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Populärvetenskaplig
sammanfattning

Många system kan representeras som grafer, alltifrån neurala nätverk och transportnätverk
till något så vardagligt som våra umgängeskretsar. Om exempelvis Andrea är vän med Jona-
than, så kan vi rita ut Andrea och Jonathan som var sin prick på ett paper och låta deras vän-
skap representeras av en linje. På samma sätt kan vi enkelt lägga till �er personer (prickar)
och rita �er linjer till alla deras vänner. Vi har då representerat ett socialt nätverk med hjälp
av en graf; i ett matematiskt sammanhang så benämns prickarna som noder och linjerna som
kanter. Relationerna (kanterna) kan förstås ha många olika innebörder. I en epidemi kan
kanten representera att Andrea och Jonathan kan råka smitta varandra om den ena är sjuk.
I sociala medier kan kanten representera att de är ”vänner” på plattformen. Relationen som
de har i dessa exempel innebär alltså att information kan överföras mellan dem. Om Andrea
har en sensationell nyhet som hon berättar för Jonathan så är det möjligt att han berättar
vidare nyheten för sina vänner - som i sin tur kanske berättar för sina vänner. Informationen
som är nyheten sprids då över nätverket som Andrea och Jonathan ingår i. En frågeställning
i det här sammanhanget är hur snabbt informationen sprids – når nyheten ut snabbare om
Andrea är den som orsakar spridningen, eller Jonathan? I det här exjobbet har vi studerat
just den här frågeställningen, fast under mer generella ramverk.

När man studerar omfattande, komplexa nätverk är det eftersträvansvärt att kunna iden-
ti�era de mest centrala medlemmarna utifrån nätverksstrukturen. Avstampen för det här
projektet bygger vidare på ett teoretiskt mått från en välciterad artikel av Philipp Bonacich,
vilken mäter varje nods centralitet i en graf relativt de andra noderna. I projektet har därpå
informations�öden över grafer studerats och en spridningsmodell har för detta ändamål
utvecklats; denna har tillämpats för att mäta hur stor inverkan centraliteten har för medlem-
mar som orsakar spridningarna över nätverk.

I graferna som vi studerar så kommunicerar noderna med varandra, vilket innebär att de
ständigt transmitterar information till deras grannar. Varje nod tilldelas även en egenMarkov-
kedja, vilken används för att ”aktivera” nodens roll som spridare och mottagare. Vi studerar
informationsspridningar som induceras av just en enda nod, varifrån informationen fortsät-
ter att spridas genom att varje nod delar med sig information till närliggande noder, så fort
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noden själv ärmottaglig och besitter informationen. Med hjälp av olika teoretiskamåttmäter
vi hur pass centrala noderna är; däribland noden som informationsspridningen börjar ifrån.
Resultaten kan påvisa en koppling mellan hur snabbt information kan sprida sig över vissa
nätverk och den teoretiska centraliteten hos medlemmen som orsakar spridningen; vi stud-
erar spridningar över Barabási-Albert-nätverk i synnerhet, då dessa besitter egenskaper som
kan observeras i riktiga nätverk, såsom sociala nätverk. Vilken nod som initierar spridningen
har signi�kant betydelse för hur snabbt informationen propagerar över grafen i helhet. Är
det en central nod sprids informationen snabbare, vilket ligger i linje med förväntat resultat.



Abstract

There are many systems which can be represented as graphs, to say the least the networks
in which we communicate with each other. Thorough understanding of graph structures
enables better predictions of the dynamics in real life networks, such as the spreading of a
disease in a community or failure propagation in a system.

This thesis investigates information propagation over connected undirected graphs, where
the nodes communicate mutually. Every pair of nodes can send information to one another
over the edge that connects them. The information propagation is initiated by a single node,
which is the source of the spreading; our interest of research lies in how the time until the
information has reached the entire graph relates to the theoretical centrality of this node.
Furthermore, the thesis treats a power centrality measure proposed in an earlier paper by
Phillip Bonacich. Our contribution in this regard is a rigorous derivation of a closed-form
expression of the mean-measure and some properties appurtenant to it.

An Information Propagation Model (abbreviated IPM) is presented, devised to emulate the
dynamics of mutual sharing of information between nodes. When performing this algorithm
on certain Barabási–Albert graphs, results show that the centrality status of the initiator
node has notable impact. In agreement with conception, in mean-limit, when the informa-
tion propagation is initiated by a node with high centrality (according to the theoretical
measure), the information is spread signi�cantly faster on the graph. The IPM furthermore
displays similar traits in dynamics to the SIR (susceptible-infectious-recovered) compart-
mental model.

Keywords: Graph theory, Markov chains, Systems theory, Functional analysis
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Chapter �

Introduction

Many human-made systems, some of which are critical infrastructure, can undoubtedly be
interpreted as graphs. Economic networks, electrical power grids and social networks, to
mention just a few. Consequently, the interest of graph theory has become commonplace in
other academical �elds, such as �nance and arti�cial intelligence (Zhou et al., ����). The
same can of course be said about industrial applications, as for instance graph databases have
gained attention during latter years.

In the analysis of graphs, centrality is a key notion and fundamental research problem which
involves ranking the importance of nodes’ positions in the graph structure. There are as of
date numerous measures which determine the centrality with respect to various qualities. For
some of these measures, indications have been found empirically that the rankings commonly
are highly correlated (Benzi & Klymko, ����). The discrete and combinatorial structures of
graphs allows for a suitable environment to perform algorithms on. If the graph represents
the structure of a “real life” system, the dynamics can be tried to be modeled for e.g., the
spreading of a disease in a community; if a healthy and a sick individual are respectively
represented by nodes, the possibility of infection spread from one to the other can be repre-
sented by the edge that connects them.

There are graph generative models which are able to randomly generate graphs which pos-
sess features similar to real life networks. An example is the Barabási–Albert preferential
attachment model, which generates so called scale-free networks. The degree distribution of
the networks produced by this model follow a power-law, meaning that some nodes (which
in general are relatively few) are expected to have substantially more connections than the
vast majority, which is a property that can be observed in many real life networks such as
e.g., social networks. Graph generative models enable large-scale simulations which involves
many graphs and one may study the graph structures in light of various models performed
on them, as well as the models solely.

�



�

Advancements in the study of graph (network) structures may have profound impact in how
we are able to predict and understand dynamics of real systems. In this thesis, the notion
information propagation is commonly used, which is the spread of information induced by the
nodes. Within the framework of this project, information is de�ned to be anything a node can
possess and transmit. Revisiting our previous examples, a disease is for instance something an
individual can “possess” as well as transmit to other individuals, and thus it is indeed some
form of information in this framework. The dynamics of massive-scale spread of diseases
motivated this thesis project to investigate the impact of the centrality of the nodes which
initiate the spread; in this analogy this corresponds to what place the patient zero has in the
network structure corresponding to the community he or she lives in. Furthermore, what
impact this single individual has on transmission globally.

As for centrality measures, promising applications are e.g., within risk mitigation, where
cascading failures can be studied via dependency risk graphs; here, the nodes can represent
critical infrastructures or components and the edges how the failure of one component can
lead to the failure of others; see for instance (Stergiopoulos et al., ����). Centrality is also a
widely studied concept within computer science applications (Klein, ����).
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�.� Thesis Objectives
It is primarily aimed to investigate how big of an impact central nodes have in information
propagation over synthetic graphs. The centrality of the nodes shall be determined by var-
ious theoretical measures; it is of interest therefore to see how the theoretical centrality of
speci�c nodes, whom are initiating the information propagation, a�ects the time until the
information has reached all nodes in the graph. The information is guaranteed to propagate
through the graph, as the nodes are mutually sharing the information with adjacent nodes.
In theoretical treatment, all centrality measures assess the nodes involvement in the walk
structure of the graph (Borgatti & Everett, ����). The research problem is to investigate how
theoretical measures relate to real settings.

Another objective is to derive the closed form and the domain of the Bonacich �-centrality
measure c(1, �) which was proposed in the article "Power and Centrality: A Family of Mea-
sures" in American Journal of Sociology (����) by Philipp Bonacich; see De�nition �.��, p.�� in
this thesis for the de�nition of the measure. A proof is not presented in the article which
regards the parameter choice of �, for which the closed form of the measure can be de�ned.
Another article by Bonacich presents a thorough derivation (Bonacich, ����); although, this
thesis takes another approach of the proof, fromwhich furthermathematical treatment of the
measure’s properties is conducted. Brief exploration of the parameter � is su�cient to learn
that the relative centrality statuses of the nodes may indeed change. That is, a node which is
more central than another node for some quantity � may not be for another quantity �0

6= �.
An example which demonstrates this fact is shown in Figure �.�, where the underlying graph
is generated according to the Barabási–Albert graph generative model, with |V | = 10 nodes;
see Appendix A for the simulation program. The abscissa in �gure shows an interval of de-
�ned choices of �, and the ordinate shows the elements of c(1, �) 2 |V |⇥1 as functions of
�. In other words, each curve corresponds to the centrality score as a function of � for the
node it corresponds. The dashed circle in �gure highlights a node overtaking another in cen-
trality score. To contribute to more insight in this phenomena and facilitate further analysis,
the mean of the Bonacich �-measure (abbreviated MBC in report) is derived over symmetric
integration intervals, given that we treat the measure as a function c : !

|V |⇥1. In addi-
tion to the derivation, some properties of the MBC are proposed and proven. The �-measure
shall furthermore be studied qualitatively against the eigenvector centrality, the degree centrality
and the MBC; the reader is referred to Sections �.� and �.�, respectively.

As for relatedwork, parts of this thesis is based on some of the results in the article “Power and
Centrality: A Family of Measures” in American Journal of Sociology (����) by Philipp Bonacich.
Graph centrality is a fundamental research problem within graph theory and work which is
based on the aforementioned article is for instance “Some unique properties of eigenvector
centrality” published in Social Networks (����) by the same author.
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Figure �.�: The curves correspond the centrality score for each node versus the hyper-
parameter choice �, over the domain which the Bonacich centrality measure is de�ned.
The graph on which the scores are computed with respect to is generated according to the
Barabási–Albert Model (BAM). The dashed circle in �gure marks a point where a node be-
comes more central than another, which previously was more central. The reader shall be
made aware that multiple intersection can be observed in the �gure. The plot (B) is a zoom-
in of the plot (A). The mentioned point of the overtaking in centrality is marked in both
�gures.

�.� Thesis Outline
The thesis begins with providing a brief overview of elementary graph theory in the intro-
ductory sections of Chapter �. In the latter sections of this chapter, the closed form of c(1, �)
is derived and the mean of the �-centrality is proven; some properties of this measure are also
proposed and proven. A section is dedicated to the eigenvector centrality, which is related to
the �-centrality. Furthermore in Chapter �, an overview of Barabási–Albert model is given,
which is later on used to generate graphs which the algorithms are performed on. Charac-
teristically for the BAM as a graph generative model, it produces scale-free networks by its
preferential attachment mechanism. That is, nodes that are “entering” the graph are more
likely to induce edges which connects them to highly connected nodes already within the
graph. In Chapter �, a brief overview of Markov chains and appurtenant theory is provided;
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these have a fundamental role in the information propagation model as they are used to reg-
ulate the nodes’ roles in the transmission. In Chapter �, the information propagation model
(IPM) is presented. Chapter � provides the simulation results and the follow up chapters
from there convey discussions and suggestions for further work.



Chapter �

Graph Theory

The introductory part of this chapter is aimed to provide an overview of fundamental theory of math-
ematical graphs. Appurtenant to this theory, the chapter afterwards goes in depth of various centrality
measures, which determine the importance of the nodes’ positions in the graph structure.

A graph may be regarded as a set of objects over which a set of relations act. Such rela-
tions speci�cally act on pairs of objects. Ordinarily, the objects are referred to as nodes (or
vertices) and they may individually contain attributes which may be whatever: a number, a
vector, a matrix, an operator or e.g., all mentioned at the same time, under some ordering.
The treatment of a relation naturally leads to the notion of an edge. Fundamentally, an edge
is a link between two nodes which a�rms that there is some relation between them; the di-
rection of the edge tells how this relation acts. An edge may be directed or undirected. As
for the directed edge, or in literature called arc, such is pointing from one node to another,
the latter which may be regarded as the succeeding node. The direction tells how the edge
can be traversed. An undirected edge on the other hand points simultaneously in both direc-
tions and may thus be traversed in either direction. Like nodes, any edge may also contain
attributes of any form. If such is simply a number, then conventionally it is referred to as the
weight of the edge. In terms of notation, the set of nodes is denoted by V , the set of edges by
E and the graph in its entirety by G := {E, V }. The cardinality | · | : ⌦ ! Z counts the
number of elements in some set ⌦. As for the sets of edges and vertices E and V for some
given graph, it shall be interpreted e.g.,

|V | = number of nodes

and so forth.

