IMPACT OF CENTRAL NODES
IN INFORMATION
PROPAGATION OVER GRAPHS

OSsKAR MELLEGARD

Master’s thesis
2023:E5

LUND UNIVERSITY

Faculty of Engineering
Centre for Mathematical Sciences
Mathematical Statistics

WNYVIILVINTHLVIN INNYVILNIIDS WNYLNID




Impact of Central Nodes in
Information Propagation over

Graphs

Oskar Mellegird

Supervisor:

Prof. Stanislav Volkov

Examinator:

Prof. Erik Lindstrém

[LUND

UNIVERSITY

Centre for Mathematical Sciences
Lund University



Populirvetenskaplig

sammanfattning

Minga system kan representeras som grafer, allcifrin neurala nitverk och transporenitverk
till ndgot sd vardagligt som vira umgingeskretsar. Om exempelvis Andrea ir vin med Jona-
than, si kan vi rita ut Andrea och Jonathan som var sin prick pi ett paper och lita deras viin-
skap representeras av en linje. Pd samma sitt kan vi enkelt ligga cill fler personer (prickar)
och rita fler linjer till alla deras vinner. Vi har di representerat ett socialt nitverk med hjilp
av en graf; i ect matematiske sammanhang si benimns prickarna som noder och linjerna som
kanter. Relationerna (kanterna) kan forstds ha manga olika inneborder. T en epidemi kan
kanten representera act Andrea och Jonathan kan rika smitta varandra om den ena ir sjuk.
[ sociala medier kan kanten representera att de dr "vinner” pa p]attfbrmen. Relationen som
de har i dessa exempel innebir allesd att information kan dverforas mellan dem. Om Andrea
har en sensationell nyhet som hon beriittar for Jonathan sa dr det méjlige act han beritcar
vidare nyheten f6r sina viinner - som i sin tur kanske beriittar for sina vinner. Informationen
som ir nyheten sprids di dver niitverket som Andrea och Jonathan ingir i. En frigestillning
i det hir sammanhanget ér hur snabbt informationen sprids — nir nyheten ut snabbare om
Andrea ir den som orsakar spridningen, eller Jonathan? I det hiir exjobbet har vi studerat
just den hir frigestillningen, fast under mer generella ramverk.

Nir man studerar omfattande, komp]exa nitverk dr det efterstrivansvire att kunna iden-
tifiera de mest centrala medlemmarna utifrin nicverksstruketuren. Avstampen for det hir
projekeet bygger vidare pi ett teoretiskt méct frin en vilciterad artikel av Philipp Bonacich,
vilken miiter varje nods centralitet i en graf relativt de andra noderna. I projektet har dirpa
informationsfldden dver grafer studerats och en spridningsmodell har for detta indamal
utvecklats; denna har tillimpats for att mita hur scor inverkan centraliteten har fér medlem-
mar som orsakar spridningarna dver nitverk.

[ graferna som vi studerar si kommunicerar noderna med varandra, vilket innebir ate de
stindigt transmitterar informacion till deras grannar. Varje nod tilldelas diven en egen Markov-
kedja, vilken anviinds for att "aktivera” nodens roll som spridare och mottagare. Vi studerar
informationsspridningar som induceras av just en enda nod, varifrin informationen fortsit-
ter att spridas genom att varje nod delar med sig information till nirliggande noder, si fort
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noden sjilv ir mottaglig och besitter informationen. Med hjilp av olika teoretiska mace miter
vi hur pass centrala noderna ir; diribland noden som informationsspridningen bérjar ifrin.
Resultaten kan pivisa en koppling mellan hur snabbt information kan sprida sig éver vissa
nitverk och den teoretiska centraliteten hos medlemmen som orsakar spridningen; vi scud-
erar spridningar 6ver Barabasi-Albert-nitverk i synnerhet, di dessa besitter egenskaper som
kan observeras i riktiga nitverk, sisom sociala nitverk. Vilken nod som initierar spridningen
har signifikant betydelse for hur snabbt informationen propagerar éver grafen i helhet. Ar
det en central nod sprids informationen snabbare, vilket ligger i linje med forvintat resultat.



Abstract

There are many systems which can be represented as graphs, to say the least the networks
in which we communicate with each other. Thorough understanding of graph structures
enables better predictions of the dynamics in real life networks, such as the spreading of a
disease in a community or failure propagation in a system.

This thesis investigates information propagation over connected undirected graphs, where
the nodes communicate mutually. Every pair of nodes can send information to one another
over the edge that connects them. The information propagation is initiated by a single node,
which is the source of the spreading; our interest of research lies in how the time until the
information has reached the entire graph relates to the theoretical centrality of this node.
Furthermore, the thesis treats a power centrality measure proposed in an earlier paper by
Phillip Bonacich. Our contribution in this regard is a rigorous derivation of a closed-form
expression of the mean-measure and some properties appurtenant to it.

An Information Propagation Model (abbreviated IPM) is presented, devised to emulate the
dynamics of mutual sharing of information between nodes. When performing this algorithm
on certain Barabasi—-Albert graphs, results show that the centrality status of the initiator
node has notable impact. In agreement with conception, in mean-limit, when the informa-
tion propagation is initiated by a node with high centrality (according to the theoretical
measure), the information is spread significantly faster on the graph. The IPM furthermore
displays similar traits in dynamics to the SIR (susceptible-infectious-recovered) compart-
mental model.

Keywords: Graph theory, Markov chains, Systems theory, Functional analysis
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Chapter 1
Introduction

Many human-made systems, some of which are critical infrastructure, can undoubrtedly be
interpreted as graphs. Economic networks, electrical power grids and social networks, to
mention just a few. Consequently, the interest of graph theory has become commonplace in
other academical fields, such as finance and artificial intelligence (Zhou et al., 2020). The
same can of course be said about industrial applications, as for instance graph databases have
gained attention during lacter years.

In the analysis of graphs, centrality is a key notion and fundamental research problem which
involves ranking the importance of nodes’ positions in the graph structure. There are as of
date numerous measures which determine the centrality with respect to various qualities. For
some of these measures, indications have been found empirically that the rankings commonly
are highly correlated (Benzi & Klymko, 2015). The discrete and combinatorial structures of
graphs allows for a suitable environment to perform algorichms on. If the graph represents
the structure of a “real life” system, the dynamics can be tried to be modeled for e.g., the
spreading of a discase in a community; if a healthy and a sick individual are respectively
represented by nodes, the possibility of infection spread from one to the other can be repre-
sented by the edge that connects them.

There are graph generative models which are able to randomly generate graphs which pos-
sess features similar to real life networks. An example is the Barabasi-Albert preferential
attachment model, which generates so called scale-free networks. The degree distribution of
the networks produced by this model follow a power-law, meaning that some nodes (which
in general are relatively few) are expected to have substantially more connections than the
vast majority, which is a property that can be observed in many real life networks such as
e.g., social networks. Graph generative models enable large-scale simulations which involves
many graphs and one may study the graph structures in light of various models performed
on them, as well as the models solely.



Advancements in the study of graph (network) structures may have profound impact in how
we are able to predict and understand dynamics of real systems. In this thesis, the notion
information propagation is commonly used, which is the spread of information induced by the
nodes. Within the framework of this project, information is defined to be anything a node can
possess and transmit. Revisiting our previous examples, a disease is for instance something an
individual can “possess” as well as transmit to other individuals, and thus it is indeed some
form of information in this framework. The dynamics of massive-scale spread of disecases
motivated this thesis project to investigate the impact of the centrality of the nodes which
initiate the spread; in this :malogy this corresponds to what p]ace the patient zero has in the
network structure corresponding to the community he or she lives in. Furthermore, what
impact this single individual has on transmission globally.

As for centrality measures, promising applications are e.g., within risk mitigation, where
cascading failures can be studied via dependency risk graphs; here, the nodes can represent
critical infrastructures or components and the edges how the failure of one component can
lead to the failure of others; see for instance (Stergiopoulos et al., 2015). Centrality is also a
widely studied concept within computer science applications (Klein, 2010).



1.1 Thesis Objectives

[t is primarily aimed to investigate how big of an impact central nodes have in information
propagation over synthetic graphs. The centrality of the nodes shall be determined by var-
ious theoretical measures; it is of interest therefore to see how the theoretical centrality of
specific nodes, whom are initiating the information propagation, affects the time until the
information has reached all nodes in the graph. The information is guaranteed to propagate
through the graph, as the nodes are mutually sharing the information with adjacent nodes.
In theoretical treatment, all cencrality measures assess the nodes involvement in the walk
structure of the graph (Borgatti & Everett, 2006). The research problem is to investigate how
theoretical measures relate to real settings.

Another objective is to derive the closed form and the domain of the Bonacich S-centralicy
measure ¢(1, 3) which was proposed in the article "Power and Centrality: A Family of Mea-
sures” in American Journal of Sociology (1987) by Philipp Bonacich; see Definition 2.11, p.15 in
this thesis for the definition of the measure. A proof is not presented in the article which
regards the parameter choice of 3, for which the closed form of the measure can be defined.
Another article by Bonacich presents a thorough derivation (Bonacich, 2007); although, this
thesis takes another approach of the proof, from which further mathematical treatment of the
measure’s properties is conducted. Brief exploration of the parameter 3 is sufficient to learn
that the relative centrality statuses of the nodes may indeed change. That is, a node which is
more central than another node for some quantity 5 may not be for another quantity 8" # .
An example which demonstrates this fact is shown in Figure 1.1, where the underlying graph
is generated according to the Barabasi—Albert graph generative model, with |[V| = 10 nodes;
see Appendix A for the simulation program. The abscissa in figure shows an interval of de-
fined choices of 3, and the ordinate shows the elements of ¢(1, ) € RIVI*! as functions of
B. In other words, each curve corresponds to the centrality score as a function of 3 for the
node it corresponds. The dashed circle in figure highlights a node overtaking another in cen-
trality score. To contribute to more insight in this phenomena and facilitate further analysis,
the mean of the Bonacich -measure (abbreviated MBC in report) is derived over symmetric
integration intervals, given that we treat the measure as a function ¢ : R — RIVI*1 In addi-
tion to the derivation, some properties of the MBC are proposed and proven. The S-measure
shall furthermore be studied qualitatively against the eigenvector centrality, the degree centralicy
and the MBC; the reader is referred to Sections 2.3 and 2.5, respectively.

As for related work, parts of this thesis is based on some of the results in the article “Power and
Centrality: A Family of Measures” in American Journal of Sociology (1987) by Philipp Bonacich.
Graph centrality is a fundamental research problem within graph theory and work which is
based on the aforementioned article is for instance “Some unique properties of‘eigenvector

centrality” published in Social Networks (2007) by the same author.
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Figure 1.1: The curves correspond the centrality score for each node versus the hyper-
parameter choice 3, over the domain which the Bonacich centrality measure is defined.
The graph on which the scores are computed with respect to is generated according to the
Barabasi—Albert Model (BAM). The dashed circle in figure marks a point where a node be-
comes more central than another, which previously was more central. The reader shall be
made aware that multiple intersection can be observed in the figure. The plot (B) is a zoom-
in of the plot (A). The mentioned point of the overtaking in centrality is marked in both
figures.

1.2 Thesis Outline

The thesis begins with providing a brief overview of elementary graph theory in the intro-
ductory sections of Chapter 2. In the latter sections of this chapter, the closed form of ¢(1, 3)
is derived and the mean of the S-centrality is proven; some properties of this measure are also
proposed and proven. A section is dedicated to the eigenvector centrality, which is related to
the B-centrality. Furthermore in Chapter 2, an overview of Barabasi—Albert model is given,
which is later on used to generate graphs which the algorithms are performed on. Charac-
teristically for the BAM as a graph generative model, it produces scale-free networks by its
preferential attachment mechanism. That is, nodes that are “entering” the graph are more
likely to induce edges which connects them to highly connected nodes already within the
graph. In Chapter 3, a brief overview of Markov chains and appurtenant theory is provided;



these have a fundamental role in the information propagation model as they are used to reg-
ulate the nodes’ roles in the transmission. In Chapter 4, the information propagation model
(IPM) is presented. Chapter 5 provides the simulation results and the follow up chapters
from there convey discussions and suggestions for further work.



