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Abstract

The objective of this thesis is to extend on a previous analysis of health care acces-
sibility for patients diagnosed with a chronic disease in Region Sk̊ane. The previous
analysis resulted in a logistic mixed effects model having municipality as a random
effect and age as a first-degree spline-function. This thesis extends on the random
effects from the previous model in order to analyse the spatial dependencies on mu-
nicipal and postal-code spatial levels. The models being compared are Bayesian
structured additive regression models with latent Gaussian Markov Random Fields.
The spatial dependencies are modeled using a Conditional Autoregressive model, and
a Random Walk is used to approximate a spline-function for age in this framework.
To perform approximate Bayesian inference Integrated Nested Laplace Approxima-
tion (INLA) is used. It is shown that both on a municipal and postal-code level a
Random Walk of order two is preferred for approximating the spline-function. The
difference lies in the spatial dependencies, where on municipal level modeling them
as i.i.d. is sufficient, which is comparable to the previous analysis. Regarding spatial
dependencies with more intricate geographic boarders, such as on the postal-code
level, modeling using a Conditional Autoregressive model is preferred.
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Introduction

There are many ethical ideas that governments stand for and proper implementa-
tion of these beliefs is crucial to the society’s identity. A common example that
many countries wish to achieve is equal health care for their population. A solution
to effectively analysing a certain ”system” and pinpointing weaknesses can be done
through statistical modeling.

Equal health care for all is a concept that is deeply rooted in Swedish culture but
achieving this is not straight forward. One way that Sweden seeks to solve this issue
is by delegating to regions the responsibility of analysing the health care structure
for possible improvements. Region Sk̊ane has particular interest in analysing how
care for those diagnosed with a chronic disease is distributed throughout the region.
To do so they have resorted to a more complex analysis involving statistical model-
ing, compared to previous more simplistic analysis (pairwise comparison). Previous
work on this topic has been done by Lundgren (2021) in partnership with Region
Sk̊ane. This thesis will expand further on Lundgrens final model.

1.1 Chronic disease & Pr1Fys Indicator

A substantial part of the population suffers from chronic illness. For these individu-
als, getting the health care they need can insure a longer and healthier life. Region
Sk̊ane is looking into the factors of why some individuals living in Sk̊ane who suffer
from a chronic illness are not getting the care they need. Pinpointing these factors
could help the region achieve the goal of equal care for all. The approach being used
to measure if individuals with a chronic disease are receiving needed care is by the
Pr1Fys indicator, described as:

”Number of listed patients who received a diagnosis from one of the diagnosis groups
heart failure, coronary heart disease, TIA / stroke, COPD, diabetes, dementia and
/ or atrial fibrillation 19-60 months ago and who were on a physical return visit to
a doctor or nurse, or received a home visit, the last 18 months with a diagnosis from
the same diagnostic group as 19-60 months ago.” (Primärv̊ardskvalitet)

The data used in this analysis is specifically from 2013-01-03 to 2016-06-03. The
indicator shows whether a patient in the group has had a medical care revisit within
the past 18 months relative to the specific date of data collection, 2017-12-31. In
addition to the indicator and data on the patients, postal-code level data describing
socio-economic indicators is available, which is referred to as the Care Need Index.
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1.2. PREVIOUS RESULTS

This data will be used as possible explanatory variables for any differences in health
care throughout Region Sk̊ane.

1.2 Previous Results
This thesis is a continuation of Lundgren (2021) thesis in which he suggests and
compares statistical models to assess variability in availability of health care for the
chronically ill in Sk̊ane. The best fitting model for the study was a Generalized
Linear Mixed Model. Specifically, a logistic mixed effect model with age variable
modeled as a spline function and municipalities in the region modeled as independent
random effects.

1.3 Spatial Analysis with INLA
In this thesis, analysis of the the random effects in Lundgren’s model is carried out.
A limitation in his final model, is the assumption of independent effects of the mu-
nicipalities, potentially ignoring the spatial relation between nearby municipalities.

The analysis will be done on two spatial levels. The first is on a municipal level
which is the same as in previous analysis, giving insight oriented on the health care
availability and providers. The second is on a postal-code level, which is a more
socio-economic oriented analysis.

Here the model will be expanded to include spatial dependence of the random ef-
fects through the use of the conditional autoregressive model. To do so, the model
is specified as a latent Gaussian model with assumption of conditional independence
inducing a Gaussian Markov random field where this expansion can be incorporated.
Additionally in the GMRF framework the random walk is used as an approximation
of the Spline function for the age variable.

We will perform approximate Bayesian inference on this model, which falls into the
subclass of structured additive regression models, latent gaussian models through
the method of Integrated Nested Laplace Approximation (INLA) given by Rue et al.
(2009).
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Data

The data is provided by Region Sk̊ane, compiled from their own database (RSV),
Sk̊anes population register (SBR), and from statistics Sweden (SCB). The data does
not contain any information that could give rise to ethical concern, as all patients
are anonymous.

The purpose of collection of the data is to analyze whether sufficient care is being
provided by the healthcare system to persons who have been diagnosed with a
chronic disease. The data contains factors that may play a role in patients receiving
or not the care that is presumed to be necessary for their diagnosis. Criteria for
the sample is discussed in section 2.1, and modification of the data is described in
section 2.3. The manner in which “necessary care” is defined for the chronically ill
by Region Sk̊ane is based upon the Pr1Fys indicator discussed in section 2.2.

2.1 Sample criterion
The data contains diagnostic groups which are affiliated with a specific code and
each patient is part of one or multiple diagnostic groups. The choice for patients
being used in the sample follow the subsequent criteria:

1. Patient must have been diagnosed between 2013-01-03 and 2016-06-03 with
one or more of the following diseases :

• Heart failure
• Coronary heart disease
• Diabetes (diabetes mellitus type 2, other specified diabetes mellitus, un-

specified diabetes mellitus)
• Chronic Obstructive Pulmonary Disease (COPD)
• Transient Ischemic Attack (TIA) and/or Stroke

2. Patients must be registered at a V̊ardcentral (healthcare center) in Sk̊ane on
the date 2017-12-31.

3. Patient must have affiliation between their postal code and the Care Need
Index (CNI) (found in Statistics Sweden’s database). The CNI is a socioeco-
nomic index composed of the weighted sum of the following variables:

• Age of 65 or older and single
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2.2. THE INDICATOR

• Foreign born (Eastern Europe, Asia, Africa and South America)
• Unemployed between the age of 16-65
• Single parent with children of age 17 or less
• Individuals of age 1 or older who have moved to the area
• Individuals of age 25-64 with low level of education
• Individuals of less than 5 years of age

4. Patient must have postal code corresponding to the municipality of residence,
such information should be stored both in the Listing database and in the
poulation register.