Most graphs can be depicted diagrammatically, by which the names for the notions edges
and nodes are made more clear. In such form, each node is represented by a circle or dot
(hence they are “nodes”), and the edges by straight lines. The direction of the edge is simply
represented by an arrow. If undirected though, such line by convention does not display any
arrow(s), although it shall be remarked that such line indeed is “doubly” directed, as made
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clear in the above paragraph. As an example, Figure �.� displays an undirected, connected
planar graph in its diagrammatic form.

Figure �.�: A planar, connected undirected graph.

Throughout the thesis, we let G := {E, V } refer to some graph over some bijection H :
V ! [1, |V |] ✓ which maps a unique identi�er (or, so called label) to each node v 2 V .
In other words, each node is given a distinct number, and only that node. Thus, for any given
pair of nodes v, w 2 V , such bijection enforces v = w if and only if Hv = Hw i.e., two
nodes are equal if and only if they have the same identi�er. In all contexts of this thesis, a
node will be referred by vi where i denotes its unique identi�er. A directed edge from some
node vi to vj is denoted by (i, j). As regards undirected edges, if vi and vj are adjacent,
then the edge which connects them (i, j) 2 E is unordered i.e., (i, j) ⇠ (j, i) 2 E . The
method development in this work is based on connected undirected graphs i.e., graphs in which
each edge is undirected and there is a path from any node vi to any node vj . A more formal
de�nition is as follows.

De�nition �.�. A (completely) undirected graph G := {E, V } is a graph in which all edges are
undirected. That is, any edge (i, j) 2 E which connects two nodes vi and vj is unordered and the
edge may be traversed in either direction therefore. If furthermore the graph is connected, there is a
walk from any node vi to any node vj in V ; see Definition �.� as regards walks.

Fundamental notions are the node-degree,walks and the adjacencymatrix and the de�nitions
for these are as follows.
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De�nition �.�. The degree of a node vi 2 V equals the number of edges which are connected to it

deg vi := |{(i, j) 2 E : vj 2 V }| = # edges connected to vi 2 �0.

De�nition �.�. A walk on an undirected graph G := {E, V } is a traverse and is expressed as a
sequence of vertices and nodes, beginning in some node vi 2 V and ending in some node v`,

vi, (i, j), vj, (j, k), vk...v`.

If vi = v` then the walk is closed, otherwise it is open.

Remark. A walkmay conceptually be imagined as a particle traversing or “walking” along the
edges of the graph. If an edge is directed, the particle can not walk the in the opposite of
its direction and may thus not go back and forth along the same edge, repeatedly. If an edge
is undirected however (which is recalled as “doubly” directed) it may freely walk in either
direction along it. In other words e.g.,

vi, (i, j), vj, (j, i), vi, (i, j)...

is allowed.

De�nition �.�. The adjacency matrix A = (Aij) 2 |V |⇥|V | of some graph G := {E, V } is
defined by,

Aij :=

⇢
1, if (i, j) 2 E
0, otherwise.

Remark I). The adjacency matrixA / G stores all information that concerns the neighbor–
relations in the graph and has for instance applications in graph spectrality and in node
centrality measures; see sections �.� and �.� in this report. In addition to this remark, it shall
be pointed out that no node is de�ned to be adjacent to itself, why Aii := 0.

Remark II). Constructing the adjacency matrix A from a connected and undirected graph
may be justi�ed as follows. As recalled, two nodes vi, vj 2 V are adjacent if they are con-
nected by an edge, that is (i, j) ⇠ (j, i) 2 E for an undirected graph. If so, the entries
Aij, Aji are set as 1 according to de�nition �.�. If they are not, both entries Aij, Aji are set
as 0. The nature of this construction imposes several properties on A. Most fundamentally
A 2 |V |⇥|V |, as the adjacencies are established over each combination of pairs of nodes in
the graph. Furthermore, A clearly is symmetric, non–negative and irreducible (Stevanovic,
����).

Remark III). The adjacency matrix has the following fascinating property. If raised to some
power n 2 N�0, that is An, then the number of walks of length n starting in node vi 2 V
and ending in vj 2 V equals (An)ij , where repetitions are allowed (Stevanovic, ����). More-
over, summing the i:th row of An gives the total number of walks of length n from vi 2 V
to any node in V , including vi itself.
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�.� Bipartite Graphs
Circumstances in which there are allocations over two classes – for instance resources and
consumers – may suitably be interpreted under bipartite graph structures. This thesis takes
particular interest in when such allocations in sense are bijective. An element from either
class may in other words be compatible with multiple elements from the other class, although
in the end, it will pair with one and only one individual from the other class and vice versa
due to the bijection.

The mathematical de�nition of a bipartite graph is as follows.

De�nition �.�. A graph G := {E, V } is bipartite if the nodes of G can be represented as,

V = U [ V

where U , V are disjoint sets of nodes i.e., U \ V = ; and every edge in E has one end-point in U

and the other in V .

More ordinarily, and in particular in computer science, one may say that nodes of U and V

are coloured and furthermore, that an edge may only link two nodes if they are of di�erent
colours – which follows directly from de�nition �.�. To make detailed of this concept, let for
instance all nodes in U be white and the nodes in V be black (or generally, any other colour
than white). An edge may therefore only link two nodes if one is white and the other is black.
Consequently, a graph fails to be bipartite if at least one edge does not ful�ll this criteria.
Figure �.� illustrates a basic bipartite graph, in which it shall be noted that each edge has one
end-point in a white node and the other in a black node.

Complete bipartite graphs have a central role in the theory progress of this thesis, as these are
used as initial graphs in application of graph generative models.

De�nition �.�. A bipartite graph G := {E, V }, for which V = U [V according to definition �.�,
is complete if any node in U is adjacent to any node in V i.e. , there is an edge connecting any node in
U to any node in V .

Figure �.� gives an illustration of a complete bipartite graph in which |U| = 3 (white nodes)
and |V| = 4 (black nodes).
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Figure �.�: A bipartite graph where U = {white nodes} and V = {black nodes}.

There are various circumstances which allow for a complete bipartite graph interpretation;
it may be illustrative to consider the following hypothetical one. Suppose there are m hos-
pitals departments and n doctors. Each department treats rare cases of illnesses e.g., one
might treat tropical diseases, another one rare neurological conditions and so forth. Assume
that each department only has the capacity for one doctor, due to cut-downs in the welfare.
The doctors each are assumed to have expertise in di�erent �elds and it could be theorised
that a “wrongly” placed doctor i.e., he or she lacks desired competency of the department,
puts the patients at more risk compared to one who is expert in the demanded �eld of the
department. If it is not absolutely obvious at �rst which doctor shall be placed at which de-
partment, the hospital could consider the case where each doctor potentially may be placed
at either department. That is, U = {doctors} and V = {departments} and hence, in math-
ematical treatment, there is an edge from any doctor u 2 U to all other departments v 2 V

which represents the possibility of such assignment; recall Figure �.�. If the risk can be as-
sessed and quantified for each doctor and department, it may be represented as the weight of
corresponding edges. Thus, the problem of assigning each doctor a department with regard
of minimizing the patient risk, may be reduced to �nding the set of edges which weights
accumulates to the lowest risk value. This kind of problem is generally referred to the linear
assignment problem.
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Figure �.�: A complete bipartite graph for white nodes U = {doctors} and black nodes V =
{departments}.

De�nition �.�. A star Sk := {E, V } is a complete bipartite graph in which any two vertices are
connected by exactly one path; the graph Sk has one internal node and any other node is connected to
the inner node via an edge, hence there are no edges connecting the leaves except the case for k = 1.
The graph corresponding Sk1 has k + 1 leaves, but it does not have any internal nodes.

Figure �.� shows the star graphs S3, S4 and S5.

S3 S4 S5 S3 S4 S5S3 S4 S5

Figure �.�: The star graphs S3, S4 and S5. The internal nodes have black colour whereas the
leaves are white.



��

�.� Spectral Graph Theory
The objective of this section is to provide a brief overview of the spectral properties of con-
nected undirected graphs. In view of the properties imposed on an adjacency matrixA of an
undirected graph by Remark II) under De�nition �.�, it shall be reminded thatA 2 |V |⇥|V |

is symmetric, non–negative, irreducible and furthermore (A)ii = 0 as no node is adjacent
to itself.

The spectrum of a graph G is the set of all eigenvalues of its adjacency matrixA / G.

De�nition �.�. The spectrum of a graph G := {E, V } is defined as

Spec(G) := {� 2 : det(A� � · Id) = 0}

= {�(m1)
1 , �(m2)

2 , ...}

where m denotes the multiplicity. Here, A is the adjacency matrix of G and Id 2 |V |⇥|V | is the
identity matrix.

As the adjacency matrix of an undirected graph is real, non-negative and symmetric, it fol-
lows that anyA 2 |V |⇥|V | has |V | number of real, simple eigenvalues {�i}

|V |
i=1 which make

up the spectrum i.e., the cardinality is |Spec(G)| = |V |.

The largest eigenvalue of some adjacency matrixA / G is throughout this thesis referred to
as �̂ for which

�̂ := max
i

�i(A) (�.�)

and it plays a particular role in establishing convergence of the Bonachich �-centrality; see
section �.� for further details. Furthermore, asA / G regards connected graphsG, it follows
thatA is irreducible and thus, the Perron-Frobenius theorem is applicable onA.

Theorem �.�. (Perron-Frobenius) IfA 2Mn( �0) is irreducible, then the largest eigenvalue �̂
ofA defined by equation (�.�) has the following properties (Stevanovic ����, Horn & Johnson ����):

i) ⇢(A) = �̂ 2 + where ⇢ is the spectral radius and �̂ is simple.

ii) under the ordering �1 � �2 � · · · � �n, then �̂ := �1 � |�i| for all i � 2.

iii) there is an eigenvector v+ ofA which �̂ corresponds to an, for which all components are positive.

Remark I). From iii) it is implied that there exists in�nitely many eigenvectors v̄+ (up to
scaling) in which all elements are non-negative and non-zero andAv̄+ = �̂v̄+.
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Remark II). In computational aspects of the Bonachic centrality series de�ned by equation
(�.�), the largest eigenvalue �̂ of the adjacency matrix is vital in determining the conver-
gence bounds of �. Moreover, �̂ is also relevant as regards the eigenvector centrality de�ned by
equation (�.��). Numerical methods may be used for computing the spectrum Spec(G). It
shall in the same sentence be brie�y remarked that power iteration computes solely the largest
eigenvalue of a matrix which is diagonalizable. As regards a connected undirected graph G,
the corresponding adjacency matrixA / G is real and symmetric (recall Remark II in Def-
inition �.�), why it is diagonalizable and de�ned for the power iteration algorithm.

�.�.� The Laplacian of Graphs and Connectivity
One may, in fact, conclude whether or not a graph G := {E, V } is connected by studying
its spectral properties. It may be elegantly done using a theorem proven by Miroslav Fiedler;
in order to fully assimilate it, consider �rstly the Laplacian of a graph G.

De�nition �.�. (The Laplacian matrix) The graph-Laplacian matrix L 2 R|V |⇥|V | of some graph
G is defined by,

(L)ij =

8
<

:

deg(vi) if i = j
�1 if (i, j) 2 E
0 otherwise.

The graph-Laplacian matrix may also be expressed as L = D�A where

D = diag(deg v1, ..., deg v|V |),

is a diagonal-matrix containing the node degree of node i at place (i, i) andA is the adjacency matrix
of G.

Remark I). It shall be noted that the node degree(s) deg vi may be obtained by the product
A , for which case the i:th row corresponds to the degree of node vi.

Remark II). The Laplacian is positive semi-de�nite and the smallest eigenvalue is �1(L) = 0.

