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Abstract
Entanglement is a fundamental aspect of quantum computation and quantum information pro-
cesses. In this work, we analyse the entanglement of two microwave resonators when connected to a
semiconductor double quantum dot. The two-mode squeezing operation is a commonly used tool
in entanglement creation and, based on this, we utilise the related two-mode two-photon Jaynes-
Cummings model in the theoretical description. We derive the Hamiltonian starting from circuit
quantum electrodynamics, and consider it as an open quantum system described by the Gorini-
Kossakowski-Sudarshan-Lindblad equation. Applying amean-field approximation in themodel, the
Hamiltonian becomes quadratic, enabling the use of symplectic and phase space methods. In this
framework, we derive the continuous differential Lyapunov equation as the equation of motion for
the microwave resonators. The mean-field equations are not solvable analytically in the general case,
and instead numerical methods are employed. Using the Duan criterion, we can calculate how the
entanglement of the two resonators depends on the system. It is found, among other things, that the
driving of the resonators generates entanglement within the mean-field system. We also find a good
analytical approximation for the populations of the resonators.
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1. Introduction

1. Introduction
The field of hybrid light-matter quantum networks has seen significant growth in interest and im-
portance over the last few decades with the advent of quantum computing and quantum informa-
tion technologies [1–8]. This includes areas such as single-photon detection and photonic control of
electrons, including state initiation.

The aim of the thesis is to study phenomena arising from resonant coupling between a semiconduc-
tor double quantum dot (DQD) and two microwave resonators, mainly entanglement between the
single modes of each resonator. This is motivated by the recent experimental work byW. Khan et al.
[9], as well as related theoretical work by D. Zenelaj et al. [10] concerning a semiconductor DQD,
resonantly coupled to a single microwave resonator, which has been shown to be able to act as a con-
tinuous photodetector with high efficiency [9]. The inclusion of twomodes allows for the utilisation
of two-photon interactions which can be controlled in an effective way. In particular, it is possible to
tune the electronic energy levels in the DQD tomatch the sum of photon energies, one from each of
the microwave resonators. If the resonators are also made to have distinguishably different energies,
making them non-degenerate, then we expect resonant two-photon exchange with a single resonator
to vanish in favour of correlated exchange of photon pairs, instead formed by one photon from each
resonator. Such a setup would also allow for greater control of the DQD system via the two res-
onators, while also introducing effects stemming from interactions between the resonators.

TheDQD-resonator system can then be connected via theDQD to nanoscale lead electrodes, and by
extension to other identical DQD-resonator systems, forming a larger network, where the DQDs act
as controllable qubits, and the resonators as controls. The resonators are controlled through a laser
being directed at them, called a drive, forming a coherent source of photons which are itinerant on
the resonators,modulating the photonpopulation, andby extension influencing theDQD-resonator
interaction. As an alternative, the DQD could act as control if it is driven by a current.

The effective Hamiltonian we would like to use for the DQD coupled to two resonators is that of
the two-mode two-photon Jaynes-Cummings model (based on the interaction term involving two-
photon processes for two modes)

Ĥ = ℏω1â
†
1â1 + ℏω2â

†
2â2 +

1

2
ℏΩσ̂z + ℏΛ

(
σ̂+â1â2 + σ̂−â

†
1â

†
2

)
, (1.1)

where ω1(2) is the characteristic frequency of the first or second resonator,Ω is the energy level split-
ting between the states |e〉 and |g〉 in Fig. 1.1, Λ is the coupling strength between the resonators and
the DQD, â†1(2) and â1(2) are bosonic creation and annihilation operators respectively, and the σ̂
are Pauli operators. The system described above, including the relevant quantities appearing in the
Hamiltonian in Eq. (1.1) is illustrated in Fig. 1.1.

The two-mode two-photon Jaynes-Cummingsmodelwas first investigated by S.-C.Gou in 1989 [11]
for two-mode uncorrelated coherent states and two-mode squeezed vacuum states. This model was
then subsequently investigated with correlated pair coherent states [12], correlated SU(1, 1) coher-
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1. Introduction

ent states [13], and two-mode uncorrelated coherent states with atomic motion [14]. We also con-
sider it as an open quantum system,modelling it at the level of theGorini–Kossakowski–Sudarshan–
Lindblad (GKSL) equation with local dissipators as the environment.

Correlated photon exchange between the DQD and the resonators also introduce the possibility of
entanglement between themodes. It is of interest to investigate to what extent this entanglement can
be used for the purposes of quantum information and computation. Thus, the starting point is to
investigate a simpler system consisting of two coupled resonators. The DQD is then added with the
assumption that correlations between the states of the DQD and the resonator are sufficiently small
as to be neglected, constituting a mean-field (MF) approximation, where the DQD and resonators
respectively, only influence each other through the expectation values of their operators. This ap-
proximation makes the states of the resonators Gaussian and enables the use of a set of phase space
tools, including the Lyapunov equation.

