltså
kunna säga att ämnet ”minns” hur mycket ljus det
har utsatts för. Vi utvecklade en modell för att
simulera beteendet hos kretsen om vissa av dess
synapser ersattes med denna typ av ämne, och ut-
förde sedan experiment då vi lät ett virtuellt bi
försöka hitta hem.

Resultaten tyder på att den här typen av minne
tycks fungera. Vår modell uppvisar nästintill
samma förmåga att hitta hem som den tidigare
modellen, vilket innebär att ämnet vi modellerat
är en lovande väg framåt för att konstruera en fy-
sisk vägintegrationskrets.
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