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Abstract 

 

Various environmental forcings can affect phytoplankton blooms, resulting in changes in bloom 

timing and abundance, which can have many far-reaching consequences. Understanding bloom 

phenology is crucial to predict and counter any potential harmful changes. The North Sea is an 

important fishing ground, and any changes in phytoplankton bloom patterns can have a 

significant impact on the region's economy. The aim of this thesis was to assess interannual and 

long-term changes in the timing and abundance of phytoplankton blooms in the North Sea, and 

to determine if Sea Surface Temperature (SST) and Sea Surface Salinity (SSS), as a proxy for 

nutrients, can explain the variability of those parameters. Merged satellite data from 4 sensors: 

SeaWiFS, MERIS, MODIS AQUA and VIIRS were used to evaluate bloom patterns, using the 

chlorophyll-a concentration between 2002 and 2020 (except 2017) inside TIMESAT software. 

Due to satellite data limitations, it was possible to survey only spring bloom, as the data is not 

available year-round.  

There was no evident change in the spring bloom timing over the studied period. The chl-a 

maximum concentration values decreased over time, with statistically significant results for the 

region A, along the Scottish coast (Pearson r=-0.75, p<0.001) and region F, between the coast 

of Denmark, Germany, and the Netherlands (r=-0.68, p<0.05). The southern region (region E) 

was an exception from the general pattern and showed an increase of the chlorophyll-a 

concentration during the investigated years (r=0.47, p<0.05). SST showed a medium correlation 

with chl-a data (r=0.54, p<0.001), but it did not explain the fluctuations of the peak values of 

chl-a in specific regions, proving the need to take into consideration local environmental 

processes. SSS showed only a negative correlation with bloom parameters in the Dogger Bank 

region (region D) explaining the bloom timing fluctuations. Higher salinity correlated with a 

faster start of bloom (r=-0.60, r=-049 with a p<0.05 for salinity in summer and in winter 

respectively) and faster peak time (r=-055, p<0.05 for salinity in summer). 

In conclusion, this study presents a further insight to spring phytoplankton bloom timing and 

bloom intensity in the North Sea. The phytoplankton bloom trends differed across the study 

area and could not be explained only by the SST and SSS. This variability in bloom parameters 

proves that other local environmental factors need to be considered to understand better which 

processes influence the bloom phenology.  

Keywords: Geography, GIS, North Sea, phytoplankton, bloom, phenology, remote sensing, 

TIMESAT software 
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1. Introduction 

 

1.1 Knowledge gap 

 

Phytoplankton blooms in the North Sea have previously been studied and the mechanisms of 

bloom formation are well understood in this region. However, regardless of the extensive 

research already performed, investigating variability in the bloom patterns, and understanding 

which environmental factors determine the timings and intensity of the bloom in this region is 

still needed. Understanding phytoplankton blooms is important because phytoplankton form 

the basis of the marine food chain, and all marine life depends on them. Higher trophic levels 

can be influenced by interannual blooms variability. Additionally, potential changes in long-

term trends in bloom timing, length and intensity could have significant long-term 

consequences for marine organisms and the economy of this region.  

 

The shallow waters in the south of the North Sea are influenced by proximity of the continent 

and characterize by high riverine inflow. Contrarily, the north of the North Sea has deeper 

waters that are affected by the proximity of the Atlantic Ocean. Phytoplankton blooms in both 

areas are triggered in different ways. Moreover, different factors and their relationships make 

the investigation of bloom pattern fluctuations and trends due to climate change in this region 

complex. Sea Surface Temperature (SST) and Sea Surface Salinity (SSS), which was used as 

an indicator for nutrients, are dependent on North Atlantic Oscillation Index (van Beusekom, J. 

E., & Diel-Christiansen, S, 2009) and both were under investigation as potential factors that 

could explain phytoplankton bloom variations.  

 

Despite previous studies (Alvarez-Fernandez, S. et al., 2012, Opdal, A. F., et al., 2019, Desmit, 

X., et al., 2020) into factors that could influence a shift in bloom onset in the North Sea, trends 

in other parameters of bloom phenology and what environmental variables may influence them 

need to be better understood. At the research stage and during analysis, no other papers had 

been found that investigated them in the North Sea. However, a recent study by Silva, E., et al., 

(2021) that was written simultaneously with this master thesis also consider and analyse such 

parameters, however the method used differed from the methodology of this work. To the best 

of knowledge, this thesis was the first to investigate if TIMESAT software could be used to 
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evaluate the phytoplankton bloom using remote sensed chlorophyll-a (chl-a) data in the North 

Sea.  

 

1.2 Aims and hypothesis 

 

The aim of this thesis is to investigate the long-term trends in the onset, peak day, peak value, 

end, and length of phytoplankton blooms in the North Sea and assess whether there is a shift in 

the bloom timing, changes in the duration or maximum chl-a concentration using ocean colour 

remote sensing data. The environmental variables, sea surface temperature and salinity as a 

proxy for nutrients, were investigated to determine if they could explain the variability of those 

parameters. It is hypothesized that the spring bloom season will occur earlier in the year and 

have an earlier peak day. The second season is theorized to finish later in the year. This may 

elongate the duration of the phytoplankton bloom phenomenon in both bloom seasons. It is also 

presumed that the earlier spring bloom and later end of late spring/early autumn bloom could 

be explained by higher SST and higher SSS in the open waters or lower SSS in the areas 

influenced by riverine inflow. Additionally, higher SST and higher SSS in the open waters, or 

lower SSS in the areas influenced by riverine inflow, will cause chl-a concentration to reach 

higher maximum values. The North Sea phytoplankton phenology trends and potential 

correlations with SST and SSS were investigated for the whole sea and for 6 regions separately 

to gain more insight into regions with unique characteristics. The period of 1998-2020, 

excluding the year 2017, was analysed using merged satellite data. 
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2. Background and theory 

 

2.1 Description of phytoplankton organisms and how to measure their abundance  

 

Plankton are often described as organisms that do not have the ability to move and can only 

drift in the water (Pachiappan, P., et. al 2019), however, exceptions exist as some species can 

move slightly vertically in the water column (Wirtz, K., & Smith, S. L., 2020). The plankton 

group is divided into phytoplankton, which is a collective of photosynthetic organisms, and 

animal plankton called zooplankton (Reynolds, C. S., 2006). Plankton can be divided into 

classes depending on their size from the largest ones that can reach even 2m (for example, large 

jellyfish) to very tiny viruses that can be as small as 0.02 µm (Garrison, T. S., 2012).  

 

Research on plankton organisms has been conducted since the first half of the XIX century 

(Reynolds, C. S., 2006). Johannes Müller, a German physiologist, anatomist, and zoologist 

demonstrated them to his students in the 1840s, calling them Auftrieb which translates to “up 

drive” (Reynolds, C. S., 2006). Later, one of his pupils, Ernst Haeckel, expanded the knowledge 

of the different plankton forms. In the second part of the XIX century, Victor Hansen started 

using quantitative methods to study these microscopic organisms (Reynolds, C. S., 2006). He 

was the first person to call them Plankton from the Greek word for “wandering” in the year 

1887 (Santhanam, P. et. al 2019). Hansen studied the North Sea fish stock and discovered that 

phytoplankton are an important food source, not only for fish, but also copepods and other small 

animals, and that it needs light to grow. The first major plankton research expedition took place 

on the Meteor science vessel in 1925 (Garrison, T. S., 2012). The techniques used during this 

expedition, such as the use of plankton nets, are still in practice. Plankton nets are usually made 

from nylon to allow the water to pass through but keep the planktonic organisms in.  

 

Phytoplankton are considered one of the most vital primary producers on Earth. There are 

approximately 20 000 phytoplankton species that can be divided into at least 8 types 

(Falkowski, P. G., et al. 2003). The most well-known are cyanobacteria, diatoms, 

dinoflagellates, green algae and coccolithophores, with diatoms being considered as the most 

abundant and having the highest productivity (Garrison, T. S., 2012). However, in the 1980s, 

researchers started to study picoplankton organisms that are less than 2 µm in size and are 

represented by numerous cyanobacteria species. These studies indicate that picoplankton may 
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be responsible for much greater primary production than previously thought (Garrison, T. S., 

2012).   

 

All phytoplankton organisms contain chlorophyll in their cells, a pigment which absorbs light 

at specific wavelengths. Depending on the species, phytoplankton can hold various kinds of 

chlorophyll (Reynolds, C. S., 2006) and other colour pigments. Chlorophyll-a (chl-a) is found 

in all phytoplankton organisms and its concentration is widely used as a proxy for determining 

phytoplankton biomass (Siswanto, E. 2020). Although chl-a correlates well with phytoplankton 

biomass, it is worth noting that chl-a per unit of phytoplankton biomass can vary between 

species, which can lead to uncertainty in the results (Wasmund, N., et al. 2019).  

Chl-a measurements are a common technique used to study phytoplankton organisms. 

Presently, new in situ methods have been developed that allow for surveying chl-a in the deeper 

parts of the water by using submersible in situ fluorometers (Leeuw, T., et al. 2013). On-site 

surveys can supply mostly correct data, but the information is only available locally and it 

cannot be accessed daily. Monitoring became easier when satellites that could measure ocean 

colour products became active. In 1978, the first satellite with a sensor on board that could do 

that, the Coastal Zone Color Scanner (CZCS), was launched. Since that event, other satellite 

sensors have been made available to measure ocean colour, including chl-a concentration.  

 

Chl-a absorbs light in the blue and red spectrum with the maximum peak of approximately 

430nm and 675nm and is responsible for the colour of the water. Chl-a concentration data has 

been available continuously since 1997, when the SeaWiFS sensor began supplying ocean 

reflectance data. Satellite or aerial imageries allow for greater coverage than in situ surveys, 

however, they have limitations. They can measure chl-a just in the upper layer of the water and 

can be used for collecting chl-a data only during daylight and only if clouds are not present. 

Furthermore, the satellite-derived data in coastal waters are problematic. In coastal zones the 

optical properties are more complex due to presence of non-phytoplankton Coloured Dissolved 

Organic Matter (CDOM) and other inorganic suspended matters in the waters due to higher 

turbidity (Eleveld, M. A., et al., 2007, Gohin, F., et al. 2020). Various local algorithms have 

been developed to produce more accurate results of the chl-a concentration. The in-situ data is 

treated as ground truth and it is used for calibration of those algorithms; however, even the in-

situ measurements can be uncertain. Fluorimetry measurements can underestimate or 

overestimate the presence of chl-a (Gohin, F., et al. 2020). 
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2.2  Importance of phytoplankton organisms 

Phytoplankton play a vital role in the marine ecosystem. It is a primary producer, meaning its 

blooms are the base of the marine food web. It transports the biomass and energy to higher 

trophic levels, firstly to herbivorous zooplankton, then carnivorous zooplankton, gelatinous 

zooplankton, fish, seabirds, and finally marine mammals. Without phytoplankton other marine 

organisms would not be able to exist.  

 

Like terrestrial plants, phytoplankton convert carbon dioxide and water into organic carbon and 

oxygen during the photosynthesis process. According to scientists, at least 50% to even 80% of 

the oxygen produced on Earth comes from the ocean, and phytoplankton are responsible for the 

majority of its production (NOAA, 2021). Furthermore, phytoplankton plays a key role in the 

movement of carbon in the ocean biological pump. It moves organic carbon up the food chain 

by being consumed by other marine life forms. If phytoplankton are not consumed and they 

die, they decay and sink to the deep ocean to finally decompose, trapping carbon in sediments 

for prolonged periods of time, up to millions of years, hence removing the carbon dioxide from 

the atmosphere. This means that phytoplankton are important organisms in the blue carbon 

ecosystem (Siswanto, E., 2020) which annually transport tens of gigatons of carbon to the deep 

ocean (Santhanam, P., 2019). 

 

2.3  Phytoplankton requirements to trigger a bloom  

 

To flourish, phytoplankton need  specific conditions. When nutrients and sunlight availability 

are favourable to sustain growth, phytoplankton will multiply rapidly, and a phenomenon 

known as a phytoplankton bloom will occur (Garrison, T. S., 2012). Carbon dioxide, oxygen, 

and other nutrients such as nitrogen, phosphorus, silicate, and calcium are needed to trigger 

growth. The exact nutrient requirements are dependent on the species of phytoplankton present 

(Barcelos e Ramos, J. et al. 2017).  

 

Phytoplankton blooming can be hindered in situations where not all of the nutrients are 

contained in the water column. For example, insufficient silicate can limit the blooms of 

diatoms (Riebesell, U., & Wolf-Gladrow, D. A., 2002) which need it to build their cell walls. 

In the central part of the North Sea, nitrogen is the limiting factor, and its deficiency ends the 
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first bloom, while in coastal areas commonly phosphate and silicate deplete the fastest, limiting 

the growth (Quante, M., et al. 2016). When other trace elements required by the phytoplankton 

are scarce, they can lessen primary production (Riebesell, U., & Wolf-Gladrow, D. A., 2002). 

One of the examples of trace elements that can have a limiting impact on blooms is the iron 

(Tilman, D., et al. 1982) that is needed for phytoplankton to maintain the metabolic processes 

(Garrison, T. S., 2012).  