2.2 The Indicator
A quality care indicator ”Pr1Fys” (Primärv̊ardskvalitet) is being used since it pro-
vides a basis of how patients with a chronic disease are prioritized. This indicator
is based upon medical revisits, including home visits of individuals who have one or
more chronic disease such as, heart failure, coronary heart disease, diabetes, COPD,
stroke/TIA, and/or Atrial fibrillation; who were diagnosed 19-60 months prior to a
specific date.

Note: By definition the ”Pr1Fys” indicator also includes dementia as a chronic
disease, this variable is not included in the given data set used for this analysis.

In the data set that is provided the indicator shows whether a patient that has
been diagnosed between 2013-01-03 and 2016-06-03 has had a medical care revisit
within the past 18 months relative to the specific date of data collection, 2017-12-31.

The reason for choosing the time frame of 19-60 months is due to the nature of
chronic diseases, and that patients will most definitely be needing care in that pe-
riod. The reason for choosing a revisit within 18 months and not 12 is due to annual
visits being rescheduled, allowing for a 6 month period for postponed visits. We
assume individuals who have not had a visit within 18 month as not getting their
annual medical visit, and therefore not getting the care they should be receiving for
a person with their diagnosis.

What the Pr1Fys indicator considers to be a revisit for a patient is the following,
a physical visit including a home visit. The visit is valid if done by a doctor or a
nurse of any kind. Furthermore, the diagnostic codes and patients are linked to the
indication of having a visit, as described above.

2.3 Data Modification
When handed the data it had been modified to prepare it for analysis by Lundgren
(2021) who previously worked on modeling with use of this data set. The unmodi-
fied data includes 137,343 observations. A total of 1785 patients were removed from
the original data set due to postal-codes being unavailable from (SBR) and/or CNI
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CHAPTER 2. DATA

being unavailable from (SCB). Due to this we have a remaining 135,558 observations
left.

Further reduction occurs when associating the data with the corresponding shape-
files describing corresponding locations. A shapefile stores nontopological geometry
and attribute information for the spatial features in a data set (ESRI, 1998).

Two different shapefiles were used for the analysis, one being the municipalities of
Sk̊ane and the other being the postal-code areas of Sk̊ane. Additional observations
were omitted when joining the data to the shapefiles. Observations located either
in areas which border Sk̊ane and overlap into the neighboring regions of Halland,
Småland and Blekinge or in areas which are located in these regions but overlap
into Sk̊ane are automatically omitted when using the joining function in R.

When data is joined to the municipality shapefile, there is a reduction of 15 ob-
servations, leaving a final 135,543 observations for modeling. When data is joined
to the postal-code shapefile, there is a reduction of 644 observation, leaving a final
134,914 observations for modeling. The reason for there being more observations
omitted on a postal-code level is due to it being divided into more intricate areas.
Since individuals who are associated with in two different postal-code areas is more
common than individuals being registered in two different municipalities, there are
more observations omitted in the postal-code data.
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2.3. DATA MODIFICATION
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Theory

The first section of this chapter, section 3.1, contains a brief introduction of Gen-
eralized Linear Mixed Models (GLMM), and the models that belong to this class
used in previous analysis by Lundgren (2021). Further in section 3.2 an overview
of GMRF is given, and theory on the spatial and temporal dependence components
of these models. The INLA method which is the inference used for these models is
presented in section 3.3. Lastly, model selection is described in section 3.4.

3.1 Model
The following sections 3.1.1-3.1.6 go through brief theory of GLM’s, LLM’s, GLMM’s,
Logistic regression, Poisson regression, and Negative binomial regression. These are
the models and theory used in (Lundgren, 2021), which play a major part in the
analysis.

3.1.1 Generalized Linear Model
General Linear Models (GLM) are an expansion of the Linear regression Model
(LM). We will start with a brief introduction to LM as a basis to the GLM. In a
multiple linear regression the response variable Yi, having observations i = 1, 2, ...n
is continuous and restricted to having a normal distribution Yi ∼ N (µi, σ2) with
different means µi and constant variance σ2.
In this case the linear predictor ηi is simply the expectation of the response variable
E(Yi) = µi = ηi, shown below ηi is a linear combination of the independent variables
xij’s and parameters βj with j = 1, 2, ...k . Lastly εi ∼ N (0, σ2) is the error term
having zero expectation and constant variance, this term accounts for all random
variation not explained by the linear model; this component will be altered in more
complex models.

ηi = β0 + β1xi1 + ...+ βkxik + εi (3.1)

Continuing with the Generalized Linear Model, the distribution restriction on the
response variable, Yi, are changed to encompass the class of exponential family
distributions which are continuous or discrete.

Yi ∼ exponential family

Some examples are the Exponential, Poisson and Negative binomial regression. The
linear prediction ηi in a GLM is related to the response variable Yi by the link
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3.1. MODEL

function g(·). The link function is typically a function of the expectation of the
response variable or a function of the corresponding odds,

g(E(Yi)) = g(µi) = ηi = β0 + β1xi1 + ....+ βkxik. (3.2)

The Generalized linear model allows us to model discrete data, such as binary data
and count data, or positive data using e.g. gamma distribution. Whereas data in
linear regression is assumed to be continuous. Binary data can only take two values,
which indicate whether an event has occurred or not occurred, respectively. Binary
data follows a Bernoulli distribution. On the other hand count data is made up
of non-negative integers 0, 1, 2, 3..., it indicates the number of times an event has
occurred in a certain time period. Count data can be modeled as e.g. Binomial,
Poisson, Negative Binomial. Further details on GLM and related models can be
found in McCulloch and Searle (2001).

3.1.2 Linear Mixed Model
Linear Mixed Models (LMM) are also an expansion of basic LM and can partly be
expressed as in equation (3.3). LMM and LM share the characteristics of outcome
variable having Normal distribution and being modeled by fixed effects, i.e. the β
parameters. What differs in LMM is that certain parameters are treated as random
effects to account for dependence in the data.

The LMM general model, as in the following equation is defined using matrix nota-
tion:

E(Y | u) =Xβ+Zu+ ε (3.3)

where he fixed effect component β is defined by a column vector of regression coeffi-
cients, and related to the response variable through matrix X. The random effects
component u is as a random vector which gives conditional assumption on response
variable, which can be seen as E(Y | U = u), and it is related to the response
variable through the design matrix Z. The last component is the residual error ε
which is assigned to be normaly distributed, with expectation zero and constant
variance σ2.

The Random effects u are not parameters, rather their variance component is the
parameter. In a simple case all the random effects have constant variance e.g.
u ∼ N(0, σ2

u). In more complex cases, the random effects can be structured into
groups with each group having its own variance, e.g. u ∼ N (0, σ2

uj
) where uj,

j = 1, 2, ..., p represents a specific group. LMM is used when our data is dependent
with correlations between observations, it allows for analysis of ”groupings” in the
data.