Astonishingly, the connectivity of an undirected graph is related to the spectral property
of its graph-Laplacian; if the second smallest eigenvalue of L is strictly positive, then it is
equivalent to the graph being connected (de Abreu, ����). If �2(L) = 0 therefore, there
are at least two disconnected components of the graph, meaning that for some nodes it is
impossible to reach one another by any walk on the graph. Furthermore, values �2(L) ⇠ 0
may be interpreted as the graph being close to disconnected.
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�.� Eigenvector Centrality

The eigenvector centrality measures the centrality of nodes in an undirected graph G :=
{E, V } by taking into account the neighbors’ signi�cance. To further elaborate, the cen-
trality of a node is set as proportional to the sum of centrality scores of its neighbors. The
measure is justi�ed as follows; let xi denote the centrality score of some node vi 2 V and let
be the index set of all neighbors of vi and

xi = �1
X

j2

xj, (�.�)

for some proportionality constant  2 . Now, recall for the adjacency matrix A that
(A)ij = 1 if the nodes vi and vj are adjacent and 0 otherwise. Therefore, the formula
equation (�.�) in terms ofA / G equates to

xi = �1

|V |X

j=1

(A)ijxj. (�.�)

It shall be noted by equation (�.�) that a node vi attains high centrality if e.g., it has many
neighbors (under assumption that they have positive centrality scores) or by having highly
in�uential neighbors which themselves have high level of centrality – or both. In matrix
form, equation (�.�) is equivalent to

Ax̄ = x̄, (�.�)

where the i:th row of x̄ correspond to the centrality score of node vi under some parameter
. Thus, as may be noted from equation (�.�), x̄ is an eigenvector of the adjacency matrix
A and  is an eigenvalue. If positive centrality scores are desired i.e., every component in x̄
shall be strictly positive, it is implied by the Perron-Frobenius theorem that an eigenvector
which can guarantee this property is one which corresponds to the eigenvalue  = �̂. See
Theorem �.�. Therefore, after determining �̂ and x̄ correspondingly, one may normalize it
according to

x̄+ :=
sgn(x̄)

kx̄k2
x̄, (�.�)

where sgn(x̄) := ±1 has the same sign as the components in x̄ and k ·k2 is the `2 norm. This
guarantees that all elements become strictly positive.

De�nition �.��. (Eigenvector centrality) The eigenvector centrality of an undirected graph G :=
{E, V } is determined from any eigenvector x̄ which corresponds to the eigenvalue �̂ = max �(A),

x̄+ :=
sgn(x̄)

kx̄k2
x̄. (�.�)

The i:th row of x̄+ is the centrality score of node vi 2 V under the normalization equation (�.�).
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�.� Bonacich �-Centrality
The Bonacich �-centrality measure is a centrality measure used widely in network analysis,
which quanti�es the power of in�uence of a node. Its mathematical de�nition is as follows.

De�nition �.��. (Bonacich �-Centrality) The Bonacich �–centrality measure (BBM) scores the
relative level of centrality of each node vi 2 V of an undirected, connected graph G := {E, V }

which has adjacency matrixA 2 |V |⇥|V |,

c(1, �) =
+1X

k=0

�kAk+1 , (�.�)

where � 2 and is a |V | dimensional column vector in which all entries equal 1. The i:th row of
c(1, �) contains the centrality measure of node vi (Bonacich, ����).

The BBM equation (�.�) has an expected value interpretation under certain conditions for
� > 0. Based on the original article, assume �rstly that each neighboring pair of nodes
may communicate mutually with each other. Moreover, let � be the probability that once a
message has been sent, it will be passed on by the receiving node, to any of its neighbors. A
message can not be passed on until it has been received, although initially each node sends out
messages to all of its neighbors. Recalling Remark III) under De�nition �.� of the adjacency
matrix, it shall be noted that for power n = 1 i.e.,A1, the number of walks of length n = 1
from vi to any other node in v, including itself, equals the sum of the i:th row ofA. Note also
that (A1)ii = 0, as naturally there are no walks of length 1 which immediately lead back to
the node itself. Thus, the i:th row-sum forA equals the degree of vi and is also the number
of initiated walks by node vi i.e., the number of messages initially sent,

# initiated walks from vi = deg vi =
|V |X

j=1

Aij = (A )i. (�.�)

Component-wise, the centrality for any node vi 2 V is determined by

ci =
|V |X

j=1

+1X

k=0

�k(Ak+1)ij, (Ak)ij = # walks of length k from vi to vj.

That is, ci is the weighted (or “dampened”) sum of all walks, of any length, from vi to any
other node vj 2 V , including vi itself. The dampening e�ect may be explained as follows.
Assuming that the graph is non-trivial i.e., |V | > 2, one obtains the lower bound �̂ > 1; the
min-max theorem can be applied to compute the largest eigenvalue, and it follows

�̂ = sup
xTx= 1

xTAx �
1p
|V |

TA

 
1p
|V |

!
=

1

|V |

X

v2V

deg v =
2|E|

|V |
�

2(|V |� 1)

|V |
> 1.
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In accordance with the parameter bound equation (�.�), �̂ > 1 implies |�| < 1 and naturally
�k
! 0 as k ! +1. In analogy with the expectation-interpretation i.e., given � 2 +,

the fact that �k
! 0 may be interpreted as walks of length k ! +1 are asymptotically

impossible, irrespective of how many they are and for any given start and end node in the
graph. Small values of � puts more weight on the local structures network whereas larger
values, the structure globally (Bonacich, ����). It can be proven that convergence of the
series equation (�.�) can be established if

|�| <
1

�̂
, (�.�)

where �̂ is the largest eigenvalue ofA. The closed form of equation (�.�) and inequality above
may be jointly proven as follows, wherein it shall be noted that � may indeed also be negative.

Proposition �.�. The �–centrality equation (�.�) converges if |�| < 1/�̂ where �̂ := max �(A)
and has the closed form,

(Id� �A)�1A ,

where Id is the identity matrix of dimension |V |⇥ |V |.

Proof. Firstly, it shall be noted that equation (�.�) is equivalent to,

c(1, �) =

(
X

k

(�A)k
)
A . (�.��)

The spectral radius of �A clearly is,

⇢ = |�|�̂.

It follows from the Perron–Frobenius theorem that �̂ is strictly positive and is larger than or
equal to the absolute values of all other eigenvalues that regards A; see Theorem �.�. More-
over, the bracket in equation (�.��) shall be recognised as a Neumann series, which converges
to the closed form if and only if ⇢ < 1,

X

k

(�A)k = (Id� �A)�1,

and the proof may be concluded,

|�| <
1

�̂
.

⌅

The proof of Proposition �.� may also be conducted by proceeding from the following theo-
rem.
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Theorem �.�. If X is a Banach space and the bounded linear operator represented by A has an
operator norm within the unit circle i.e., kAk⇤ < 1, then (Id � A)�1 exists and is furthermore
bounded; the series converges in operator norm,

(Id�A)�1 =
+1X

k=0

Ak.

See (Renardy & Rogers, ����).

The second proof of the closed-form expression of the BBM accordingly follows.

Proof of Proposition �.�. Firstly, given that �A is linear, bounded and the adjacency matrixA
is real and symmetric, the operator norm can be determined by

k�Ak⇤ = max
i

p
�i((�A)T(�A))

= max
i

|�|

p
�i(A2)

= max
i

|�||�i(A)|

= |�|�̂,

given �i(A2) = �2
i (A). Therefore, if |�|�̂ < 1 and equivalently |�| < 1/�̂, then according

to Theorem �.�,

(Id� �A)�1 =
+1X

k=0

(�A)k.

This concludes the proof,

c(1, �) =
+1X

k=0

�kAk+1

=

(
+1X

k=0

�kAk

)
A

= (Id� �A)�1A .

⌅
A remark to the BBM is that the measure usually converges to the eigenvector centrality when
� ! (1/�̂)� i.e.,

lim
�!(1/�̂)�

c(1, �) = x̄, (�.��)

where x̄ is a scaling of the eigenvector corresponding to the largest eigenvalue of A (see
De�nition �.��), if �̂ distinctively is the largest eigenvalue of the graph. There are cases of
symmetrical graphs where the limit does not hold – the reader is referred to the examples
which are presented in the original paper (Bonacich, ����).
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The BBM is versatile in the aspect that other centrality measures can be derived from it, for
certain choices of �. To elaborate, as aforementioned, if � ! (1/�̂)� one usually obtains the
eigenvector scores; if � := 0, then instead one obtains the degree centrality scores i.e., the
i:th row of c(1, 0) equals the degree of node vi. This may be formally postulated as follows.

Proposition �.�. The BBM equals the degree centrality for � := 0 i.e. ,

(c(1, 0))i = deg vi.

Proof. Trivially, one has

c(1, 0) =
+1X

k=0

0kAk+1 = A .

⌅

We will now investigate some properties of the BBM and �rstly look to the following lemma
and propositions.

Lemma �.�. If the series
+1X

k=0

ak�
k, ak 2

converges in in the open ball 0(r) which has radius r 2 + then the sum f(�) :=
P+1

k=0 ak�k

is di�erentiable in 0(r) and

@f

@�
=

@

@�

+1X

k=0

ak�
k =

+1X

k=0

@

@�

⇥
ak�

k
⇤

=
+1X

k=0

kak�
k�1 < +1.

Proof. See for instance (Hunter, ����). ⌅

Proposition �.�. All entries in (Id � �A)�1 are continuous and di�erentiable on the closed ball
# := {� 2 : |�|  # < 1/�̂}.

Proof. As (Id��A)�1 attains �nite value for any |�| < 1/�̂, the series associated with each
entry must converge i.e.,

((Id� �A)�1)ij = Idij + � · (A)ij + �2
· (A2)ij + · · ·

=
+1X

k=0

�k
· (Ak)ij < +1.

Each term is a continuous function of � and the series converges uniformly on #. To see
this, apply the Weierstraß M-test for fk(�) := �k(Ak+1)ij ,

sup
�2 #

fk(�)  #k
��(Ak+1)ij

�� =: mk.
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As the ball # is completely covered by the open ball 0(1/�̂) the series corresponding
((Id��A)�1)ij for � 2 # converges. Furthermore, it converges absolutely on #; see p.��
in (Hunter, ����). One can therefore be sure that

X

k

mk < +1.

Uniform convergence may be concluded as the criteria of the M-test are satis�ed. Thus,
((Id� �A)�1)ij is continuous; see Th.�.�, p.�� in (Andrews, ����). Lemma �.� implies that
it is di�erentiable i.e.,

@((Id� �A)�1)ij
@�

=
@

@�

+1X

k=0

�k(Ak)ij =
+1X

k=0

k�k�1(Ak)ij < +1.

⌅

An interesting property of the BBM is that it may be posed as an ordinary di�erential equa-
tion.

Proposition �.�. The BBM defined by equation (�.�) for |�|  # < 1/�̂ is a solution to the
time-variant homogeneous system

@c

@�
= bA(�)c, c(�0) = c(1, �0) (�.��)

where bA(�) := (Id� �A)�1A.

Proof. Di�erentiation with respect to � of the closed form of the BBM c := c(1, �) yields

@c

@�
=

@(Id� �A)�1

@�
A = �(Id� �A)�1@(Id� �A)

@�
(Id� �A)�1A

= (Id� �A)�1A(Id� �A)�1A

= (Id� �A)�1A c(1, �)

= bA(�)c

⌅

Remark. The di�erentiation with respect to � is performed entry-wise in (Id � �A)�1 and
is justi�ed by Proposition �.�. It shall furthermore be noted that each entry of the derivative
attains �nite value.

The entries of bA(·) are shown to be continuous on the ball # according to the proof of
Proposition �.�, on which the system equation (�.��) therefore attains a unique solution, to
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be speci�c the BBM; to justify this assertion, it shall be noted that bA(·) is locally integrable
on any open ball centered at the origin � ⇢ (�1/�̂, 1/�̂) ✓ ,

Z

�

kbA(⇠)k⇤ d⇠  kAk⇤
Z

�

�����

+1X

k=0

(⇠A)k

�����

⇤

d⇠  kAk⇤
Z

�

+1X

k=0

k(⇠A)kk⇤ d⇠ < +1

as follows analogously with the derivation presented in the proof of Proposition �.�. Hence, it
follows that there is a unique solution to equation (�.��); see Th.�.�.�, p.��� in (Lukes, ����).
The instantaneous rate of change of centrality of any node is therefore determined by the
linear combination of the centrality scores of all nodes at given “time” �, as clearly follows
algebraically from the expression @c/@� = bAc.

Proposition �.�. The matrix bA(�) := (Id� �A)�1A is symmetric for all |�| < 1/�̂.

Proof. Trivially,

⇥
(Id� �A)�1A

⇤T
= A(Id� �A)�1,

as the adjacency matrix A corresponding an undirected, connected graph is symmetric by
construction; recall De�nition �.�. As |�| < 1/�̂ the proof may be concluded as the Neu-
mann series allows for

A(Id� �A)�1 = A
+1X

k=0

�kAk =
+1X

k=0

�kAk+1 = (Id� �A)�1A.

⌅

As bA(·) is shown to be symmetric for all |�| < 1/�̂, its quadratic form can be used to show
boundedness of the derivative of kc(1, �)k2 and kc(1, �)k22 where k · k2 is the `2 norm.