 

The second condition that needs to be fulfilled for the bloom to occur is the sufficient light 

availability that is needed for the process of photosynthesis during which the photosynthetically 

active radiation (PAR) is converted into chemical energy. Assimilation pigments, like 

chlorophyll, handle the absorption of light, which is used to produce glucose and, as a by-

product, oxygen from carbon dioxide and water, leading to the growth of the phytoplankton 

(Garrison, T. S., 2012). The peak of the bloom happens when there is plentiful light and 

nutrients to support high productivity (Garrison, T. S., 2012). The bloom ends when the 

nutrients are depleted. This phenomenon does not last exceptionally long, from a few weeks to 

a few months.  

 

During the bloom the highest productivity will occur close to the surface in the top layer of the 

water where there is plentiful light (Garrison, T. S., 2012). However, too much light could also 

impede the bloom (Garrison, T. S., 2012). Additionally, in deeper layers, lower light availability 

will inhibit the photosynthesis process and decrease productivity. The depths where 

phytoplankton respiration requires all the produced, during the photosynthesis process, glucose 

and oxygen, is called compensation depth. Compensation depth varies depending on the 

phytoplankton species and other environmental constraints that are responsible for the amount 

of light that reaches the deeper waters (Garrison, T. S., 2012). Phytoplankton that sink below 

the compensation depth are not able to grow, and if the light conditions do not improve, they 

will consume their reserves and finally die.  

 

Algal biomass in the North Sea consists mainly of phytoplankton (Reid, P. C et al., 1990). It is 

a region where typically two blooms occur, one in spring and the second in late summer or early 

autumn (Quante, M., et al. 2016). Those blooms start due to different physical forcings 

(Martinez, E., et al. 2011). The spring bloom starts when more sunlight reaches the water 

surface allowing for better light penetration of the water column. During this time waters 

contain plentiful nutrients after winter deep mixing caused by intense winds. In this period in 
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the central and northern North Sea, the stratification occurs with a strong thermocline forming 

in May (Quante, M., et al. 2016) which keeps the nutrients close to the surface letting the 

photosynthesis process accelerate and the phytoplankton biomass to explode. On the other hand, 

in the Skagerrak strait, the bloom occurrence relates to the inflow of Baltic Sea waters that have 

a much lower salinity and initiate the haline stratification (McQuatters-Gollop, et al. 2007) that, 

similarly to thermocline, will trap nutrients close to the surface. 

 

The situation is different in the shallow south part of the North Sea where the water is well 

mixed all year due to tidal currents (Quante, M., et al. 2016). Those currents mix the waters 

horizontally and vertically, hence bringing waters rich in nutrients to the surface. Consequently, 

in those regions’ blooms are mostly controlled by light availability. The key factors that can 

limit the blooms in the south are the suspended matter in water column that decreases in the 

spring when the intense winds subside and cloudiness that can lessen the light penetration 

(McQuatters-Gollop, et al. 2007). Nevertheless, spring blooms in the south and north are 

abundant and account for most of the North Sea primary production (Quante, M., et al. 2016). 

Those blooms consist mostly of diatoms (McQuatters-Gollop, et al. 2007). The reasons for the 

end of spring bloom are nutrient deficiencies and zooplankton grazing by copepods, which 

consume about 10% to 20% of phytoplankton in coastal waters (Quante, M., et al. 2016). 

 

In late summer or early autumn, a bloom is triggered when the depleted surface waters are again 

replenished with nutrients. In open waters, powerful winds allow for enhanced vertical mixing. 

The water column is destabilized. The stratification breaks up, which brings waters rich in 

nutrients from a deeper part of the sea to the well-lighted, depleted surface waters through 

upwelling. In the case of coastal waters, the main driver of new nutrients is river runoff. During 

the second bloom dinoflagellates, which are adapted to survive in nutrient-poor waters 

(McQuatters-Gollop, et al. 2007), are the most common phytoplankton (Quante, M., et al. 

2016). Diatoms may also bloom during late summer or early autumn, although this bloom 

would be less abundant than in the spring (Quante, M., et al. 2016).  

 

2.4  Factors influencing the blooms and related risks.  

 

Detecting the long trend in phytoplankton phenology and magnitude of blooms is complex due 

to large interannual, spatial and temporal differences. Climate variability, land-ocean 
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interactions in coastal waters and other environmental factors account for the fluctuations. 

Water temperature, light availability, nutrients, salinity, carbon dioxide, water quality, 

composition and circulation can have a crucial role in determining the phytoplankton bloom 

patterns (Leterme, S. C., et al. 2008).   

 

Higher sea surface temperatures (SST) can influence the abundance and phenology of 

phytoplankton organisms (van der Molen, J., & Pätsch, J., 2022). Increased SST in cold water 

can lead to an increase in the total number of phytoplankton and extended duration of a bloom, 

which was noticed before in the North Sea during warm periods (Alvarez-Fernandez, S. et al., 

2012). However, when SST exceeds optimal conditions, blooming may be inhibited and 

abundance reduced (Desmit, X., et al. 2020). Furthermore, higher SST may promote 

zooplankton growth, which in turn, can lead to increased grazing and smaller chl-a biomass 

(van Beusekom, J. E., & Diel-Christiansen, S., 2009). In addition, different types of 

phytoplankton can only grow in certain temperature ranges, so rising temperatures can cause a 

shift in phytoplankton species (Peperzak, L., 2005).  

 

Difference in SST can also accelerate the onset of the spring bloom and decelerate the late 

summer or early autumn bloom (Desmit, X., et al. 2020). This is because changes in SST can 

affect the stratification regime, which is important for the bloom development (Capuzzo, E., et 

al. 2018). As the SST rises, the density difference between the surface and bottom layers 

increase. This leads to stronger stratification and reduction of vertical mixing. During the spring 

bloom, stronger stratification will keep the phytoplankton in sufficiently illuminated upper 

layers near the surface triggering the spring bloom. However, if the stratification is not broken 

after the nutrients are depleted, it will prevent nutrient-rich deep waters from reaching the 

surface which can hinder the second bloom (Capuzzo, E., et al. 2018). Stratification can be 

broken by intense winds. The wind patterns have changed in the North Sea in the last decades. 

The number of days with winds exceeding 17.1 m/s decreased between March and September 

from 1975 to 2018 (Desmit, X., et al., 2020).  

 

Additionally, higher temperatures and changes in nutrients can increase the possibility of the 

occurrence of harmful algal blooms (HAB), often called “red tides” (Quante, M., et al. 2016). 

HABs thrive in warmer waters (Peperzak, L., 2005). There are several species of phytoplankton 

capable of releasing toxins like some of the dinoflagellates (Garrison, T. S., 2012). These toxins 

have a negative impact on the whole food chain, causing poisoning of shellfish and fish. Those 
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harmful blooms can also affect humans that digest infected seafood (Santhanam, P., et al. 2019). 

Some of the toxins are very potent neurotoxins which can cause neurological problems and 

even death (NOAA 2018).  

 

Higher temperature could also contribute to the decrease in larger phytoplankton species and 

increase the growth of small picoplankton (Morán, X. A. G., et al. 2010). In consequence, this 

could mean lower biomass. The small species of phytoplankton are prey to microzooplankton. 

This food chain will not contribute much to higher trophic levels (van Beusekom, J. E., & Diel-

Christiansen, S., 2009). Furthermore, the increase of the small phytoplankton may have an 

impact on the movement of carbon to the sediments of deep ocean because the speed of 

phytoplankton sinking relies upon its size (Morán, X. A. G., et al. 2010).  

 

The general pattern of the North Sea SST shows an increase. The temperature increases were 3 

to even 4 times higher than the global rise in SST (Høyer, J.L., 2016). From the early 1970s to 

mid-2010s the SST increased by 1.6oC (Desmit, X., et al., 2020). However, in the late 1970s 

lower-than-normal temperatures occurred in the North Sea which had affected the bloom 

patterns (Alvarez-Fernandez, S. et al., 2012). During those years, the blooms had been smaller 

than usual and started later in the year (Alvarez-Fernandez, S. et al., 2012).  

 

Salinity can also potentially influence the plankton dynamics (Leterme, S. C., et al., 2008, 

Alvarez-Fernandez, S. et al., 2012), especially the maximum value of the chl-a concentration 

that is nutrient limited (Desmit, X., et al., 2015). In general, the salinity of the North Sea has 

been reported to exhibit an increasing trend from the 1960s to the early 2000s, due to the higher 

input of Atlantic waters (Wiltshire, K. H., & Manly, B. F., 2004, Leterme, S. C., et al., 2008). 

The inflow of the Atlantic water depends on the North Atlantic Oscillation Index (NAO) 

(Winther, N. G., et al., 2006), the difference in sea level pressure between Portugal and Iceland 

that can generate the westerly winds. The pattern of NAO index is difficult to predict. It has a 

high interannual and interdecadal variability which affects the winds, precipitation, salinity, and 

SST of the North Sea (Leterme, S. C., et al., 2008, Quante, M., et al., 2016). During the positive 

NAO, which is characterized by south-westerly winds, there is a higher inflow of warmer and 

more saline waters, while negative NAO that is associated with south-easterly winds reduces 

the Atlantic inflow to the North Sea (van Beusekom, J. E., & Diel-Christiansen, S, 2009).  
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The inflow of Atlantic waters is related to water mixing and it brings nutrients to the North Sea 

(van Beusekom, J. E., & Diel-Christiansen, S, 2009, Desmit, X., et al., 2015). Alternatively, in 

the coastal areas, mainly riverine discharge handles nutrients replenishment (van der Molen, J., 

& Pätsch, J., 2022). Higher precipitation is projected during this century (Peperzak, L., 2005), 

which would lead to increasing the freshwater input lowering the salinity. Consequently, it may 

bring larger amounts of nutrient-rich water into the North Sea. Therefore, salinity could be used 

as a proxy for nutrients concentration. In this case, low salinity in coastal regions may explain 

a higher magnitude of chl-a values (Desmit, X., et al., 2015) while higher chl-a maximums, in 

the northern regions, may be explained by higher salinity (Leterme, S. C., et al., 2008). 

However, in estuaries, larger riverine discharge may increase turbidity and decrease the light 

availability. Additionally, higher input of freshwater can also influence the water stratification 

by forming the halocline further away from the coast. Nowadays the Rhine River can lead to 

stratification in water column sometimes as far as 40km from the coast (Peperzak, L., 2005).  

 

The wind strength has decreased in recent decades (Desmit, X., et al., 2020), but an increase in 

wave heights has been noticed in the North Sea that can influence sediment resuspension 

(Wilson, R. J., & Heath, M. R., 2019). According to the newest studies, the transparency of the 

North Sea has declined, as the water turbidity and suspended matter increased, in the last 

century (Opdal, A. F. et al., 2019, Wilson, R. J., & Heath, M. R., 2019). Higher concentration 

of dissolved organic carbon has been found in the lakes and rivers that flow into the North Sea 

(Opdal, A. F. et al., 2019). This change will affect the amount of underwater light and could 

hinder the blooms, especially in the southern part of the North Sea where light availability is 

considered to be the limiting factor (McQuatters-Gollop, et al. 2007) and can cause the delay 

in phytoplankton blooms onset (Opdal, A. F. et al., 2019).  

The current trends taking place in the North Sea can have a significant impact on phytoplankton 

blooms. Shifts in phytoplankton bloom patterns, composition and abundance can have profound 

consequences. If a shift in the dynamic of those species occurs, it can impact other maritime 

life (Brody, S. R., et al. 2013). Zooplankton grazing is strongly dependent on bloom patterns 

and the kinds of phytoplankton present. Any changes in the zooplankton can have influence on 

well-established, in the North Sea region, fishing industry, and in consequence it can also affect 

human food supply. Phytoplankton play a significant role in removing carbon dioxide from the 

atmosphere, any change in the bloom’s productivity may influence climate change. As 
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phytoplankton is the base of marine life, monitoring changes in their blooms are especially 

important. 
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3. Methods 

3.1  Study Area Description  

 

The North Sea was formed during Holocene flooding (Ducrotoy, J. P. et al., 2000). It is a rather 

shallow, epi-continental shelf sea (Flemming, N. C. et al., 2017). It lies on the Northwest 

European shelf, between seven countries: Great Britain (England and Scotland), France (Hauts-

de-France region), Belgium, The Netherlands, Germany, Denmark, and Norway. It connects 

with the Atlantic Ocean through the Norwegian Sea in the north and the narrow Dover Strait 

and English Channel in the southwest, which is among the busiest maritime regions in the world 

(Quante, M., et al. 2016). In the east it borders with the low salinity Baltic Sea through the 

Kattegat and Skagerrak straits.  

 

The North Sea covers an area of approximately 575 300km2, excluding the straits (Otto, L. et 

al., 1990). The average depth is around 90m (Ducrotoy, J. P. et al., 2000). More than two-thirds 

of the North Sea basin have a depth less than 100m (Winther, N. G., et al., 2006, Opdal, A. F. 

et al., 2019). The shallowest bathymetry is in the south, with less than 40m depth approximately 

(Flemming, N. C. et al., 2017). It deepens in the north direction, with the deepest point of 

roughly 700m located in the Norwegian Trench (Ducrotoy, J. P. et al., 2000). In the southern 

part of the North Sea, several sea banks can be found with the largest one being the Dogger 

Bank, where primary production can be present almost the entire year (Ducrotoy, J. P. et al., 

2000).  