...

S
|0〉 |0〉

D

|g〉

|e〉

...

ℏΩ

ℏω1

ℏω2

Figure 1.1: Illustration of the DQD system, with levels |e〉 and |g〉, resonantly coupled to two microwave
cavities according to Eq. (1.1). The DQD is also connected to leads, where the leads represent the empty state,
|0〉, of the DQD in the Coulomb blockade regime. S is the source port, and D the drain port.

The thesis is organised as follows: Sec. 2 covers much of the theoretical basis for the analytical re-
sults presented in Sec. 3, including circuit quantum electrodynamics and transformations. The third
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1. Introduction

section contains the derivation of the effective Hamiltonian in Eq. 1.1. Section 4 introduces open
quantum systems and gives amicroscopic derivation of the GKSL equation. The next section, Sec. 5,
presents the theoretical framework used for treating Gaussian states. Sections 6 and 7, finalises the
setup used for calculations and presents the obtained numerical results, respectively. Section 8 then
discusses the outlook of hybrid networks. Finally, some additional details of the derivations and re-
sults are presented in Appendices A through D.
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2. Quantisation, Models and Transformations

2. Quantisation, Models and Interactions

2.1 Canonical Quantisation
The early developments of quantumphysics were heavily focused on quantising themotions of parti-
cles at the atomic scale, where classical mechanics seemed to no longer be valid [15]. This necessitated
a new theory of mechanics to be developed, whichW.Heisenberg andM. Born called “quantumme-
chanics” [15], first used in the literature by M. Born in 1924 [16]. In these early stages, however,
the electromagnetic field was still treated as classical [15]. Not long after, P.A.M. Dirac introduced
what he called the “method of classical analogy” in his 1925 PhD thesis [17]. This method is used
for quantising a classical theory, specifically by supplanting Poisson brackets in classical mechanics
by commutators according to [18]

{A,B} 7→ 1

iℏ

[
Â, B̂

]
, (2.1)

which is often called the Dirac rule.

2.1.1 First Quantisation
TheDirac rulewas first used in relation to position andmomentum,withPoissonbracket{x, p} = 1

[18], for which it gives [19] [
x̂i, p̂j

]
= iℏδij, (2.2)

generalised to several components with the Kronecker delta, δij . This later became known as first
quantisation, as only the motions of the particles were quantised.

2.1.2 Second Quantisation
Not long after the quantisation of position and momentum, Dirac quantised the electromagnetic
field [20]. Hiswork on the quantisation of fieldswas later built uponby the likes of P. Jordan [21] and
V. Fock [22]. Quantisation of a field involves moving to the formalism of occupation number rep-
resentation, more commonly called second quantisation, in which the occupation of single-particle
states are considered, collectively forming a Fock state. All Fock states combined form a complete
basis for the Fock spaceF (H), as well as the many-body Hilbert spaceH(N). The operators acting
on the Fock space are the creation and annihilation operators, also called ladder operators, defined in
the case of bosons as [19]

â†i |..., ni, ...〉 ≡
√
ni + 1 |..., ni + 1, ...〉 , (2.3)

and
âi |..., ni, ...〉 ≡

√
ni |..., ni − 1, ...〉 , (2.4)

respectively, obeying
[
âi, â

†
j

]
= δij . Here,ni is the occupationof the single-particle stateϕi ∈ H(1).

These operators constitutemappings betweenmany-bodyHilbert spacesH(N), eachwith a different
total particle numberN [23]. Bosonic wavefunctions are defined in symmetric Fock space,F+(H),
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2. Quantisation, Models and Transformations

while fermionic wavefunctions are defined in antisymmetric Fock space,F−(H). A field can then be
expanded in terms of these operators to create the field operators [24]

Ψ̂(r⃗) =
∑
i

ψi(r⃗)âi, and Ψ̂†(r⃗) =
∑
i

ψ∗
i (r⃗)â

†
i , (2.5)

where the ψi(r⃗) are wave functions of a single-particle state and the sum runs over the complete set
of single-particle quantum numbers. This is a crude introduction to quantum field theory, and the
interested reader is referred to e.g. Refs. [24, 25]. For quantisation of the electromagnetic field, see
e.g. Ref. [26]. In representing the electric and magnetic field operators, the operators

x̂i =
1√
2

(
â†i + âi

)
, and p̂i =

i√
2

(
â†i − âi

)
, (2.6)

are often introduced, which are still subject to Eq. (2.2) when ℏ = 1. These are commonly called
quadrature operators in quantum optics [26], and throughout this work, we will use this name to
refer more generally to position and momentum operators.