Chapter 2

Graph Theory

The introductory part of this chapter is aimed to provide an overview of fundamental theory of math-
ematical graphs. Appurtenant to this theory, the chapter afterwards goes in depth of various centrality
measures, which determine the importance of the nodes’ positions in the graph structure.

A graph may be regarded as a set of objects over which a set of relations act. Such rela-
tions specifically act on pairs of objects. Ordinarily, the objects are referred to as nodes (or
vertices) and they may individually contain attributes which may be whatever: a number, a
vector, a matrix, an operator or e.g., all mentioned at the same time, under some ordering,
The treatment of a relation naturally leads to the notion of an edge. Fundamentally, an edge
is a link between two nodes which affirms that there is some relation between them; the di-
rection of the edge tells how this relation acts. An edge may be directed or undirected. As
for the directed edge, or in literature called arc, such is pointing from one node to another,
the latter which may be regarded as the sueceeding node. The direction tells how the edge
can be traversed. An undirected edge on the other hand points simultaneously in both direc-
tions and may thus be traversed in either direction. Like nodes, any edge may also contain
attributes of any form. If such is simply a number, then conventionally it is referred to as the
weight of the edge. In terms of notation, the set of nodes is denoted by V', the set of edges by
E and the graph in its entirety by G := {E, V'}. The cardinality | - | : © — Z counts the

number of elements in some set €. As for the sets of edges and vertices £/ and V' for some

given graph, it shall be interpreted e.g.,
|V| = number of nodes

and so forth.

Most graphs can be depicted diagrammatically, by which the names for the notions edges
and nodes are made more clear. In such form, each node is represented by a circle or dot
(hence they are “nodes”), and the edges by straight lines. The direction of the edge is simply
represented by an arrow. If undirected though, such line by convention does not display any
arrow(s), although it shall be remarked that such line indeed is “doubly” directed, as made

6



clear in the above paragraph. As an example, Figure 2.1 displays an undirected, connected
planar graph in its diagrammatic form.

Figure 2.1: A planar, connected undirected graph.

Throughout the thesis, we let G := {E,V'} refer to some graph over some bijection H :
V — [1, |V]|] € Z which maps a unique identifier (or, so called label) to each node v € V.
In other words, each node is given a distinct number, and only that node. Thus, for any given
pair of nodes v, w € V| such bijection enforces v = w if and only it Hv = Huw i.c., two
nodes are equal it and on]y it they have the same identifier. In all contexts of this thesis, a
node will be referred by v; where 7 denotes its unique identifier. A directed edge from some
node v; to vj is denoted by (7, 7). As regards undirected edges, if v; and v; are adjacent,
then the edge which connects them (7,j) € E is unordered ice., (i,7) ~ (j,7) € E. The
method development in this work is based on connected undirected graphs i.c., graphs in which
cach edge is undirected and there is a path from any node v; to any node v;. A more formal
definition is as follows.

Definition 2.1. A (completely) undirected graph G := {E,V}isa graph in which all edges are
undirected. That is, any edge (i, 7) € E which connects two nodes v; and v; is unordered and the
edge may be traversed in either direction therefore. If furthermore the graph is connected, there is a
walk from any node v; to any node vj in V; see Definition 2.3 as regards walks.

Fundamental notions are the node-degree, walks and the adjacency matrix and the definitions
for these are as follows.



Definition 2.2. The degree of a node v; € V' equals the number of edges which are connected to it
degv; == |{(¢,7) € E :v; € V}| = # edges connected to v; € R>.

Definition 2.3. A walk on an undirected graph G := {E,V'} is a traverse and is expressed as a
sequence of vertices and nodes, beginning in some node v; € V' and ending in some node vy,

Ui, (i,j), Vj, (], k), V... Vyp.
If v; = vy then the walk is closed, otherwise it is open.

Remark. A walk may conceptually be imagined as a particle traversing or “walking” along the
edges of the graph. If an edge is directed, the particle can not walk the in the opposite of
its direction and may thus not go back and forth along the same edge, repeatedly. If an edge
is undirected however (which is recalled as “doubly” directed) it may freely walk in cither
direction along it. In other words e.g.,

(% (i,j),?}j, (ja 7:)7'0% (27])
is allowed.

Definition 2.4. The adjacency marrix A = (A;;) € RV of some graph G := {E,V'} is
defined by,
Ay = {1, if (i,j) e E

0, otherwise.

Remark I). The adjacency matrix A o< G stores all information that concerns the neighbor—
relations in the graph and has for instance applications in graph spectrality and in node
centrality measures; see sections 2.4 and 2.5 in this report. In addition to this remark, it shall
be pointed out that no node is defined to be adjacent to itself; why A; := 0.

Remark 11). Constructing the adjacency matrix A from a connected and undirected graph
may be justified as follows. As recalled, two nodes v;, v; € V are adjacent if they are con-
nected by an edge, that is (4,j) ~ (j,4) € E for an undirected graph. If so, the entries
Ayj, Ay are set as 1 according to definition 2.4. If they are not, both entries A;;, Aj are set
as 0. The nature of this construction imposes several properties on A. Most fundamentally
A € RVIXIVI as the adjacencies are established over each combination of pairs of nodes in
the graph. Furthermore, A clearly is symmetric, non-negative and irreducible (Stevanovic,

2014).

Remark I11). The adjacency matrix has the following fascinating property. If raised to some
power . € N>, that is A", then the number of walks of length 7 starting in node v; € V
and ending inv; € V equals (A™);;, where repetitions are allowed (Stevanovic, 2014). More-
over, summing the 4:th row of A" gives the total number of walks of length n from v; € V
to any node in V, including v; itself.



2.1 Bipartite Graphs

Circumstances in which there are allocations over two classes — for instance resources and
consumers — may suitably be interpreted under bipartite graph structures. This thesis takes
particular interest in when such allocations in sense are bijective. An element from cither
class may in other words be compatible with multiple elements from the other class, although
in the end, it will pair with one and only one individual from the other class and vice versa
due to the bijection.

The mathematical definition of a bipartite graph is as follows.
Definition 2.5. A graph G := {E,V'} is bipartite if the nodes of G can be represented as,
V=Uuy

where U, V are disjoint sets of nodes i.e., U NV = () and every edge in E has one end-point in U
and the other in V.

More ordinarily, and in particular in computer science, one may say that nodes of & and V
are coloured and furthermore, that an edge may only link two nodes if they are of different
colours — which follows directly from definition 2.5. To make detailed of this concept, let for
instance all nodes in ¢ be white and the nodes in V be black (or generally, any other colour
than white). An edge may therefore only link two nodes if one is white and the other is black.
Consequently, a graph fails to be bipartite if at least one edge does not fulfill this criceria.
Figure 2.2 illustrates a basic bipartite graph, in which it shall be noted that each edge has one
end-point in a white node and the other in a black node.

Complete bipartite graphs have a central role in the theory progress of this thesis, as these are
used as initial graphs in application of graph generative models.

Definition 2.6. A bipartite graph G := { E, V'}, for which V' = U UV according to definition 2.5,
is complete if any node in U is adjacent to any node in V i.e., there is an edge connecting any node in

U to any node in V.

Figure 2.3 gives an illustration of a complete bipartite graph in which |U| = 3 (white nodes)

and |V| = 4 (black nodes).
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Figure 2.2: A bipartite graph where U = {white nodes} and V = {black nodes}.

There are various circumstances which allow for a complete bipartite graph interpretation;
it may be illustrative to consider the following hypothetical one. Suppose there are m hos-
pitals departments and n doctors. Each department treats rare cases of illnesses e.g., one
might treat tropical diseases, another one rare neurological conditions and so forth. Assume
that cach department only has the capacity for one doctor, due to cut-downs in the welfare.
The doctors each are assumed to have expertise in different fields and it could be theorised
that a “wrongly” placed doctor i.c., he or she lacks desired competency of the department,
puts the patients at more risk compared to one who is expert in the demanded field of the
department. If it is not absolutely obvious at first which doctor shall be placed at which de-
partment, the hospital could consider the case where each doctor potentially may be placed
at either department. That is, Y = {doctors} and V = {departments} and hence, in math-
ematical treatment, there is an edge from any doctor u € U to all other departments v € V
which represents the possibility of such assignment; recall Figure 2.3. If the risk can be as-
sessed and quantified for each doctor and department, it may be represented as the weight of
corresponding edges. Thus, the problem of assigning each doctor a department with regard
of minimizing the patient risk, may be reduced to finding the set of edges which weights
accumulates to the lowest risk value. This kind of problem is generally referred to the linear
assignment problem.
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Figure 2.3: A complete bipartite graph for white nodes U = {doctors} and black nodes V =
{departments}.

Defiition 2.7. A star Sy, := {E, V'} is a complete bipartite graph in which any two vertices are
connected by exactly one path; the graph Sy, has one internal node and any other node is connected to
the inner node via an edge, hence there are no edges connecting the leaves except the case for k = 1.
The graph corresponding Sk<1 has k + 1 leaves, but it does not have any internal nodes.

Figure 2.4 shows the star graphs Ss, Sy and Ss.

Ss Sy Ss

Figure 2.4: The star graphs Ss, Sy and Ss. The internal nodes have black colour whereas the
leaves are white.
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2.2 Spectral Graph Theory

The objective of this section is to provide a brief overview of the spectral properties of con-
nected undirected graphs. In view of the properties imposed on an adjacency matrix A of an
undirected graph by Remark II) under Definition 2.4, it shall be reminded that A € RIVI*IVI
is symmetric, non—negative, irreducible and furthermore (A);; = 0 as no node is adjacent
to itself.

The spectrum of a graph G is the set of all eigenvalues of its adjacency matrix A o< G.
Definition 2.8. The spectrum of a graph G := { E, V'} is defined as

Spec(G) :={A € C : det(A —\-1d) =0}
= (A A
where m denotes the multiplicity. Here, A is the adjacency matrix of G and 1d € RIVIXIVI s the
idcntity matrix.

As the adjacency matrix of an undirected graph is real, non-negative and symmetric, it fol-

lows that any A € RV has [V| number of real, simple eigenvalues {)\Z}Lg which make
Spec(G)| = V|

up the spectrum i.e., the cardinality is

The largest eigenvalue of some adjacency matrix A oc G is throughout this thesis referred to

as \ for which

~

A= max \;(A) 2.1

and it plays a particular role in establishing convergence of the Bonachich [-centrality; see
section 2.4 for further details. Furthermore, as A o< G regards connected graphs G| it follows
that A is irreducible and thus, the Perron-Frobenius theorem is applicable on A.

Theorem 2.1. (Perron-Frobenius) If A € M,,(R>) is irreducible, then the largest eigenvalue A
of A defined by equation (2.1) has the following properties (Stevanovic 2014, Horn & Johnson 2012):

i) p(A) = X € R where p is the spectral radius and A is simple.
it) under the ordering \y > Ay > -+ > X, then A=) > |\il foralli > 2.
iti) there is an eigenvector v4 of A which A corresponds to an, for which all components are positive.

Remark 1). From iii) it is implied that there exists infinitely many eigenvectors v (up to

scaling) in which all elements are non-negative and non-zero and Av, = Av,.
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Remark II). In computational aspects of the Bonachic centrality series defined by equation
(2.7), the largest eigenvalue \ of the adjacency matrix is vital in determining the conver-
gence bounds of 3. Moreover, A is also relevant as regards the eigenvector centrality defined by
equation (2.10). Numerical methods may be used for computing the spectrum Spec(G). It
shall in the same sentence be briefly remarked that power iteration computes solely the largest
cigenvalue of a matrix which is diagonalizable. As regards a connected undirected graph G,
the corresponding adjacency matrix A o< G is real and symmetric (recall Remark I in Def-
inition 2.4), why it is diagonalizable and defined for the power iteration algorithm.

221 The Laplacian of Graphs and Connectivity

One may, in fact, conclude whether or not a graph G := {E, V'} is connected by studying
its spectral properties. It may be elegantly done using a theorem proven by Miroslav Fiedler;
in order to fully assimilate it, consider firstly the Laplacian of a graph G.

Definition 2.9. (The Laplacian matrix) The graph-Laplacian matrix £ € RIVIXIVI of some graph
G is defined by,
deg(v;) ifi=1j
(‘C’)’L] =< -1 lf‘(l,]) cF

0 otherwise.