Proposition �.�. Given # := {� 2 : |�|  # < 1/�̂} and c := c(1, �) for � 2 #,

inf
e�2 #

�(bA(e�))kck22 
1

2

@kck22
@�

 sup
e�2 #

�(bA(e�))kck22. (�.��)

Proof. Clearly, for the standard inner product h·i,

1

2

@kck22
@�

=
1

2

@

@�
[c · c] =

1

2


c ·

@c

@�
+

@c

@�
· c

�
=

⌧
c,

@c

@�

�
=
D
c, bA(�)c

E
,

as bA(�) is real and symmetric; see Proposition �.�. Accordingly, it can be concluded that

1

2

@kck22
@�

= cT bA(�)c.



��

Moreover, bA(·) can be diagonalized as

bA(�) := Q(�)T⇤(�)Q(�),

where Q(·) is an orthogonal matrix and ⇤(·) = diag(�1, �2, ..., �|V |) is constituted by the
eigenvalues of bA(·). It then follows that

cT bA(�)c = cTQ(�)T⇤(�)Q(�)c

= (Q(�)c)T⇤(�)Q(�)c

= vT⇤(�)v,

using the assertion v = v(�) := Q(�)c. It shall in the same sentence be remarked that

vTv =
|V |X

k=1

v2
k = [Q(�)c]TQ(�)c = kck22. (�.��)

The upper bound of equation (�.��) may so be attained in accordance with equation (�.��),

cT bA(�)c =
|V |X

k=1

�kv
2
k  sup

e�2 #

�(bA(e�))
|V |X

k=1

v2
k = sup

e�2 #

�(bA(e�))kck22.

Analogously for the lower bound,

cT bA(�)c =
|V |X

k=1

�kv
2
k � inf

e�2 #

�(bA(e�))
|V |X

k=1

v2
k = inf

e�2 #

�(bA(e�))kck22.

⌅
Remark. For the quantity kck2, its derivative may also be shown to be bounded:

@kck2
@�

=
@
p

c · c

@�
=

1

2kck2

@

@�
[c · c] =

1

kck2
cT bA(�)c, c 6= 0. (�.��)

As shown in the proof of Proposition �.�, the quadratic form has the bounds

inf
e�2 #

�(bA(e�))kck22  cT bA(�)c  sup
e�2 #

�(bA(e�))kck22

and it is implied from equation (�.��) and equation (�.��) therefore, that

inf
e�2 #

�(bA(e�))kck2 
@kck2
@�

 sup
e�2 #

�(bA(e�))kck2.

Lastly for this section, it shall be proven that the quantity kc(1, �)k1 for any |�| < 1/�̂ has
a tight upper bound.
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Proposition �.�. For any |�| < 1/�̂,

kc(1, �)k1 
�̂

1� |�|�̂
|V |,

where |V | is the number of nodes in the underlying graph and k · k1 is the `1 norm.

Proof. Firstly,

kc(1, �)k1 = k(Id� �A)�1A k1  k(Id� �A)�1
k

⇤
kAk⇤k k1

= �̂|V | max
i

q
�i ((Id� �A)�1)2

= �̂|V | max
i

q
�2
i ((Id� �A)�1),

recalling that Id� �A is symmetric. According to Lemma �.�, Id� �A is PD if |�| < 1/�̂.
Since (Id � �A)�1 likewise is PD, and all eigenvalues indeed are strictly positive for such
matrices, one has

kc(1, �)k1  �̂|V | max
i

�i

�
(Id� �A)�1

�
=

�̂

mini �i(Id� �A)
|V |.

As shown in the proof of Lemma �.�, it follows that mini �i(Id � �A) � 1 � |�|�̂ > 0
which concludes this proof;

kc(1, �)k1 
�̂

1� |�|�̂
|V |.

⌅

Remark. If� = 0, then c(1, 0) equals the degree centrality, as proven by Proposition �.�. Since
the underlying graph is connected, each node degree must be strictly positive i.e., deg vi > 0
and it shall be noticed that

kc(1, 0)k1 =
|V |X

i=1

|c(1, 0)i| =
X

v2V

| deg v| =
X

v2V

deg v  �̂|V |,

i.e., it is implied that the average degree is less than or equal to the largest eigenvalue,

1

|V |

X

v2V

deg v = degavg  �̂,

which indeed is a familiar result.
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�.� The Mean of Bonacich �–Centrality
The following section proposes the derivation of the mean of the Bonacich �-centrality mea-
sure (abbreviated MBC). Let �rstly � ⇢ (�1/�̂, 1/�̂) be any symmetric interval for which
any inner point � 2 � yields convergence of equation (�.�). The MBC shall then de�ned as

c̄(�) :=
1

L(�)

Z

�

c(1, �) d�, (�.��)

where L(�) denotes the length of the interval � and c(1, �) is de�ned by equation (�.�). It
follows algebraically that equation (�.��) is a |V |⇥ 1 column vector; each entry corresponds
to a node i.e., the i:th row of c̄ corresponds to vi 2 V . The performance of this quantity and
how it relates to the BBM is presented in Chapter �. A �rst generic closed-form expression
of equation (�.��) is derived as follows.

Proposition �.�. The MBC as defined by equation (�.��) has for every 0 < r < 1/�̂ and symmetric
interval � = (�r, r) the closed form

c̄(�) =
1

2r
[log (Id + rA)� log (Id� rA)] , (�.��)

for the principal matrix logarithm.

In order to prove this proposition, the following Lemma is used.

Lemma �.�. The matrices Id ± rA are positive definite if |r| < 1/�̂.

Proof. Firstly, for any i 2 {1, 2, ..., |V |},

�i(Id ± rA) = 1 ± r�i � 1� |r|�̂ > 0. (�.��)

The justi�cation of equation (�.��) is that Id has |V | eigenvalues which all equal 1. The
eigenvalues of Id ± rA are therefore, up to the sign, the same irrespective of the eigenvalue
correspondences. In other words, the eigenvalues of Id ± rA are the same as ±rA but
shifted by 1. Conclusively, Id± rA are real and symmetric matrices which have |V | number
of strictly positive eigenvalues and may therefore, in accordance with the spectral theorem,
be decomposed as

Id ± rA = QT⇤Q

for some orthogonalmatrixQ and diagonal matrix⇤ = diag(�1, ..., �|V |)which contains the
eigenvalues of Id± rA. To conclude positive-de�niteness (PD) and thus the proof, consider
�rstly

uT(Id ± rA)u = uTQT⇤Qu = (Qu)T⇤(Qu).

Let now y := Qu = (y1, ..., y|V |)T
6= 0 2 |V |, which implies

yT⇤y =
|V |X

i=1

�iy
2
i > 0

as �i > 0 and y2
i > 0 for at least one i. ⌅
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The proof of Proposition �.� can thus be carried through.

Proof of Proposition �.�. Firstly, we derive

c̄(�) =
1

2r

Z r

�r

+1X

k=0

�kAk+1 d� =
1

2r

+1X

k=0

⇢Z r

�r

�k d�
�
Ak+1

= �
1

2r

+1X

k=1

1

k
(�rA)k +

1

2r

+1X

k=1

1

k
(rA)k

=
1

2r
[log (Id + rA)� log (Id� rA)] .

The interchange of the series and integral is justi�ed as follows. Clearly,
Z

�

X

k

�kAk+1 d� =

(Z

�

X

k

�kAkd�

)
A . (�.��)

Now, treating the bracket in equation (�.��) one obtains
Z

�

X

k

k�kAk
k

⇤ d� =
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�

X
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|�|
k
kAk
k

⇤ d�, (�.��)

where k · k
⇤ denotes the operator norm. Given kAk⇤ := maxi

p
�i(ATA) and baring in

mind thatA is symmetric, for the power (Ak)T = Ak one has

kAk
k

⇤ = max
i

p
�i{(Ak)TAk} = max

i

p
�i(A2k) = max

i

q
�2k
i (A),

which implies kAk
k

⇤ = maxi |�k
i (A)| = �̂k . In terms of equation equation (�.��) this yields
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|��̂|
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Since |�| < 1/�̂ for any � 2 �, the root test implies that the integrand of equation (�.��) is
absolute convergent,

lim sup
k!+1

k

q
|��̂|k = lim sup

k!+1
|�|�̂ < 1.

For any k � 0 the inequality |��̂|
k
 (�̂r)k holds. This implies

X

k

|��̂|
k


X

k

(�̂r)k =
1

1� �̂r
,

and equation (�.��) by that means satis�es the inequality:
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|��̂|
kd� 
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< +1.
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The legibility of the interchange then follows by Fubuni’s theorem. According to Lemma
�.�, the matrices Id ± rA are PD and therefore the logarithm terms in equation (�.��) are
uniquely determined; see Th.1.31, p.20 in (Higham, ����). ⌅

The closed form in equation (�.��) of the MBC may be further simpli�ed to achieve a more
compact, one–term identity according to the following proposition.

Proposition �.�. The MBC defined by equation (�.��) has for any 0 < r < 1/�̂ the closed form

c̄(�) =
1

2r
log
⇥
2(Id� rA)�1

� Id
⇤

(�.��)

for the principal matrix logarithm and � = (�r, r).

The proof of this proposition relies on the following three lemmas.

Lemma �.�. If |r| < 1/�̂, then

rA(Id� rA)�1 = (Id� rA)�1(rA).

Proof. The proof is trivial but is included for illustrative purposes. As recalled by Lemma �.�,
it is clear that |r| < 1/�̂ yields positive-de�niteness of Id � rA and the spectral radius of
rA is contained within the unit circle. Thus, it can be ascertained that

rA(Id� rA)�1 = rA

"
X

k

(rA)k
#

= (Id� rA)�1(rA).

⌅

Lemma �.�. If �(A), �(B) 2 + andAB = BA, then

log(AB±1) = logA ± logB� 2⇡i U [ logA ± logB],

where U : ! is the matrix unwinding function; see (Aprahamian & Higham, ����). If
arg�i(A) + arg�j(B) 2 (�⇡, ⇡] for all corresponding eigenvalues ofA andB, then

log(AB±1) = logA ± logB.

See (Higham, ����).

Lemma �.�. For any non-singular matrixA 2 m⇥m,

logAk = k logA,

for any k 2 (�1, 1] and also for k = �1 if �(A) 2 �0 (Higham, ����).
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The proof of Proposition �.� which regards the closed form of equation (�.��) is carried out
as follows.

Proof of Proposition �.�. Firstly, it shall be noted under Lemma �.� that the following equality
holds, as it was proven in Lemma �.� that Id ± rA are PD:

� log(Id� rA) = log(Id� rA)�1,

This implies that equation (�.��) is equal to

1

2r

⇥
log(Id + rA) + log(Id� rA)�1

⇤
. (�.��)

Furthermore, as the inverse of a PD matrix likewise is PD and taking into consideration that
the eigenvalues are real, it follows for any index tuple (i, j) that concerns the eigenvalue
correspondences,

arg �i(Id + rA) + arg �j(Id� rA)�1 = 0.

In accordance with Lemma �.�, the logarithm sum in equation (�.��) may be simpli�ed to a
single logarithm as the matrices are commuting. To prove this assertion, �rstly note that

rA(Id� rA)�1 = (Id� rA)�1(rA). (�.��)

as it was proven by Lemma �.� that equation (�.��) holds under given premise |r| < 1/�̂.
Thus,

⇥
log(Id + rA) + log(Id� rA)�1

⇤
= log

⇥
(Id + rA)(Id� rA)�1

⇤
.

The proof is concluded,

(Id + rA)(Id� rA)�1 = (Id� rA)�1 + rA(Id� rA)�1

=
+1X

k=0

(rA)k + rA
+1X

k=0

(rA)k

=
+1X

k=0

(rA)k +
+1X

k=1

(rA)k

= 2
+1X

k=0

(rA)k � Id

= 2(Id� rA)�1
� Id.

⌅

Lastly, for the MBC, the closed form of equation (�.��) may also be expressed according to
the decomposition equation (�.��).
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Proposition �.��. The MBC defined by equation (�.��) has for any 0 < r < 1/�̂ the closed form

c̄(�) =
1

2r
QXQT (�.��)

whereX 2 |V |⇥|V | is a diagonal matrix for which

(X)ii = ln

✓
1 + r�i

1� r�i

◆
,

andQ is an orthogonal matrix,A = Q⇤QT where ⇤ = diag(�1, ..., �|V |) contains the eigenval-
ues ofA and � = (�r, r).

Proof. It shall �rstly be noted that because Id + rA is PD, as concluded by Lemma �.�, it is
diagonalizable as

Id + rA = Q⇤+Q
T = Q(Id + r⇤)QT = Id + rQ⇤QT,

where ⇤ is a diagonal matrix containing the eigenvalues of A. It is therefore implied that
A = Q⇤QT. For the negative sign, using this fact yields

Id� rA = Id� rQ⇤QT = QQT
� rQ⇤QT = Q(Id� r⇤)QT = Q⇤�Q

T.