3.1.3 Generalized Linear Mixed Models
Generalized Linear Mixed Models (GLMM) are a combination of the GLM and
LMM models. GLMMs allow the response variable to have a distribution from the
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CHAPTER 3. THEORY

exponential family of distributions. Thus the use of the link function g(·) is needed
to provide a relation between the outcome variable and the linear prediction. As
in LMM, the GLMM incorporates random effects to account for the correlation in
the data, allowing the study of variance between these groups of dependencies. The
predicted response in GLMM depends on the fixed effects β and random effects u,
which are treated as random variables. The parameters are the fixed effects β and
the variance components of the random effects σ2

wj
.

g(E(Y | u)) =Xβ+Zu (3.4)

Equation 3.4 shows the structure of a GLMM in a matrix notation. For further
reading and idea of application on GLMs, LMMs and GLMMs can be found in
McCulloch and Searle (2001).

3.1.4 Logistic regression
Logistic regression falls into the class of GLMs and it is the most popular model
for binary data (Agresti, 2006). The response variable is assumed to be Bernoulli
distributed Yi ∼ Be(pi), indicating whether an event has occurred or not by 1 and
0 respectively, with probability described as:

P (Y = yi) =


pi if x = 1

(1− pi) if x = 0.

Expectation of the outcome variable is the probability of the event occurring E(Yi) =
pi = µi and the variance is the probability of the event occurring multiplied by the
probability of the event not occurring V (Yi) = pi(1− pi).

Logistic regression uses the natural log odds of the event happening. The link
function g(·) is referred to as the logit function

g(µi) = ln
(

pi
1− pi

)
= β0 +

k∑
j=1

βjxij (3.5)

The linear predictor is given by

µi = pi = eβ0+
∑k

j=1 βjxij

1− eβ0+
∑k

j=1 βjxij

. (3.6)

Note: The response variable is distributed as Bernoulli, before analysis the vari-
ables of use are aggregated in terms of the response variable to attain a Binomial
distribution for the modeling, i.e. Yi ∼ Be(ni, pi). For each aggregated group i, ni
is the number of observations that have the exact same covariate values, and Yi is
the total number of revisits in that aggregation group.
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3.1. MODEL

3.1.5 Poisson Regression
Another form of regression used to model count data is the Poisson regression. The
response variable Yi is assumed to have a Poisson distribution, with λi indicating
the likeliness of an event occurring in a fixed time interval, s.t. Yi ∼ Po(λi). The
observation variables Yi are count data, the number of events. For Poisson regression
the link function is simply the natural log of the expected value of the response
variable:

ln(λi) = β0 +
k∑
j=1

βjxij, λ = eβ0+
∑k

j=1 βjxij , (3.7)

In the Poisson distribution there is the assumption that the expectation and the
variance are equal

E(Y ) = V (Y ) = λ

It is often the case that this assumption is not fulfilled. This is the case when the
data is overdispersed, meaning that the variance is larger than the expectation. To
deal with this problem negative binomial regression can be used instead.

3.1.6 Negative Binomial Regression
The negative binomial is a generalization of the Poisson distribution for overdis-
persed data. This is accounted for by an extra parameter referred to as the disper-
sion parameter θ.

Allowing each observation Yi to have its own Poisson mean ziµi where zi is a random
multiplicative factor. All the means are distributed randomly around a common
mean which is based on the xi’s, µi = exiβ. The multiplicative factors Zi ∼ Γ(θ, 1

θ
)

are Gamma distributed with θ > 0. Consequently as θ tends to infinity the variance
for Zi tends to zero, the variance for Negative binomial as seen in (3.8) then tends
to µi and the distribution for Yi can be seen as Poisson since the assumption of
expectation and variance being equal is satisfied.

E(Yi) = µi, V (Yi) = µi + 1
θ
· µ2

i , θ > 0 (3.8)

On the other hand if θ is small then the variability becomes large compared to µi.
Here Yi is dependant upon the Zi, (Yi | Zi = zi) ∼ Po(ziµi). the variance can
freely be modeled and we have a solution to our problem. The link function for the
Negative binomial, as for the Poisson, is the natural log of the expected value of the
response variable. To look further into Poisson and Negative Binomial see Cameron
and Trivedi (2013).
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CHAPTER 3. THEORY

3.2 Gaussian Markov Random Fields
In section 3.2.2 GMRF are explained. This is the class of models that INLA fits.
Additionally in this section the importance of the precision matrix and Markov
property is explained. In section 3.2.3, the precision matrix and Markov property
is used when modeling Random Walks for correlated random effects, and when
modeling spatial dependence in section 3.2.5 using the Conditional Autoregressive
model (CAR). In section 3.2.6 Bayesian hierarchical models are briefly introduced,
and finally in section 3.2.7 the structure of the model for this analysis is specified.

3.2.1 Independent Random effects
Random effects are used to take into account variation produced by variables that
are not the primary focus of the study. The Random effects will have a common
Gaussian prior, with a mean µ = 0 and a precision parameter τ to which a prior
will be assigned.

Independent identically distributed (i.i.d.) Gaussian random effects are the simplest
way to account for unstructured variability in the data. For GLMM we have the
model is as shown in equation (3.4). When the random effect is said to be i.i.d. the
u’s will all share the same variance. Lets assume the u’s are divided into groups
wi where i = 1, 2, ..j, depending on certain characteristics that they share. The
assumption i.i.d. implies no correlation between the wi groups, and that they have
the same variance.

3.2.2 Gaussian Markov Random Fields
The types of models that INLA fits can be expressed as latent Gaussian Markov
Random Fields (GMRF) with exponential family observations. Their relation to
structured additive regression models will be shown in section 3.2.7.

Gaussian Random Fields consist of a random vector x having a multivariate Gaus-
sian distribution :

π(x) = 1
(2π)n

2 |∑∑∑| 12 · exp
(
−1

2(x− µ)T∑∑∑−1(x− µ)
)
x ∈ Rn (3.9)

The density of a multivariate random variable x ∼ N (µ,∑∑∑) has following compo-
nents, x = (x1, ..., xn)T , n <∞, with mean vector µ and symmetric positive definite
covariance matrix ∑∑∑, which describes the dependence between the elements in x.

An example that follows this process naturally is the Autoregressive process, AR(1),
it is a simple temporal GRF of order 1. The joint densities can be expressed as in
(3.10). Which can also be expressed as the product of conditional distributions∏n
i=1 π(xi | xi−1) for i = 1, 2, ...n, specifying the conditional marginal distributions.

If the GRF has Markovian properties, allowing for the assumption of conditional in-
dependence, it is called a GMRF. Equation (3.11) is a result of the Markov property
with the definition
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3.2. GAUSSIAN MARKOV RANDOM FIELDS

p(xi | x−i) = p(xi | xj ; j ∈ Ni). (3.10)

The Markov property is that the conditional distribution only depends on a small
set of neighbouring points. As seen here the condition goes from x−i to only neigh-
bours xj where j ∈ Ni

This property is a key role in the efficiency of the INLA method for inference (Rue
et al., 2009). The efficiency of the method is based on the sparsity of the precision
matrix Q =∑∑∑−1, is the inverse of the covariance matrix. The Markov property gives
a sparse precision matrix. The implication of this property can be expressed in the
following theorem, shows the importance of the Markov assumption in the GMRF
to obtain a sparse precision matrix aiding in efficient computations.