The graph-Laplacian matrix may also be expressed as £ = D — A where
D = diag(deg vy, ..., deg vy ),

is a diagonal-matrix containing the node degree of node i at place (i, %) and A is the adjacency matrix

of G.

Remark I). It shall be noted that the node degree(s) deg v; may be obtained by the product
A1, for which case the i:th row corresponds to the degree of node v;.

Remark I1). The Laplacian is positive semi-definite and the smallest eigenvalue is A1 (£) = 0.

Astonishingly, the connectivity of an undirected graph is related to the spectral property
of its graph-Laplacian; if the second smallest eigenvalue of L is strictly positive, then it is
equivalent to the graph being connected (de Abreu, 2007). If Ao(L) = 0 therefore, there
are at least two disconnected components of the graph, meaning that for some nodes it is
impossible to reach one another by any walk on the graph. Furthermore, values Ao(L£) ~ 0
may be interpreted as the graph being close to disconnected.
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2.3 Eigenvector Ccntrality

The eigenvector centrality measures the centrality of nodes in an undirected graph G :=
{E,V} by taking into account the neighbors’ significance. To further elaborate, the cen-
trality of a node is set as proportional to the sum of centrality scores of its neighbors. The
measure is justified as follows; let z; denote the centrality score of some node v; € V and let
I be the index set of all neighbors of v; and

T; = I{_l Zl’], (22)

jeT

for some proportionality constant £ € R. Now, recall for the adjacency matrix A that
(A)ij = 1 it the nodes v; and vj are adjacent and 0 otherwise. Therefore, the formula
equation (2.2) in terms of A o< G equates to

Vi

xTr; = /ﬂil Z(A)UI'] (23)

j=1

It shall be noted by equation (2.3) that a node v; attains high centrality if e.g., it has many
neighbors (under assumption that they have positive centrality scores) or by having highly
influential neighbors which themselves have high level of centrality — or both. In matrix
form, equation (2.3) is equivalent to

AX = kX, (2.4)

where the #:th row of X correspond to the centrality score of node v; under some parameter
k. Thus, as may be noted from equation (2.4), X is an cigenvector of the adjacency matrix
A and K is an eigenva]ue. If‘positive centra]ity scores are desired i.e., every component in X
shall be strictly positive, it is implied by the Perron-Frobenius theorem that an eigenvector
which can guarantee this property is one which corresponds to the cigenvalue K = A See
Theorem 2.1. Therefore, after determining A and x correspondingly, one may normalize it
according to

_osgn(X)

- — ) (25)
%2

X4l

where sgn(X) := £1 has the same sign as the components in X and || - [|2 is the % norm. This
guarantees that all elements become strictly positive.

Definition 2.10. (Eigenvector centrality) The eigenvector centrality of an undirected graph G :=
{E, V'} is determined from any eigenvector X which corresponds to the eigenvalue A = max A(A),
_sgn(X)

)_(+ . — X. (26)
%2

The i:th row of X is the centrality score of node v; € V' under the normalization equation (2.5).
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2.4 Bonacich 5-Centrality

The Bonacich -centrality measure is a centrality measure used widely in network analysis,
which quantifies the power of influence of a node. Its mathematical definition is as follows.

Definition 2.11. (Bonacich 3-Centrality) The Bonacich S—centrality measure (BBM) scores the
relative level of centrality of each node v; € V' of an undirected, connected graph G := {E,V'}
which has adjacency matrix A € RIVIxIVI

+oo
— Z BEARTLY (2.7)

k=0

where B € R and 1 is a |V'| dimensional column vector in which all entries equal 1. The i:th row of
¢(1, B) contains the centrality measure of node v; (Bonacich, 1987).

The BBM equation (2.7) has an expected value interpretation under certain conditions for
B > 0. Based on the original article, assume firstly that each neighboring pair of nodes
may communicate mutually with each other. Moreover, let 3 be the probability that once a
message has been sent, it will be passed on by the receiving node, to any of its neighbors. A
message can not be passed on until it has been received, although initia]ly each node sends out
messages to all of its neighbors. Recalling Remark I1I) under Definition 2.4 of the adjacency
matrix, it shall be noted that for power n = 11.e., A!, the number of walks of length n = 1
from v; to any other node in v, including itself, equals the sum of the 7:th row of A. Note also
that (A'); = 0, as naturally there are no walks of length 1 which immediately lead back to
the node itself. Thus, the i:cth row-sum for A equals the degree of v; and is also the number
of initiated walks by node v; i.e., the number of messages initially senc,

Vi
# initiated walks from v; = degv; = Z A;; = (AL),. (2.8)

Component-wise, the centrality for any node v; € V' is determined by

V] 400
= Z Z 5k(Ak+1)ij, (Ak)ij = # walks of length k from v; to v;.

j=1 k=0

That is, ¢; is the weighted (or “dampened”) sum of all walks, of any length, from v; to any
other node v; € V| including v; itself. The dampening effect may be explained as follows.
Assuming that the graph is non-trivial i.e., V| > 2, one obtains the lower bound A > 1; the
min-max theorem can be applied to compute the largest eigenvalue, and it follows

3\ 1 2|F -1
A= sup XTAX>— <_ ) |V|Zdegv | | 2(|V| )>1_

N Wi Vi =W
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In accordance with the parameter bound equation (2.9), A>1 implies | 3] < 1 and naturally
B% — 0as k — +o00. In analogy with the expectation-interpretation ie., given 3 € RT,
the fact that 8% — 0 may be interpreted as walks of length & — +00 are asymprotically
impossible, irrespective of how many they are and for any given start and end node in the
graph. Small values of 5 puts more weight on the local structures network whereas larger
values, the structure globally (Bonacich, 1987). It can be proven that convergence of the
series equation (2.7) can be established if

1
- 29

where ) is the largest eigenvalue of A. The closed form of equation (2.7) and inequality above
may be jointly proven as follows, wherein it shall be noted that 8 may indeed also be negative.

Proposition 2.1. The B—centrality equation (2.7) converges if | 5| < 1/ where A := max A(A)
and has the closed form,

(Id — BA) AT,
where Id is the identity matrix of dimension |V'| x |V/|.

Proof. Firstly, it shall be noted that equation (2.7) is equivalent to,

¢(1,8) = {Z(ﬁA)k} Al (2.10)

k

The spectral radius of A clearly is,
p =B\

It follows from the Perron—Frobenius theorem that \ is strictly positive and is larger than or
equal to the absolute values of all other eigenvalues that regards A; see Theorem 2.1. More-
over, the bracket in equation (2.10) shall be recognised as a Neumann series, which converges

to the closed form if and only if p < 1,
>_(BA) = (1d— pA),
k

and the proof may be concluded,

18] <

> =

The proof of Proposition 2.1 may also be conducted by proceeding from the following theo-
rem.



17

Theorem 2.2. If X is a Banach space and the bounded linear operator represented by A has an
operator norm within the unic circle ie., |Al]* < 1, then (Id — A)~" exists and is furthermore
bounded; the series converges in operator norm,

(1d— A)~ ZAk

See (Renardy & Rogers, 2010).

The second proof of the closed-form expression of the BBM accordingly follows.

Proof of Proposition 2.1. Firstly, given that SA is linear, bounded and the adjacency matrix A
is real and symmetric, the operator norm can be determined by

IBAJ]" = max /A ((BA)T(5A))
= max |5]v/A:(A?)
= max |5 \(A)]
=B,

given A\;(A?) = A?(A). Therefore, if 18]\ < 1 and equivalently |8| < 1/, then according
to Theorem 2.2,

—+00

(10— 6A) = 3 (BA)"
k=0
This concludes the proof,

+oo
C(l,ﬁ) _ Z/BkAk+1]l
k=0

+00
{Z ,@kA’f} Al
k=0

= (Id — BA)'AL

Aremark to the BBM is that the measure usually converges to the eigenvector centrality when

= (1/A)
lim ¢(1,p8) =x, (2.11)
B—=(1/X)~

where X is a scaling of the eigenvector corresponding to the largest eigenvalue of A (see
Definition 2.10), if A distinctively is the largest eigenvalue of the graph. There are cases of

symmetrical graphs where the limit does not hold — the reader is referred to the examples

which are presented in the origina] paper (Bonacich, 2007).
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The BBM is versatile in the aspect that other centrality measures can be derived from it, for
certain choices of 3. To elaborate, as aforementioned, if 5 — (1/5\)_ one usually obtains the
cigenvector scores; if 8 := 0, then instead one obtains the degree centrality scores i.c., the
i:th row of ¢(1, 0) equals the degree of node v;. This may be formally postulated as follows.

Proposition 2.2. The BBM equals the degree centrality for B := 0 i.e.,
(c(1,0)); = degv;.
Proof. Trivially, one has
c(1,0) = iookA’f“ﬂ = Al.
k=0

We will now investigate some properties of the BBM and firstly look to the following lemma
and propositions.

Lemma 2.1. If the series
: .
Z aB8*, ar €R
k=0

converges in in the open ball Bo(r) which has radius v € R then the sum f(B) := 3,25 ay*
is differentiable in Bo(r) and

f 0 = =9 <=
_ k __ k1l _ k—1
a—ﬂ_%Zakﬂ _Z%[akﬁ}—zmkﬁ < +00.
k=0 k=0 k=0
Proof. See for instance (Hunter, 2014). [ |

Proposition 2.3. All encries in (1d — BA) ™" are continuous and differentiable on the closed ball
By:={feR:|f]| <9 <1/A}

Proof. As (Id — BA) ™! accains finite value for any | ] < 1/, the series associated with each
eNtry must converge i.e.,

((Id = BA) ™)y = 1dij + B+ (A)yy + 52 - (A%)y5 + -+

+oo
k=0

Each term is a continuous function of 8 and the series converges uniformly on By. To see

this, apply the Weierstraf M-test for fi(8) := BF(AF)

i

sup fi(B) < 9 [(AM);] = my..

BeEBy
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As the ball By is completely covered by the open ball ]Bo(l/jx) the series corresponding
((1d—BA)1),; for B € By converges. Furthermore, it converges absolutely on By; see p.71
in (Hunter, 2014). One can therefore be sure that

ka < +00.
k

Uniform convergence may be concluded as the criteria of the M-test are satisfied. Thus,
((1d — BA)™1),; is continuous; see Th.1.9, p.24 in (Andrews, 1998). Lemma 2.1 implies that

it is differentiable i.c.,

a((ld—ﬁA)_l)ij_3+w k k;”_Jroo k—1( A kY
35 _%;@(A)”_;w (A");; < +oo0.

An interesting property of the BBM is that it may be posed as an ordinary differential equa-
tion.

Proposition 2.4. The BBM defined by equation (2.7) for |B] < ¥ < 1/ is a solution ro the
time-variant homogeneous system

5o =R(E)e, ol = c(1,6) @1

where A\(ﬂ) = (Id — BA) A
Proof. Differentiation with respect to § of the closed form of the BBM ¢ := ¢(1, §) yields

dc  0(1d— BA)!

1d — BA)
B 0 98

_ —19(
Al =—(1d — BA)™ 5
Id— BA)'A(1d — BA)'AT
Id — BA) A c(1, B)
(B)c

(1d — BA) AL

I I
>> ~—~ ~—~

Remark. The differentiation with respect to 3 is performed entry-wise in (Id — SA)~" and
is justified by Proposition 2.3. It shall furthermore be noted that each entry of the derivative
attains finite value.

The entries of A(+) are shown to be continuous on the ball By according to the proof of
Proposition 2.3, on which the system equation (2.12) therefore attains a unique solution, to
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be specific the BBM; to justify this assertion, it shall be noted that _K() is locally integrable
on any open ball centered at the origin B C (—1/A,1/)) C R,

Z@A)

k=0

+o0
ds <A [ D IEA)k" dE < +oo

Bs k—o

/ A1 ds < 1al" |
Bg

as follows analogously with the derivation presented in the proof of Proposition 2.8. Hence, it
follows that there is a unique solution to equation (2.12); see Th.6.4.1, p.113 in (Lukes, 1982).
The instantancous rate of change of centrality of any node is therefore determined by the
linear combination of the centrality scores of all nodes at given “time” 3, as clearly follows

algebraically from the expression dc/08 = Ac.
Proposition 2.5. The matrix K(ﬁ) ;= (Id — BA) 1A is symmerric for all | 3] < 1/
Proof. Trivially,

[(1d— BA)"A]T = A(1d — BA) ™!

as the adjacency matrix A corresponding an undirected, connected graph is symmetric by

construction; recall Definition 2.4. As |8 < 1/A the proof may be concluded as the Neu-
mann series allows for

+oo +oo
A(ld—BA)T =AY BFAR =) BFAMT = (1d - BA) T
k=0 k=0

As ./A;() is shown to be symmetric for all | 5] < 1/, its quadratic form can be used to show
boundedness of the derivarive of ||c(1, 8)[]2 and |lc(1, 8)||3 where || - || is the £2 norm.