The principal matrix logarithm is analytic for the given bounds of r, hence each term in
equation (�.��) may be expressed accordingly,

log(Id ± rA) = Q log(⇤±)QT = Q log(Id ± r⇤)QT

which leads to the equality:

log(Id + rA)� log(Id� rA) = Q[ log(Id + r⇤)� log(Id� r⇤)]QT.

Since Id ± r⇤ are diagonal matrices, one has (log(Id ± r⇤))ii = ln(1 ± r�i) which for
X := log(Id + r⇤)� log(Id� r⇤) yields

(X)ii = ln(1 + r�i)� ln(1� r�i) = ln

✓
1 + r�i

1� r�i

◆
, (X)ij = 0 8i 6= j.

⌅
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�.� Barabási–Albert Model

The Barabási–Albert Model (BAM) is a graph generative model which may be used to study the growth
and evolution of complex networks. It enables constructions of synthetic graphs that resemble real-life
graphs such as e.g., social networks or the citation networks. In this section, it is assumed that no nodes
are leaving the graphs – only entering them. Furthermore, if a node enters a graph, it must induce at
least one edge to a node that is within the graph.

In the Barabási–Albert Model (BAM), the graph expands as new nodes are entering it. At
each time a node is entering a graph, it will “prefer” to induce edges with nodes already
within the graph which have high connectivity. In other words, any entering node have a
preference for nodes with high degree, and this is referred as the preferential attachment
principle of the model. It is common that complex systems, such as social networks or e.g.,
economic networks exhibit this mechanism of growth and preferential attachment (Barabási
& Albert, ����). The preferential rule is mathematically de�ned as

pi = r(entering node connects to vi) :=
deg vi
2|E|

(�.��)

meaning that the probability pi of an entering node is inducing an edge to a pre-existing
node vi is proportional to the degree of vi (Albert & Barabási, ����). The attachment model
is stochastic in the sense that any entering node might induce an edge to any node in the
graph. The edge set cardinality |E| does not include the edges that will be connected to the
entering node.

In algorithmic point of view, the input, from which the graph grows in accordance with
the preferential attachment model, is a small connected graph G0 := G(t = 0) constituted
by `0 > 0 nodes. At each time instant, a new node is connected to `  `0 distinct nodes in
the graph, according to the probability equation (�.��). The procedure terminates when the
total number of nodes reaches some speci�ed amount n � `0. Clearly, the number of nodes
after discrete time t 2 0 follows the formula

n(t) = `0 + t, n(0) = `0,

because at each time instant a new node enters the graph, which increments the node set
cardinality by 1. Similarly, the number of edges after time t can be calculated as |E(t)| =
E0 + `t, whereE0 := |E(0)| is the number of edges in the initial graphG0. Figure �.� shows
a BAM-generated graph consisting n = |V | = 20 nodes, generated by ` = 1 and G0 := S1.
In essence, the initial graph is a small star and at each time instant, just a single “new” node
is entering the network.



��

Figure �.�: A generated Barabási–Albert graph which has |V | = 20 nodes; the preferential
attachment is ` = 1 and the initial graph is S1.

�.�.� Degree Dynamics
The most distinctive property of a Barabási-Albert network, given large enough population
size and stabilization, is its scale-free degree distribution i.e., the degree distribution is a
power-law in accordance with

P (k) ⇠ k�� (�.��)

where k denotes the degree, P (k) is the probability that a randomly selected node has a
connection to k other nodes i.e., that its degree is k. Many real life networks possess this
property (Barabási & Albert, ����). Consequently, given a largely populated graph, it is
expected that some nodes have high degrees, whereas the vast majority has signi�cantly lesser
connectivity. To conclude, the BAM generates so called random scale-free networks (SFN),
which have the aforementioned properties and degree distribution according to equation
(�.��) for � ⇡ 3.
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Markov Processes

This chapter provides a brief outline of Markov processes and related theory which is incorporated
in the information propagation model. Major parts of this chapter is based of Richard Serfozo’s book
“Basics of Applied Stochastic Processes” (Springer); see (Serfozo, ����).

Markov chains are stochastic processes with a wide variety of applications. Any dynamical
system whose states satisfy the recursion relation

Xn = f(Xn�1, yn), n � 1, (�.�)

can be represented by a Markov chain; here f is a non-random, deterministic function and
y1, y2... are independent variables which are identically distributed. Any state Xn by equa-
tion (�.�) is determined by its previous state Xn�1 and some exogenous, random variable.

A stochastic process in discrete time X := {Xn | n � 0} on a �nite state set � is de�ned as
a collection of random variables on (⌦, F , ). Any Xn 2 � is referred to as the state of M
at time n. The �nite-dimensional distribution of M is stated formally as

r(X0 = s0, ..., Xn = sn), s0, ..., sn 2 � 8n 2 0.

These are the preliminaries and the de�nition of a Markov chain (MC) thus follows.

De�nition �.�. (Markov chains) A time-homogeneous Markov chain is a stochastic process in dis-
crete time X := {Xi | n � 0} on a finite state space � which for any (si, sj) 2 �⇥ � satisfies,

i) r(Xn+1 = sj | X0, ..., Xn) = r(Xn+1 = sj | Xn)

ii) pij := r(Xn+1 = sj | Xn = si).

Here, i) refers to the Markov property i.e., the future state of the process depends only on its cur-
rent state. Moreover, ii) is the transition probability, that is the probability that the Markov chain
transitions from state si to sj . The matrix P := (pij) is the transition matrix of the Markov chain.

��
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�.� Classi�cation of States
Naturally, aMarkov chain (from here, abbreviatedMC)might return to some state after some
time; if starting in si, then the sequence of states may be on the form

si, sj, sk, ..., sl, si, ...

However, a de�nite return to a state is not generally true, it depends on the transition
probabilities which de�ne the chain. If for some state sm the only transition probability
is pmm = 1, it follows that for any m 6= j,

pmj = 0.

Consequently, once theMC visits the state sm, it can never leave it. In such case, the sequence
of states will appear as

si, sj, sk, ..., sl, sm, sm, sm, ...

Even over inde�nite time, a state may be visited a �nite amount of times.

Let ⌧j := min{n � 1 : Xn = sj 2 �} i.e., the time until the MC reaches state sj for
the �rst time since its birth. Furthermore, for si, sj 2 �. de�ne f 1

ij := pij and

fn
ij := r(⌧j = n | X0 = si) =

X

k 6=j

pik fn�1
kj , n � 2 (�.�)

which is the probability that the MC reaches state sj for the �rst time in n � 1 steps, given
that it was initialized in state si. Particularly, it is of interest to conclude whether or not
some state sj �nally will be reached from state si, formally

fij := r(⌧j < +1 | X0 = si) =
+1X

k=1

fk
ij.

De�nition �.�. A state si 2 � is recurrent if fii = 1 i.e. , if it is guaranteed to return. A state
sj 2 � is transient if fii < 1. Furthermore, a recurrent state is said to be positive recurrent if

[⌧i | X0 = si] < +1 and otherwise, null recurrent.

A state sj is accessible from state si,
si �! sj,

if there exists some n � 1 for which pnij > 0. In this context, the states si and sj are said to
communicate under the equivalence relation,

si  ! sj,

if si �! sj and sj �! si.
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�.� �-State Markov Chain
This thesis takes particular interest in �-state Markov chains. Although they might perhaps
be the most trivial MC:s there are, they have properties which are sought-after, to regulate
the susceptibility of nodes in the information propagation; the reader is referred to Section
�.� for further details about the incorporation of MC to the IPM. As there are only two states
needed to be taken in consideration, if p11 := a and p22 := b for some a, b 2 [0, 1] then it
must follow that

p12 := 1� a, p21 := 1� b

as these correspond to the complementary events. Clearly, the transition matrix then has the
form

P =


a 1� a

1� b b

�
.

If a, b 6= 0, then both states communicate and are recurrent. A discrete time-homogeneous
MC constituted by only two states � := {s1, s2} is diagrammatically represented in Figure
�.�; the direction of the arrow shows to which state is transitioned to. Using graph theory
notions, each edge (i, j) is directed from state si to sj (nodes) and the weight of the edge is
the transition probability.

p12 p11 p21 p22

p12 p11 p21 p22

p12 p11 p21 p22

p12 p11 p21 p22

s1 s2

s1 s2

Figure �.�: A diagrammatic view of the transition probabilities of a �-state MC. It is worth-
while to compare this view with Figure �.�, which depicts the inherent MC for
each node, which regulates the node’s susceptibility.
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Models

As stated, one of the aim objectives is to investigate how the centrality of the initiator node a�ects the
information propagation globally over the graph. To facilitate the understanding of the importance
of the initiator node, an information propagation model is devised (which will be referred to as IPM
throughout the report) which emulates the spreading over a graph; the information propagation is
within this model induced by a single node, which enables us to measure the impact of centrality.
The time it takes for the information to reach the entire graph can be assessed against the centrality
ranking of the single node from which the spreading is induced; see Chapter � for further details in this
application.

�.� Network Constructions
One of the research objectives is to attain understanding of how the theoretical centrality of
the initiator node of the information spread a�ects the propagation globally. Ideally there-
fore, a graph generative model should cause some nodes to be (de�nitely) more central than
others with respect to the metrics that are applied within this thesis. In similar regard, it is
assumed that the centrality rankings correlate with the degrees of the nodes i.e., that each
centrality metric yields similar rankings to those obtained from the degree centrality. The
reason for this assumption is the relation which the BBM has with the eigenvector and de-
gree centrality – either (usually) can be derived from the BBM by speci�cation of the �. The
same can of course be said about the MBC, as it is constructed from BBM, although it is not
intrinsically regarded as a centrality measure.

The requirements of the graph generative model can thus be reduced to only generating
graphs which have exponentially decreasing node distributions. It is reasonable to assume
that most real social networks have exponentially decreasing node distributions, as it is of
common conception that some individuals have bigger social circles than others. In a theo-
retic point of view, the nodes which represent themost “popular” individuals have the highest
degrees in this analogy. These networks are scale-free and the IPM algorithm is therefore per-
formed on graphs generated by the Barabási–Albert model. To allow for further comparison,

��
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the IPM will also be performed on a real observed social media network by Stanford univer-
sity. This is an undirected connected graph which is constituted by �,��� nodes and ��,���
edges (Mcauley & Leskovec ����; SNAP: Network datasets: Social circles n.d.).
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�.� Information Propagation Model (IPM)
The �rst step of the model is to calculate and assign the theoretical centrality score for each
node. An important node is de�ned to be in the top 1% of the centrality rankings; conversely,
an unimportant node is within the bottom 1%. The information propagation is initiated by
a single node, which is referred to as the initiator node of the spread. Thereafter, the infor-
mation propagates through the graph as the nodes are transmitting it to adjacent nodes. In
simulations of the IPM, the initiator is either randomly selected from the group of impor-
tant nodes or from the group of unimportant nodes – or either, meaning that the initiator is
randomly selected from the set of nodes of the whole graph, which the model is performed
on. The IPM runs in discrete time.

A node can either be susceptible or insusceptible of information. Throughout the lifetime of the
model, any node alternates between these two conditions of susceptibility. This is indepen-
dently regulated by an inherent �-state MC assigned to each node; the state space is de�ned
as

� := {susceptible, insusceptible}. (�.�)

Naturally, this construction induces the property that any node can not be simultaneously
in both states. Each node also has an attribute which tells whether or not it has received
the information. The information de�ned in the IPM, in its abstraction, is immutable and
can be cloned in�nitely many times. Therefore, if a node transmits the information to all
adjacent nodes and from there, once they have received it, the information continues to be
transmitted to forthcoming adjacent nodes, and so forth.

A node by default always transmits the information if it is susceptible and has already re-
ceived it. Information is never simultaneously transmitted from a node at the time instant it
receives it; transmission happens at earliest at the succeeding time instant of the time instant
in which the node receives the information. Information is also never transmitted from an
insusceptible node, although the node might possibly have received the information at an
earlier stage of the process. Inherently, information is also never transmitted from a node
which has not received it, irrespective of this node’s susceptibility state. The spreading pro-
cess continues until all nodes in the graph have received the information; the IPM terminates
thereof. The susceptibility status of each node is as said determined by a �-state MC for the
given state space de�ned in equation (�.�). Mathematically, the transitions are formulated
for every node vi 2 V as

psus!insus(vi) := r(vi is insusceptible at time t + 1 | vi is susceptible at time t) (�.�)

and analogously for the reverse transition pinsus!sus(vi); the complementary event is of course
that the node remains in its current state e.g.,

psus!sus(vi) := 1� psus!insus(vi).