 

The topography of the North Sea influences the currents (Winther, N. G., et al., 2006). The 

circulation is anticlockwise due to Coriolis force. The water from the north drifts to the western 

coast as the Fair Isle Current and later splits up into Scottish Coastal Water and Dooley Current. 

Water that enters through the channel flows as a Continental Coastal Current next to the coasts 

of Belgium, the Netherlands and up to Denmark, where it mixes with Baltic waters (Ducrotoy, 

J. P. et al., 2000). The topography also affects the mixing of the water column (Alvarez-

Fernandez, S. et al., 2012). The deeper, colder northern waters remain stratified during the 

summer months, with the thermocline at the depth of approximately 50m (Ducrotoy, J. P. et al., 

2000) while shallow southern waters can become well mixed also during warmer months 

(Alvarez-Fernandez, S. et al., 2012).  
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Moreover, the North Sea is influenced by tides that control hydrodynamic movements 

(Flemming, N. C. et al., 2017). The anticlockwise rotation is present around three tidal nodes: 

between the Netherlands and United Kingdom, west of Denmark and south of Norway (Otto, 

L. et al., 1990). The tidal currents are responsible for the horizontal and vertical water mixing 

that disturb the stratification of the water column in the shallow southern North Sea (Quante, 

M., et al. 2016) and impact the vertical migration of plankton (Otto, L. et al., 1990). 

  

The climate of the North Sea is influenced by the proximity of the continent. However, the wide 

connection with the Atlantic Ocean allows for the transfer of heat, matter, and momentum 

(Quante, M., et al. 2016). It can bring brief changes in the continent-dominated climate, as well 

as more long-term effects of the oceanic climate (Ducrotoy, J. P. et al., 2000). The salinity and 

temperature of the North Sea depend on NAO, but the hydrologic characteristics are also under 

continental influence (van Beusekom, J. E., & Diel-Christiansen, S, 2009) especially in the 

south and the east. As a consequence, salinity and SST experience spatial, annual and 

interannual variability (Ducrotoy, J. P. et al., 2000). In the northern part of the North Sea, the 

salinity reaches approximately 35 psu, while the salinity in Danish straits is lower and goes up 

to only 32 psu (Høyer, J. L., 2016). The SST of the North Sea is warmer to the south in summer 

and warmer to the west in winter. 

 

The North Sea has an input of low saline and freshwater from the Baltic Sea, the melt waters 

of Scandinavia and other river runoff, especially the Rhine River. The catchment area of the 

North Sea is 840 000km2 (Ducrotoy, J. P. et al., 2000). Input of freshwater is estimated to be 

between 295 and 355 km3 with melting water contributing about one-third (Quante, M., et al. 

2016). The biggest rivers that flow into the North Sea are the Forth, Humber, Thames, Seine, 

Meuse, Scheldt, Rhine, Ems, Weser, Elbe, and Glomma. The influx of river waters has a 

significant impact on the optical properties of the North Sea. In the south, higher riverine input 

and the resuspension of the sediments (Opdal, A. F. et al., 2019) is responsible for lowering the 

visibility and light penetration due to larger concentration of the suspended matter (Otto, L. et 

al., 1990). Approximately 50% of the Atlantic water that infiltrates the North Sea is later mixed 

with the freshwaters before moving up north into the Arctic in the form of Norwegian Coastal 

Current (Winther, N. G., et al., 2006). 

 

The North Sea basin has a high population density with approximately 250 inhabitants per km2 

with the Netherlands and Belgium leading (Eurostat 2009). The countries adjacent to the North 
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Sea are highly developed and industrialized. Large cities like London, Hamburg, Amsterdam, 

and Oslo are located in the region of the North Sea. Due to the developed coastal industries 

such as the chemical industry, metal processing, oil refineries and shipbuilding, as well as large 

areas of livestock and farming production (Quante, M., et al. 2016, Capuzzo, E., et al., 2018), 

a significant amount of waste is being generated. As a result, pollutants, including nutrients are 

transported to seawater via rivers and the atmosphere (Ducrotoy, J. P. et al., 2000). The Rhine, 

Humber, Seine, and Elbe are responsible for bringing 56% of nitrogen and 63% of phosphorus 

to the North Sea (Ducrotoy, J. P. et al., 2000).  

 

An international symposium was held in Helgoland in the late 1960s that urged a decrease in 

the pollution of the North Sea. In the following decades, further initiatives were taken and 

countries around the North Sea acknowledged the need to decrease the eutrophication (Desmit, 

X., et al., 2020). Measures to reduce the amount of nutrients resulted in a reduction of 

phosphorus input and a slightly smaller reduction in nitrogen (Desmit, X., et al., 2020). The 

economy of north-western Europe relies heavily on the North Sea, which is an important area 

of oil and gas production. It also has some of the busiest sea traffic in the world (Quante, M., et 

al. 2016). The North Sea has rich fisheries, and more than a million tons of fish and shellfish 

are caught there each year (Quante, M., et al. 2016).  

 

Looking at the median chl-a distribution and taking into consideration differences in 

characteristics of the North Sea, it was decided to divide it into 6 study areas: Northwest (at the 

east coast of Scotland and England – region A), Central (North Sea open waters – region B),  

Northeast (Norwegian Trench and Skagerrak strait – region C), Dogger Bank (region D), South 

(between coast of England, The Netherlands, Belgium and France till the English Channel – 

region E) and Central east (between coast of Denmark, Germany and the Netherlands – region 

F)(Figure 1).  
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Figure 1. Study area 

 

 

3.2  Environmental Variables   

 

3.2.1 Chlorophyll-a data 

 

The analysis was performed using satellite derived chl-a concentration data for the region of 

the North Sea [60-50oN, -3-10oE] covering the years 1998-2020, excluding the year 2017, as 

the data was unavailable. The data was extracted from the GlobColour project database 

(https://hermes.acri.fr)  

 

The GlobColour project was launched in 2005. It was originally founded by the European Space 

Agency. It was developed to supply continuous merged level-3 ocean colour products. It 

supports two spatial coverages: the global Earth and extended European area. The chl-a 

concentration data used in this thesis was extracted from the European domain at a spatial 

resolution of 1/96° (i.e., approximately 1.16 km) and a temporal resolution of 8 days. It was 

decided to use the merged level-3 products of several satellite’s sensors to provide higher 

coverage and to decrease the number of no data values caused by the limitation of single sensor 

data. Additionally, usage of a merged dataset is recommended to estimate the inter-annual 

variability of chl-a (Gohin, F., et al. 2020). The merged dataset employed in this study used 

four sensors (Table 1). The products from the SeaWiFS sensor level-2 data have a spatial 

A -Northwest 

B - Central 

D – Dogger  

       Bank 

C -Northeast 

F - Central  

      east 

E - South 

https://hermes.acri.fr/
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resolution of approximately 4km for the Global Area Coverage (GAC). The data from this 

sensor was down-scaled by using the oversampling method to achieve a finer, 1km resolution 

for the product of European’ domain. The algorithm used to extract chl-a concentration was 

based on O’Reily et al., 2000. Following algorithms that had been used: for SeaWiFS OC4v5, 

for MERIS OC4Me, for MODIS and VIIRS OC3v5. 

 

 

Table1. Sensor resolution and its time of service. Sea-viewing Wide Field-of-view Sensor (SeaWiFS), Medium 

Resolution Imaging Spectrometer (MERIS), Moderate Resolution Imaging Spectrometer (MODIS AQUA), 

Visible Infrared Imaging Radiometer Suite (VIIRS).  

 

Sensor Resolution Start Date End Date 

SeaWiFS GAC 4 km 1997-09-04 2010-12-11 

MERIS 1 km  2002-04-28 2012-04-08 

MODIS AQUA 1 km  2002-07-03 Present 

VIIRS 1 km 2012-01-02 Present 

 

 

The binning schema to create the merged data from these 4 sensors, consisted of 5 steps. Firstly, 

level-2 data for each sensor was transformed to the European Integerised SINusoidal projection 

(ISIN) grid providing the spatial binned level-3 data of chl-a concertation for each sensor. Then, 

the data was binned into daily products. The daily product for each of the sensors was merged 

into one dataset. The merged products chosen for this study were generated by the Garvel-Sigel-

Maritorena (GMS) model (Maritorena and Siegel, 2005). This model is based on the normalised 

water-leaving radiance LwN (λ) (Maritorena and Siegel, 2005). When the pixel had multiple 

values of normalised leaving radiance available, the data from different sensors was combined 

and then used to produce the merged dataset. If the bands of the sensors were different, the 

better spectral resolution is used (IOCCG, 2007). After merging the dataset, the daily chl-a 

concentration data was binned into 8-day products. Finally, it was transformed into mapped 

products in the Plate Carrée projection. 

 

The downloaded data was stored in the Network Common Data Form version 4 (netCDF-4). 

Every pixel in the main netCDF file contained two variables. The sub dataset used in this study 

was the 8-day chl-a concertation mean and 8-day chl-a concertation error rate (Table 2). The 

data was extracted for the Case 1 waters (CHL1). Case 1 waters are waters that have their optical 

properties dominated mainly by the phytoplankton and CDOM that is released by it, while Case 

2 waters have their optical properties primarily influenced by other inorganic mineral particles 
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and microbubbles (Mobley, C. D. et al, 2004). Case 1 waters can be found mostly in open 

waters, while Case 2 waters are present mainly in coastal areas (GlobColour Product User 

Guide, 2020), which were excluded from this analysis.  

 

Recent studies show that the North Sea has experienced a decrease in water clarity. However, 

the non-algal suspended matter is present mostly in the shallow south and south-eastern parts 

of the sea (Wilson, R. J., & Heath, M. R. 2019). It was still decided to use data for Case 1 waters 

even in the south and south-east regions due to several reasons. Firstly, the classification of 

water bodies into Case 1 or Case 2 waters is problematic as the transition between them cannot 

be clearly distinguished (Mobley, C. D. et al, 2004). Secondly, the optical characteristics for 

Case 2 waters can differ significantly between the water bodies (Darecki, M., Weeks, A. et al, 

2003). Using a single algorithm for those types waters is not appropriate, and the data can still 

be incorrect (Darecki, M., Weeks, A. et al, 2003). Due to the difficulty of creating algorithms 

that will take into consideration all the factors of specific water bodies and derive the chl-a data 

for Case 2 waters locally, this data is not easily accessible. It was only available in the 

GlobColour database until the year 2012, meaning that the time series would be much shorter, 

and the observation of any trends would be more difficult.  

 

Table 2: Sub dataset of 8-d chlorophyl-a concertation used during the analysis: mass concentration of chlorophyll-

a [mg/m3] in sea water (CHL1 mean) and error rate (CHL1 error) 

Name Image file type Unit  

CHL1 mean 32-bit floating-point mg m-3 

CHL1 error 16-bit integer % 

 

 

3.2.2 Sea Surface Temperature data 

 

The SST data was downloaded for the same region and period. The data used was extracted 

from the OceanColor database (https://oceancolor.gsfc.nasa.gov/). It was derived from the 

MODIS-Terra satellite. The downloaded data was a mapped product in Plate Carrée projection 

with monthly temporal resolution and spatial resolution of 4km x 4km. The file type was 16-

bit integer with a scale factor of approximately 0.005.  It was in NetCDF 4 data format. 

 

 

https://oceancolor.gsfc.nasa.gov/
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3.2.3 Seas Surface Salinity data 

 

Monthly means of Sea Surface Salinity data were downloaded from Copernicus Marine Service 

(https://resources.marine.copernicus.eu) for the North West-European Shelf. Salinity product 

used in this study was generated using a coupled physical-biogeochemistry model. The spatial 

resolution was 7km x 7km. The data takes into consideration only 1m of thickness when the 

depth of the North Sea is higher than 50m and less than 1m where the bathymetry is lower than 

50m. The data was in NetCDF 4 format. 

 

3.3 Data analysis 

 

3.3.1 Chlorophyll-a time series analysis  

 

The chl-a data is available between the 5th and 6th week of the year (beginning of February) 

until approximately the 44th/45th week of the year (beginning of October) in the north part of 

the North Sea and between the 4th/5th and 45th/46th week of the year in the south of the North 

Sea. The winter months are missing from the data due to low light availability in the winter. 

The limiting factor for the blooms in North Sea is solar radiation. Therefore, no blooms should 

be present at that time, with possible exception of the Dogger Bank region (Ducrotoy, J. P. et 

al., 2000). The data between the years 1998 to 2001 was excluded from the analysis due to too 

many missing values. The reason for this is that during this period the data was derived only 

from the SeaWiFS sensor. From 2002 the MERIS sensor became active, and the merging of 

those datasets allowed for better coverage. In the end, only the time series between 2002 and 

2020 was analysed with exception of the year 2017 as this data was missing from the 

GlobColour database. 

 

The netCDF data consisted of an 8-day chl-a mean value and corresponding scaled error 

estimation. Firstly, the variables were extracted from netCDF files and saved in separate 

GeoTIFF format. The WGS84 coordinate system was assigned to each of the chl-a mean and 

error estimation files. To understand the data better, and to flag regions with high errors, the 

error estimation files were recalculated into weights. To do that, the error estimation files were 

divided by 100 to get values in decimal instead of percentage. Then the resulting values were 

subtracted from 1 to get a weights file that consisted of values from 0.001 to 1, where the lowest 

values meant that the pixel had the highest errors. All calculations were done using 

https://resources.marine.copernicus.eu/
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gdal_translate program and gdal_calc.py which belongs to GDAL library. The median of the 

weight error files, and chl-a median was computed for the whole time series using ArcGIS Cell 

Statistics for batch files. This was done to get the general view of the data, understand the error 

propagation and to decide on the sub-areas that will be used in TIMESAT software to 

investigate the phytoplankton phenology parameters (Figure 2).  