Proposition 2.6. Given By :={f € R : |f| <V < 1/)\} and ¢ == ¢(1, B) for 5 € By,

|| ||2 A 2
BleanﬁA( (B))lle H2<§ 95 S:;BﬂA(Aw))HcHQ- 2.13)

Proof. Clearly, for the standard inner product (-),

19[c3 10 1 dc e _ oe\ /=~
5 852 —5%[00]—5 |:C % % C:| <C,%>_<07A(B)C>a

as ;&(5) is real and symmetric; see Proposition 2.5. Accordingly, it can be concluded that

LOllel3 _ r3
> o8 =c A(P)c.
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Moreover, A() can be diagonalized as

~

A(B) = Q(B)TAB)QD),

where Q(+) is an orthogonal matrix and A(-) = diag(A1, A2, ..., Ajy|) is constituted by the
eigenvalues of A(-). It then follows that

cTA(B)e = cTQ(B)TA(B)Q(B)c
= (Q(B)e)TA(B)Q(B)c
= UTA(ﬂ)’U7

using the assertion v = v(f3) := Q(/)c. It shall in the same sentence be remarked that

vTo =Y 0} = Q)T Q(B)e = le]l3. (2.14)

The upper bound of equation (2.13) may so be attained in accordance with equation (2.14),

V| 4
TRE)e =3 Mk < sup MAG) T ok = swp Al

BEBy BEBy

Analogously for the lower bound,

V] Vi
Ble= M\wvi> inf A(A ka = mf NONEDIEE
k=1 BeBy
|
Remark. For the quantity ||c||2, its derivative may also be shown to be bounded:
|lella 0ve-c 1 0 1 1~
= ———c A(B)e, c¢#0. (2.15)
o5~ o5 aeos 0 TR A C7

As shown in the proof of Proposition 2.6, the quadratic form has the bounds

inf A(A(B))]cl3 < cTA(B)e < sup MA(B))|lc]l3

BEBy BEBy
and it is implied from equation (2.13) and equation (2.15) therefore, that

a ~ o~
int ARG)ell < 25 < sup AAG) el
BEBy BEBy

Lastly for this section, it shall be proven that the quantity ||¢(1, §)]|1 for any | 5] < 1/ has
a tight upper bound.
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Proposition 2.7. For any |3] < 1/5\,

~

A
1—|B|A

le(L, B) Il < V1,

where |V | is the number of nodes in the underlying graph and || - ||1 is the €* norm.

Proof. Firstly,

le(1, B)ll = 11(1d — BA) AL}y < [|(1d = BA) [ A]*[1 1],

= AV max /A (10— 5A) 1)

= 5\|V| max \//\12 ((Id = BA)™Y),

recalling that Id — SA is symmetric. According to Lemma 2.2, Id — BA is PD if | 5] < 1/;\
Since (Id — BA) ™! likewise is PD, and all eigenvalues indeed are strictly positive for such
matrices, one has

~

A

le(L, B)lh < AV max A; ((1d — BA) ™) = V.

As shown in the proof of Lemma 2.2, it follows that min; \;(Id — fA) > 1 — |ﬁ‘5\ > 0
which concludes this proof;

~

A
1—18]A

le(L, B) 1l < V1.

Remark. If B = 0, then ¢(1, 0) equals the degree centrality, as proven by Proposition 2.2. Since
the underlying graph is connected, each node degree must be strictly positive i.e., degv; > 0
and it shall be noticed that

Vi

le(1,0)[l =D 1e(1,0);| = " [degv| =Y degv < AV,
=1

veV veV
ie., it is implied that the average degree is less than or equal to the largest eigenvalue,

1 R
_ - <
77 U§€Vj degv = deg,,, < A,

which indeed is a familiar result.



23

2.5 The Mean of Bonacich S—Centrality

The following section proposes the derivation of the mean of the Bonacich -centrality mea-

sure (abbreviated MBC). Let firstly v C (=1/A,1/A) be any symmetric interval for which
any inner point 3 € 7 yields convergence of equation (2.7). The MBC shall then defined as

c(y) = ﬁ/c(l,ﬁ) dg, (2.16)

v

where L(7y) denotes the length of the interval v and ¢(1, ) is defined by equation (2.7). Tt
follows algebraically that equation (2.16) is a [V/| X 1 column vector; each entry corresponds
to a node i.e., the i:th row of ¢ corresponds to v; € V. The performance of this quantity and
how it relates to the BBM is presented in Chapter 5. A first generic closed-form expression
of equation (2.16) is derived as follows.

Proposition 2.8. The MBC as defined by equation (2.16) has for every 0 < r < 1/ and symmetric
interval v = (—r, ) the closed form

Ql

(v) = % llog (1d + rA) — log (Id — rA)] 1, (2.17)

for the principal matrix logarichm.

In order to prove this proposition, the following Lemma is used.
Lemma 2.2. The matrices Id & r A are positive definite if |r| < 1/X.
Proof. Firstly, for any i € {1,2, ..., [V|},
N(IdErA) =147\ >1—|r|A > 0. (2.18)
The justification of equation (2.18) is that Id has |V| cigenvalues which all equal 1. The

cigenvalues of Id & A are therefore, up to the sign, the same irrespective of the eigenvalue
correspondences. In other words, the eigenvalues of Id £ rA are the same as £rA but
shifted by 1. Conclusively, Id & A are real and symmetric matrices which have |V| number
of strictly positive eigenvalues and may therefore, in accordance with the spectral theorem,
be decomposed as

Id+7rA =Q'AQ
for some orthogonal matrix Q and diagonal matrix A = diag(\y, ..., Ajy|) which contains the
cigenvalues of Id = rA. To conclude positive-definiteness (PD) and thus the proof, consider
firstly
u' (Id+rA)u=u"Q"AQu = (Qu)"A(Qu).

Let nowy := Qu = (v, ..., y|v‘)T # 0 € RV which implies

V]

Yy Ay => Ayl >0
i=1

as \; > 0 and y2 > 0 for at least one 4. [
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The proof of Proposition 2.8 can thus be carried through.

Proof of Proposition 2.8. Firstly, we derive

r 00
Zk: —rA) ]l—i—%fli(rA)k]l

_ 1 [log (Id +7A) —log (Id — rA)] 1
r

The interchange of the series and integral is justified as follows. Clearly,

/ > pEAMdp = { / > ﬁkAkdﬁ} Al. (2.19)
7k 7k

Now, treating the bracket in equation (2.19) one obtains

IDEPNRERN D IERVSE 220)
Tk Y ok

where || - ||* denotes the operator norm. Given ||A||* := max; y/A;(ATA) and baring in
mind that A is symmetric, for the power (A*¥)T = A* one has

|AF|* = max VA{(AR)TAFY = max V(AR = mzaxw)\?k(A),

which implies || A¥||* = max; |[\F(A)| = A*. In terms of equation equation (2.20) this yiclds
[ S isriakds = [ 3716 )
7k T ok

Since || < 1/ for any 3 € 7, the root test implies that the integrand of equation (2.21) is

absolute CO]’IVGTgG]’lt,

limsup 4/ |BA|F = limsup | 8]\ < 1.

k—4o00 k—+o00

For any k£ > 0 the inequality |BA[F < (Ar)* holds. This 1mphes
;\ k < ;\7’ k = —A,
Skt Y0t =

and equation (2.21) by that means satisfies the inequality:

/Zlﬂﬂl’“dﬂél_ﬂr/vdﬂzl_A
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The legibility of the interchange then follows by Fubuni’s theorem. According to Lemma
2.2, the matrices Id £ 7 A are PD and therefore the logarithm terms in equation (2.17) are
uniquely determined; see Th.1.31, p.20 in (Higham, 2008). [ |

The closed form in equation (2.17) of the MBC may be further simplified to achieve a more
compact, one—term identity according to the following proposition.

Proposition 2.9. The MBC defined by equation (2.16) has forany 0 < r < 1/ \ the closed form
1
aly) = 7 log [2(1d —rA)~' —1d] 1 (2.22)
r

for the principal matrix logarithm and v = (—r, 7).
The proof of this proposition relies on the following three lemmas.
Lemma 23. If |r| < 1/, then

rA(Ild —rA)™' = (Id —rA) "' (rA).

Proof. The proof is trivial but is included for illustrative purposes. As recalled by Lemma 2.2,

it is clear that |r| < 1/ yields positive-definiteness of Id — A and the spectral radius of
rA is contained within the unit circle. Thus, it can be ascertained that

rA(ld —rA)t =rA [Z(rA)k] = (Id —rA) "} (rA).
ke

Lemma24. If A\(A), A\(B) € R and AB = BA, then
log(AB*!) = log A & log B — 27ild[log A + log B],

where U : M — M is the matrix unwinding function; see (Aprahamian & Higham, 2014). If
arg \;(A) + arg \;(B) € (—m, 7] for all corresponding eigenvalues of A and B, then

log(AB*!) = log A 4 log B.
See (Higham, 2008).

Lemma 2.5. For any non-singular matrix A € C™*™,
log A* = klog A,

forany k € (=1, 1] and also for k = =1 if \(A)) € R> (Higham, 2008).
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The proof of Proposition 2.9 which regards the closed form of equation (2.16) is carried out
as follows.

Proof of Proposition 2.9. Firstly, it shall be noted under Lemma 2.5 that the following equality
holds, as it was proven in Lemma 2.2 that Id £ r A are PD:

—log(Ild — rA) = log(Ild — rA) !,

This implies that equation (2.17) is equal to
1

— [log(Id + rA) + log(Id — rA)~'] 1. (2.23)
r

Furthermore, as the inverse of a PD matrix likewise is PD and taking into consideration that

the eigenva]ues are real, it follows for any index tuple (2,]) that concerns the eigenvalue
correspondences,

arg \;(Id + rA) + arg \;(Id — rA) "' = 0.

In accordance with Lemma 2.4, the logarithm sum in equation (2.23) may be simplified to a
single logarithm as the matrices are commuting. To prove this assertion, firstly note that

rA(ld —rA)™' = (Id —rA) "' (rA). (2.24)

as it was proven by Lemma 2.3 that equation (2.24) holds under given premise |r| < 1/5\
Thus,

[log(1d 4+ rA) +log(ld — rA)~"] 1 =log [(Id + rA)(1d — rA)~"] 1.
The proof is concluded,
(Id+7A)(Id —rA) ' = (Id = rA) ' +rA(Id — rA) !

I
=
>z
+
]
-
>z
-

k=0 k=1
“+o0o

=2 (rA)f —1d
k=0

Lastly, for the MBC, the closed form of equation (2.17) may also be expressed according to
the decomposition equation (2.25).
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Proposition 2.10. The MBC defined by equation (2.16) has forany 0 < r < 1/ \ the closed form

e(y) = %QXQTH (2.25)

where X € RIVIXIVI s 4 diagonal matrix for which

]_—I—T)\Z
Xzzzl )
( ) n(l-?"/\z)

and Q is an orthogonal matrix, A = QAQT where A = diag(\1, ..., \jv|) contains the eigenval-
ues of A andy = (—r, 7).

Proof. It shall firstly be noted that because Id + rA is PD, as concluded by Lemma 2.2, it is
diagonalizable as

Id+rA =QA.Q" =Q(d+rA)QT =1d + rQAQT,

where A is a diagonal matrix containing the eigenvalues of A. It is therefore implied that

A = QAQT. For the negative sign, using this fact yields
d—7A=1d - rQAQ" = QQ" — rQAQ" = Q(Id — rA)Q" = QA_Q".