2.2 Quantum Network Theory and Circuit Quantum Electro-
dynamics

The Lagrangian description of circuit theory has been well known for at least close to one hundred
years [27], but saw significant developments by L.O. Chua in the 1970’s [28]. An extension of cir-
cuit theory to quantum mechanics through canonical quantisation was done by B. Yurke and J.S.
Denker in their seminal paper from 1984 [29]. A decade later, M.H. Devoret built upon their work
to generalise it toHamiltonianmechanics [30], creating the field of circuit quantum electrodynamics
(cQED), a review of which can be found in Ref. [1]. Here, we employ cQED to find the quantum
Hamiltonian for the system described in Sec. 1. The classical Lagrangian and Hamiltonian can be
written as [31]

L = T − U, and H = T + U, (2.7)

respectively, where T is the kinetic and U the potential energy.

2.2.1 Nodal Analysis of Circuits
Nodal analysis is one of two standard methods of circuit analysis, the other being loop analysis [32,
33]. Nodal analysis is done using Kirchhoff’s current law, and loop analysis is done through Kirch-
hoff’s voltage law1. In the method of nodal analysis employed here, the node flux,ϕ, being the time
integral of the voltage V across a capacitor, takes the role of the position coordinate. The conjugate
momentum is the charge q, resulting from the electrochemical potential difference present between
the two capacitor plates [32, 33]. Using this convention for position and momentum, canonical
quantisation through the Dirac rule gives the commutation relation [32, 33][

ϕ̂µ, q̂ν

]
= iℏδµν. (2.8)

1Both methods of analysis can be derived from graph theory.

5



2. Quantisation, Models and Transformations

The classical Lagrangian can be found using matrix notation through [32, 33]

L =
1

2
⃗̇
ϕ⊤C ⃗̇

ϕ− 1

2
ϕ⃗⊤L−1ϕ⃗, (2.9)

whereC is the capacitance matrix andL−1 is the inverse2 inductance matrix. From the Lagrangian,
it is possible to define the momenta conjugate to the node fluxes, from [32, 33]

qν =
∂L

∂ϕ̇ν
=
∑
µ

Cνµϕ̇µ, or q⃗ = C ⃗̇
ϕ, (2.10)

in explicit vector form [33]. The connection between the classical Lagrangian and the classicalHamil-
tonian is the Legendre transformation which in this case reads as [33]

H =
∑
ν

ϕ̇νqν −L . (2.11)

Using the relation in Eq. (2.10) the matrix form of the classical Hamiltonian becomes [32, 33]

H =
1

2
q⃗⊤C−1q⃗ +

1

2
ϕ⃗⊤L−1ϕ⃗. (2.12)

In arriving at this expression, we have ignored any static flux created by the inductors. In case there
are voltage offsets connected to nodes, the offsets do not need to be counted as nodes in themselves.
They instead give terms in the Lagrangian of the form

Lν;n = Cν;n
(
ϕ̇ν − Vν;n

)2
, (2.13)

where Vν;n is the n:th voltage offset to ϕ̇ν, and Cν;n its connecting capacitance. The conjugate vari-
able, qν, will then be modified according to

qν =
∂

∂ϕ̇ν

(
L +

∑
n

Lν;n

)
=⇒ qν +

∑
n

Cν;nVν;n =
∑
µ

Cνµϕ̇µ +
∑
n

Cν;nϕ̇ν, (2.14)

offsetting the charge at the node. Thus, appropriate modification to the charge vector q⃗ needs to be
made when offset voltages are used. It also means that the contribution of the offset voltage to the
capacitancematrix is simply along thediagonal at the locationof thenode it is connected to. Explicitly,
for inversion of the matrix, the modifications that need to be made are

qν −→ qν +
∑
n

Cν;nVν;n, and Cνν −→ Cνν +
∑
n

Cν;nϕ̇ν, (2.15)

for the elements of the charge vector and capacitancematrix respectively. We note however, that a full
treatment of the voltage offsets as nodes will give the same Hamiltonian as above when the charge is
substituted by a voltage at the end and V 2 terms set to zero.