Theorem 2.2 Let x be normally distributed with mean µ and precision matrix Q.
Then for i 6= j,

j 6∈ Ni ⇐⇒
∑∑∑−1

ij
= Qij = 0 (3.11)

The theorem affirms that if two points are not neighbours then, Qij = 0. The
sparseness of Q is inherited over to the Cholesky factorization (due to the Marko-
vian property), and is used to optimize computational efficiency. The theorem and
extensive reading on the topic of GMRF can be found in Rue and Held (2005) .

3.2.3 Correlated random effects: Random Walk
The model in Lundgren (2021) has the non-linear dependence for the age variable
modeled as a Spline function of order one. In this section a Random Walk approxi-
mation of the spline that uses GMRFs is shown.

Random Walk of order 1 & 2

Random Walks (RW) describe a curve in time or space, it is a non-linear function
specifying temporal correlation. A Random Walk model can be used to approximate
a Spline function. A Smoothing Spline (S-Spline) is defined by choosing f that
minimizes the penalized least squares criterion (Wang et al., 2018),

n∑
i=1

[yi − f(xi)]2 + λ
∫

(f (m)(x))2dx. (3.12)

In the equation above the m’th derivative of f is denoted as f (m), the sum measures
the ”closeness” to the data while the integral penalizes rapid change in the function
giving a smooth fit, and the smoothing parameter λ creates a ”compromise” between
the sum and the integral.

To approximate the penalty function, a random walk prior on f is used. If the
observations are defined as x1 < x2 < .... < xn, and d is a constant representing the
distance between each observation. Then the integral can be approximated as
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CHAPTER 3. THEORY

∫
(f (m)(xi))2dx ≈ d−(2m−1)

n∑
i=m+1

[Omf(xi)]2. (3.13)

The penalty function is approximated with Om, which is the m’th order backwards
operator.

O1f(xi) = f(xi)− f(xi−1), O2f(xi) = f(xi)− 2f(xi−1) + f(xi−2) (3.14)

O1 and O2 define a Random walk of order one (RW1) and two (RW2) respectively.
Where each step difference is defined as normal and independent:

Omf(xi) iid∼ N (0, σ2
f ), i = 1 +m, ..., n.

In the RW1 f(xi) is only conditionally dependant on the first order neighbours and
independent of all other observation. Similarly for RW2 where f(xi) is conditionally
dependant only on the first and second order neighbours, thus the random walks
being a Markov property, which gives rise to a sparse precision matrix, allowing for
fast Bayesian computations.

3.2.4 Spline : For temporal dependence
The Spline function can be used to obtain a better fit for the model in a regression,
when there is an assumption of non-linear dependence between variables. In Lund-
gren (2021) paper a B-spline of order 1 is used to model the age variable. There we
will instead use the RW as described above, using the random walk as a prior we
can write the model as

Yi ∈ N(f(xi) | σ2), Omf(xi) ∼ N(0, σ2
f ). (3.15)

Which results in a log-posterior distribution.
n∑
i=1

(Yi − f(xi))2

2σ2 + 1
2σ2

f

n∑
i=1

(Omf(xi))2

= 1
2σ2

(
n∑
i=1

(Yi − f(xi))2 + σ2

σ2
f

n∑
i=1

(Omf(xi))2
)
.

(3.16)

3.2.5 CAR : For spatial dependence
Conditional Autoregressive model (CAR) is used when there is first order spatial
dependency, the is the case when a specified geographic area is assumed to be
affected by the neighboring areas. As seen previously the AR(1) model was used
for temporal dependencies of order 1, whereas the CAR(1) model is used for spatial
dependencies of order 1. These two models are similar in how the Markov property
is applied. The CAR(1) model with random vector x ∼ N (0, Q−1

car) is defined as
Besag et al. (1991).
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xi | {xj : j ∼ Ni} ∼ N
 1
κ2 + ‖Ni‖

∑
j∈Ni

xj,
1

τ(κ2 + ‖Ni‖)

 (3.17)

To model areal data with a CAR(1) model, the GMRF is defined as a collection of
random variables x = {x1, x2, ..., xn}. Each of the random variables representing
one of the n spatial areas. The set of areas that neighbour the i’th area is denoted
by Ni, while the parameter κ determines the strength of the dependencies between
neighbours. As κ increases dependence weakens, and as κ decreases dependence
strengthens. By the Markov property two elements, xi and xj, are independent if
they do not share a geographic border. This conditional independence contributes to
the sparsity of the precision matrix Q, which allows for efficient computations.The
values in the precision matrix Q are given by:

Qij =


κ2 + ‖Ni‖ if i = j

−1 if j ∈ ‖Ni‖
0 if j 6∈ ‖Ni‖

(3.18)

Where the the precision value for the i’th area is defined as κ2 + ‖Ni‖, a neighbour-
ing area of i takes value of −1, and areas that are not neighbours take on the value
of 0.

Alternatively the precision matrix can be expressed in matrix format as Q = κ2I +
G, where I is the Identity matrix, and G is the matrix defining the neighbourhood
structure. More details on the CAR model can be found in chapter 6 of Blangiardo
and Cameletti (2015). The spatial dependence between geographic areas will be
modeled as a CAR(1). Specification of how it is structured into the model is given
in section 3.2.7.

3.2.6 Bayesian Hierarchical Model
The main advantage of the Bayesian approach resides in it taking into account un-
certainty in the estimates, and its flexibility and capability of dealing with issues
like missing data (Blangiardo and Cameletti, 2015).

In hierarchical Bayesian models all unknown quantities are treated as random vari-
ables, the model is specified with multiple parameters, used to represent complex
structures with multiple dependencies. The unknown parameters and latent vari-
ables are modeled using prior distributions.

Given a vector y = (y1, y2, ...yn) of n observations with x defined as a latent random
variable. Latent means it is not observed and that it is inferred from other observed
variables which are given. In the spatial case x has high dimension and is therefore
referred to as a latent field. The Bayesian hierarchical model has the following
components
π(y | x, θ) The likelihood of the observations.
π(x | θ) The latent field.
π(θ) The prior distribution, can be thought of as prior beliefs about the data.
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The hyperparameters θ for outcome variable y and for latent field x are treated as
random variables. It can be thought of as prior beliefs about the model and data.
The goal is to make inference on the latent field x. This is done using observations
y, prior π(θ) and Bayes theorem, to find the posterior distribution, π(x, θ | y).