 

Larger errors were present in regions of low chl-a concentration, reaching high values near the 

Norwegian trench (Figure 2A). However, the largest errors were near the coast. This may be 

due to the large image resolution of 1km x 1km. It could cause pixels to be incorrectly classified 

as water instead of land. Secondly, river inflow leads to higher turbidity in coastal areas and a 

higher concentration of suspended particulate matter. The time series of chl-a and error 

estimation files were clipped per each of the study areas. A buffer of 20 km from the coast was 

created, and those pixels were excluded from the analysis. 

 

 

Figure 2. A. Weights of error estimation [unitless] - value of 1 indicate pixels with no errors, value of 0.001 

indicate pixels with the highest error (mostly located in the coastal zones). B. Mean of chl-a concentration 

[mg/m3] for the whole time series from 8-day binned chl-a values with 20km buffer from the land – red dash 

lines. The highest chl-a concentration is found in region E (South) and F (Central-East) and the lowest in region 

B (Central). 
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3.3.2 Phytoplankton phenology parameters in TIMESAT software 

 

 

TIMESAT was developed at Lund University for the study of vegetation index time-series, 

extracted from satellites (Jönsson, P. & Eklundh, L., 2017), but it can manage other types of 

remotely sensed data (Jönsson, P. & Eklundh, L., 2017). It was already used to, for example, 

analyse meteorological index, fire data (Jönsson, P. & Eklundh, L., 2017), seasonal freeze-thaw 

cycle in Arctic lakes (Šmejkalová, T., et al. 2016) and sea surface chlorophyll-a data (Benzouaï, 

S., et al. 2020).  

 

One of the reasons the decision was made in favour of using TIMESAT is that it is an open-

source software and therefore easily available. Secondly, there are various build-in time series 

smoothing methods and the user can experiment and change settings to find out what works 

best for their data. Finally, it has already been tested for uses other than those originally 

intended, with consistent results (Benzouaï, S., et al. 2020). There are other alternatives to 

TIMESAT such us building a model and programming an algorithm to smooth the chl-a data, 

that may provide lower-uncertainty results. Such methods require an extensive knowledge of 

programming languages and a need to verify the created algorithm, for example by checking 

the in-situ data. Concluding that is why TIMESAT software, version 3.3 was used to analyse 

the phytoplankton phenology parameters. TIMESAT was run using MATLAB R2020a. 

 

TIMESAT allows the calculation of seasonality parameters as illustrated in Figure 3. However, 

in this thesis only 5 parameters were under investigation: start of the phytoplankton bloom SOB 

(a), end of the phytoplankton bloom EOB (b), length of the phytoplankton bloom LOB (c), peak 

time of the phytoplankton bloom PTB (e)– the time when chl-a reached the maximum value, 

and peak value of the phytoplankton bloom PVB (f) – the maximum value of chl-a biomass. 

TIMESAT can process sequential data in ASCII file and image data in binary format. The latter 

choice was used during this analysis.  
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Figure 3. Seasonality parameters generated in TIMESAT: (a) beginning of season, (b) end of season, (c) length 

of season, (d) base value, (e) time of middle of season, (f) maximum value, (g) amplitude, (h) small integrated 

value, (h+i) large integrated value. 

Source: Eklundh, L., & Jönsson, P. (2017). TIMESAT 3.3 with seasonal trend decomposition and parallel 

processing Software Manual 

 

To obtain the data that can be handled by TIMESAT, the GeoTIFF format was translated into 

ENVI image format with the accompanying ASCII header files. To start analysing the time 

series in TIMESAT, a text file containing the list with the paths to the chl-a files of specific 

area needed to be created. To do that, a windows command prompt was used, and 6 different 

lists, one for each region, were generated. Those file lists were later uploaded into the 

TSM_GUI program, which is used within TIMESAT to analyse the time series. It allows us to 

investigate and find the best fit for smoothing the raw data function, interpolate the missing 

values, check the quality, and reduce the noise present in the raw data. However, before the lists 

of files could be uploaded into TSM_GUI, they were modified. To be able to handle the text 

file containing the list of filenames, TIMESAT needs a header, in that file, with the number of 

files that the list contains. Furthermore, TIMESAT can only derive the seasonality parameters 

for the n-1 seasons; therefore, a dummy year was created in the file list and the number of extra 

files were added in the header.  

 

Inside TSM_GUI program a setting file is created for the selected image pixels. This file holds 

all the specification and methods used in analysing the time series. To create the setting files, 

the data was first investigated for different random pixels in each of the regions. After 

investigation of the data, it was determined that in most of the study area there is more than one 
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peak present in the phytoplankton bloom over one year (called later S1 for spring bloom and 

S2 for late summer, early autumn bloom), which agrees with the findings of earlier research 

(McQuatters-Gollop, A., et al. 2007, Quante, M., et al. 2016).  

 

In TIMESAT, three different methods are available to find the best function fit to smooth and 

reduce the noise from the raw data and to fill the gaps that can be present in the timeseries due 

to, for example: presence of clouds, sun glint etc.: Savitzky-Golay filtering, least-squares fit to 

asymmetric Gaussian function and double logistic model function (Jönsson, P. & Eklundh, L., 

2017). Those methods are based on temporal interpolation, which is better suited for the 

phenology studies where the spatial differences can be large (Moreno, Á., et. al, 2014). They 

can be applied to any dataset in which the measurement points are occurring one after another 

at even intervals. Savitzky-Golay is a local filtering method, meaning it does not assume shape 

and magnitude of phenological data (Moreno, Á., et. al, 2014). These methods are better in 

picking fast changes during the growing season (Cai, Z., 2017). Savitzky-Golay filtering 

method (S-G method) replaces the raw data values by the linear combination of nearby values 

in the specified filtering window (Jönsson, P. & Eklundh, L., 2017). It is a weighted average in 

which the weights are decided by fitting a least-squares fit polynomial function to the 

neighbouring points. Double logistic and asymmetric Gaussian are global filtering methods. 

They fit the data into mathematical functions (Cai, Z., 2017) and because of that can be less 

flexible to high interannual changes (Moreno, Á., et. al, 2014).  

 

An experimental approach was performed to check which method was the most suitable to 

smooth the weighted chl-a data. The last two methods showed an overestimation of the values 

by creating large peaks where no data was present (Figure 4); therefore, the S-G method was 

chosen instead. It had the best fit to the original data and allowed more details to be kept. 

However, it also displayed a behaviour of creating artificial peaks and overestimating the length 

of the S2 blooms in situations where no data was present (Figure 5). Those values were later 

discarded from the study.  

 

An important parameter in the S-G method is the window size that indicates how many 

neighbouring points will be used for the filtering. The larger the value of the window size, the 

higher degree of smoothing would be applied. In this case, a window size of 3 was chosen as it 

gave a good fit and smoothed out the noise that was present in the data without losing too many 

of the details. Since each data point represents a mean value from 8 days, smoothing performed 
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over three consecutive points encompasses a period of 24 days. It is also better to use an odd 

value for the smoothing window size, because then the new smoothed value is in the same 

position (same date) as the original value. The S-G method can be expressed by the formula:  

 

 

𝑌𝑗 ∗= ∑
𝑐𝑖𝑦𝑖+𝑗

𝑁
    

𝑖=𝑚

𝑖=−𝑚

 

 

(Equation 1) 

 

where Y* is the resultant chl-a value, y is the original chl-a value and ci is the convolution 

coefficient that can be found in tables for the specific window size and polynomial order, N is 

number of convoluting integers, and m is half width of the smoothing window. 

 

 

 

Figure 4. Example of the overestimation of chl-a [mg/m3] values between time index 39-76, 381-418, 685-722 

asymmetric gaussian function and between 77-114 the double logistics function. Savitzky-Golay (yellow line), 

Asymmetric Gaussian (black line), Double logistics (red line). 
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Figure 5. Example of artificial peak (around index no 609) created by Savitzky-Golay function (yellow line). 

 

 

To accommodate for the negatively biased noise, which is caused by for example clouds, ozone, 

dust, or aerosols present in the atmosphere (Moreno, Á., et al. 2014) and to improve the results 

of the S-G fitting method, the number of envelope iteration was set to 3. This means that the 

fitting line was generated 3 times and each time the points that were below the previous fit line 

got a lower weight and became less significant. The adaptation strength was applied to the 

envelope iteration. This value shows how strong the upper envelop iteration will be. The higher 

the value the stronger the adaptation. The usual value is between 2 and 3 (Jönsson, P. & 

Eklundh, L., 2017) in this case an adaptation strength of 3 was chosen as it allowed for the best 

fit of the filtering function to the raw data.  

 

Before it is possible to derive any parameters in TIMESAT, it is important to choose a method 

for defining the start and the end of the growing season. In this case the biomass threshold 

method was chosen, which is one of the methods used in phytoplankton phenology studies 

(Brody, S. R., et al. 2013). It was first used by Siegel et al. in 2002 and has since been used 

many times in studies of phytoplankton blooms (Brody, S. R., et al. 2013). This method is also 

in line with the methodology used by Benzouaï, S., et al, 2020 that used the TIMESAT software 

for their phytoplankton bloom analysis in the Algerian Sea. The biomass threshold method 

indicates the start and end of the bloom when chl-a biomass rises 5% above the median value 

(Siegel at al. 2002). 
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The bloom initiation values were computed for each region using the median chl-a data. Due to 

TIMESAT limitations, only one threshold initiation value can be used for the whole region. 

Following the methodology of Benzouaï, S., et al. 2020 the median chl-a data distribution was 

used. To remove the influence of the outliers, the calculated median values per region for the 

whole time series were first cleaned out by removing the values above the upper and below the 

lower fence (Equation2). It was done using MATLAB 2020a software (Figure 6).  

 

Lower fence = Q1 – 1.5 (IQR) 

Upper fence = Q3 + 1.5 (IQR) 

IQR=Q3-Q1 

(Equation 2) 

where Q1 is the first quantile, Q3 the third quartile, and IQR is the interquartile range. 

 

The final initiation values were computed by adding 5% to the calculated median values. 

 

 

 

Figure 6. Time series median chl-a [mg/m3] values and interquartile range per region after outliers’ removal. 
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In TIMESAT, different methods are available for finding the beginning and end of the growing 

season. The absolute value, relative amplitude and STL trend were not suitable for the chl-a 

data in the North Sea. It was decided to use the seasonal amplitude method instead. In the 

seasonal amplitude method, the user decides a threshold between 0 and 1. The threshold is 

computed between the base value which is the average of minimum value from the left and 

right side of the function peak and the maximum value of that peak (Figure 3). When the 

function reaches the threshold, TIMESAT identifies it as the start/end of the growing season. 

Therefore, the position of the initiation value in the data distribution for each of the region, was 

computed and used as the threshold value in TIMESAT.  

After all settings were decided, the setting file for each of the regions was created (See 

Appendix). The saved setting files for each region were imported one by one into the 

TSF_process tool in TIMESAT to extract the phenological parameters. Later, the TIMESAT 

TSF_sea2img tool was used to generate phenological parameters maps of the SOB, PTB, PVB, 

LOB and EOB, for each year and region. The result files created for each parameter consisted 

of separate files for each of the blooms seasons (S1, S2), as well as the data for both blooms 

together. For further analysis only the S1 and S2 parameters files were used.  

The output files had to have their extension changed to .img to allow other software to read it. 

Additionally, for each of the resulting files a header was created using a python script. The 

resulting files were later modified using the gdal_calc.py program. Firstly, the values 

representing no data were converted to an actual no data mask. Secondly, the SOB, EOB and 

PTB had their output values displayed in the time index. Due to having 35 files (33 in the 

northeast region and 37 in the south region) per year the first year (2002) had values from 1 to 

35 (33, 37), second year (2003) had time index from 36 (34, 38) to 70 (66, 74) and so on. 

Gdal_calc.py was used to change that display to the day of the year instead. This was done by 

subtracting the specific number from the raster image. For example, SOB, EOB and PTB raster 

for the year 2003 had the value of 35 (33, 37) subtracted from it, year 2004, had a value of 70 

(66.74) subtracted and so on. That way the resulting value indicated which file number it 

referred to. The file number was later adapted and displayed as the day of the year. Finally, the 

raster files were inspected for inconsistencies in ArcGIS Pro.  

Some pixels displayed uncertain values, which were further inspected. The uncertain values 

were related to the peaks that S-G filtering method created when no data was present. This 

situation happened because of the incomplete dataset for the region as the satellite imagery is 



28 
 

not available during the winter months when not enough light reaches the North Sea. In those 

situations, TIMESAT created artificial peaks or joined the S2 peak of the previous year to the 

S1 peak of following year resulting in incorrectly interpreted bloom season. Upon more in-

depth investigation of these cases, the conclusion was reached that the chl-a concentration is 

still high from the time the data is available (beginning of February) and it just starts to decrease. 

This means that the bloom reached its peak somewhere between October and February, when 

the satellite imagery data is not available (Figure 7).  