The principal matrix logarithm is analytic for the given bounds of 7, hence each term in
equation (2.17) may be expressed accordingly,

log(Id £rA) = Qlog(A+)Q" = Qlog(ld = rA)QT
which leads to the equality:
log(Id +rA) — log(ld — rA) = Q[log(Id 4+ rA) — log(Ild — rA)]QT.

Since Id & rA are diagonal matrices, one has (log(Id &+ rA)); = In(1 £ 7)\;) which for
X :=log(Id + rA) — log(Id — rA) yields

]-+T>\z
]-_T/\i

(X)ii =In(1+7rX)—In(l —7\) =1n < ) . (X)i; =0Vi# g
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2.6 Barabasi—Albert Model

The Barabasi—Albert Model (BAM) is a graph generative model which may be used to study the growth
and evolution of complex networks. It enables constructions of synthetic graphs that resemble real-life
gmphs such as eg., social networks or the citation networks. In this section, it is assumed that no nodes
are leaving the graphs — only entering them. Furthermore, if a node enters a graph, it must induce at
least one edge to a node that is within the graph.

In the Barabasi-Albert Model (BAM), the graph expands as new nodes are entering it. At
cach time a node is entering a graph, it will “prefer” to induce edges with nodes already
within the graph which have high connectivity. In other words, any entering node have a
preference for nodes with high degree, and this is referred as the preferential atctachment
principle of the model. It is common that complex systems, such as social networks or e.g.,
economic networks exhibit this mechanism of growth and preferential attachment (Barabasi

& Albert, 1999). The preferential rule is mathematically defined as

deg v;

2 F| (2.26)

pi = Pr(entering node connects to v;) 1=

meaning that the probability p; of an entering node is inducing an edge to a pre-existing
node v; is proportional to the degree of v; (Albert & Barabasi, 2002). The attachment model
is stochastic in the sense that any entering node might induce an edge to any node in the
graph. The edge set cardinality |E| does not include the edges that will be connected to the
entering node.

In algorithmic point of view, the input, from which the graph grows in accordance with
the preferential accachment model, is a small connected graph G := G(¢ = 0) constituted
by £ > 0 nodes. At each time instant, a new node is connected to ¢ < {j distinct nodes in
the graph, according to the probability equation (2.26). The procedure terminates when the
total number of nodes reaches some specified amount n > €. Clearly, the number of nodes
after discrete time ¢ € Ny follows the formula

n(t) = EO + t, n(O) = £07

because at each time instant a new node enters the graph, which increments the node set
cardinalicy by 1. Similarly, the number of edges after time ¢ can be calculated as |E(t)| =
Ey+(t, where Ey := |E(0)| is the number of edges in the initial graph GY. Figure 2.5 shows
a BAM-generated graph consisting n = |V| = 20 nodes, generated by £ = 1 and Gy := S;.
In essence, the initial graph is a small star and at each time instant, just a single “new” node
is entering the network.
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Figure 2.5: A generated Barabasi—Albert graph which has [V| = 20 nodes; the preferential
attachment is £ = 1 and the initial graph is S5.

2.6.1 Degree Dynamics

The most distinctive property of a Barabasi-Albert network, given large enough population
size and stabilization, is its scale-free degree distribution i.e., the degree distribution is a
power-law in accordance with

P(k) ~ k™ (2.27)

where k denotes the degree, P(k) is the probability that a randomly selected node has a
connection to k other nodes i.c., that its degree is k. Many real life networks possess this
property (Barabasi & Albert, 1999). Consequently, given a largely populated graph, it is
expected that some nodes have high degrees, whereas the vast majority has significantly lesser
connectivity. To conclude, the BAM generates so called random scale-free networks (SFN),
which have the aforementioned properties and degree distribution according to equation

(2.27) for v =~ 3.



Chapter 3
Markov Processes

This chapter provides a brief outline of Markov processes and related theory which is incorporated
in the information propagation model. Major parts of this chapter is based of Richard Serfozo’s book
“Basics of Applied Stochastic Processes” (Springer); see (Serfozo, 2009).

Markov chains are stochastic processes with a wide variety of applications. Any dynamical
system whose states satisfy the recursion relation

Xn = f(Xn—layn)a n = ]-; (3.1

can be represented by a Markov chain; here f is a non-random, deterministic function and
Y1, Ya... are independent variables which are identically distributed. Any state X, by equa-
tion (3.1) is determined by its previous state X,,_; and some exogenous, random variable.

A stochastic process in discrete time X := {X,, |n > 0} on a finite state set I is defined as
a collection of random variables on (2, F,P). Any X,, € I is referred to as the state of M
at time n. The finite-dimensional distribution of M is stated formally as

Pr(Xo = S0, .-, Xou = Sn),  S0,---, 80 € I' Vn € N.
These are the preliminaries and the definition of a Markov chain (MC) thus follows.

Definition 3.1. (Markov chains) A time-homogeneous Markov chain is a stochastic process in dis-
crete time X 1= {X; | n > 0} on a finite state space I which for any (s;,s;) € I' x I satisfies,
1) IPr(Xn+1 = Sj | X(), ---,Xn) = IPT(X,—L_H = S5j |Xn>
11) p” = ]PI’(Xn+1 = Sj |Xn = Si>'
Here, 1) refers to the Markov property i.e., the future state of the process depends only on its cur-

rent state. Moreover, ii) is the transition probability, that is the probability that the Markov chain
transitions from state S; to Sj. The matrix P := (p;;) is the transition matrix of the Markov chain.
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3.1 Classification of States

Naturally, a Markov chain (from here, abbreviated MC) might return to some state after some
time; if starting in s;, then the sequence of states may be on the form

84355y Skyery Sly Siyee

However, a definite return to a state is not generally true, it depends on the transition
probabilities which define the chain. If for some state s, the only transition probability
is P = 1, it follows that for any m # j,

Pmj = 0.

Consequently, once the MC visits the state S,,, it can never leave it. In such case, the sequence
of states will appear as

Siy S5y Sky+y Sly Smy Smy Smyy «--
Even over indefinite time, a state may be visited a finite amount of times.

Let 7; == min{n > 1 : X,, = s; € I'} ie., the time until the MC reaches state s; for
the first time since its birth. Furthermore, for s;, s; € I'. define fllj = p;j and

G=Pr(ry=n|Xo=5) = Zpik f,?j_l, n>2 (3.2)
k#j

which is the probability that the MC reaches state s, for the first time in n > 1 steps, given
that it was initialized in state s;. Particularly, it is of interest to conclude whether or not
some state 5; finally will be reached from state s;, formally

+oo
fl] = IPI(Tj < +00 | XO = Si) = Z z];
k=1

Definition 3.2. A state s; € I is recurrent if f; = 1 ie., if it is guaranteed to recurn. A state
s; € I'is transient if f; < 1. Furthermore, a recurrent state is said to be positive recurrent if
E[7; | Xo = s;] < 400 and otherwise, null recurrent.

A state s; is accessible from state s,
S8 — S5,

if there exists some n > 1 for which pf; > 0. In this contex, the states s; and s; are said to
communicate under the equivalence relation,

8 < S5,

ifSi — Sj and S5 — S;.
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3.2 2-State Markov Chain

This thesis takes particular interest in 2-state Markov chains. Alcthough they might perhaps
be the most trivial MC:s there are, they have properties which are sought—after, to regulate
the susceptibility of nodes in the information propagation; the reader is referred to Section
4.2 for further details about the incorporation of MC to the IPM. As there are only two states
needed to be raken in consideration, if p1; := a and pas := b for some a, b € [0, 1] then it
must follow that

p2:i=1—a, pr:=1-0

as these COTTﬁSpOl’ld to the complementary events. C]ear]y, the transition matrix then has t]’lf.‘

a l1—a
St

form

If'a,b # 0, then both states communicate and are recurrent. A discrete time-homogencous
MC constituted by on]y two states I 1= {81, 52} 18 diagrammatieally represented in Figure
3.1; the direction of the arrow shows to which state is transitioned to. Using graph theory
notions, each edge (7, j) is directed from state s; to s; (nodes) and the weight of the edge is
the transition probability.

P11
P21

P12
P22

Figure 3.1: A diagrammatic view of the transition probabilities of a 2-state MC. It is worth-
while to compare this view with Figure 4.2, which depicts the inherent MC for
each node, which regu]ates the node’s susceptibi]ity.



Chapter 4

Models

As stated, one of the aim objectives is to investigate how the centrality of the initiator node affects the
information propagation globally over the graph. To facilitate the understanding of the importance
of the initiator node, an information propagation model is devised (which will be referred to as IPM
throughout the report) which emulates the spreading over a graph; the information propagation is
within this model induced by a single node, which enables us to measure the impact of centrality.
The time it takes for the information to reach the entire graph can be assessed against the centrality
ranking of the single node from which the spreading is induced; see Chapter 5 for further details in this
application.

41 Network Constructions

One of the research objectives is to attain understanding of how the theoretical centrality of
the initiator node of the information spread affects the propagation globally. Ideally there-
fore, a graph generative model should cause some nodes to be (definitely) more central than
others with respect to the metrics that are applied within this thesis. In similar regard, it is
assumed that the centra]ity rzmkings correlate with the degrees of the nodes i.e., that each
centrality metric yields similar rankings to those obtained from the degree centrality. The
reason for this assumption is the relation which the BBM has with the eigenvector and de-
gree centrality — either (usually) can be derived from the BBM by specification of the 3. The
same can of course be said about the MBC, as it is constructed from BBM, although it is not
intrinsically regarded as a centrality measure.

The requirements of the graph generative model can thus be reduced to only generating
graphs which have exponentially decreasing node distributions. It is reasonable to assume
that most real social networks have exponentia]]y decreasing node distributions, as it is of
common conception that some individuals have bigger social circles than others. In a theo-
retic point of view, the nodes which represent the most “popular” individuals have the highest
degrees in this analogy. These networks are scale-free and the IPM algorithm is therefore per-
formed on graphs generated by the Barabasi—Albert model. To allow for further comparison,
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the IPM will also be performed on a real observed social media network by Stanford univer-
sity. This is an undirected connected graph which is constituted by 4,039 nodes and 88,234
edges (Mcauley & Leskovec 2012; SNAP: Network datasets: Social circles n.d.).
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4.2 Information Propagation Model (IPM)

The first step of the model is to calculate and assign the theoretical centrality score for each
node. An important node is defined to be in the top 1% of the centrality rankings; conversely,
an unimportant node is within the bottom 1%. The information propagation is initiated by
a single node, which is referred to as the initiator node of the spread. Thereafter, the infor-
mation propagates through the graph as the nodes are transmitting it to adjacent nodes. In
simulations of the IPM, the initiator is either randomly selected from the group of impor-
tant nodes or from the group of unimportant nodes — or cither, meaning that the initiacor is
randomly selected from the set of nodes of the whole graph, which the model is performed
on. The IPM runs in discrete time.

Anode can either be susceprible or insusceptible of information. Throughout the lifetime of the
model, any node alternates between these two conditions of susceptibility. This is indepen-
dently regulated by an inherent 2-state MC assigned to each node; the state space is defined
as

= {susceptib]e, insusceptib]e} . (4.1)

Naturally, this construction induces the property that any node can not be simultancously
in both states. Each node also has an attribute which tells whether or not it has received
the information. The information defined in the IPM, in its abstraction, is immutable and
can be cloned infinitely many times. Therefore, if a node transmits the information to all
adjacent nodes and from there, once they have received it, the information continues to be
transmitted to forthcoming adjacent nodes, and so forth.

A node by default always transmits the information if it is susceptible and has already re-
ceived it. Information is never simultanecously transmitted from a node at the time instant it
receives it; transmission happens at earliest at the succeeding time instant of the time instant
in which the node receives the information. Information is also never transmitted from an
insusceptible node, although the node might possibly have received the information at an
earlier stage of the process. Inherently, information is also never transmitted from a node
which has not received it, irrespective of this node’s susceptibility state. The spreading pro-
cess continues until all nodes in the graph have received the information; the IPM terminates
thereof. The susceptibility status of each node is as said determined by a 2-state MC for the
given state space defined in equation (4.1). Mathematically, the transitions are formulated
for every node v; € V' as

Paus—insus (Vi) := Pr(v; is insusceptible at time ¢ 4 1 | v; is susceptible at time t)  (4.2)

and analogously for the reverse transition Pipsus—ssus (Vi); the complementary event is of course
that the node remains in its current state e.g.,

psus—>sus(vi) =1- psus%insus(vi)

Furthermore, it is assumed that the inherent MC of each node is time-invariant.
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Recelve7 message Informed; not susceptible

/

AN

Receives message

/

Receives message

Initiator Initiator

(A) (B)

Figure 4.1: A possible situation of the information spreading, which happens locally on a
region of the graph which the IPM is performed on.