3.2.7 The model
The model structure for this analysis consists of a linear structure for fixed effects,
correlated random effects for age as a RW1 or RW2, and the spatial dependencies
taken into account with a CAR(1) model.

θ = [θ1, θ2]T ∼ π(θ)
v ∼ N (0, Q−1

rw(θ1))
u ∼ N (0, Q−1

car(θ2))
β ∼ N (0, 103 · I)

(3.19)

β are the fixed effects and take on a linear format with prior covariance matrix value
103 · I being the default value given by the INLA package. The v component is the
vector containing the age variables which is modeled by a RW1 or RW2. u is the
random vector which is used to model the spatial dependency by a CAR model, and
the hyperparameters specified as θ2 and θ2 are distributed according to the prior
π(θ). All the latent parameters are collected in the set x, referred to as a latent
field.

x = [β0,β,v,u] ∼ N (0, Q−1), Q =

10−3 · 1 0 0
0 Qrw 0
0 0 Qcar

 (3.20)

The components of x are what construct the latent spatial field η expressed in
the equation below. Since the latent field x is assumed to have a joint Gaussian
distribution, it can be referred to as the Latent Gaussian Model (LGM).

ηi = β0 + ziβ︸ ︷︷ ︸
fixed

+ va(i)︸︷︷︸
Age

+ us(i)︸︷︷︸
Spatial

(3.21)

ηi is the linear predictor which is related to the outcome variable y through a logit
link function g(·). The spatial component is denoted by us(i) with s(i) being the
geographic area of the i’th observation. Similarly the age component is denoted by
va(i) with a(i) linking observation i to the correct age. With all the implications
from above the posterior for the joint posterior distribution of the latent effects and
hyperparameters is

π(x,θ | y) ∝ π(θ)π(x | θ)
N∏
i=1

π(yi | xi,θ)

∝ π(θ)|Q(θ)| 12 exp
[
−1

2x
TQ(θ)x+

N∑
i=1

log{π(yi | xi,θ)}
] (3.22)
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The main objective is to approximate the posterior marginal distributions:

π(xi | y) π(θk | y)

Additionally there are two assumptions for LGM that are important to produce fast
inference (Rue et al., 2009). The first is that the latent field x is Markov, which
makes the latent field a GRMF with sparse precision matrix, and the second is that
the number of hyperparameters is small. In chapter 3.3 it is discussed how the INLA
method estimates on these types of models.

3.2.8 Optimizing Estimation
To speed up the estimation, good initial values for the hyperparameters θ for the RW
and for the CAR are specified. As in section 3.1.4 the variables of use are grouped
in terms of the response variable ”revisit”, to attain a binomial distribution. This
aggregated data is then used to specify four models which correspond to the final
models, but where fixed effects are excluded, and only spatial and temporal effects
are included. Excluding the fixed effects gives few aggregation groups and allows
for very fast estimation of reasonable initial values. From these resulting models
the temporal and spatial parameters are estimated and used as initial values for the
final models as seen in equation 3.20. This prior estimation aids in optimizing the
final model by reducing out unnecessary calculations.
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3.3 How to estimate : INLA

Integrated Nested Laplace Approximation (INLA) is a method for computing Bayesian
inference, used specifically for models that can be expressed as latent Gaussian
Markov Random Fields (GMRF). Large data sets which can be modeled to take
into account spatial and temporal structures are very complex. These data sets
have been shown to be computationally costly to model using the ”traditional”
Bayesian inference method of Markov Chain Monte Carlo (MCMC). This Chapter
gives a brief layout of the INLA method.

3.3.1 INLA procedure

The Goal of the INLA approach is to approximate the posterior marginals of the
latent Gaussian field. INLA consists of three steps proposed by Rue et al. (2009).
Step one approximates the posterior marginal of θ, π(θk | y) using Gaussian and
Laplace approximation. The second step entails computing the Laplace approxima-
tion or simplified Laplace approximation for π(xi | y,θ). The third step combines
steps one and two using numerical integration.

The components of the Latent Gaussian model of interest are the regression pa-
rameters, also known as the marginals for the latent field, and elements from the
hyperprior distribution, which can, for example represent the variance in random
effects or correlation parameters in the autoregressive models.

The posterior marginals of focus are given below, these are obtained from the joint
posterior in (3.23). π̃(· | ·) denotes the approximated conditional densities, i.e.
π(xi | y) ≈ π̃(xi | y) and π(θk | y) ≈ π̃(θk | y). Idealy we would like to obtain,

π(xi | y) =
∫
π(xi | θ,y)π(θ | y)dθ, π(θk | y) =

∫
π(θ | y)dθ−k (3.23)

but these integrals are hard (or imposible), and we instead focus on the approxima-
tions

π̃(xi | y) =
∫
π̃(xi | θ,y)π̃(θ | y)dθ, π̃(θk | y) =

∫
π̃(θ | y)dθ−k. (3.24)

As seen above the terms we need to approximate are π(θ | y) and π(xi | θ,y).

The first step is the approximation of π(θ | y) and estimation of σ̂ which is necessary
for estimating the marginals for the latent field of x and θ. Firstly the joint posterior
of the hyperparameters is rewritten as

π(θ | y) = π(y | θ)
π(y) = π(y | x,θ)π(x | θ)π(θ)

π(x | y, θ)π(y) ∝ π(y | x,θ)π(x | θ)π(θ)
π(x | θ,y) (3.25)
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where the following equality is used:

π(θ | y)π(y | θ) =π(x,y | θ) = π(y | x,θ)π(x | θ)

−→ π(θ | y) =π(y | x,θ)π(x | θ)π(θ)
π(x | y, θ)

(3.26)

Note that the complicated term in π(θ | y) is π(x | y,θ), the other parts are related
to the model definition: π(y | x,θ) are the Bernoulli observations, and π(x | θ) the
latent fields. Approximating π(x | y,θ) gives

π̃(θ | y) ∝
∼

π(y | x,θ)π(x | θ)π(θ)
π̃G(x | θ,y)

∣∣∣∣∣
x=x∗(θ)

(3.27)

where π̃G(x | θ,y) is a Gaussian approximation of π(x | θ,y). Computed by the
Laplace method and at the mode x∗ for the latent field given parameters θ. The
parameter estimates can be found by maximizing ≈ π(θ | y) and posterior marginal
π(θk | y) can be approximated by numerically integrating out θ−k from π̃(θ | y).
Further details can be found in Rue et al. (2009).

The second step is to approximate π(xi | θ,y) which is more difficult due to the
latent field x having large dimensions. The previous approximation was simpler
due to θ having smaller dimensions. This results in a more computationally costly
calculations and inaccuracies, to remedy this Rue et al. (2009) suggest the use of
simplified Laplace approximation, which uses Taylor expansion to a specified order.

There are three ways in which INLA approximates the posterior: Gaussian ap-
proximation, Laplace approximation, and simplified Laplace approximation. The
simplest is to use the Gaussian approximation for π(xi | θ,y). The Gaussian ap-
proximation was computed in (3.27) followed by a few additional computations.
This method is fast, but the approximation is not sufficiently accurate.