This situation was visible in most of region C, the middle east of region B, parts of the east of 

region D and west of the region E (Figure 8). Additionally, in region D the bloom patterns were 

too complex. TIMESAT can analyse one or two annual seasons but in Dogger Bank many of 

the pixels had 3 bloom seasons picked up. Those peaks in region C, B, D and E were discarded 

from all raster files. This was done by assigning no data values for all the pixels that had values 

lower than 0 for the SOB (those values would indicate SOB started in the previous year) and 

values higher than 35 (33, 37) for the EOB (those values would indicate that the bloom finished 

the following year). To clear the rest of the parameters (PTB, PVB, LOB) of the incorrectly 

calculated values, the same pixels had no data values assigned to them. The number of correct 

pixels values was counted in percentage to see which region is the most dependable (Table 3). 

After the investigation, it was decided to discard S2 from the analysis due to too many missing 

values. 

 

 
 

 

Figure 7. Example of a peak that is not correctly recognized by TIMESAT due to missing data during winter 

months in a pixel located in the central part of region B 
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Figure 8. Number of seasons detected by TIMESAT 

 

 

 

 

 

 
Figure 9. Example of northwest pixel of region A that has correctly detected only one season 
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Table 3. Number of correct pixels values per region per season in percentage.  
  

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2018 2019 2020 

 

 

 

 

S1 

A 95 95 96 97 93 94 96 93 87 90 92 95 92 95 94 92 92 86 

B 58 78 74 71 78 77 75 71 65 69 78 76 74 75 75 71 71 68 

C 29 65 41 35 48 54 24 21 41 46 25 51 45 39 31 53 58 0 

D 51 54 0 49 51 56 66 55 54 48 57 52 60 51 58 50 46 44 

E 65 54 67 76 72 75 71 84 71 55 63 68 67 62 65 79 68 69 

F 65 75 67 68 68 76 68 70 73 70 71 75 69 74 71 70 67 63 

 

 

 

 

S2 

A 48 51 70 58 56 43 49 54 31 48 48 57 42 45 47 40 40 43 

B 13 22 39 22 29 34 25 30 26 34 29 25 16 27 22 28 23 22 

C 7 6 11 8 15 18 6 7 10 9 4 6 6 9 10 12 10 12 

D 9 16 0 28 37 35 27 18 15 31 28 20 24 21 19 11 17 19 

E 30 18 31 33 32 32 29 20 26 19 22 27 25 23 23 23 18 16 

F 30 34 21 32 39 46 26 16 18 9 21 38 19 28 14 22 22 28 

 

 

After excluding pixels with incorrect values, the mean error estimation values were calculated 

per year and region. This was done by summarizing 35 (33 in the northeast region and 37 in the 

south region) files for each pixel and then dividing sum of each pixel by the number of files for 

the specific region. Later, the pixels that were excluded from SOB, PTB, PTV, EOB and LOB 

were also discarded from the mean errors’ estimation per region and year to avoid introducing 

bias. Finally, the weighted average was calculated for each of the parameter, getting 18 values 

for each of the year and region. All the calculations were done using MATLAB 2020a.  

 

3.3.3 Analysis of Sea Surface Temperature time series 

 

The SST data was interpolated from the original spatial resolution of 4km x 4km to match the 

chl-a data. It was unscaled, the raw data was scaled with the factor of 0.005 and changed into 

GeoTiff format. It was done using GDAL library. Later, the mean values of winter (that is 

December of preceding year, January, and February of that year) and summer (June, July, and 

August) SST were calculated for each of the region. However, data for June of 2001 needed to 

be interpolated before the calculation due to missing values. This was done by using the focal 

statistics function in ArcGIS Pro. A statistical value was calculated for each cell using a 

rectangle neighbourhood with the width and height of 5. Finally, the same pixels that were 

discarded from the parameters data due to errors, were also excluded from the SST data using 

gdal_calc.py. To do that, firstly, the numbers of rows and columns of seasonal SST mean raster 

were changed to match the bloom parameters data. After investigation of the data distribution, 
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it was decided to calculate median instead of mean value as a representation of SST data for 

summer and winter seasons for each of the regions using MATLAB R2020a. 

  

3.3.4 Analysis of Seas Surface Salinity time series 

 

Monthly salinity data was extracted from the netCDF file format to GeoTIFF. The spatial 

resolution of the salinity data was interpolated to match the chl-a data and it was clipped to 

specified regions. Similarly, to SST data, the seasonality of SSS time series was checked. The 

mean values for summer (Jun., Jul., Aug.) and winter (Dec., Jan., Feb.) were calculated. Finally, 

following the same methodology as in SST data preparation, the pixels that were excluded from 

the bloom parameters data were also discarded from the SSS data.  

 

3.3.5 Correlation analysis 

 

A temporal analysis was performed to see if any trends were present in the data for each 

individual phenological parameter, SST, and SSS. The data was also investigated for 

correlation. Linear regression was used to characterise relationships between phenological 

variables. Furthermore, it was analysed wheatear SST and SSS are factors that influence the 

bloom timing, length and intensity of the blooms. The potential dependencies of mean value of 

SST and SSS data for June, July and August of the preceding year were checked against the 

bloom data to see if it had any influence on the phenological parameters. The same analysis 

was done for winter season considering the mean value for SST and SSS data from December 

of preceding year till February of that year. The coefficient of determination was calculated.  

 

3.3.6 Statistical tests 

 

The IBM SPSS Statistic program was used to perform statistical tests to check if the differences 

between the parameters in the regions were statistically significant. To do that it was decided 

to check if the data meets the assumptions needed to perform the one-way ANOVA test 

(Ostertagova, E., et al, 2014).  

 

One-way ANOVA has 6 assumptions that need to be met by the data. The first 3 assumptions 

of independence of observations, the independent variable having two or more categorical 
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independent groups, and dependent variables having interval or ratio level met. The rest of the 

assumptions (normal distribution of dependent variable, no significant outliers in the data and 

homogeneity of variance) were checked using SPSS Statistic.  

 

The investigation of normality was performed by using the Shapiro-Wilk test. The result of the 

test showed that not all regions met the assumption of normality. Regions A, B and F did not 

indicate the rejection of the null hypothesis Ho about the normal distribution. The bloom 

parameters in region C, D and E, according to the Shapiro-Wilk test, showed that they were not 

always normally distributed. The one-way ANOVA is a robust test for the violation of the 

normal distribution of data and can tolerate the data that is not normal with only a small 

consequence of Type I error (Driscoll, W. C., 1996). Type I error occurs when the null 

hypothesis is rejected when it should not be discarded. Due to the robustness of one-way 

ANOVA, the normality of data was also investigated visually. The visual interpretation was 

done by checking the q-q plots and the data distribution in histograms (Figure 10). Visual 

interpretation of the graphs showed that region C had the least normal distributed data. What is 

worth mentioning is that region C (Norwegian Trench and Skagerrak strait) had the highest 

error present in the data (Figure 2) and many pixels needed to be discarded from the analysis. 

The average numbers of correct pixels per year was approximately only 39% (Table 3). 

 

 

 

 
 

 

 

 

a b 
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Figure 10. Example of normal distributed data for SOB [d] in region A (p>0.05) shown using q-q plot (a) and 

histogram (c) and not normally distributed data for SOB [d] in region C (p< 0.05) shown using q-q plot (b) and 

histogram (d) 

 

 

 

Secondly, the data was investigated for outliers by checking the boxplots (Figure 11). Only 

region B did not show any extreme values and in the rest of the regions the outliers were present 

in at least one of the parameters. Finally, the Levene test was performed to investigate the 

assumption of homogeneity of variance. The test results showed that the variances were not 

homogenous.  

 

 
Figure 11. Example of outliers found in the data. Boxplots of SOB [d]. Region E have one outlier (No. 84 2013, 

184 DOY), region C 3 outliers (No. 37 2002, 195 DOY – extreme value, No. 43 2008, 149 DOY and No. 44 

2009, 144 DOY) 

 

Due to not all data meeting the requirements of normal distribution, homogeneity of variance 

and the presence of outliers in the parameters. It was decided that the parametric one-way 

ANOVA test will be not suitable for the data. The non-parametric Kruskal-Wallis test, also 

c d 
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called one-way ANOVA on ranks (Ostertagova, E., et al, 2014), was conducted instead as an 

alternative test. The Kruskal-Wallis test ranks all the data from smallest (1) to largest (N) rank. 

If the same value appears in the data more than once, it is called a tied value. Tied values are 

given as an average of the ranks (Ostertagova, E., et al, 2014). 

 

The Kruskal-Wallis test can be expressed by the formula:  

 

𝐻 =    
12

𝑛(𝑛 + 1)
 ∑

𝑅𝑗
2

𝑛𝑗

𝑔

𝑗=1

 −  3(𝑛 + 1)   

(Equation 3) 

 

where n is the number of observations in all the groups, g is the number of groups, Rj is the sum 

of ranks in the specific group, nj is the number of observations in each of the groups. 

 

In SPSS, the Kruskal-Wallis test is automatically adjusted for ties that were present in the data. 

The correction is done using the formula: 

 

𝐻𝑎𝑑𝑗 =
𝐻

𝐷
 

(Equation 4) 

where D is the correction factor and is calculated by: 

 

𝐷 = 1 −
∑(𝑡𝑖

3 −  𝑡𝑖)

(𝑛 − 1)𝑛(𝑛 + 1)
 

(Equation 5) 

where ti is the number of ties for the rank value i. 

 

The Kruskal-Wallis test only identifies if there is a significant difference between the groups. 

Based on the result of the test, it was concluded that in each of the variable’s distribution there 

is at least one region that is significantly different from the others (p<0.01). However, to 

determine between which regions the differences are statistically significant, post hoc pairwise 

comparisons using Dunn-Bonferroni approach were conducted.  
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The Dunn test is calculated by the formula: 

 

𝑄 =
𝑟𝑖 − 𝑟𝑗

𝜎𝑖
 

(Equation 6) 

where, ri is the mean rank of group i and rj is the mean rank of group j and σi is calculated as: 

 

𝜎𝑖 = √𝑛(𝑛 + 1) −
∑

(𝑡𝑖
3 − 𝑡𝑖)
𝑛 − 1

12(
1
𝑛𝑖

 +
1
𝑛𝑗

)
 

(Equation 7) 

 

where n is the total number of observations, ti is the number of ties for the rank value of i, ni 

and nj are the number of observations for group i and group j. 

 

The Bonferroni adjustment is done to lower the probability of making Type I errors that 

increases in case of multiple comparisons. The adjusted value is calculated as follows:  

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑝 ∗ 𝑚 

(Equation 8) 

where p is the original p value and m is the number of comparisons made which in this case 

would equal 15 (6 regions were compered).  

 

 

Additionally, the SPSS Statistical Software was used to test if the temporal changes in blooms’ 

parameters, SSS and SST in winter and summer seasons show a significant increase or decrease. 

Furthermore, the same tests were run to check if SSS and SST have an impact on surface 

phytoplankton blooms. To do that, the Pearson correlation coefficient r was calculated. It was 

assumed that if a correlation exists between two parameters it would be linear. Pearson’s r has 

values between -1 and 1 with -1 being a negative correlation, 1 positive correlation and values 

close to 0 mean no correlation. The correlation coefficient was calculated by the formula: 
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𝑟 =  
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑛

𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2 ∑ (𝑦𝑖 − 𝑦̅)𝑛
𝑖=1

2𝑛
𝑖=1

 

(Equation 9) 

where xi and yi are corresponding observations, 𝑥̅ and 𝑦̅ are the mean values and n is the number 

of observations. 

 

Correlation tests were done for the data of the whole North Sea, and it was also checked per 

region. 
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4. Results 

 

The following section will describe the findings of temporal and spatial analysis of 

phytoplankton spring blooms and potential impact of SST and SSS in 2 seasons, winter (Dec. 

of proceeding year, Jan., and Feb.), and summer of proceeding year (Jun., Jul., Aug.) on the 

spring phytoplankton blooms parameters for the whole the North Sea along with more in detail 

analysis of six specified regions.  

 

4.1 Characteristics of spring blooms parameters and factors influencing them 

 

There were no significant temporal changes in the time of occurrence of S1 phytoplankton 

bloom over the years 2002-2020 found through this analysis. According to the study spring 

SOB begins on average on the 91 DOY (1st of April) and ends on average on 148 DOY (28th of 

May) in the North Sea. The spring LOB lasts approximately 57 days with the PTB on average 

on 119 DOY (1st of May). The median values of the PVB showed a significant (p<0.05) 

negative temporal shift in the study area, with the Pearson correlation coefficient equal to r=-

0.54 (Figure 12). The same trend was visible in mean values of the PVB, however it was not 

significant (p>0.05). On average the PVB reached 4.3 mg/m3, however there is a significantly 

statistical difference between the PVB in the north and the PVB in the south and the central east 

of the North Sea with the last two reaching much higher values (Figure 15b). It is important to 

remember that for this analysis due to the lack of data for recent years of chl-a concentration 

for Case 2 waters the data for Case 1 waters was used in the south and the central east (region 

E and F) instead.  
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Figure 12. Decreasing trend y=-0.045x + 93.1 (red line) of median of the PVB [mg/m3] between 2002-2020 

(ex.2017) in the North Sea., correlation coefficient r=-0.536, coefficients of determination R2=0.29, correlation 

significant at a 0.05 level (2-tailed) p=0.022 

 

Further analyses were conducted to see if there are any significant correlations between the 

bloom parameters and to investigate if SST or SSS have a significant impact on the 

phytoplankton blooms. SOB, PTB and EOB, as expected, show a strong positive correlation 

with the correlation coefficient between r=0.89 to r=0.97 for p<0.001. The high correlation 

between these parameters is to be expected. If the season starts later then the peak time and the 

end of the bloom will likewise start later.  