At the initiation of the information spreading, which happens at time ¢ = ¢, the suscepti-
bility of each node is randomly generated i.c., for any v; € V

Dinic(v;) := Pr(v; is susceptible at time £),  v; # Viniviator- (4.3)

As a node by definition must be susceptible in order to transmit the information, naturally
the initiator node is susceptible by default i.e.,

pinir(vinitiator> = ]Pr<viniri:1ror is Susceptible at time tO) = 1

A possible local scenario of the propagation is depicted in Figure 4.1, which provides a prin-
cipal overview of the process. In figure, white nodes are susceptible, but have yet to receive
the information. Black nodes are insusceptible; they can not have received the information
at an carlier stage, as in this example the initiator node starts the information spread. White
nodes with a marked cross are both susceptible and have received the information — thus,
they transmit the information. Lastly, the grey node is insusceptible, although informed.
The time instant (A) shows that information is transmitted from the initiacor node to all
adjacent nodes; both adjacent nodes to the initiator node are susceptib]e and thus they will
receive the information. In the succeeding time instant, that is shown in (B), one of the
neighbors of the initiator node is still susceptible and thus transmits information; the other
neighbor has received the information, but has transitioned into the insusceptible state from
the previous time instant, and thus no information is transmitted from this node.
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[t is assumed that the graph is immutable, or non-dynamic, during the lifetime of the IPM. In
other words, the graph structure is time-invariant, or at least any re-structuring of the graph
happens with much slower pace relative to that of the information propagation. As a remark,
the model, as in how the information is transmitted, could of course be applied to dynamic

graphs.

1- Psus—insus

Pinsus—sus

insusceptible
susceptible

Psus—insus

1- Pinsus—sus

Figure 4.2: A diagrammatic view of the susceptibility state transitions.

The transitioning from one state to another may be regarded as an independent Bernoulli
trial; the time spent in certain state before transitioning to another is therefore first success
distributed. The time which a node v; e.g., spends as susceprible before transitioning to insus-
ceptible state has distribution

Tsus—)insus(vi> S G(psus%insus(vi))-
Accordingiy, the expectation of this quantity is

1
E[Tsus%iiisus\(vi)] = (44)
Psus—insus (U’L)
the reader may see (Shao, 2014). Nacturally, if po—yinss(vi) = 0, then E[Tsinsus(vi)] —
+00. Obviously, if it is impossible to transition to insusceptible from susceptible, the ex-
pected time spent as susceptible goes to infinity as the state is never left. In the same regard,
given DPsus—ssus (UZ> = 1 - psus%insus<vi) — 17 because Psus—sinsus (UZ> — 07 it fOHOWS
1
E[TSLls—)5t15<vi)] = — 1
psus%sus(“’i)

meaning that the time spent as susceptible until susceptible againis lie., at the succeeding time
instant. This obviously is in agreement with conception, as Das—inas (V) — 0 means that the
MC never leaves the state susceptible, once in this state.
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Concluding this chapter, the 2-state MC enables us to regulate the nodes’ susceptibility as in
how they enable transmission of information. In limit-sense therefore, the time which each
node spends in a specific state depends on how the transition probabilities are defined. As
demonstrated, if e.g., Dsus—sinsus (Vi) = 0 for some node v;, then it is expected that it spends
long time as susceptible until cransition, compared to if Poys—sinsus (Vi) & 1 for which case it
is expected that transition happens much more rapidly.



Chapter 5
Simulations

This chapter has three parts; the first part demonstrates the centralicy measures comparatively and
qualitatively for synthetic graphs generated by the Barabasi—Albert model. More particularly, the the
Bonacich [-centrality measure will be compared to the following: the MBC, the eigenvector centrality
and the degree centrality. As already stated, the MBC is not intrinsically considered a measure of
centrality, but is nevertheless included to assess possible similarities with the BBM. As for the second
part, the information propagation model (IPM) performed is performed on synthetic graphs, generated
by the BAM-algorithm. In the ending of this chapter, in the third section, the same simulation is
performed as in the second part, but for real network data observed from Facebook.

5.1 Study of Centrality Rankings

Let Ggam X A be generated according to the BAM-algorithm for £ = 2 and n = 102, where
A is the corresponding adjacency matrix. Furthermore, let the initial graph be defined as
Ss. The following measure of likeness between two centrality score vectors ¢q, ¢3 € RIVIxt
with respect to the adjacency matrix A, is applied:

Vi

~ o~ ~ 1
A(cq, 9, A) = Z |c1i — Col, €=
i=1

e, =12 (5.1)
maxy, ||

The scaling of each vector according to equation (5.1) naturally yields that the scaled entries
lie in [ — 1, 1]. Moreover, the entry-wise subtraction of ¢; and ¢y correspond to the direct
difference in the (scaled) centrality score calculated for each node, and equation (5.1) is the
aggregation of the absolute values of these differences. A large value of A indicates that there
is dissimilarity in the rankings between the measures. Figure(s) 5.1-5.4 show scatter plots of
the MBC, eigenvalue centrality and degree centrality against the BBM; similar to equation
(5.1), all Centrality vectors are here scaled by their respective reciproca] of the maximum
absolute value.
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Notably, the MBC and the eigenvalue centrality show similarity in the scatter plots in how
they relate to the BBM, although, as can clearly be read in Table 5.1, usually the MBC has
lower dissimilarity to BBM compared to the eigenvalue centrality, judging by the values of

A,

BBM 3 :=1/2)\ | BBM 8 := —1/2\ | BBM B3~ 1/XA | BBM3:=0
Measure | A Measure | A Measure | A Measure | A
MBC 8.99 | MBC 14.57 MBC 5.17 | MBC 12.67
Degree 13.40 | Degree 9.82 Degree 17.77 | Degree 0
Eigen 6.72 Eigen 19.14 Eigen 0.01 | Eigen 17.78

Table 5.1: Dissimilarity scores determined according to equation equation (5.1); we compute
A for various parameter choices of the BBM against the degree centrality, eigen-
centrality and the MBC — each with respect to Gpan.

It can generally be said for this experiment that the big “mass” of centrality scores are con-
centrated in the lower range, as apparent in Figure(s) 5.1-5.4 (in the lower left corners). It can
furthermore be noted, for this experiment, that the measures are re]ative]y similar in terms
of how they assign the scores; for instance, nodes which are assigned centrality values in the
range [0, 0.2] by the BBM for 8 := 1/2) mostly are assigned the same values by the MBC,
as shown in Figure 5.1. Although, there are certainly exceptions to this observation as e.g.,
demonstrated in the same Figure 5.3, where it can be noted that a node receives a centrality
score of &2 0.35 by the eigenvalue centrality and ~ 0.6 by the BBM for 3 := —1/2X. More-
over, there is slightly bigger dispersion in the scatter plots corresponding 5 := —1/25\ for
the BBM; see Figure 5.2.

As a final remark to conclude this section and experiment, as far as highly ranked nodes
are concerned, the measures produce similar rankings. This is evident from Table 5.2, which
presents the top ten nodes with highest centrality score for each measure computed on Gam
in this experiment; To clarify, the node labels lie in the interval [0, 999]. Noticeably, all mea-
sures determine the node which has label 0 as most central in Gyay — we refer to this node
as U from here on. As can be concluded from any scatter plot corresponding the degree cen-
tra]ity in Figure(s) 5.1-54, unambiguous]y has the highest degree. A remark in chis regard
is that Gigan is generated by nodes successively entering the graph, and inducing edges with
nodes which already have high connectivity. Therefore, the “carly” nodes have high chance of
ending up with the highest degrees, which is possibly the case for ¥; in this experiment, each
measure also deem © as most central.



Rank Position

112131415 |6 |7 |8 ]9 |10
Measure
BBM (3 :=1/2A 037111019175 |22]33
BBM 3 := —1/2)\ 017|113 [19]22(10]33|55]17
BBM 3 := 0 (Degree centralicy) |0 |3 |71 |5 10|17 |6 |19 |18
BBM B ~ 1/ (Eigen centrality) | 0 | 7 {3 | 1|19 [ 10|22 |17 {33 |5
Degree centrality O(3(7]|11(5 [10]17]6 |19 |18
Eigenvector centrality 07|31 [19]10(22]17 3315

41

Table 5.2: The top ten highest ranked nodes computed for each measure on Gay in this
experiment; the table displays the labels of these nodes. The node which has label
0 has the highest Centra]ity according to each measure.
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Figure 5.1: Scatter plots for the BBM given 3 := 1/2) against the MBC, eigencentrality and
the degree centrality - each computed with respect to Gpawm.
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Figure 5.2: Scatter plots for the BBM given f := —1/2X against the MBC, eigencentrality
and the degree centrality - each computed with respect to Gpawm.
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Figure 5.3: Scatter plots for the BBM given 3 ~ 1/\ against the MBC, ecigencentrality and
the degree centrality - each computed with respect to Gpawm.
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Figure 5.4: Scatter plots for the BBM given 3 := 0 against the MBC, eigencentrality and the
degree centrality - each computed with respect to Gan.
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5.2 Information Propagation Simulations

In this section, the IPM is applied on synthetic graphs which are generated according to the
BAM-algorithm for £ = 2 and n = 103 throughout; furthermore, the initial graph input to
the BAM shall be defined as S,. In accordance with the construction of the IPM, the graph
structure is stationary across intra-simulation runs. In modeling aspect, this reflects that
communication takes place with much faster pace than the pace of any potential re-shaping
of the graph structure as e.g., induced edges or nodes leaving the graph. Furthermore, the IPM
simulation will be performed on the same graph, which will be referred to as A o Gyawm,
where A is the corresponding adjacency matrix. The reader is referred to Appendix B for
principal code implementation.

The purpose of this simulation is to investigate the time until all nodes in the graph have
received the information; in accordance with the IPM rules, the information propagation is
induced by the transmissions of the nodes and as a whole initiated by a single node, which we
refer to as the initiator node. In order to quantify the impact of centrality, the information
propagation is Compared against the Centra]ity ranking of the initiator node. As shall be re-
called, an important node is defined to be within the top 1% in centrality scores. Conversely,
an unimportant node is any node which belong to the bottom 1%. The centrality metrics ap-
plied in this experiment are the following: the eigenvector centrality, Bonacich’s B-measure

and lastly, the MBC. As regards the S-measure, the parameters are set as 8 := :tl/2;\, where

~

A= max \;(A).

The IPM is independently run 10* times on the same BAM-generated graph. Each simulation
run is set to terminate before the next is initiated i.e., one simulation run is fully performed
when the information has reached the entire graph. The status of the initiator node is divided
into three categories: i) an important (top 1% in centrality rankings) ii) an unimportant
(bottom 1%) and lastly iii) an arbitrary node; the latter is randomly selected from the node set
corresponding Gpan, irrespective of its centrality ranking. Furthermore, for each simulation
run the initiator node is chosen randomly within the set of nodes which belong the same
category. At the beginning of each simulation run, the attribute for each node is reset i.c.,
all nodes v; # iy have of course not received the information, whereas vi,;. has as it is the
source of the spreading. The susceptibility for each node at the beginning of the information
spread is random according in accordance with equation (4.3),

1
Dinic(V;) := Pr(v; is susceptible at time tg) := 3 Ui 7 Viniciator-

In this experiment, the transition probability from either susceptibility state to the other is
set as equal i.e., for any node v; € V' o Gam

1

psus—>insus<vi> - pinsus—>sus<vi) ==
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Hence, as motivated by equation equation (4.4), the expected time spent in either state is

E[r] =2

Results for the MBC

Figure 5.5 shows the simulation results for the MBC; the ordinate shows the mean of the num-
ber of nodes which have received the information over 10? simulations against time, which is
displayed on the abscissa. Notably, the curves corresponding each category of initiator node

do have che similar “s”

-shape; the overall result output suggests that the centrality status of
the initiator indeed node has impact on the pace of the transmission globally. This is partic-
ular evident in time-regions close to ¢y := 0; it can for instance be seen in figure that at time
t = 5 the average number of informed nodes is 400 for the important initiator — whereas it is
only 25 for the unimportant initiator. Furthermore, the information has reached the entire

graph at t = 20 for the important initiator and at ¢ = 25 for the unimportant.