The next approach is to use the Laplace approximation

π̃LA(xi | θ,y) ∝ π(x,θ,y)
π̃GG(x−i | xi,θ,y)

∣∣∣∣∣
x−i=x∗

−i(xi,θ)
(3.28)

As shown in Rue et al. (2009), where π̃GG is the Gaussian approximation of the
conditional (x−1 | xi,θ,y) and x∗−i(xi,θ) is the mode. The approximation resulting
from this method is very good, however π̃GG must be recomputed for each value of
xi and each θ, since the precision matrix depends on these values. This results in
costly computations which are not feasible.

Finally, the posterior can also be approximated by the simplified Laplace approx-
imation, which can be seen as a combination of the two previous approaches, this
method allows for efficient, cheap computations and good approximations. This
method is based upon the Taylor expansion to the third order of the Laplace ap-
proximation of π̃LA(xi | θ,y). After attaining the approximations π̃(θ | y) and
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π̃(xi | θ,y) the marginal posterior distributions of interest π(xi | y) and π(θ | y)
can be approximated by solving the integrals from equation (3.25). INLA solves the
integrals numerically by the following approximation

π̃(xi | y) ≈
∑
j

π̃(xi | y,θ(j))π̃(θ(j) | y)∆j (3.29)

Summing over the set of suitable integration points θj selected based on the Gaussian
approximation in equation (3.26), with each point being associated to a weight ∆j,
which is the distance between the integration points. A final note on INLA given by
Morrison (2017): The term Integrated comes from the use of numerical integration,
the term Nested comes from needing π(θ | y) to obtain π(xi | y), and the term
Laplace Approximation comes from it being the method to obtain the parameters
for the approximation.
More in depth specifications for the INLA procedure are found in Rue et al. (2009).
To implement approximate Bayesian inference using the INLA method an R package
is available at https://www.r-inla.org/, as well as many modeling examples, theory,
questions and answers, on the applications of INLA can be found.
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3.4 Model selection
In section 3.4.1 the use of Widely Applicable Information Criterion (WAIC) is ex-
plained to select the best model and to see whether adding a component to the
model to account for spatial correlation on a municipal and postal-code level im-
proves the modeling significantly. In section 3.4.2 the variable selection performed
by Lundgren (2021) is explained, to provide an overview for completeness.

3.4.1 Widely Applicable Information Criterion
The Widely Applicable Information Criterion (WAIC) is a method for estimating
pointwise out-of-sample prediction accuracy from a fitted Bayesian model using the
log-likelihood evaluated at the posterior simulations of the parameter values (Ve-
htari et al., 2017). WAIC assess how accurate Bayesian models are at representing
the data they are modeling, using an approach of estimating out of sample predic-
tive accuracy using within sample fits. WAIC can be thought of as an improved
version of the deviance information criterion (DIC) which is commonly used when
assessing geographic models, the reason WAIC is not as commonly used as DIC or
as Akaike Information Criterion (AIC) is due to it having additional computational
steps, such as the effective number of parameters being computed differently. More
information on different criterion methods used for Bayesian model selection can be
found in Gelman et al. (2014).

The goal is to obtain the expected log pointwise predictive density (elppd). To begin,
the log pointwise predictive density (lppd) of the data is calculated in practice by
drawing from the posterior distribution, where θs, s = 1, ..., S denoted as ppost(θ) in
Gelman et al. (2014).

lppd =
n∑
i=1

log( 1
S

S∑
s=1

p(yi | θs)) (3.30)

The calculated lppd for the observed data y is an overestimate of the elppd for
future data. To remedy this, a correction for the effective number of parameters to
prevent overfitting is applied to equation 3.30 to attain a reasonable estimate of the
elppd. The computation for the effective number of parameters pwaic is as follows:

pwaic =
n∑
i=1

V S
s=1(log p(yi | θ)) (3.31)

where the posterior variance of the log predictive density for each data point is
computed. Summing over all the points yi is done to obtain the effective number of
parameters, and where V S

s=1 is the sample variance. The bias correction is done by
subtracted the pwaic from the lppd to attain the expected log pointwise predictive
density,

êlppdwaic = lppd− pwaic. (3.32)
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The expression above is multiplied by a factor of −2 to make it comparable with AIC
and DIC. In Watanabe’s original definition, WAIC is the negative of the average log
pointwise predictive density (assuming the prediction of a single new data point)
and thus is divided by n and does not have the factor 2 (Gelman et al., 2014). Where
we use:

WAIC = −2lppd + 2pwaic (3.33)

AIC is defined as: AIC = −2 log p(y | θ̂mle) + 2k where the log predictive density
given the maximum likelihood estimate minus the number of parameters estimated
in the model k gives a correction for how much these parameters increase predic-
tive accuracy. AIC is best for linear models. For models with informative priors or
hierarchical structure, the effective number of parameters strongly depends on the
variance of the group-level parameters (Gelman et al., 2014). Thus WAIC is best
for the analysis, comparison between AIC, DIC and WAIC is found in Gelman et al.
(2014).

The WAIC is implemented in R-INLA, and obtained as part of the model fitting. All
the models must be fitted using the same data when comparing multiple Bayesian
models with this method. The WAIC value itself cannot be directly interpreted
but rather the different models WAIC should be compared to each other, and the
preferred model is that with the lowest value.

3.4.2 Variable selection
Here we will use the variables found in Lundgren (2021), and this section is in-
cluded for completeness. In previous analysis the diagnostic group for coronary
artery disease and variables gender, age, and CNI were deemed significant, those
variables were considered when performing the analysis. Significant variables were
determined by:

1. Uni-variate Logistic regression is performed on gender, age and CNI to eval-
uate their relationship with the outcome variable, followed by a multivariate
regressions consisting of all three variables. The age variable was treated in
three different ways: as continuous, as a factor, and as a Spline function. The
latter was the final choice and modeled using B-Spline of order one. Differ-
ent alterations of internal node choice for the B-Spline were considered and
compared using AIC, and significance of individual parameters. The selected
model was compared to the best of the univariate models.

The random effect was studied on the intercept at the municipal level by using
the lme4 package in R to perform analysis of variance between the municipal-
ities. Each municipality was assigned one random effect estimate depending
on the municipal affiliation, details are shown in Lundgren (2021).

From part 2 to part 5 model selection is discussed after having chosen co-
variates with AIC and significance for nested models tested with LTR. Then
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specificity and sensitivity were used determine useful models.

2. Fixed and mixed effect regression model was adapted to the diagnostic group
coronary artery disease. Initially the same model as in part one was used,
but with the use of backwards elimination any insignificant parameters were
removed.