 

There are three more high correlations that were found in the data. The first correlation proves 

that the later the day of the end of the bloom is, the longer the bloom season will be. The 

correlation coefficient was approximately r=0.71 with a p<0.001 (Figure 13a). This high 

correlation is not surprising. Similar positive correlation was found between the day of the 

highest value of chl-a concentration and length of the bloom, although the value of correlation 

coefficient was lower than in correlation between the end of the bloom and the season length, 

and equalled r=0.51 with a p <0.001 (Figure 13b).  

 

The interesting correlation was found between the PVB and the temperature in the summer 

season. It indicates that the higher the temperature in the summer season, i.e., from June to 

August of the previous year, the higher the maximum value of the chl-a concentration. Looking 

at the linear regression graph it seems it could be better explained by exponential correlation 

(Figure 13c). It is visible that the data is more scattered than in the previous two examples. 

There is a higher variation especially after the sea surface temperature reaches 15oC. The 
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average temperature for the north regions of the North Sea equals 13.86oC and in the south SST 

reaches on average approximately 16oC, with the minimum value of SST being 

approximetly14.55oC in the summer months. It means that in the south and the central east 

regions there is a higher interannual variability in the peak of chl-a values during the bloom 

(Figure 15b). The correlation coefficient equalled r=0.54 for p<0.001. The rest of the 

correlations that were found to be statistically significant had relatively low values of the 

correlation coefficient.  

 

However, even with a small correlation coefficient value, interestingly, a positive correlation 

was found between the day of SOB and the number of days this bloom lasted (r=0.31 for 

p<0.001). That means other factors needed to influence the number of days the bloom was 

present. Looking at the whole North Sea it seems that the bloom lasted shorter when the summer 

temperature of preceding year was higher (r=-0.31 for p=0.001). This negative correlation was 

also found looking at EOB (r=-0.27 for p=0.006), and PTB, although this last correlation was 

weak (r=-0.20 for p=0.039). Looking at temperatures of the seas surface during the winter of 

proceeding seasons it seems that there is weak positive correlation between SOB (r=0.22 for 

p=0.027), PTB (r=0.28 for p=0.020) and EOB (r=0.20 for p=0.039). Additionally, the LOB 

seems to last longer when the salinity in the summer of the previous year was higher (r=0.27 

for p=0.005). Similar positive correlation was found in PTB (r=0.24 for p=0.014) and EOB 

(r=0.27 for p=0.006). It seems that salinity in winter season that preceded the bloom did not 

have any significant correlation except the negative correlation with the PVB (r=-0.26 for 

p=0.007). Additionally, SST and SSS are correlated with each other. Higher salinity 

corresponds with lower summer temperatures (-0.40<r<-0.53) and higher winter temperatures 

(0.51<r<0.57). All correlations can be found in Table 4. 
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Figure 13. a. Correlation between Length of the bloom [d] and the day of year when the end of the bloom starts 

[d] y=0.34x+7.2, r=0.71, r2=0.50, p<0.001.  b. Correlation between Length of the bloom [d] and the time when 

chl-a concentration [d] reaches the highest value y=0.28x+23.9, r2=0.26, r=0.512, p<0.001. c. Correlation 

between Highest value of chl-a concentration [mg/m3] during the bloom and temperature in the summer [oC] 

(June, July, August) months of the previous year y=0.84x-8.0, R2=0.291, r=0.54, p<0.001. Determined for the 

whole North Sea based on data from 2002 to 2020 (ex. 2017) 

 

 

Table 4. Correlation between variables for the whole region of the North Sea using Pearson r test. Correlation 

coefficient numbers marked in red mean that there was different outcome in Spearman rho test.  

 SOB PT PV EOB L T sum T win Sal sum 

SOB . 
       

PT  0.97** . 
      

PV  0.16  0.13 . 
     

EOB  0.89**  0.96**  0.01 . 
    

L  0.31**  0.51** -0.24*  0.71** . 
   

T sum -0.16 -0.21*  0.54** -0.27** -0.31** . 
  

T win  0.21*  0.28* -0.06  0.20*  0.09 -0.28** . 
 

Sal sum  0.19  0.24* -0.09  0.27**  0.27** -0.40** 0.51** . 

Sal win  0.13  0.14 -0.26**  0.14  0.11 -0.53** 0.57** 0.74** 

Note    ** Correlation is significant at the 0.01 level (two tailed) 

               * Correlation is significant at the 0.05 level (two tailed) 

 

a b 

c 
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4.2 Characteristics of spring blooms and factors influencing them according to 

regions 

 

The results for region A were the most dependable of all the study area because of the smallest 

number of discarded pixels. The northeast sections of region A had only one bloom season 

detected, however after more in depth analysis it appeared to be correct. On average for the 

whole time series the number of pixels that were considered during the analysis in region A 

(46 103km2) was 93% per year. For region B (150 332km2) it was approximately 72%, region 

C (20 143km2) only 39%, region D (11 559km2) which is the smallest region, located on Dogger 

Bank, 50%, region E (37 259km2) approximately 68% and region F (33 803km2) on average 

70% (Figure 8) (Table 3). The missing data were pixels that needed to be discarded from the 

analysis due to incorrect interpretations of the bloom peaks by TIMESAT software. It was 

decided to discard whole region C from the correlation analysis due to too many missing values. 

 

No statistically significant differences in spring phytoplankton bloom parameters were found 

between region B and D that are both located in the open water areas (Figure 14). Region E 

(south) and F (central east) are similar in phytoplankton bloom characteristics for the S1, except 

in the duration of bloom (p<0.05) (Figure 14f). Furthermore, the results of the Dunn-Bonferroni 

test show that region A differs from the rest of the regions in the bloom timing, SOB (A differs 

from B, D, F), PTB (A differs from all the regions), EOB (A differs from B, D, E), (p <0.05) 

(Figure 14).  

 

On average the blooms begin at the latest in region A (Figure 15a), however there is a high 

interannual variation visible in all the regions in terms of beginning, peak, and start of the end 

of bloom. There was no change found in the timing of these parameters for the spring blooms, 

but there are strong correlations found between them. All regions show strong positive 

correlation between the day of SOB and the day of the PTB with r between 0.62 in region B 

and 0.90 in region E. The correlation between the day of SOB and the day of EOB has even 

higher correlation coefficient between 0.94 in region A and B to almost 0.96 in region E. The 

same strong positive correlation was found in all the regions between the day of PTB and EOB 

with r between 0.82 in region B to 0.98 in region E. All the above-mentioned correlations were 

for p<0.001.  
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Looking at the chl-a, the highest concentration through the whole time series, during the bloom 

was present in region E (south) and F (central east) and the lowest in region B and D (north-

central) (Figure 15b). It is obvious that the PVB values differ significantly between the regions 

located in the north (A, B, D), the south (E) and the central east (F) (Figure 14c). When looking 

at the analysis of the PVB over time, in most regions the value of PVB is decreasing (Figure 

15b). However, statistically significant results have been found only in regions A (r=-0.75 for 

p<0.001) (Figure 16a) and F (r=-0.68 for p=0.002) (Figure 16f). The only region showing an 

upward trend in the peak value of chl-a during the blooms in recent years is region E (r=0.47 

for p<0.05) (Figure 16c). Interestingly, the results show that the later the bloom starts in the 

southern region the more abundant it will be (r=0.50 for p<0.033).  

 

The duration of the bloom in the most southern region (E) is different from that of region A, D 

and F (Figure 14f). Additionally, the length of bloom in region A lasts longer than in region B 

(Figure 14f & Figure 15c). Region E is the only location which shows a decrease in the length 

of bloom throughout the time series (r=-0.83 for p<0.001) (Figure 16d). Moreover, region A 

and B show that later the start of bloom shorter it will last (r=-0.53 for p<0.025 in region A and 

r=-0.63 for p<0.005 in region B). It should be noted that in regions E and F, there appears to be 

no correlation and the onset of bloom, and the length of bloom are independent of each other. 

In addition, in region D, this correlation was not identified, however there was strong positive 

dependency between the day when the end of bloom starts (r=0.73 for p<0.001), the time of the 

peak (r=0.55 for p=0.024) and the length. Similarly, to region D, region F, shows a positive 

correlation between EOB and LOB (r=0.52 for p<0.028). 
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Figure 14. The statistical results of differences for the phenological parameters between the regions (red line 

show statistically significant differences between regions, black lines show no statistically significant differences 

between the regions p<0.05). The p value has been adjusted by Bonferroni correction for multiple tests. Each 

node shows the sample average rank of region. 

 

a b 

c d 

f 



44 
 

 

Figure 15. Parameters per region: a. day of start of bloom (SOB [d]), b. maximum value of chl-a concentration 

(PVB [mg/m3]) c. number of days the bloom lasted (LOB [d]). Black line northwest region, red dash line central 

(open water) region, yellow dash line region dogger bank region, purple line south region, green central east 

region 

 

 

 

a b 

a b 

c 
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Figure 16. Statistically significant temporal trend (red line) between 2002-2020 (ex.2017) in the North Sea in 

different regions. a. median of the PVB [mg/m3] in region A, b. median of sea surface salinity [PSU] in region A, 

c. median of the PVB [mg/m3] in region E, d. median of the Length of the bloom [d] in region E, f. median of the 

PVB [mg/m3] in region F 

 

Impact of SST and SSS was not statistically significant for the specific regions in the North 

Sea, excluding region D where a significant inverse dependency on salinity in winter (r=-0.49 

for p <0.048) and in summer months (r=-0.60 for p <0.010) of preceding year on SOB was 

present. In the same region, a negative correlation was noticed between PTB and salinity in 

summer months (r=-0.55 for p <0.023). Nevertheless, no statistically significant correlation was 

found in other regions, the relationship between bloom parameters and SST and bloom 

parameters and SSS is consistent in region A. It is characterized by the coldest temperatures in 

summer and the warmest in winter, and salinity in the summer and winter months are relatively 

high (Figure 17), however the salinity in winter is decreasing (r=-0.50 for p <0.034) (Figure 

16b). It is also a region where the time of start, peak and end of the bloom begin the latest, and 

bloom duration is the longest. Region F has on average the highest temperatures in the summer, 

the lowest in the winter, and the salinity in winter and summer month is the lowest of all regions 

c d 

f 
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due to high riverine inputs. However, it shows the biggest variability in the SST and SSS data. 

It is not the region where the bloom occurs the earliest and the duration of bloom is not the 

shortest, other factors need to influence this region. For all correlations across different regions 

see the Appendix. 

 

  
Figure 17. boxplots for each of the regions for a. summer temperatures [oC], b. winter temperatures [oC], c. 

salinity in summer months [PSU], d. salinity in winter months [PSU]
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5. Discussion 

 

This section first describes the performance of TIMESAT software in the analysis of 

phytoplankton blooms in the North Sea. An overview of TIMESAT effectiveness and the 

challenges addressed is provided. The second part of the discussion focus on the key results of 

the spatiotemporal analysis of spring phytoplankton bloom. The effects of SST and SSS on 

bloom parameters are described in details and the hypotheses formulated at the beginning of 

the research are referred. The results are compared with previous research done in this region. 

 

5.1 Performance of TIMESAT software in the North Sea 

 

In some areas the bloom patterns were too complex for TIMESAT software to recognize the 

peaks correctly, and as described previously in methodology, the late summer, early autumn 

season peak could not always be accurately recognized due to the lack of winter month data. It 

could be speculated that TIMESAT software might not be suitable for region D where the 

bloom patterns are more complicated. The water stratification has been observed only on the 

northern slope of Dogger Bank (Quante, M., et al. 2016) and the primary production has been 

reported to be present there during the whole year (Ducrotoy, J. P. et al., 2000). This was a 

reason why this location was selected as a separate region. During the analysis, the hypothesis 

was confirmed, TIMESAT was not always able to recognize the peaks in this region.  This 

occurred because TIMESAT can analyse one or two annual seasons but in many of the pixels 

more than 2 bloom seasons were picked up by the software. Only 50% of the investigated pixels 

during spring bloom could be validated. Additionally, the percentage of correctly investigated 

peaks in Norwegian Trench and Skagerrak strait were too small for spring bloom resulting in 

discarding the whole region from the analysis.  

 

Season 2 could not be explored using TIMESAT software in any of the regions due to 

insufficient number of pixels with correctly detected bloom peaks. There are several 

possibilities as to why this occurred. In some areas, particularly in the northern North Sea, the 

data was insufficient, causing TIMESAT to create artificial bloom peaks of S2 that had to be 

excluded later. Furthermore, it seems that the decrease in chl-a in southwest of region B, region 

C, east of region D and E, starts in February. Based on those results, it can be concluded that 

peaks of late summer, early autumn either occurred during or finished just after a period when 
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no satellite data was available, resulting in TIMESAT detecting only one bloom season with 

incorrect start and end of blooms. A recent scientific paper in which the authors also used 

satellite imagery data discovered similar patterns in the bloom timing of S2 in those regions, 

except for the southern North Sea, which was not considered (Silva, E., et al., 2021).  