1000

e
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Average per 10000 simulations
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/ —— Avg. informed - initiator is significant
Avg. informed - initiator is insignificant
—+— Avg. informed - initiator is arbitrary
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Figure 5.5: Curves of the mean number of informed nodes over 10* simulations for each
category of initiator; the centrality scores are determined according to the MBC and the
graph which the IPM is performed on is generated by the BAM for the intitial graph S, and
¢ = 2. The total number of nodes is n = 1,000.
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Figure 5.6: This plot shows add-on to Figure 5.5, namely curves of the average number of
newly informed nodes per time instant over 10 simulations, for each category of initiator
node.

Figure 5.6 contains the same curves as in Figure 5.5 and the average number of newly in-
formed nodes per time instant. The peak of the number of newly informed nodes per time
instant occurs sooner for the important initiator node. Naturally, the peaks also occur at
the inflexion point(s) of the curves of the number of informed nodes. Furthermore, the peak
width of the curve corresponding the important initiator is narrower compared the curve
corresponding the unimportant initiator; altogether, from a dynamic point of view and ir-
respective of the centrality status of the initiator node, the rate of the propagation reaches
a maxima from which it subsides definitely. It shall also be remarked that the spreading ap-
pears as more protracted for the unimportant node, as the peak is much more “smeared” over
time.

Results for the Eigenvector centrality and Bonacich’s S-centrality

The IPM is performed with regard to the eigenvector centrality and BBM for 3 := 1/25\.
The results are shown in Figure 5.7. Principally, the outcomes are the same as when using the
MBC (Figure 5.6) suggesting that the choice of measure, in mean-sense, has no significant
impact in this experiment.
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5.3 Information Propagation Simulation on Real Network

In this section, the IPM is applied on a Facebook graph; it is undirected, connected and con-
stituted by 4,039 nodes and 88,234 edges. A depiction of the graph can be seen in Figure 5.8.

Let Gracebook X Afacebook- The IPM is performed for two cases where the MBC and the
BBM (using 3 := 1/2)) are applied respectively;

~

A= m?X )\z’(AFucebook)'

The IPM is performed in total 10 times for each category of initiator node. Furthermore, as
in previous simulations, the transition probabilities are set as,
1

DPsus—insus (U’L> = Pinsus—ssus (Ul) ==

and the initiating probability as,

1
pinit(vi) = 57 vv’i 7é Uinic -

The results of the simulation for the MBC are presented in Figure 5.9; plot (A) shows the
average number of nodes which have received the information against time, over 10% simu-
lations. Moreover, the plot (B) is a zoom-in of (A) over a limited time range. Notably, the
curve of newly informed nodes corresponding the important initiator node increases rapidly
at to := 0 and from there, it is smooth; for any other type of initiator node, the curve is
smooth from directly from ¢ = 0. This difference indicates that the important initiator nodes
have high degree, whereas the unimportant do not.

The simulation results for this experiment share many similarities with the result obtained
for the IPM simulation performed for synthetic graphs in Section 5.2; the curves are like-
wise “s”-shaped and also here the centrality of the initial sender has evident impact. A slight
difference is however that the curves corresponding an important and arbitrary initiator are
closer to each other compared to how they are when simulating the IPM for BAM-generated

graphs in Section 5.2.



Figure 5.8: An overview of a Facebook graph on which the IPM is performed on.
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Chapter 6
Discussion

In agreement with intuition, the outcome of the simulations indicate that the centrality of
the initiator node — from which the information propagation is initiated according to the
IPM - has evident impact on transmissions globally; the information is on average spread
significantly faster if initiated by an important node. A]together, the results suggest that the
centrality measures are able to identify influential nodes in the graph in regard of how they
enable fast spreading in mean-sense. It is furthermore demonstrated by Table 5.1 that there
can indeed be certain dissimilarities between the measures; recall that the graph used in the
qualitative study in Section 5.1 is generated by the BAM with the same parameters used for
the graphs in the IPM simulations. Alcthough for the IPM simulations, evidently these dissim-
ilarities do not seem to affect much. A possible reason for this is that the measures principally
determine the same most central nodes; this possibility is demonstrated by Table 5.2. There
are however certain limitations which needs to be addressed. Firstly, the graphs on which the
IPM do not change over time. Therefore, they do not resemble dynamics most likely to be
observed in real networks. It remains to study dynamical graphs which emulate those of real
networks in order to draw better conclusions of how the IPM acts as a propagation model;
although, the IPM is applicable on dynamic graphs so this scope can easily be expanded.
Moreover, the IPM is very rudimentary and it may at best only rep]icate basic dissemination
mechanisms. In simulations, we have also defined a homogeneous population in the sense
that all nodes have the same transition probabilities for their inherent MC:s, independent
of time. In this sense, it might be worth studying how the information propagation is af-
fected when implementing a time-dependent collective behaviour for various groupings of
the nodes — as a suggestion, one could define the transition probabilities differently for each
groups and let the probabilities be e.g., time-variant and dependent on various state(s) of the

graph.

The measures treated in this thesis can be deemed to relate well to the real settings displayed,
although they are somewhat redundant to one another as they yield similar rankings. In terms
of their applicability, there is indeed a major limitation. If the centrality measures treated
in this thesis were to be applied for a real network as e.g., a social network, one would need
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to know the corresponding adjacency matrix. In addition, it is common for networks to be
massive, which would furthermore lead to high computational cost. An intriguing thought
which could overcome this problematic is to find approximate methods which could approx-
imate the centrality without the need of knowing the full graph — which ideally should also be
aimed to be less computationally expensive. Furthermore, if modeling information spreading
on a real network using the principles of the IPM, one would need to know exactly the graph
structure at all time.

The dynamics of the IPM as they appear in this thesis have similarities with the SIR compart-
mental model; most notably, the “s”-shape of the number of nodes which have received the
information over time. In this analogy, the number of nodes which have received the infor-
mation may be regarded as the number of infectious individuals at certain time, as according
to the IPM, the informed nodes are those that are transmitting the information under the
premise that they are susceptible. In the same interpretation, if the nodes represent individ-
uals within a community, their inherent MC:s regulate their exposure to the network. Any
node v; which has low transition probability p—sinss(vi) and high probability pinsus—ssus (Vi)
is expected to be more exposed to the information (disease) transmitted by adjacent nodes as
it spends more time in an “active” role of the transmission. At the same time, once v; receives
the information (i.c., it becomes infected) and has high exposure still, it will cransmit more in-
formation during the lifetime of the spreading compared to if it had low exposure. The curve
which corresponds to the number of nodes which have received the information per time in-
stant tells in the same context the number of infected individuals — recall however, according
to the IPM they must also be susceptible to transmit the information, or disease in this case. A
major flaw with the SIR-interpretation of the IPM is that the IPM does not account for nodes
becoming “immune” to the information. Hypothetically, if pos—sinsus (Vi) = Dinsus—sus (Vi) 7 0,
this can be interpreted as a scenario in which a disease spreads uncontrollably and the indi-
viduals display the same behaviour pattern irrespective of whether or not they are infected.
In slight dispute with the theoretical arguments which adjudge that the IPM is a poor epi-
demiological model, there are notable similarities still with the curves obtained in this thesis
and those of (Li et al., 2020) (in particular, Fig.1 in the paper); this referred paper conducts
an analysis of the propagation of the spread of Covid-19 in Hubei Province, China. Most
notably, the “s-shape” of number of infected for this real observation indeed has similar ap-
pearance to the number of informed of the IPM. In the same context, the results in this thesis
also highlight that centrality measures could be applicable for assessing the importance of
patient zero’s according to his or hers position in the community.

Lastly for this discussion, we emphasize that the MBC is derived without any deeper reflec-
tion in terms of its usefulness as a centrality metric; this is in itself a suggestion for further
work. One clear benefit of the MBC, unlike the Bonacich S-measure, is that it produces rank-
ings which do not depend on a hyper-parameter. In contrast, it is evident from Figure 1.1 that
the choice of 3 has certain impact of the rankings, which raises the question of how the pa-
rameter should be specified. Regarding the Bonacich measure, the thesis straightforwardly
conducted some treatment of its properties — it was for instance proven in Proposition 2.7
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that the inequality
“C(lvO)Hl = Zdegv < /\|V|7

veV
which is well-recognized in literature, indeed can be derived from the BBM. Furthermore, the
eigenvector centrality (usua]]y) and the degree centrality can both be derived from the BBM.
Overall, these aspects might justify furcher study of the measure; a suggestion is to analyze
the dynamical properties of the measure, based on Proposition 2.4.
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Appendix A

Computes the Bonacich g-centrality
over a range of defined values and
plots the scores

import sys

import numpy as np

import matplotlib.pyplot as plt
import networkx as nx

from numpy import linalg as la

def computeBonacichMeasure(adjMatrix, beta):
n = len(adjMatrix[0, :])
return np.matmul (np.matmul (1a.inv(np.add(np.identity(n),
-beta*adjMatrix)), adjMatrix), np.ones((n, 1)))

nbrOfNodes = 10

G = nx.barabasi_albert_graph(nbr0fNodes, 2)

A = nx.adjacency_matrix(G) .todense()

adjacencyMatrix = np.zeros((nbrOfNodes, nbrOfNodes))

for i in range(nbrOfNodes):
for j in range(nbrOfNodes):
adjacencyMatrix[i] [j] = A[i,j]

eigenVals, _ = la.eig(adjacencyMatrix)

eigenVals.sort()

sensitivity = 1 # shall be > 0

lambdaAst = eigenVals[len(eigenVals) - 1] + sensitivity
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29

30

31

32

33

34

36

38

39

resolution_N = 210
intv = np.linspace(-1 / lambdaAst, 1 / lambdaAst, resolution_N)
result = np.zeros((nbr0fNodes, resolution_N))

for i in range(resolution_N):
# strictly real, but format .05 so supress this:
temp = computeBonacichMeasure(adjacencyMatrix, intv[i]).real
for k in range(nbrOfNodes):
result[k] [i] = temp [k]

for k in range(nbrOfNodes):
plt.plot(intv, result[k, :], linewidth = 0.5)

60

plt.grid(color='black', alpha=0.1, linestyle='dashed', linewidth=0.25)

plt.show()
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Appendix B

Information propagation simulation
over a Barabasi-Albert network

import
import
import
import
import
import
import

math

sys

numpy as np
matplotlib.pyplot as plt
random

networkx as nx
statistics

from numpy import linalg as la
from scipy.sparse import csgraph
from scipy.linalg import logm, expm

initProbability = 0.5

# Node class
class Node:

def

self .hasReceivedInformation
self .neighbors = []

self .p_On0ff, self.p_0ff0On
self.isSusceptible = False

def willTransmit(self):

return True

def willReceive(self):

61

# initial probability node ts susceptible Oinit time

_init__(self, isImportant, p_OnOff, p_0ffOn):

p_On0ff, p_0ff0n # transition probabilities
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28 return True

29

2 def setOnlineStatus(self):

31 if random.random() < initProbability:
2 self.isSusceptible = True

3 else:

3 self.isSusceptible = False

35

% def regenerateOnlineStatus(self):

£ if self.isSusceptible:

3 if random.random() < self.p_OnOff:
3 self.isSusceptible = False

40 else:

a if random.random() < self.p_0ffOn:
2 self.isSusceptible = True

43

u # Mean Bomacich Measure (MBC)
55 def getMBC(adjMatrix):

16 sensitivity = 0.01

a7 eigen, _ = la.eig(adjMatrix)

18 n = len(adjMatrix[0, :])