3. Analysis of the CNI index was done by evaluating the weighting and individ-
ual variables significance. The CNI variables were treated as independent and
separately added to the model instead of the full index, and significance tests
were performed. From the model Estimated parameter βCNIi

ware compared
with their weighting constant w and estimates of β’s of entire CNI index βCNI .
Specific details are shown in (Lundgren, 2021).

4. The elastic net was applied using the glmnet package in R for choosing between
algorithmic models. For weighting penalty functions between models, the error
was set to 0.5, both λ values to test the effect of the penalty function on the
variable selection. Since the Spline cannot be combined with an elastic net, an
offset in the linear predictor representing the splines contribution to the GLM
was used.

Note: If there had not been a previous analysis done by Lundgren (2021) an alter-
native approach to selecting the co-variates as applied in (Tufvessson, 2017) would
be used. This is similar to the approach in Lundgren (2021), but modeling the
GMRF and using INLA.
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Results

In this chapter the results are presented for the models on a municipal spatial level
and on a postal-code spatial level. The outline of the analysis performed on each
group of models partly stems on the ”suicides in London” example, in chapter 6.1.2
of Blangiardo and Cameletti (2015). An overview of the data is given in Lundgren
(2021), and here a table of the covariates description can be found in Table A.1 in
the appendix.

4.1 Results
There are eight models fitted having the form as specified in equation (3.22). The
models specified in Table 4.1 have municipalities as the spatial boundaries, and
models spefified in Table 4.2 have postalcode areas as spatial boundaries.

Table 4.1: Model specification on municipal spatial level,
with corresponding linear predictor.

Model Linear predictor
mod.iid.rw1.kom ηi = β0 + ziβ + vrw1 + uiid
mod.iid.rw2.kom ηi = β0 + ziβ + vrw2 + uiid
mod.besag.rw1.kom ηi = β0 + ziβ + vrw1 + ucar
mod.besag.rw2.kom ηi = β0 + ziβ + vrw2 + ucar

Table 4.2: Model specification on postal-code spatial
level, with corresponding linear predictor.

Model Linear predictor
mod.iid.rw1.post ηi = β0 + ziβ + vrw1 + uiid
mod.iid.rw2.post ηi = β0 + ziβ + vrw2 + uiid
mod.besag.rw1.post ηi = β0 + ziβ + vrw1 + ucar
mod.besag.rw2.post ηi = β0 + ziβ + vrw2 + ucar

As shown in the tables above the co-variate fixed effects ziβ in all eight models
is the same, the difference lies in the specification of the temporal and spatial ef-
fects, v and u respectively. Model mod.iid.rw1.kom, is an approximation of the final
model by Lundgren (2021). Model mod.iid.rw2.kom, is similar to the first but, with
temporal effects modeled as a RW2. Model mod.besag.rw1.kom, conditional inde-
pendents regarding the spatial effects is incorporated, with the temporal effect being
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a RW1. Model mod.besag.iid.rw2.kom, also has the incorporation of conditional in-
dependents regarding the spatial effects but, with temporal effect being specified as
a RW2. The models in Table 4.2 have the same specifications as the four previous
models except for having postalcode areas as the geographic boundaries instead of
municipalities.

Before running any of the models, two graphs which assigns the set of neighbors
for each municipality and for postalcode area is specified. The graphs are produced
from two shapefiles, each containing one of the erea boundaries. With use of cer-
tain function in R, both shapefiles are transformed into adjacency matrices to make
them compatible with the R-INLA format, it can then be visualized for the mu-
nicipalities as Figure 4.1 and for postalcode areas as Figure 4.2. As an example
we can see that municipality number 23 being Lund has 8 neighbouring munic-
ipalities: 2:Staffanstorp, 8:Kävlinge, 9:Lomma, 10:Svedala, 11:Skurup, 12:Sjöbo,
23:Lund, and 27:Eslöv.

Figure 4.1: Adjacency matrix for mu-
nicipalities: rows and columns iden-
tify municipality areas; squares iden-
tify neighboring municipalities

Figure 4.2: Adjacency matrix for postal-
code areas: rows and columns identify
postal-code areas; squares identify neigh-
boring areas

Next, data modification is needed where reduction of the observations is specified
in Chapter 2.3. The data and the usable shapefiles are joined by a municipality ID
and postalcode ID, rendering two separate data sets. To optimize estimation of the
models, initial values for the hyperparameters θ are specified as in section 3.2.8.
Once model specification is done for the eight models, they are computed using the
INLA command in R.

The WAIC values are computed to perform comparison of each model based on their
predictive accuracy. Table 4.2 shows these results, where the ”best” models on a
municipal spatial level based on the WAIC value are those with the spline-function
for age approximated as a RW2, i.e. mod.iid.rw2.kom and mod.besag.rw2.kom.
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Table 4.3: The WAIC for each model, WAIC and stan-
dard error for each model wrt mod.iid.rw1.kom set as ref-
erence model.

WAIC WAIC wrt
ref.model

s.e. wrt
ref.model

mod.iid.rw1.kom 134051
mod.iid.rw2.kom 134024 -27 59
mod.besag.rw1.kom 134056 -5 28
mod.besag.rw2.kom 134024 -27 59

Table 4.5 shows the ”best” model on a postal-code level based on the WAIC value
is that with the spline-function for age approximated as a RW2 and spatial depen-
dencies as an Conditional Autoregressive model, i.e. mod.besag.rw2.kom.

Table 4.4: The WAIC for each model, the WAIC and
standard error for each model wrt mod.iid.rw1.post set as
reference

WAIC WAIC wrt
ref.model

s.e. wrt
ref.model

mod.iid.rw1.post 133181
mod.iid.rw2.post 133154 -27 59
mod.besag.rw1.post 132904 -277 101
mod.besag.rw2.post 132877 -304 103

31



4.1. RESULTS

The variables used for all models is listed in Table 4.5, the only difference lies in
spatial identification for the the two sets of models by using kommun ID (33 mu-
nicipalities) and postalcode ID (1317 postal-code areas). The CNI has a range
between 0.7241 - 6.9864 where the mean for individuals in the data set is 2.569.
There are four diagnoses being used, Diabetes, COPD, Coronary heart disease, and
Strokr/TIA, and multiple diagnoses, where a value of 1 indicates the individual is
part of the diagnosis group and 0 indicating that they are not. The gender variable
represents gender of the individual, 0 for female and 1 for male. The age variable
indicates age of individual, going from 1 year of age to 106.

Table 4.5: Variable interpretations and their value.

Variables Interpretation Value
CNI per person CNI per person 0.7241 - 6.9864
diag diab Diabetes diagnosis group 0 or 1
diag kol COPD diagnosis group 0 or 1
diag kr Coronary heart disease diagnosis group 0 or 1
diag str Stroke/TIA diagnosis group 0 or 1
multisjuk Individual with more than one diagnosis 0 or 1
male Indication of gender 1 for males 0 for females 0 or 1
alder 20171231 Age of individual 1- 106
kommun ID municipality ID linking data to shapefile 1 - 33
postalcode ID postalcode ID linking data to shapefile 1- 1317

For the β-estimates for each model, Figure 4.3 is given. The estimates are very
similar for all of the models, where diag diab has a high impact on revisits.