Furthermore, it is assumed that the inherent MC of each node is time-invariant.
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(A) (B) (A) (B)

Receives message

Receives message

Receives message

Initiator Initiator

Informed; not susceptible

Figure �.�: A possible situation of the information spreading, which happens locally on a
region of the graph which the IPM is performed on.

At the initiation of the information spreading, which happens at time t = t0, the suscepti-
bility of each node is randomly generated i.e., for any vi 2 V

pinit(vi) := r(vi is susceptible at time t0), vi 6= vinitiator. (�.�)

As a node by de�nition must be susceptible in order to transmit the information, naturally
the initiator node is susceptible by default i.e.,

pinit(vinitiator) := r(vinitiator is susceptible at time t0) = 1.

A possible local scenario of the propagation is depicted in Figure �.�, which provides a prin-
cipal overview of the process. In �gure, white nodes are susceptible, but have yet to receive
the information. Black nodes are insusceptible; they can not have received the information
at an earlier stage, as in this example the initiator node starts the information spread. White
nodes with a marked cross are both susceptible and have received the information – thus,
they transmit the information. Lastly, the grey node is insusceptible, although informed.
The time instant (A) shows that information is transmitted from the initiator node to all
adjacent nodes; both adjacent nodes to the initiator node are susceptible and thus they will
receive the information. In the succeeding time instant, that is shown in (B), one of the
neighbors of the initiator node is still susceptible and thus transmits information; the other
neighbor has received the information, but has transitioned into the insusceptible state from
the previous time instant, and thus no information is transmitted from this node.
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It is assumed that the graph is immutable, or non-dynamic, during the lifetime of the IPM. In
other words, the graph structure is time-invariant, or at least any re-structuring of the graph
happens with much slower pace relative to that of the information propagation. As a remark,
the model, as in how the information is transmitted, could of course be applied to dynamic
graphs.

1 � pinsus!sus

pinsus!sus

1 � psus!insus

psus!insus

insusceptible
susceptible

Figure �.�: A diagrammatic view of the susceptibility state transitions.

The transitioning from one state to another may be regarded as an independent Bernoulli
trial; the time spent in certain state before transitioning to another is therefore first success
distributed. The time which a node vi e.g., spends as susceptible before transitioning to insus-
ceptible state has distribution

⌧sus!insus(vi) 2 (psus!insus(vi)).

Accordingly, the expectation of this quantity is

[⌧sus!insus(vi)] =
1

psus!insus(vi)
, (�.�)

the reader may see (Shao, ����). Naturally, if psus!insus(vi) ! 0, then [⌧sus!insus(vi)] !
+1. Obviously, if it is impossible to transition to insusceptible from susceptible, the ex-
pected time spent as susceptible goes to in�nity as the state is never left. In the same regard,
given psus!sus(vi) = 1� psus!insus(vi)! 1, because psus!insus(vi)! 0, it follows

[⌧sus!sus(vi)] =
1

psus!sus(vi)
! 1

meaning that the time spent as susceptible until susceptible again is 1 i.e., at the succeeding time
instant. This obviously is in agreement with conception, as psus!insus(vi)! 0means that the
MC never leaves the state susceptible, once in this state.
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Concluding this chapter, the �-state MC enables us to regulate the nodes’ susceptibility as in
how they enable transmission of information. In limit-sense therefore, the time which each
node spends in a speci�c state depends on how the transition probabilities are de�ned. As
demonstrated, if e.g., psus!insus(vi) ⇡ 0 for some node vi, then it is expected that it spends
long time as susceptible until transition, compared to if psus!insus(vi) ⇡ 1 for which case it
is expected that transition happens much more rapidly.
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Simulations

This chapter has three parts; the first part demonstrates the centrality measures comparatively and
qualitatively for synthetic graphs generated by the Barabási–Albert model. More particularly, the the
Bonacich �-centrality measure will be compared to the following: the MBC, the eigenvector centrality
and the degree centrality. As already stated, the MBC is not intrinsically considered a measure of
centrality, but is nevertheless included to assess possible similarities with the BBM. As for the second
part, the information propagation model (IPM) performed is performed on synthetic graphs, generated
by the BAM-algorithm. In the ending of this chapter, in the third section, the same simulation is
performed as in the second part, but for real network data observed from Facebook.

�.� Study of Centrality Rankings

LetGBAM / A be generated according to the BAM-algorithm for ` = 2 and n = 103, where
A is the corresponding adjacency matrix. Furthermore, let the initial graph be de�ned as
S2. The following measure of likeness between two centrality score vectors c1, c2 2

|V |⇥1,
with respect to the adjacency matrixA, is applied:

�(c1, c2;A) :=
|V |X

i=1

|ec1i � ec2i|, ecj :=
1

maxk |cjk|
cj, j = 1, 2. (�.�)

The scaling of each vector according to equation (�.�) naturally yields that the scaled entries
lie in [ � 1, 1]. Moreover, the entry-wise subtraction of c1 and c2 correspond to the direct
di�erence in the (scaled) centrality score calculated for each node, and equation (�.�) is the
aggregation of the absolute values of these di�erences. A large value of� indicates that there
is dissimilarity in the rankings between the measures. Figure(s) �.�-�.� show scatter plots of
the MBC, eigenvalue centrality and degree centrality against the BBM; similar to equation
(�.�), all centrality vectors are here scaled by their respective reciprocal of the maximum
absolute value.

��
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Notably, the MBC and the eigenvalue centrality show similarity in the scatter plots in how
they relate to the BBM, although, as can clearly be read in Table �.�, usually the MBC has
lower dissimilarity to BBM compared to the eigenvalue centrality, judging by the values of
�.

BBM � := 1/2�̂ BBM � := �1/2�̂ BBM � ⇡ 1/�̂ BBM � := 0
Measure � Measure � Measure � Measure �
MBC �.�� MBC ��.�� MBC �.�� MBC ��.��
Degree ��.�� Degree �.�� Degree ��.�� Degree �
Eigen �.�� Eigen ��.�� Eigen �.�� Eigen ��.��

Table �.�: Dissimilarity scores determined according to equation equation (�.�); we compute
� for various parameter choices of the BBM against the degree centrality, eigen-
centrality and the MBC – each with respect to GBAM.

It can generally be said for this experiment that the big “mass” of centrality scores are con-
centrated in the lower range, as apparent in Figure(s) �.�-�.� (in the lower left corners). It can
furthermore be noted, for this experiment, that the measures are relatively similar in terms
of how they assign the scores; for instance, nodes which are assigned centrality values in the
range [0, 0.2] by the BBM for � := 1/2�̂ mostly are assigned the same values by the MBC,
as shown in Figure �.�. Although, there are certainly exceptions to this observation as e.g.,
demonstrated in the same Figure �.�, where it can be noted that a node receives a centrality
score of ⇡ 0.35 by the eigenvalue centrality and ⇡ 0.6 by the BBM for � := �1/2�̂. More-
over, there is slightly bigger dispersion in the scatter plots corresponding � := �1/2�̂ for
the BBM; see Figure �.�.

As a �nal remark to conclude this section and experiment, as far as highly ranked nodes
are concerned, the measures produce similar rankings. This is evident from Table �.�, which
presents the top ten nodes with highest centrality score for each measure computed onGBAM
in this experiment; To clarify, the node labels lie in the interval [0, 999]. Noticeably, all mea-
sures determine the node which has label 0 as most central in GBAM – we refer to this node
as v̂ from here on. As can be concluded from any scatter plot corresponding the degree cen-
trality in Figure(s) �.�-�.�, v̂ unambiguously has the highest degree. A remark in this regard
is that GBAM is generated by nodes successively entering the graph, and inducing edges with
nodes which already have high connectivity. Therefore, the “early” nodes have high chance of
ending up with the highest degrees, which is possibly the case for v̂; in this experiment, each
measure also deem v̂ as most central.
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Measure
Rank Position � � � � � � � � � ��

BBM � := 1/2�̂ � � � � �� �� �� � �� ��
BBM � := �1/2�̂ � � � � �� �� �� �� �� ��
BBM � := 0 (Degree centrality) � � � � � �� �� � �� ��
BBM � ⇡ 1/�̂ (Eigen centrality) � � � � �� �� �� �� �� �
Degree centrality � � � � � �� �� � �� ��
Eigenvector centrality � � � � �� �� �� �� �� �

Table �.�: The top ten highest ranked nodes computed for each measure on GBAM in this
experiment; the table displays the labels of these nodes. The node which has label
0 has the highest centrality according to each measure.



��

Figure �.�: Scatter plots for the BBM given � := 1/2�̂ against the MBC, eigencentrality and
the degree centrality - each computed with respect to GBAM.
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Figure �.�: Scatter plots for the BBM given � := �1/2�̂ against the MBC, eigencentrality
and the degree centrality - each computed with respect to GBAM.
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Figure �.�: Scatter plots for the BBM given � ⇡ 1/�̂ against the MBC, eigencentrality and
the degree centrality - each computed with respect to GBAM.
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Figure �.�: Scatter plots for the BBM given � := 0 against the MBC, eigencentrality and the
degree centrality - each computed with respect to GBAM.
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�.� Information Propagation Simulations
In this section, the IPM is applied on synthetic graphs which are generated according to the
BAM-algorithm for ` = 2 and n = 103 throughout; furthermore, the initial graph input to
the BAM shall be de�ned as S2. In accordance with the construction of the IPM, the graph
structure is stationary across intra-simulation runs. In modeling aspect, this re�ects that
communication takes place with much faster pace than the pace of any potential re-shaping
of the graph structure as e.g., induced edges or nodes leaving the graph. Furthermore, the IPM
simulation will be performed on the same graph, which will be referred to as A / GBAM,
where A is the corresponding adjacency matrix. The reader is referred to Appendix B for
principal code implementation.

The purpose of this simulation is to investigate the time until all nodes in the graph have
received the information; in accordance with the IPM rules, the information propagation is
induced by the transmissions of the nodes and as a whole initiated by a single node, which we
refer to as the initiator node. In order to quantify the impact of centrality, the information
propagation is compared against the centrality ranking of the initiator node. As shall be re-
called, an important node is de�ned to be within the top 1% in centrality scores. Conversely,
an unimportant node is any node which belong to the bottom 1%. The centrality metrics ap-
plied in this experiment are the following: the eigenvector centrality, Bonacich’s �-measure
and lastly, the MBC. As regards the �-measure, the parameters are set as � := ±1/2�̂, where

�̂ := max
i

�i(A).

The IPM is independently run 104 times on the same BAM-generated graph. Each simulation
run is set to terminate before the next is initiated i.e., one simulation run is fully performed
when the information has reached the entire graph. The status of the initiator node is divided
into three categories: i) an important (top 1% in centrality rankings) ii) an unimportant
(bottom 1%) and lastly iii) an arbitrary node; the latter is randomly selected from the node set
correspondingGBAM, irrespective of its centrality ranking. Furthermore, for each simulation
run the initiator node is chosen randomly within the set of nodes which belong the same
category. At the beginning of each simulation run, the attribute for each node is reset i.e.,
all nodes vi 6= vinit have of course not received the information, whereas vinit has as it is the
source of the spreading. The susceptibility for each node at the beginning of the information
spread is random according in accordance with equation (�.�),

pinit(vi) := r(vi is susceptible at time t0) :=
1

2
, vi 6= vinitiator.

In this experiment, the transition probability from either susceptibility state to the other is
set as equal i.e., for any node vi 2 V / GBAM

psus!insus(vi) = pinsus!sus(vi) :=
1

2
.
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Hence, as motivated by equation equation (�.�), the expected time spent in either state is
[⌧ ] = 2.

Results for the MBC

Figure �.� shows the simulation results for theMBC; the ordinate shows themean of the num-
ber of nodes which have received the information over 104 simulations against time, which is
displayed on the abscissa. Notably, the curves corresponding each category of initiator node
do have the similar “s”-shape; the overall result output suggests that the centrality status of
the initiator indeed node has impact on the pace of the transmission globally. This is partic-
ular evident in time-regions close to t0 := 0; it can for instance be seen in �gure that at time
t = 5 the average number of informed nodes is 400 for the important initiator – whereas it is
only 25 for the unimportant initiator. Furthermore, the information has reached the entire
graph at t = 20 for the important initiator and at t = 25 for the unimportant.

Figure �.�: Curves of the mean number of informed nodes over 104 simulations for each
category of initiator; the centrality scores are determined according to the MBC and the
graph which the IPM is performed on is generated by the BAM for the intitial graph S2 and
` = 2. The total number of nodes is n = �,���.
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Figure �.�: This plot shows add-on to Figure �.�, namely curves of the average number of
newly informed nodes per time instant over 104 simulations, for each category of initiator
node.