2 return np.matmul (logm(

5 np.add(np.multiply (2, la.inv(np.add(np.identity(n),

51 (np.multiply(- 1 / (max(eigen) + sensitivity), adjMatrix))))),

5 np.multiply(-1, np.identity(n)))), np.ones((n, 1)))

s« # Bonacich Beta-Measure Centrality

5 def getBonacich(adjMatrix):

56 # Computes the beta = 1 / 2 * lambda_hat

57 eigen, _ = la.eig(adjMatrix)

58 beta = 1/(2*max(eigen))

59 return np.matmul (np.matmul (la.inv(np.add(np.identity(len(adjMatrix[0, :]1)),
6 np.multiply(-beta, adjMatrix))), adjMatrix),

6 np.ones((len(adjMatrix [0, :1), 1)))

o # Eigen Centrality

« def getEigenCentrality(adjMatrix):

6 eigVals, eigenVectors = la.eig(adjMatrix)

6 scores = eigenVectors[:, np.argmax(eigVals)]

6 if any(t < 0 for t in scores):
6 scores = (-1) * scores / la.norm(scores)
70 else:
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71 scores = scores / la.norm(scores)
72 return scores

u # Degree Centrality
» def getDegree(adjMatrix):

7 eigen, _ = la.eig(adjMatrix)

77 beta = 0

7% return np.matmul (np.matmul (la.inv(np.add(np.identity(len(adjMatrix[0, :]1)),
7 np.multiply(-beta, adjMatrix))), adjMatrix),

80 np.ones((len(adjMatrix [0, :1), 1)))

81

&2 # GLOBAL PARAMETERS:

& nbrOfNodes, nbrOfImportantNodes = 1000, 10

w1 = 2

ss G = nx.barabasi_albert_graph(nbrOfNodes, 1)

ss A = nx.adjacency_matrix(G) .todense()

w adjacencyMatrix = np.zeros((nbrOfNodes, nbr0fNodes))

88

» for i in range(nbrOfNodes):

% for j in range(nbrOfNodes):

o1 adjacencyMatrix[i] [j] = A[i,j]

» centrality = getBonacich(adjacencyMatrix)

s populationSorted = sorted(range(len(centrality)),

% key = lambda x: centrality[x], reverse = False) [-nbrO0fNodes:]
7 important = populationSorted[-nbr0fImportantNodes:]

s unimportant = populationSorted[0: nbr0fImportantNodes]
929

100 p_Oanf, p_OffOn = 0.5, 0.5

o Nodes = [None] * nbr0OfNodes

e for i in range(nbrOfNodes):

103 if 1 in important:

104 Nodes[i] = Node(True, p_On0ff, p_0ff0On)

105 else:

106 Nodes[i] = Node(False, p_0OnOff, p_0ff0On)

107

108 for j in range(nbrOfNodes):

109 if adjacencyMatrix[i] [j] > O:

110 Nodes[i] .neighbors.append(j)

111

2 nbrOfSimulations = 1le2

i timeLimit = 1000
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print("run simulations...")
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# RUNS SIMULATION FOR important NODES

simulationResults = dict()
for i in range(timeLimit):

simulationResults[i+1] = list()

informedResults = dict()
for i in range(timeLimit):

informedResults[i+1] = list()

run = 0

while run < nbrOfSimulations:
print (run)
run += 1
for i in range(nbrOfNodes):

Nodes[i] .hasReceivedInformation = False

Nodes[i] .setStatus()

initiator = random.choice(important)

Nodes[initiator] .hasReceivedInformation = True
Nodes[initiator] .isSusceptible = True
activeSenders = list([initiator])

generations = 0
total_informed = 1
breakSimulation = False

while total_informed < nbrOfNodes:

nbrO0fInformed = 0
generations += 1

simulationResults[generations] .append(total_informed)

activeSendersUpdate = []
for i in activeSenders:

if Nodes[i].isSusceptible:
if Nodes[i] .willTransmit():
for neighbor in Nodes[i] .neighbors:
if Nodes[neighbor] .isSusceptible:
if not Nodes[neighbor] .hasReceivedInformation:

if Nodes[neighbor].willReceive():

total_informed += 1

nbrOfInformed += 1

Nodes [neighbor] .hasReceivedInformation
activeSendersUpdate.append (neighbor)

True
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if total_informed == nbr0fNodes:
breakSimulation = True
break
informedResults [generations] .append (nbr0fInformed)
activeSenders = (activeSenders + activeSendersUpdate) .copy()
for i in range(nbrOfNodes):
Nodes[i] .regenerateStatus()

meanimportant = []
generations = []
ct =0
for i in range(timeLimit):
tempRecipients = simulationResults.get(i + 1)
if len(tempRecipients) > 1:
generations.append(i + 1)
ifi+1-ct>1:
sys.stdout.write("Error in simulation")
break
ct =1+ 1
tempMean = statistics.mean(tempRecipients)
meanimportant.append (tempMean)

mean_info_important = []
generations_info = []
ct =0
for i in range(timeLimit):
tempRecipients = informedResults.get(i + 1)
if len(tempRecipients) > 1:
generations_info.append(i + 1)
ifi+1-ct>1:
sys.stdout.write("Error in simulation")
break
ct =1+ 1
tempMean = statistics.mean(tempRecipients)
mean_info_important.append (tempMean)

# RUNS SIMULATION FOR unimportant NODES

simulationResults = dict()

for i in range(timeLimit):
simulationResults[i+1] = 1list()

informedResults = dict()
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for i in range(timeLimit):
informedResults[i+1] = list()

run = 0
while run < nbrOfSimulations:
print (run)
run += 1
for i in range(nbrOfNodes):
Nodes[i] .hasReceivedInformation = False
Nodes[i] .setStatus()

initiator = random.choice(unimportant)

Nodes[initiator] .hasReceivedInformation = True
Nodes[initiator] .isSusceptible = True
activeSenders = list([initiator])
generations = 0
total_informed = 1
breakSimulation = False
while total_informed < nbr(OfNodes:
nbrOfInformed = 0
generations += 1
simulationResults[generations] .append(total_informed)
activeSendersUpdate = []
for i in activeSenders:
if Nodes[i].isSusceptible:
if Nodes[i] .willTransmit():
for neighbor in Nodes[i] .neighbors:
if Nodes[neighbor] .isSusceptible:
if not Nodes[neighbor] .hasReceivedInformation:
if Nodes[neighbor].willReceive():
total_informed += 1
nbrOfInformed += 1
Nodes [neighbor] .hasReceivedInformation
activeSendersUpdate.append(neighbor)
if total_informed == nbrOfNodes:
breakSimulation = True
break
informedResults[generations] .append (nbr0fInformed)
activeSenders = (activeSenders + activeSendersUpdate) .copy()
for i in range(nbrOfNodes):
Nodes[i] .regenerateStatus()

True
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meanINSIGNIFCANT = []
ct =0
for i in range(timeLimit):
tempRecipients = simulationResults.get(i + 1)
if len(tempRecipients) > 1:
ifi+1-ct>1:
sys.stdout.write("Error in simulation")
break
ct =1+ 1
tempMean = statistics.mean(tempRecipients)
meanINSIGNIFCANT. append (tempMean)

mean_info_unimportant = []
ct =0
for i in range(timeLimit):
tempRecipients = informedResults.get(i + 1)
if len(tempRecipients) > 1:
ifi+1-ct>1:
sys.stdout.write("Error in simulation")
break
ct =1+ 1
tempMean = statistics.mean(tempRecipients)
mean_info_unimportant.append (tempMean)

# RUNS SIMULATION FOR ARBITRARY NODES

simulationResults = dict()

for i in range(timeLimit):
simulationResults[i+1] = 1list()

informedResults = dict()
for i in range(timeLimit):
informedResults[i+1] = list()

run = 0
while run < nbrOfSimulations:
print(run)
run += 1
for i in range(nbrOfNodes):
Nodes[i] .hasReceivedInformation = False
Nodes[i] .setStatus()

initiator = random.choice(populationSorted)
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26 Nodes[initiator] .hasReceivedInformation = True
27 Nodes[initiator] .isSusceptible = True

288 activeSenders = list([initiator])

289 generations = 0

290 total_informed = 1

291 breakSimulation = False

292 while total_informed < nbrOfNodes:

293 nbrOfInformed = 0

1 generations += 1

295 simulationResults[generations] .append(total_informed)
296 activeSendersUpdate = []

297 for 1 in activeSenders:

28 if Nodes[i].isSusceptible:

299 if Nodes[i] .willTransmit():

0 for neighbor in Nodes[i] .neighbors:

01 if Nodes[neighbor] .isSusceptible:

302 if not Nodes[neighbor] .hasReceivedInformation:

03 if Nodes[neighbor].willReceive():

304 total_informed += 1

305 nbrOfInformed += 1

306 Nodes [neighbor] .hasReceivedInformation = True
307 activeSendersUpdate.append(neighbor)

308 if total_informed == nbr0fNodes:
309 breakSimulation = True
310 break

3 informedResults[generations] .append (nbr0fInformed)

n activeSenders = (activeSenders + activeSendersUpdate) .copy()
n for i in range(nbrOfNodes):

o Nodes[i] .regenerateStatus()

315

1 meanARBITRARY = []

w generations = []

s ct =0

w  for i in range(timelLimit):

320 tempRecipients = simulationResults.get(i + 1)
Bt if len(tempRecipients) > 1:

£ generations.append(i + 1)

323 ifi+1-ct>1:

324 sys.stdout.write("Error in simulation")
325 break

26 ct =1+ 1

37 tempMean = statistics.mean(tempRecipients)

08 meanARBITRARY . append (tempMean)
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mean_info_ARBITRARY = []
ct =0
for i in range(timeLimit):
tempRecipients = informedResults.get(i + 1)
if len(tempRecipients) > 1:
ifi+1-ct>1:
sys.stdout.write("Error in simulation")
break
ct =1+ 1
tempMean = statistics.mean(tempRecipients)
mean_info_ARBITRARY.append (tempMean)

mean_info_important.insert(0, 1)
mean_info_unimportant.insert(0,1)
mean_info_ARBITRARY.insert(0,1)

pltl, = plt.plot(meanimportant, '+-', linewidth = 1, markersize = 2.25)

plt2, = plt.plot(meanINSIGNIFCANT, 'o-.', linewidth = 1, markersize = 1)

plt3, = plt.plot(meanARBITRARY, '~-', linewidth = 1.2, markersize = 2.5)

plt4, = plt.plot(mean_info_important, '*-', linewidth = 1, markersize = 2.5)
plt5, = plt.plot(mean_info_unimportant, '--', linewidth = 1, markersize = 2.5)

plt6, = plt.plot(mean_info_ ARBITRARY, '~-', linewidth = 1, markersize = 2.5)

plt.grid(color='black', alpha=1, linestyle='dashed', linewidth = 0.25)

strIMP = "Avg. informed - initiator is important"

strNONIMP = "Avg. informed - initiator is unimportant"

strABTR = "Avg. informed - initiator is arbitrary"

strIMP_info = "Avg. newly informed at time instant - important "
strNONIMP_info = "Avg. newly informed at time instant - unimportant "
strABTR_info = "Avg. newly informed at time instant - arbitrary"

plt.legend([pltl, plt2, plt3, plt4, plt5, plté6],

[strIMP, strNONIMP, strABTR, strIMP_info, strNONIMP_info, strABTR_info])
plt.xlabel('Time', fontsize=18)

plt.ylabel('Average per ' + str(int(nbrOfSimulations)) + ' simulations',
fontsize = 18)

plt.show()

Il

pltl, = plt.plot(meanimportant, '+-', linewidth = 1, markersize = 2.25)
plt2, plt.plot (meanINSIGNIFCANT, 'o-.', linewidth = 1, markersize = 1)
plt3, = plt.plot(meanARBITRARY, '~-', linewidth = 1.2, markersize = 2.5)
plt.grid(color='black', alpha=1, linestyle='dashed', linewidth = 0.25)

strIMP = "Avg. informed - initiator is important"
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strNONIMP = "Avg. informed - initiator is unimportant"

strABTR = "Avg. informed - initiator is arbitrary"

plt.legend([pltl, plt2, plt3], [strIMP, strNONIMP, strABTR])
plt.xlabel('Time', fontsize=18)

plt.ylabel('Average per ' + str(int(nbrOfSimulations)) + ' simulations'
fontsize = 18)

plt.show()
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