Figure 4.3: β-parameters and their 95% Confidence In-
tervals for each model.
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The temporal effect v defined by the age variable, modeled as a RW1 for models
mod.iid.rw1.kom, mod.besag.rw1.kom, mod.iid.rw1.post, mod.besag.rw1.post, and
as RW2 for mod.iid.rw2.kom, mod.besag.rw2, mod.iid.rw2.post, mod.besag.rw2.post.
All models defined with a RW1 produce the same temporal effect, likewise with all
models defined as a RW2, their plots are shown in Figure 4.4. We see that the prob-
ability of a revisit increases with age up until 84 years for the RW1 and 86 for the
RW2, then slight decreases occurs for all models as the age increases. Additionally
we see the that the models with a RW2 are smoother, and based on the WAIC of
the corresponding models they also have better predictive accuracy.

Figure 4.4: Plots of the age variable modeled as RW1 and
RW2.

For the random effects v and the spatial component of our model, we compute the
posterior mean by extracting the marginal posterior distribution for each area, and
apply the inverse logit transformation.

In Figure 4.5 the map of the posterior mean for each municipality is shown, all four
of the models are very similar, which is supported by the WAIC results from Table
4.3, where values differ no more than by 27. The municipalities in blue indicate
higher probability of a revisit whereas the ones in red indicate areas where there is
a deficiency in revisits. The areas in white, tending to 0.5 signify that there is no
effect on revisits based on the municipality.
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Figure 4.5: Map of posterior mean specified for each mu-
nicipality.

In Figure 4.6 the map of the posterior mean for each postal-code area is shown.
Where it was calculated by extracting the marginal posterior distribution for each
area, and applying the inverse logit transformation. From these models we can see
that the upper areas of Sk̊ane, and a few in the south have a negative effect on the
probability of a revisit. For a more detailed close up of the map, Figure A.2 can be
referred to. For the models with i.i.d for spatial effect there are a few postal-code
areas with no predicted value, this is due to some postal-codes having no observa-
tions. In the models with CAR as spatial effect these empty values are inferred from
the neighbouring areas.

Note: Grey areas on the maps seen in Figures 4.6, 4.7, and 4.8 are due to postal-
code areas not having observations. A closeup map can be seen in Figure A.2 in the
appendix.
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Figure 4.6: Map of posterior mean for all four models
specified for each postal-code area.

Looking specifically at the CNI per person variable which has a range between
0.7241 and 6.9864 given in Table 4.3 to see its effect on revisits in different geo-
graphic areas. A map of the average CNI value per postal-code area is shown in
Figure 4.7. The average mean value is 2.572, this is seen when looking at the map
and legend, where the lighter color represents a lower CNI value, and darker a higher
value.

In Figure 4.8 the map of the posterior mean for the variable CNI per person
in each postal-code area is shown. Similarly to Figure 4.6 the posterior mean is
calculated by multiplying the CNI per person for each observation by the fixed β
value from mod.besag.rw2.post, and then applying the inverse logit transformation.
Here we see that the range of the CNI value is between 0.52 and 0.50. This indicates
that CNI per person has a weak effect on revisits. Note: The model used for both
maps in Figure 4.7 and Figure 4.8 is mod.besag.rw2.post.
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Figure 4.7: Map of Average CNI value for each postal-
code area.

Figure 4.8: Map of posterior mean for the variable CNI
in each postal-code area.
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Conclusion & Discussion

In section 5.1 the conclusion is presented. In section 5.2 possible ideas for further
work regarding this analysis is discussed.

5.1 Conclusion

To conclude on all the models comparison from results in section 4.1, and of previous
analysis is discussed. Note that all the models in this analysis fall into the class of
GMRFs, where the INLA method is applied numerically for efficient estimation of
these models, which otherwise would be computationally costly. The specification
of the initial values for the hyperparameters θ improves the approximation of the
models.

Regarding the fixed effects for all models on a municipal and postal-code level the
estimated β-parameters give the same results, which are also the same as in previous
analysis by Lundgren (2021).

For the splines modeled as RW1s and RW2s we see that probability of a revisit
increases with age up until 84 and 86 years, for all RW1 and RW2 respectively, past
those years revisits begin to decrease with age. For the municipality models the ones
with a RW2 model outperform in terms of predictive accuracy i.e. mod.iid.rw2.kom
and mod.besag.rw2.kom. The model mod.iid.rw2.kom is comparable to the final
model of Lundgren (2021) being a logistic mixed effect model with age variable
modeled as a spline function and municipalities as independent random effects, but
with a spline of degree 2.

For the postal-code models, the model mod.iid.rw1.post is comparable to Lundgren
(2021)’s model but on a more elaborate geographic level, it performed the least well
in comparison to the other models. Model mod.besag.rw2.post is superior based
the predictive accuracy. We see from the maps that in some of the more northern
areas in Sk̊ane there is higher probability of not having a revisit. This could be
due to these regions being rural and distances being greater to health care cen-
ters making them less accessible for individuals. Additionally taking a look at the
CNI per person we see it does not seem to greatly effect the results for revisits.

To conclude, for the municipal models specifying the spatial effects as i.i.d. or CAR
does not seem to influence the models predictive accuracy, however the for best
results the temporal effect must be modeled as RW2. The latter concerning the
RW2 also applies for the postal-code models, where in addition the spatial effects
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modeled as CAR rather than i.i.d is best.

5.2 Further work
There is further work that can be done regarding this analysis:

• Regarding the model mod.besag.rw1.post, where comparison of an identical
model but with separated CNI variables in the fixed effects instead of the full
CNI index is worth looking into.

• Continuing the analysis on specific postal-code areas where indication of high
or low effect on revisits are present.
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Appendix

Figure A.1: Areas with no observations for the models
with spatial effect modeled as i.i.d. where TRUE: no value
& FALSE: yes value.

Figure A.2: Map of posterior mean from mod.iid.rw2.kom
of Malmö.
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Table A.1: Variable description

Indicator variables Interpretation # of 0’s # of 1’s Total
male 1 = males 0 = females 63404 73939 137343
diag diab Diabetes 75115 62228 137343
diag kol COPD 112892 24451 137343
diag kr Coronary heart disease 91301 46042 137343
diag str Stroke/TIA 104804 32539 137343
multisjuk Multiple diagnoses 99879 37464 137343
Continuous variables Interpretation Minimum Maximum Mean
CNI per person CNI per person 0.00 6.99 2.57
alder 20171231 Age of individual 1.00 106.00 70.59
Identification variables Interpretation # of areas
kommun ID municipality ID 33
postalcode ID postalcode ID 1317
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