Figure �.� contains the same curves as in Figure �.� and the average number of newly in-
formed nodes per time instant. The peak of the number of newly informed nodes per time
instant occurs sooner for the important initiator node. Naturally, the peaks also occur at
the in�exion point(s) of the curves of the number of informed nodes. Furthermore, the peak
width of the curve corresponding the important initiator is narrower compared the curve
corresponding the unimportant initiator; altogether, from a dynamic point of view and ir-
respective of the centrality status of the initiator node, the rate of the propagation reaches
a maxima from which it subsides de�nitely. It shall also be remarked that the spreading ap-
pears as more protracted for the unimportant node, as the peak is much more “smeared” over
time.

Results for the Eigenvector centrality and Bonacich’s �-centrality

The IPM is performed with regard to the eigenvector centrality and BBM for � := 1/2�̂.
The results are shown in Figure �.�. Principally, the outcomes are the same as when using the
MBC (Figure �.�) suggesting that the choice of measure, in mean-sense, has no signi�cant
impact in this experiment.
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Bonacich

Eigenvector

Figure �.�: The plots show the curves of the average number of informed nodes over 104

simulations for each category of initiator; furthermore, the curves show the average number
of newly informed nodes per time instant. The centrality rankings are determined by the
eigenvector centrality and BBM for � := 1/2�̂.
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�.� Information Propagation Simulation on Real Network

In this section, the IPM is applied on a Facebook graph; it is undirected, connected and con-
stituted by �,��� nodes and ��,��� edges. A depiction of the graph can be seen in Figure �.�.

Let GFacebook / AFacebook. The IPM is performed for two cases where the MBC and the
BBM (using � := 1/2�̂) are applied respectively;

�̂ := max
i

�i(AFacebook).

The IPM is performed in total 103 times for each category of initiator node. Furthermore, as
in previous simulations, the transition probabilities are set as,

psus!insus(vi) = pinsus!sus(vi) :=
1

2
.

and the initiating probability as,

pinit(vi) :=
1

2
, 8vi 6= vinit.

The results of the simulation for the MBC are presented in Figure �.�; plot (A) shows the
average number of nodes which have received the information against time, over 103 simu-
lations. Moreover, the plot (B) is a zoom-in of (A) over a limited time range. Notably, the
curve of newly informed nodes corresponding the important initiator node increases rapidly
at t0 := 0 and from there, it is smooth; for any other type of initiator node, the curve is
smooth from directly from t = 0. This di�erence indicates that the important initiator nodes
have high degree, whereas the unimportant do not.

The simulation results for this experiment share many similarities with the result obtained
for the IPM simulation performed for synthetic graphs in Section �.�; the curves are like-
wise “s”-shaped and also here the centrality of the initial sender has evident impact. A slight
di�erence is however that the curves corresponding an important and arbitrary initiator are
closer to each other compared to how they are when simulating the IPM for BAM-generated
graphs in Section �.�.
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Figure �.�: An overview of a Facebook graph on which the IPM is performed on.
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(A) (B)

(A) (B)

Figure �.�: This �gure shows the IPM simulation output when applying MBC; plot (B) is a
zoom-in of plot (A)

.
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(A) (B)

(A) (B)

Figure �.��: This�gure shows the IPM simulation outputwhen applying BBM for� := 1/2�̂;
plot (B) is a zoom-in of plot (A)

.



Chapter �

Discussion

In agreement with intuition, the outcome of the simulations indicate that the centrality of
the initiator node – from which the information propagation is initiated according to the
IPM – has evident impact on transmissions globally; the information is on average spread
signi�cantly faster if initiated by an important node. Altogether, the results suggest that the
centrality measures are able to identify in�uential nodes in the graph in regard of how they
enable fast spreading in mean-sense. It is furthermore demonstrated by Table �.� that there
can indeed be certain dissimilarities between the measures; recall that the graph used in the
qualitative study in Section �.� is generated by the BAM with the same parameters used for
the graphs in the IPM simulations. Although for the IPM simulations, evidently these dissim-
ilarities do not seem to a�ect much. A possible reason for this is that the measures principally
determine the same most central nodes; this possibility is demonstrated by Table �.�. There
are however certain limitations which needs to be addressed. Firstly, the graphs on which the
IPM do not change over time. Therefore, they do not resemble dynamics most likely to be
observed in real networks. It remains to study dynamical graphs which emulate those of real
networks in order to draw better conclusions of how the IPM acts as a propagation model;
although, the IPM is applicable on dynamic graphs so this scope can easily be expanded.
Moreover, the IPM is very rudimentary and it may at best only replicate basic dissemination
mechanisms. In simulations, we have also de�ned a homogeneous population in the sense
that all nodes have the same transition probabilities for their inherent MC:s, independent
of time. In this sense, it might be worth studying how the information propagation is af-
fected when implementing a time-dependent collective behaviour for various groupings of
the nodes – as a suggestion, one could de�ne the transition probabilities di�erently for each
groups and let the probabilities be e.g., time-variant and dependent on various state(s) of the
graph.

The measures treated in this thesis can be deemed to relate well to the real settings displayed,
although they are somewhat redundant to one another as they yield similar rankings. In terms
of their applicability, there is indeed a major limitation. If the centrality measures treated
in this thesis were to be applied for a real network as e.g., a social network, one would need

��
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to know the corresponding adjacency matrix. In addition, it is common for networks to be
massive, which would furthermore lead to high computational cost. An intriguing thought
which could overcome this problematic is to �nd approximate methods which could approx-
imate the centrality without the need of knowing the full graph – which ideally should also be
aimed to be less computationally expensive. Furthermore, if modeling information spreading
on a real network using the principles of the IPM, one would need to know exactly the graph
structure at all time.

The dynamics of the IPM as they appear in this thesis have similarities with the SIR compart-
mental model; most notably, the “s”-shape of the number of nodes which have received the
information over time. In this analogy, the number of nodes which have received the infor-
mation may be regarded as the number of infectious individuals at certain time, as according
to the IPM, the informed nodes are those that are transmitting the information under the
premise that they are susceptible. In the same interpretation, if the nodes represent individ-
uals within a community, their inherent MC:s regulate their exposure to the network. Any
node vi which has low transition probability psus!insus(vi) and high probability pinsus!sus(vi)
is expected to be more exposed to the information (disease) transmitted by adjacent nodes as
it spends more time in an “active” role of the transmission. At the same time, once vi receives
the information (i.e., it becomes infected) and has high exposure still, it will transmitmore in-
formation during the lifetime of the spreading compared to if it had low exposure. The curve
which corresponds to the number of nodes which have received the information per time in-
stant tells in the same context the number of infected individuals – recall however, according
to the IPM they must also be susceptible to transmit the information, or disease in this case. A
major �awwith the SIR-interpretation of the IPM is that the IPM does not account for nodes
becoming “immune” to the information. Hypothetically, if psus!insus(vi) = pinsus!sus(vi) 6= 0,
this can be interpreted as a scenario in which a disease spreads uncontrollably and the indi-
viduals display the same behaviour pattern irrespective of whether or not they are infected.
In slight dispute with the theoretical arguments which adjudge that the IPM is a poor epi-
demiological model, there are notable similarities still with the curves obtained in this thesis
and those of (Li et al., ����) (in particular, Fig.� in the paper); this referred paper conducts
an analysis of the propagation of the spread of Covid-�� in Hubei Province, China. Most
notably, the “s-shape” of number of infected for this real observation indeed has similar ap-
pearance to the number of informed of the IPM. In the same context, the results in this thesis
also highlight that centrality measures could be applicable for assessing the importance of
patient zero’s according to his or hers position in the community.

Lastly for this discussion, we emphasize that the MBC is derived without any deeper re�ec-
tion in terms of its usefulness as a centrality metric; this is in itself a suggestion for further
work. One clear bene�t of theMBC, unlike the Bonacich �-measure, is that it produces rank-
ings which do not depend on a hyper-parameter. In contrast, it is evident from Figure �.� that
the choice of � has certain impact of the rankings, which raises the question of how the pa-
rameter should be speci�ed. Regarding the Bonacich measure, the thesis straightforwardly
conducted some treatment of its properties – it was for instance proven in Proposition �.�
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that the inequality
kc(1, 0)k1 =

X

v2V

deg v  �̂|V |,

which is well-recognized in literature, indeed can be derived from the BBM. Furthermore, the
eigenvector centrality (usually) and the degree centrality can both be derived from the BBM.
Overall, these aspects might justify further study of the measure; a suggestion is to analyze
the dynamical properties of the measure, based on Proposition �.�.
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Appendix A

Computes the Bonacich �-centrality
over a range of de�ned values and
plots the scores

� import sys

� import numpy as np

� import matplotlib.pyplot as plt

� import networkx as nx

� from numpy import linalg as la

�

� def computeBonacichMeasure(adjMatrix, beta):

� n = len(adjMatrix[0, :])

� return np.matmul(np.matmul(la.inv(np.add(np.identity(n),

�� -beta*adjMatrix)), adjMatrix), np.ones((n, 1)))

��

�� nbrOfNodes = 10

�� G = nx.barabasi_albert_graph(nbrOfNodes, 2)

�� A = nx.adjacency_matrix(G).todense()

�� adjacencyMatrix = np.zeros((nbrOfNodes, nbrOfNodes))

��

�� for i in range(nbrOfNodes):

�� for j in range(nbrOfNodes):

�� adjacencyMatrix[i][j] = A[i,j]

��

�� eigenVals, _ = la.eig(adjacencyMatrix)

�� eigenVals.sort()

�� sensitivity = 1 # shall be > 0

�� lambdaAst = eigenVals[len(eigenVals) - 1] + sensitivity

��



��

��

�� resolution_N = 210

�� intv = np.linspace(-1 / lambdaAst, 1 / lambdaAst, resolution_N)

�� result = np.zeros((nbrOfNodes, resolution_N))

��

�� for i in range(resolution_N):

�� # strictly real, but format .0j so supress this:

�� temp = computeBonacichMeasure(adjacencyMatrix, intv[i]).real

�� for k in range(nbrOfNodes):

�� result[k][i] = temp[k]

��

�� for k in range(nbrOfNodes):

�� plt.plot(intv, result[k, :], linewidth = 0.5)

�� plt.grid(color='black', alpha=0.1, linestyle='dashed', linewidth=0.25)

�� plt.show()



Appendix B

Information propagation simulation
over a Barabasi-Albert network

� import math

� import sys

� import numpy as np

� import matplotlib.pyplot as plt

� import random

� import networkx as nx

� import statistics

�

� from numpy import linalg as la

�� from scipy.sparse import csgraph

�� from scipy.linalg import logm, expm

��

�� initProbability = 0.5 # initial probability node is susceptible @init time

��

�� # Node class

�� class Node:

�� def __init__(self, isImportant, p_OnOff, p_OffOn):

�� self.hasReceivedInformation = False

�� self.neighbors = []

��

�� self.p_OnOff, self.p_OffOn = p_OnOff, p_OffOn # transition probabilities

�� self.isSusceptible = False

��

�� def willTransmit(self):

�� return True

��

�� def willReceive(self):

��



��

�� return True

��

�� def setOnlineStatus(self):

�� if random.random() < initProbability:

�� self.isSusceptible = True

�� else:

�� self.isSusceptible = False

��

�� def regenerateOnlineStatus(self):

�� if self.isSusceptible:

�� if random.random() < self.p_OnOff:

�� self.isSusceptible = False

�� else:

�� if random.random() < self.p_OffOn:

�� self.isSusceptible = True

��

�� # Mean Bonacich Measure (MBC)

�� def getMBC(adjMatrix):

�� sensitivity = 0.01

�� eigen, _ = la.eig(adjMatrix)

�� n = len(adjMatrix[0, :])

�� return np.matmul(logm(

�� np.add(np.multiply(2, la.inv(np.add(np.identity(n),

�� (np.multiply(- 1 / (max(eigen) + sensitivity), adjMatrix))))),

�� np.multiply(-1, np.identity(n)))), np.ones((n, 1)))

��

�� # Bonacich Beta-Measure Centrality

�� def getBonacich(adjMatrix):

�� # Computes the beta = 1 / 2 * lambda_hat

�� eigen, _ = la.eig(adjMatrix)

�� beta = 1/(2*max(eigen))

�� return np.matmul(np.matmul(la.inv(np.add(np.identity(len(adjMatrix[0, :])),

�� np.multiply(-beta, adjMatrix))), adjMatrix),

�� np.ones((len(adjMatrix[0, :]), 1)))