 

5.2 Average timing of spring bloom and the temporal trend 

 

The result of this study shows that there are high interannual changes in the timing of the S1 

blooms in the North Sea. No significant temporal trends were noticed in any of the study area 

for the investigated 17 years either for onset, peak or end of bloom. This conclusion corresponds 

to the outcome of the Silva, E., et al. (2021) research that did not find any significant change in 

the bloom timings in the open water region. Silva, E., et al. (2021) decided on excluding areas 

that exhibit the patterns described above as well as the southern part of the North Sea. 

Alternatively, Desmit, X., et al. (2020) reported that a trend toward earlier onset of spring bloom 

from 2000 and earlier peak time of spring bloom from 1970 is present in parts of the southern 

and central open waters of the North Sea. However, the result from the Desmit, X. et al. (2020) 

study was not confirmed by the present analysis. The reason for this could be the differences in 

sampling sites. Desmit, X., et al. (2020) chose mainly locations in coastal waters, no further 

than 20km from the land, except for a few sampling stations situated in the open waters of the 

North Sea. The areas close to the shoreline were excluded in this analysis. Additionally, the 

time series of this study considers only 17 years while Desmit, X., et al. (2020) analysis took 

into account a much longer period.  

 

The outcome of this study indicates the start of bloom for the whole North Sea on 1st of April 

with open water region and the Dogger Bank being the regions with the earliest onset on 26th 

and 28th of March, respectively. The Silva, E., et al., (2021) analysis showed that on average 

the bloom onset started on 10th of March in open waters of the North Sea. The reason for these 

inconsistencies could be the different method used for the calculation of the bloom initiation 

values. Following the methodology of Benzouaï, S., et al. (2020) and due to TIMESAT 

limitations, which allows only one initiation value be used for the whole time series, it was 

decided to use for this study the median threshold method instead of the cumulative sum 

favoured by Silva, E., et al., (2021).  
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There are a couple of reasons why this method could overestimate the time of bloom start. 

Firstly, the median threshold value will be higher for longer bloom length which can cause the 

earlier blooms to not be discovered (Brody, S. R., et al. 2013). Secondly, the dataset was missing 

the relevant winter months data which may introduce bias causing the onset of the season to be 

shifted. According to Brody, S. R., et al. (2013) the different methods used for finding the start 

of bloom show same major patterns, however, in some areas using alternative methods could 

cause even more than 2 months disparity in bloom onset.  

 

Contrarily, McQuatters-Gollop, et al. (2007) used the in-situ data from 1958 to 2003 to find 

spatial and temporal changes in diatom and dinoflagellate blooms pattern. They reported the 

start of bloom on average in March only in shallow waters of the North Sea and the Skagerrak 

strait. The deeper open waters according to McQuatters-Gollop, et al. (2007) showed the 

increase in diatom abundance in April. The bias that could have been introduced in this study 

will not affect the later correlation analysis due to the same error being present in all the years 

in the time series. The peak time of the S1 occurred in the beginning of May which is consistent 

with other studies (McQuatters-Gollop, et al. 2007, Silva, E., et al., 2021). In all the regions the 

bloom onset, peak time and bloom end were highly correlated. 

 

5.3 Impact of SST and SSS on spring bloom timing 

 

SST and SSS have moderate correlation with each other which could be explained by the inflow 

of Atlantic water masses. However, both parameters had mostly weak dependency (-

0.31<r<0.28) with bloom timing in the whole region of the North Sea, but they were statistically 

significant (p<0.05). It was concluded that the warmer the SST in the previous summer, the 

earlier the peak time began, the earlier the bloom ended, and it had shorter duration. Winter 

SST had an inverse effect on phytoplankton bloom timing. Warmer winter temperatures were 

expected to correlate with earlier spring bloom events but surprisingly they showed correlation 

with later spring bloom onset. However, it led to later end of first bloom season. Salinity in the 

summer of the previous year showed a relationship with the later bloom onset, later end, and 

longer duration of the bloom itself. Winter salinity did not affect the bloom timing.  

 

When the correlation test was performed on the chosen regions of the North Sea, SST and SSS 

did not show statistically significant results on bloom parameters, except for the Dogger Bank. 

In contrast to the weak general trend noticed in the North Sea, higher SSS partially explained 
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faster start of bloom in this area, which could be due to higher nutrients concentration. 

Additionally, in the Dogger Bank start and peak times had a moderate negative relationship 

with summer SST, however it was not statistically significant (p>0.05). This means that small-

scale processes influence the timing of bloom, and the impact of SST and SSS alone are 

insufficient to explain variations in phytoplankton phenology. Other factors, like light 

availability, which was not included in this study but is a limiting factor for the bloom 

occurrence, could be considered as a parameter that more comprehensively explains the 

fluctuations in bloom timings. A decrease in water clarity due to resuspension of sediments and 

browning of lakes and rivers that later flow into the North Sea was reported to delay the bloom 

especially in coastal waters (Opdal, A. F., et al., 2019).  

 

5.4 Average length of spring bloom and the temporal trend 

 

The average duration of the bloom in the North Sea was determined to last 57 days, with the 

open water areas reaching a slightly shorter number of 55 days. This number is similar to Silva, 

E., et al. (2021) findings that reported the length of the bloom to be on average 46 days in the 

deep North Sea open waters. The estimated duration value is comparable, especially 

considering that the data used for this analysis was binned in 8-day averages.  

 

No significant temporal change in bloom duration was observed in most of the study area. The 

exception was the south region, which showed a decrease throughout the years. The bloom 

duration depended on when the bloom started and ended in the year. The blooms that start 

earlier are reported to have slower growth and because of that they should generally last longer 

(van Beusekom, J. E., & Diel-Christiansen, S, 2009). The late bloom onset resulted in a shorter 

bloom duration in the northern regions. The southern areas, together with the Dogger Bank, 

exhibited longer bloom duration when peak day and end of bloom happened later in the year 

and the length was independent from the start of bloom. As mentioned previously, the bloom 

onset during this study could be overestimated which may be a reason why this correlation was 

not found in some of the study areas. Region located along the Scottish coast, with high saline 

waters due to the proximity of the Atlantic Ocean, the coldest temperatures in the summer and 

warmest in the winter, was characterized by the latest, but longest blooms compare to other 

areas.  
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5.5 Average chl-a maximum value of spring bloom and the temporal trend 

 

Chl-a maximum in the northern and central areas including the Dogger Bank reach on average 

2.9 mg/m3 while in the southern regions the value is much higher, approximately 6.7 mg/m3. 

The peak values of chl-a have significant differences between the north and the south and the 

central east regions of the North Sea with the south coming to much higher values. The reason 

for that is the higher concentration of nutrients in the south coastal waters, which are delivered 

by the riverine input. The amount of nutrients present in the open waters of the North Sea is 

significantly smaller (van Beusekom, J. E., & Diel-Christiansen, S., 2009).  

 

Nevertheless, confidence levels for chl-a concentrations in the southern and the central eastern 

regions of the North Sea are low. The maximum value of chl-a may be overestimated in the 

south due to estimation with Case 1 water data. More reliable results could be achieved by using 

the algorithm for Case 2 water in these regions. However, mean chl-a concentrations in the 

south from 2015 to 2019 have been reported to exceed 6 mg/m3 in coastal areas and reach values 

between 3–6 mg/m3 further away from the coast (EEA, 2022). This corresponds to the values 

calculated during this analysis. The south was the only area where an increase in chl-a 

maximum during the peak time was visible while the general trend showed a decrease with 

statistically significant results at region level along the Scottish coast and in the central east area 

between the Netherlands, Germany, and Denmark.  

 

5.6  Impact of SST and SSS on spring chl-a maximum value  

 

Warmer summer SST showed a moderate correlation (r=0.54) with chl-a maximum values 

during the peak and thus may be a potential environmental factor explaining the spring bloom 

intensity. Higher abundance of chl-a during the warm periods and smaller blooms during the 

cold events are known and reported in the North Sea (Alvarez-Fernandez, S. et al., 2012). The 

potential explanation of this correlation could be that warmer SST increases phytoplankton 

growth (Bissinger, J. E., et al. 2008) and it could cause chl-a concentration to reach higher 

values. In the open water warmer SST could also influence the formation of thermocline that 

keeps nutrients and phytoplankton in well-lightened upper layer allowing the bloom to 

accelerate (Quante, M., et al. 2016). However, once nutrients are depleted, strong thermocline 

would not allow for their replenishment and the bloom will finish.  
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The earlier bloom end and its shorter duration during higher SST leads to the conclusion that 

higher temperatures in summer months could cause an early end of the season due to increased 

intensity of the bloom. However, looking at the North Sea at a regional level, there was no 

obvious relationship between winter SST or SSS and chl-a concentration values. The Scottish 

coast region was the only area that showed the decrease of winter salinity likely caused by lower 

Atlantic inflow. This could mean a lower input of nutrients in this section which could explain 

lower chl-a maximum. The decline in riverine nutrients input noticed from 1980s (Desmit, X., 

et al., 2020) could impact the decrease in chl-a concentration and phytoplankton primary 

production (Capuzzo, E., et al., 2018) in central east region. 
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6. Summary and conclusion  

 

The data for years 1998 to 2001, when ocean reflectance data was only supplied by SeaWiFS 

sensor, was excluded from the analysis due to poor coverage and as a result, a large number of 

missing values. A series of satellite data from 2002 to 2020, excluding the year 2017 due to 

data unavailability, was analysed to examine possible trends in the intensity of phytoplankton 

blooms and a shift in their occurrence. The impact of the SST and SSS fluctuations on the bloom 

patterns were the matter of investigation. In the end only spring bloom analysis was performed. 

The second phytoplankton bloom could not be analysed due to data being available only from 

February to October which in some regions led to a misinterpretation of the bloom season. 

Additionally, the analysis of spring bloom was not possible for all regions. Norwegian Trench 

and Skagerrak strait region was discarded due to too many pixels with incorrectly recognized 

spring bloom.   

 

In conclusion, no shift in spring bloom timings and duration, except shorter duration in southern 

region, was discovered in the North Sea during the investigated time series. Only weak 

dependency on sea surface temperature and salinity was identified, except in the Dogger Bank 

region, where higher sea surface salinity was responsible for faster bloom occurrence, but it 

was not highly correlated in other sectors. This result disproves the formulated hypothesis of 

an earlier start and peak day and longer duration of spring bloom. However, the start of spring 

bloom should be further investigated due to possible overestimation of bloom onset which could 

have been introduced in the data by using the median threshold method for finding the bloom 

initiation values.   

 

The general trend of blooms intensity, during first bloom, in the North Sea showed a decrease 

throughout the years. Based on the analysis, sea surface temperature was found to be a potential 

factor impacting the levels of chl-a concentration in the research area, showing an increase in 

chl-a maximum values with higher SST. Nevertheless, it was not enough to explain the 

fluctuations in specific regions, therefore, more detailed research is required. Additionally, 

further investigation into fluctuations of chl-a concentration in southern regions using the data 

for Case 2 waters should be performed due to possible overestimation of values during this 

study by the usage of data for Case 1 waters. The late spring, early autumn bloom could not be 

analysed, and more research should be done in the future to explore possible shift in the timings, 
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duration, chl-a concentration of second bloom season and their dependency on environmental 

drivers. 

The North Sea has complex hydrological characteristics, influenced by the NAO-dependent 

Atlantic water influx and riverine inputs. Evaluating the results of the analysis of the whole 

North Sea and separate regions respectively, it can be concluded that there are significant 

differences between them. The local factors have influence over the phytoplankton phenology. 

To bring a broader perspective to this area, it would be beneficial to perform more detailed 

analysis of the North Sea by considering the unique environmental processes in specific 

locations. More environmental drivers that were not considered during this study, for example 

light availability, winds, turbidity, mixed layer depth or zooplankton grazing could be 

responsible for the changes in bloom dynamics. The existing research on phytoplankton bloom 

fluctuations that takes into consideration many different drivers are focused only on specific 

parts of the North Sea. The potential study gap can be explored, as there are not enough 

resources about the North Sea as a whole ecosystem. 
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8. Appendix 

 

1. Programs used in GDAL library during the analysis: 

- gdalinfo – to get information about the raster dataset.  

- gdal_translate – to convert raster data to different format and perform other 

operations for example resampling (Table1). 

- gdal_calc.py – to perform calculations on raster dataset. 

 

2. Correlation per region 

 

Table1. Region A – Northeast (along Scottish coast) 

 SOB PT PV EOB L T sum T win Sal sum 

SOB . 
       

PT  0.94** . 
      

PV  0.08 -0.30 . 
     

EOB  0.79**  0.91**  0.14 . 
    

L -0.53* -0.25 -0.30  0.11 . 
   

T sum -0.05 -0.12  0.22 -0.28 -0.29 . 
  

T win  0.01 -0.18  0.11 -0.28 -0.41  0.24 . 
 

Sal sum  0.20 -0.08  0.44  0.00  0.32 -0.09 -0.14 . 

Sal win -0.32 -0.23  0.46 -0.14  0.34 -0.16 -0.26 0.74** 

 

Table2. Region B – Central (Open waters) 

 SOB PT PV EOB L T sum T win Sal sum 

SOB . 
       