��

�� # Eigen Centrality

�� def getEigenCentrality(adjMatrix):

�� eigVals, eigenVectors = la.eig(adjMatrix)

�� scores = eigenVectors[:, np.argmax(eigVals)]

��

�� if any(t < 0 for t in scores):

�� scores = (-1) * scores / la.norm(scores)

�� else:



��

�� scores = scores / la.norm(scores)

�� return scores

��

�� # Degree Centrality

�� def getDegree(adjMatrix):

�� eigen, _ = la.eig(adjMatrix)

�� beta = 0

�� return np.matmul(np.matmul(la.inv(np.add(np.identity(len(adjMatrix[0, :])),

�� np.multiply(-beta, adjMatrix))), adjMatrix),

�� np.ones((len(adjMatrix[0, :]), 1)))

��

�� # GLOBAL PARAMETERS:

�� nbrOfNodes, nbrOfImportantNodes = 1000, 10

�� l = 2

�� G = nx.barabasi_albert_graph(nbrOfNodes, l)

�� A = nx.adjacency_matrix(G).todense()

�� adjacencyMatrix = np.zeros((nbrOfNodes, nbrOfNodes))

��

�� for i in range(nbrOfNodes):

�� for j in range(nbrOfNodes):

�� adjacencyMatrix[i][j] = A[i,j]

��

�� centrality = getBonacich(adjacencyMatrix)

��

�� populationSorted = sorted(range(len(centrality)),

�� key = lambda x: centrality[x], reverse = False)[-nbrOfNodes:]

�� important = populationSorted[-nbrOfImportantNodes:]

�� unimportant = populationSorted[0: nbrOfImportantNodes]

��

��� p_OnOff, p_OffOn = 0.5, 0.5

��� Nodes = [None] * nbrOfNodes

��� for i in range(nbrOfNodes):

��� if i in important:

��� Nodes[i] = Node(True, p_OnOff, p_OffOn)

��� else:

��� Nodes[i] = Node(False, p_OnOff, p_OffOn)

���

��� for j in range(nbrOfNodes):

��� if adjacencyMatrix[i][j] > 0:

��� Nodes[i].neighbors.append(j)

���

��� nbrOfSimulations = 1e2

��� timeLimit = 1000



��

���

��� print("run simulations...")

��� # RUNS SIMULATION FOR important NODES

��� simulationResults = dict()

��� for i in range(timeLimit):

��� simulationResults[i+1] = list()

���

��� informedResults = dict()

��� for i in range(timeLimit):

��� informedResults[i+1] = list()

���

��� run = 0

��� while run < nbrOfSimulations:

��� print(run)

��� run += 1

��� for i in range(nbrOfNodes):

��� Nodes[i].hasReceivedInformation = False

��� Nodes[i].setStatus()

���

��� initiator = random.choice(important)

���

��� Nodes[initiator].hasReceivedInformation = True

��� Nodes[initiator].isSusceptible = True

��� activeSenders = list([initiator])

��� generations = 0

��� total_informed = 1

��� breakSimulation = False

��� while total_informed < nbrOfNodes:

��� nbrOfInformed = 0

��� generations += 1

��� simulationResults[generations].append(total_informed)

��� activeSendersUpdate = []

��� for i in activeSenders:

��� if Nodes[i].isSusceptible:

��� if Nodes[i].willTransmit():

��� for neighbor in Nodes[i].neighbors:

��� if Nodes[neighbor].isSusceptible:

��� if not Nodes[neighbor].hasReceivedInformation:

��� if Nodes[neighbor].willReceive():

��� total_informed += 1

��� nbrOfInformed += 1

��� Nodes[neighbor].hasReceivedInformation = True

��� activeSendersUpdate.append(neighbor)



��

��� if total_informed == nbrOfNodes:

��� breakSimulation = True

��� break

��� informedResults[generations].append(nbrOfInformed)

��� activeSenders = (activeSenders + activeSendersUpdate).copy()

��� for i in range(nbrOfNodes):

��� Nodes[i].regenerateStatus()

���

��� meanimportant = []

��� generations = []

��� ct = 0

��� for i in range(timeLimit):

��� tempRecipients = simulationResults.get(i + 1)

��� if len(tempRecipients) > 1:

��� generations.append(i + 1)

��� if i + 1 - ct > 1:

��� sys.stdout.write("Error in simulation")

��� break

��� ct = i + 1

��� tempMean = statistics.mean(tempRecipients)

��� meanimportant.append(tempMean)

���

��� mean_info_important = []

��� generations_info = []

��� ct = 0

��� for i in range(timeLimit):

��� tempRecipients = informedResults.get(i + 1)

��� if len(tempRecipients) > 1:

��� generations_info.append(i + 1)

��� if i + 1 - ct > 1:

��� sys.stdout.write("Error in simulation")

��� break

��� ct = i + 1

��� tempMean = statistics.mean(tempRecipients)

��� mean_info_important.append(tempMean)

���

���

��� # RUNS SIMULATION FOR unimportant NODES

��� simulationResults = dict()

��� for i in range(timeLimit):

��� simulationResults[i+1] = list()

���

��� informedResults = dict()



��

��� for i in range(timeLimit):

��� informedResults[i+1] = list()

���

��� run = 0

��� while run < nbrOfSimulations:

��� print(run)

��� run += 1

��� for i in range(nbrOfNodes):

��� Nodes[i].hasReceivedInformation = False

��� Nodes[i].setStatus()

���

��� initiator = random.choice(unimportant)

���

��� Nodes[initiator].hasReceivedInformation = True

��� Nodes[initiator].isSusceptible = True

��� activeSenders = list([initiator])

��� generations = 0

��� total_informed = 1

��� breakSimulation = False

��� while total_informed < nbrOfNodes:

��� nbrOfInformed = 0

��� generations += 1

��� simulationResults[generations].append(total_informed)

��� activeSendersUpdate = []

��� for i in activeSenders:

��� if Nodes[i].isSusceptible:

��� if Nodes[i].willTransmit():

��� for neighbor in Nodes[i].neighbors:

��� if Nodes[neighbor].isSusceptible:

��� if not Nodes[neighbor].hasReceivedInformation:

��� if Nodes[neighbor].willReceive():

��� total_informed += 1

��� nbrOfInformed += 1

��� Nodes[neighbor].hasReceivedInformation = True

��� activeSendersUpdate.append(neighbor)

��� if total_informed == nbrOfNodes:

��� breakSimulation = True

��� break

��� informedResults[generations].append(nbrOfInformed)

��� activeSenders = (activeSenders + activeSendersUpdate).copy()

��� for i in range(nbrOfNodes):

��� Nodes[i].regenerateStatus()

���



��

��� meanINSIGNIFCANT = []

��� ct = 0

��� for i in range(timeLimit):

��� tempRecipients = simulationResults.get(i + 1)

��� if len(tempRecipients) > 1:

��� if i + 1 - ct > 1:

��� sys.stdout.write("Error in simulation")

��� break

��� ct = i + 1

��� tempMean = statistics.mean(tempRecipients)

��� meanINSIGNIFCANT.append(tempMean)

���

��� mean_info_unimportant = []

��� ct = 0

��� for i in range(timeLimit):

��� tempRecipients = informedResults.get(i + 1)

��� if len(tempRecipients) > 1:

��� if i + 1 - ct > 1:

��� sys.stdout.write("Error in simulation")

��� break

��� ct = i + 1

��� tempMean = statistics.mean(tempRecipients)

��� mean_info_unimportant.append(tempMean)

���

��� # RUNS SIMULATION FOR ARBITRARY NODES

��� simulationResults = dict()

��� for i in range(timeLimit):

��� simulationResults[i+1] = list()

���

��� informedResults = dict()

��� for i in range(timeLimit):

��� informedResults[i+1] = list()

���

��� run = 0

��� while run < nbrOfSimulations:

��� print(run)

��� run += 1

��� for i in range(nbrOfNodes):

��� Nodes[i].hasReceivedInformation = False

��� Nodes[i].setStatus()

���

��� initiator = random.choice(populationSorted)

���



��

��� Nodes[initiator].hasReceivedInformation = True

��� Nodes[initiator].isSusceptible = True

��� activeSenders = list([initiator])

��� generations = 0

��� total_informed = 1

��� breakSimulation = False

��� while total_informed < nbrOfNodes:

��� nbrOfInformed = 0

��� generations += 1

��� simulationResults[generations].append(total_informed)

��� activeSendersUpdate = []

��� for i in activeSenders:

��� if Nodes[i].isSusceptible:

��� if Nodes[i].willTransmit():

��� for neighbor in Nodes[i].neighbors:

��� if Nodes[neighbor].isSusceptible:

��� if not Nodes[neighbor].hasReceivedInformation:

��� if Nodes[neighbor].willReceive():

��� total_informed += 1

��� nbrOfInformed += 1

��� Nodes[neighbor].hasReceivedInformation = True

��� activeSendersUpdate.append(neighbor)

��� if total_informed == nbrOfNodes:

��� breakSimulation = True

��� break

��� informedResults[generations].append(nbrOfInformed)

��� activeSenders = (activeSenders + activeSendersUpdate).copy()

��� for i in range(nbrOfNodes):

��� Nodes[i].regenerateStatus()

���

��� meanARBITRARY = []

��� generations = []

��� ct = 0

��� for i in range(timeLimit):

��� tempRecipients = simulationResults.get(i + 1)

��� if len(tempRecipients) > 1:

��� generations.append(i + 1)

��� if i + 1 - ct > 1:

��� sys.stdout.write("Error in simulation")

��� break

��� ct = i + 1

��� tempMean = statistics.mean(tempRecipients)

��� meanARBITRARY.append(tempMean)



��

���

��� mean_info_ARBITRARY = []

��� ct = 0

��� for i in range(timeLimit):

��� tempRecipients = informedResults.get(i + 1)

��� if len(tempRecipients) > 1:

��� if i + 1 - ct > 1:

��� sys.stdout.write("Error in simulation")

��� break

��� ct = i + 1

��� tempMean = statistics.mean(tempRecipients)

��� mean_info_ARBITRARY.append(tempMean)

���

��� mean_info_important.insert(0, 1)

��� mean_info_unimportant.insert(0,1)

��� mean_info_ARBITRARY.insert(0,1)

���

��� plt1, = plt.plot(meanimportant, '+-', linewidth = 1, markersize = 2.25)

��� plt2, = plt.plot(meanINSIGNIFCANT, 'o-.', linewidth = 1, markersize = 1)

��� plt3, = plt.plot(meanARBITRARY, '^-', linewidth = 1.2, markersize = 2.5)

��� plt4, = plt.plot(mean_info_important, '*-', linewidth = 1, markersize = 2.5)

��� plt5, = plt.plot(mean_info_unimportant, '--', linewidth = 1, markersize = 2.5)

��� plt6, = plt.plot(mean_info_ARBITRARY, '^-', linewidth = 1, markersize = 2.5)

���

��� plt.grid(color='black', alpha=1, linestyle='dashed', linewidth = 0.25)

��� strIMP = "Avg. informed - initiator is important"

��� strNONIMP = "Avg. informed - initiator is unimportant"

��� strABTR = "Avg. informed - initiator is arbitrary"

��� strIMP_info = "Avg. newly informed at time instant - important "

��� strNONIMP_info = "Avg. newly informed at time instant - unimportant "

��� strABTR_info = "Avg. newly informed at time instant - arbitrary"

��� plt.legend([plt1, plt2, plt3, plt4, plt5, plt6],

��� [strIMP, strNONIMP, strABTR, strIMP_info, strNONIMP_info, strABTR_info])

��� plt.xlabel('Time', fontsize=18)

��� plt.ylabel('Average per ' + str(int(nbrOfSimulations)) + ' simulations',

��� fontsize = 18)

��� plt.show()

���

��� plt1, = plt.plot(meanimportant, '+-', linewidth = 1, markersize = 2.25)

��� plt2, = plt.plot(meanINSIGNIFCANT, 'o-.', linewidth = 1, markersize = 1)

��� plt3, = plt.plot(meanARBITRARY, '^-', linewidth = 1.2, markersize = 2.5)

��� plt.grid(color='black', alpha=1, linestyle='dashed', linewidth = 0.25)

��� strIMP = "Avg. informed - initiator is important"



��

��� strNONIMP = "Avg. informed - initiator is unimportant"

��� strABTR = "Avg. informed - initiator is arbitrary"

��� plt.legend([plt1, plt2, plt3], [strIMP, strNONIMP, strABTR])

��� plt.xlabel('Time', fontsize=18)

��� plt.ylabel('Average per ' + str(int(nbrOfSimulations)) + ' simulations',

��� fontsize = 18)

��� plt.show()
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