PT  0.94** . 
      

PV -0.09 -0.21 . 
     

EOB  0.62**  0.82**  0.02 . 
    

L -0.63** -0.37 -0.12  0.22 . 
   

T sum  0.28  0.28 -0.10  0.22 -0.12 . 
  

T win  0.19  0.21 -0.24  0.06 -0.20  0.17 . 
 

Sal sum -0.02 -0.02 -0.14  0.00  0.02  0.06  0.34 . 

Sal win -0.19  0.18  0.14 -0.31 -0.08 -0.14 -0.04 0.25 

 

Table3. Region D – Dogger Bank 

 SOB PT PV EOB L T sum T win Sal sum 

SOB . 
       

PT  0.93** . 
      

PV -0.42 -0.34 . 
     

EOB  0.85**  0.96** -0.38 . 
    

L  0.26  0.55* -0.13  0.73** . 
   

T sum -0.45  0.47 -0.38 -0.38 -0.12 . 
  

T win -0.05  0.11 -0.02  0.05  0.16 0.10 . 
 

Sal sum -0.60 -0.55*  0.32 -0.40  0.06  0.15 -0.48 . 
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Sal win -0.49 -0.40  0.28 -0.39 -0.07  0.07 -0.14 0.72** 

 

Table4. Region E – South (between coast of England, The Netherlands, Belgium, and France till the English 

Channel) 

 SOB PT PV EOB L T sum T win Sal sum 

SOB . 
       

PT  0.96** . 
      

PV  0.50*  0.37 . 
     

EOB  0.90**  0.98**  0.25 . 
    

L  0.00  0.26 -0.46  0.43 . 
   

T sum -0.05 -0.07  0.09 -0.08 -0.12 . 
  

T win  0.06  0.06  0.19  0.09  0.11  0.06 . 
 

Sal sum  0.41  0.42  0.21  0.40  0.03 -0.08 0.08 . 

Sal win  0.03  -0.02  0.23 -0.08 -0.24 -0.12 0.47 0.68** 

 

Table5. Region F – Central east (between coast of Denmark, Germany, and The Netherlands) 

 SOB PT PV EOB L T sum T win Sal sum 

SOB . 
       

PT  0.96** . 
      

PV  0.02  0.04 . 
     

EOB  0.86**  0.96**  0.04 . 
    

L  0.00  0.25  0.03  0.52* . 
   

T sum -0.08 -0.14 -0.02 -0.29 -0.44 . 
  

T win  0.19  0.19  0.08  0.09 -0.15  0.08 . 
 

Sal sum -0.21 -0.21 -0.24 -0.17  0.02  0.03 0.19 . 

Sal win  0.06  0.08 -0.16  0.15  0.18 -0.30 0.34 0.42 

 

 

3. Setting file for northeast region: 
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46. Alejandra Narváez Vallejo: Can the introduction of the topographic indices in 

LPJ-GUESS improve the spatial representation of environmental variables? 

(2016). 

47. Anna Lundgren: Development of a method for mapping the highest coastline 
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53. Lars Ole Grottenberg:  Assessing the ability to share spatial data between 

emergency management organisations in the High North (2016). 
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scale geodata for the Semantic Web: A case study of Swedish national building 

data sets (2018).  

91. Niamh Harty: HOP!: a PGIS and citizen science approach to monitoring the 

condition of upland paths (2018).  

92. José Estuardo Jara Alvear: Solar photovoltaic potential to complement 

hydropower in Ecuador: A GIS-based framework of analysis (2018). 

93. Brendan O’Neill: Multicriteria Site Suitability for Algal Biofuel Production 

Facilities (2018). 

94. Roman Spataru: Spatial-temporal GIS analysis in public health – a case study 

of polio disease (2018). 



69 
 

95. Alicja Miodońska: Assessing evolution of ice caps in Suðurland, Iceland, in 

years 1986 - 2014, using multispectral satellite imagery (2019). 

96. Dennis Lindell Schettini: A Spatial Analysis of Homicide Crime’s Distribution 

and Association with Deprivation in Stockholm Between 2010-2017 (2019). 

97. Damiano Vesentini: The Po Delta Biosphere Reserve: Management challenges 

and priorities deriving from anthropogenic pressure and sea level rise (2019). 

98. Emilie Arnesten: Impacts of future sea level rise and high water on roads, 

railways and environmental objects: a GIS analysis of the potential effects of 

increasing sea levels and highest projected high water in Scania, Sweden 

(2019). 

99. Syed Muhammad Amir Raza: Comparison of geospatial support in RDF stores: 

Evaluation for ICOS Carbon Portal metadata (2019). 

100. Hemin Tofiq: Investigating the accuracy of Digital Elevation Models from 

UAV images in areas with low contrast: A sandy beach as a case study (2019). 

101. Evangelos Vafeiadis: Exploring the distribution of accessibility by public 

transport using spatial analysis. A case study for retail concentrations and 

public hospitals in Athens (2019). 

102. Milan Sekulic: Multi-Criteria GIS modelling for optimal alignment of roadway 

by-passes in the Tlokweng Planning Area, Botswana (2019). 

103. Ingrid Piirisaar: A multi-criteria GIS analysis for siting of utility-scale 

photovoltaic solar plants in county Kilkenny, Ireland (2019). 

104. Nigel Fox: Plant phenology and climate change: possible effect on the onset of 

various wild plant species’ first flowering day in the UK (2019). 

105. Gunnar Hesch: Linking conflict events and cropland development in 

Afghanistan, 2001 to 2011, using MODIS land cover data and Uppsala 

Conflict Data Programme (2019). 

106. Elijah Njoku: Analysis of spatial-temporal pattern of Land Surface 

Temperature (LST) due to NDVI and elevation in Ilorin, Nigeria (2019). 

107. Katalin Bunyevácz: Development of a GIS methodology to evaluate informal 

urban green areas for inclusion in a community governance program (2019). 

108. Paul dos Santos: Automating synthetic trip data generation for an agent-based 

simulation of urban mobility (2019). 

109. Robert O’ Dwyer: Land cover changes in Southern Sweden from the mid-

Holocene to present day:  Insights for ecosystem service assessments (2019). 

110. Daniel Klingmyr: Global scale patterns and trends in tropospheric NO2 

concentrations (2019). 



70 
 

111. Marwa Farouk Elkabbany: Sea Level Rise Vulnerability Assessment for Abu 

Dhabi, United Arab Emirates (2019). 

112. Jip Jan van Zoonen: Aspects of Error Quantification and Evaluation in Digital 

Elevation Models for Glacier Surfaces (2020). 

113. Georgios Efthymiou: The use of bicycles in a mid-sized city – benefits and 

obstacles identified using a questionnaire and GIS (2020). 

114. Haruna Olayiwola Jimoh: Assessment of Urban Sprawl in MOWE/IBAFO 

Axis of Ogun State using GIS Capabilities (2020). 

115. Nikolaos Barmpas Zachariadis: Development of an iOS, Augmented Reality 

for disaster management (2020). 

116. Ida Storm: ICOS Atmospheric Stations: Spatial Characterization of CO2 

Footprint Areas and Evaluating the Uncertainties of Modelled CO2 

Concentrations (2020). 

117. Alon Zuta: Evaluation of water stress mapping methods in vineyards using 

airborne thermal imaging (2020). 

118. Marcus Eriksson: Evaluating structural landscape development in the 

municipality Upplands-Bro, using landscape metrics indices (2020). 

119. Ane Rahbek Vierø: Connectivity for Cyclists? A Network Analysis of 

Copenhagen’s Bike Lanes (2020). 

120. Cecilia Baggini: Changes in habitat suitability for three declining Anatidae 

species in saltmarshes on the Mersey estuary, North-West England (2020). 

121. Bakrad Balabanian: Transportation and Its Effect on Student Performance 

(2020). 

122. Ali Al Farid: Knowledge and Data Driven Approaches for Hydrocarbon 

Microseepage Characterizations: An Application of Satellite Remote Sensing 

(2020). 

123. Bartlomiej Kolodziejczyk: Distribution Modelling of Gene Drive-Modified 

Mosquitoes and Their Effects on Wild Populations (2020). 

124. Alexis Cazorla: Decreasing organic nitrogen concentrations in European water 

bodies - links to organic carbon trends and land cover (2020). 

125. Kharid Mwakoba: Remote sensing analysis of land cover/use conditions of 

community-based wildlife conservation areas in Tanzania (2021). 

126. Chinatsu Endo: Remote Sensing Based Pre-Season Yellow Rust Early 

Warning in Oromia, Ethiopia (2021). 

127. Berit Mohr: Using remote sensing and land abandonment as a proxy for long-

term human out-migration. A Case Study: Al-Hassakeh Governorate, Syria 

(2021). 



71 
 

128. Kanchana Nirmali Bandaranayake: Considering future precipitation in 

delineation locations for water storage systems - Case study Sri Lanka (2021). 

129. Emma Bylund: Dynamics of net primary production and food availability in 

the aftermath of the 2004 and 2007 desert locust outbreaks in Niger and 

Yemen (2021). 

130. Shawn Pace: Urban infrastructure inundation risk from permanent sea-level 

rise scenarios in London (UK), Bangkok (Thailand) and Mumbai (India): A 

comparative analysis (2021). 

131. Oskar Evert Johansson: The hydrodynamic impacts of Estuarine Oyster reefs, 

and the application of drone technology to this study (2021). 

132. Pritam Kumarsingh: A Case Study to develop and test GIS/SDSS methods to 

assess the production capacity of a Cocoa Site in Trinidad and Tobago (2021). 

133. Muhammad Imran Khan: Property Tax Mapping and Assessment using GIS 

(2021). 

134. Domna Kanari: Mining geosocial data from Flickr to explore tourism patterns: 

The case study of Athens (2021). 

135. Mona Tykesson Klubien: Livestock-MRSA in Danish pig farms (2021). 

136. Ove Njøten: Comparing radar satellites. Use of Sentinel-1 leads to an increase 

in oil spill alerts in Norwegian waters (2021). 

137. Panagiotis Patrinos: Change of heating fuel consumption patterns produced 

by the economic crisis in Greece (2021). 

138. Lukasz Langowski: Assessing the suitability of using Sentinel-1A SAR multi-

temporal imagery to detect fallow periods between rice crops (2021). 

139. Jonas Tillman: Perception accuracy and user acceptance of legend designs for 

opacity data mapping in GIS (2022). 

140. Gabriela Olekszyk: ALS (Airborne LIDAR) accuracy: Can potential low data 

quality of ground points be modelled/detected? Case study of 2016 LIDAR 

capture over Auckland, New Zealand (2022). 

141. Luke Aspland: Weights of Evidence Predictive Modelling in Archaeology 

(2022). 

142. Luís Fareleira Gomes: The influence of climate, population density, tree 

species and land cover on fire pattern in mainland Portugal (2022). 

143. Andreas Eriksson: Mapping Fire Salamander (Salamandra salamandra) 

Habitat Suitability in Baden-Württemberg with Multi-Temporal Sentinel-1 and 

Sentinel-2 Imagery (2022). 



72 
 

144. Lisbet Hougaard Baklid: Geographical expansion rate of a brown bear 

population in Fennoscandia and the factors explaining the directional 

variations (2022). 

145. Victoria Persson: Mussels in deep water with climate change:  Spatial 

distribution of mussel (Mytilus galloprovincialis) growth offshore in the 

French Mediterranean with respect to climate change scenario RCP 8.5 Long 

Term and Integrated Multi-Trophic Aquaculture (IMTA) using Dynamic 

Energy Budget (DEB) modelling (2022). 

146. Benjamin Bernard Fabien Gérard Borgeais: Implementing a multi-criteria 

GIS analysis and predictive modelling to locate Upper Palaeolithic decorated 

caves in the Périgord noir, France (2022). 

147. Bernat Dorado-Guerrero: Assessing the impact of post-fire restoration 

interventions using spectral vegetation indices: A case study in El Bruc, Spain 

(2022). 

148. Ignatius Gabriel Aloysius Maria Perera: The Influence of Natural Radon 

Occurrence on the Severity of the COVID-19 Pandemic in Germany: A 

Spatial Analysis (2022). 

149. Mark Overton: An Analysis of Spatially-enabled Mobile Decision Support 

Systems in a Collaborative Decision-Making Environment (2022). 

150. Viggo Lunde: Analysing methods for visualizing time-series datasets in open-

source web mapping (2022). 

151. Johan Viscarra Hansson: Distribution Analysis of Impatiens glandulifera in 

Kronoberg County and a Pest Risk Map for Alvesta Municipality (2022). 

152. Vincenzo Poppiti: GIS and Tourism: Developing strategies for new touristic 

flows after the Covid-19 pandemic (2022). 

153. Henrik Hagelin: Wildfire growth modelling in Sweden - A suitability 

assessment of available data (2023). 

154. Gabriel Romeo Ferriols Pavico: Where there is road, there is fire (influence): 

An exploratory study on the influence of roads in the spatial patterns of 

Swedish wildfires of 2018 (2023). 

155. Colin Robert Potter: Using a GIS to enable an economic, land use and energy 

output comparison between small wind powered turbines and large-scale wind 

farms: the case of Oslo, Norway (2023). 

156. Krystyna Muszel: Impact of Sea Surface Temperature and Salinity on 

Phytoplankton blooms phenology in the North Sea (2023). 

 