2It is only a true inverse matrix in some special cases. In general, it is merely a matrix of reciprocal inductances.
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2. Quantisation, Models and Transformations

The Euler-Lagrange equation is [31, 32]

d

dt

∂L

∂ϕ̇ν
− ∂L

∂ϕν
= 0, (2.16)

which gives the equationofmotion for the circuit [31–33]. The equation can alsobeused as a verifica-
tion for the Lagrangian being correct. When the classical Hamiltonian has been found, the quantum
Hamiltonian is found through canonical quantisation and the Dirac rule from Eq. (2.8), giving the
quadrature operators [33]

q̂ν = iqZPFj

(
â†j − âj

)
and ϕ̂ν = ϕ

ZPF
j

(
â†j + âj

)
, (2.17)

where the pre-factors are

qZPFj =

√
ℏ
2Zj

and ϕZPF
j =

√
ℏZj
2
. (2.18)

Here,Zj is the impedance andωj the resonance frequency of the circuit. The index j refers to a given
LC-oscillator in the circuit with an adjacent node ν. That is, we have the correspondence j ←→ ν.
The definitions of impedance and frequency can be generalised to [33]

ω ≡ 1√
LC
−→ ω2

j ≡
1

Lj

(
C−1

)
νν
, and Z ≡

√
L

C
−→ Zj ≡

√
Lj (C−1)νν, (2.19)

respectively.

2.2.2 Quantisation of the LC-Oscillator
In the picture where the node fluxϕ is the position coordinate, as shown in Fig. 2.1, it can be defined
as [32, 33]

ϕ(t) =

t∫
t0

V (τ)dτ , (2.20)

which makes V (t) = ϕ̇. The conjugate momentum is then taken to be the charge q. The LC-
oscillator is analogous to a mechanical mass-and-spring oscillator, and can also be shown to corre-
spond to a resonant cavity. The latter correspondence is described in Sec. D.1 of Appendix D. The
role of the mass in the analogy with the mass-and-spring oscillator in the nodal picture is played by
the capacitance C , and the spring constant becomes 1

L
. This analogy suggests that the energy of the

inductor is (ϕ−ϕext.)2

2L
, where ϕext. represents any external flux. The classical Lagrangian of an LC-

oscillator can be found through identifying the potential energy stored on the capacitor as [33]

U =
1

2
Cϕ̇2, (2.21)

which looks like the the kinetic energy whenϕ is taken as the position coordinate. Similarly, we

7



2. Quantisation, Models and Transformations

L

ϕ

C

Figure 2.1: The circuit of a sin-
gle LC-oscillator in the nodal pic-
ture, whereϕ is taken as the position
coordinate. A single LC-oscillator
corresponds to a single HO. The in-
tuition for this correspondence is ex-
plained in Sec. D.1.

identify the kinetic energy which is stored in the inductor as

T =
1

2L
ϕ2. (2.22)

This in turn looks like the potential energy. With potential and
kinetic energy interchanged compared to Eq. (2.7), the classical
Lagrangian for the LC-oscillator becomes

LLC =
1

2
Cϕ̇2 − 1

2L
ϕ2. (2.23)

From Eq. (2.11), the classical Hamiltonian becomes

HLC = qϕ̇−LLC =
q2

2C
+
ϕ2

2L
, (2.24)

and subsequent canonical quantisation according to Eq. (2.17) gives the quantumHamiltonian

Ĥ =
1

2
ℏω
(
â†â+ ââ†

)
= ℏω

(
â†â+

1

2

)
, (2.25)

which is theHamiltonian for the quantumharmonic oscillator (HO). Using the above tools, one can
quantise more intricate circuits. Quantisation of two capacitively coupled LC-oscillators with the
same tools as above is done in Appendix A.

2.3 Two-Level Atoms and Double Quantum Dots
The simplest non-trivial quantum system is comprised of two levels, |e〉 and |g〉, the excited and
ground state respectively. These span a Hilbert space equivalent to a spin-1

2
system [34]. The Pauli

operators can then be written as [34]

σ̂x = |e〉〈g|+ |g〉〈e| , σ̂y = −i |e〉〈g|+ i |g〉〈e| , and σ̂z = |e〉〈e| − |g〉〈g| , (2.26)

which satisfy the commutation relations of the su(2) algebra [35][
σ̂i, σ̂j

]
= 2i

∑
k

εijkσ̂k, and
{
σ̂i, σ̂j

}
= 2δij, (2.27)

where εijk is the Levi-Civita symbol. The corresponding raising and lowering operators are then

σ̂+ = σ̂†
− = |e〉〈g| = 1

2

(
σ̂x + iσ̂y

)
, and σ̂− = σ̂†

+ = |g〉〈e| = 1

2

(
σ̂x − iσ̂y

)
. (2.28)

In the basis (|e〉 , |g〉), the matrix representations of the above Pauli operators are simply the Pauli
matrices [34]. The Hamiltonian of a two-level system which is diagonal in the basis (|e〉 , |g〉) can
then be written as [34]

Ĥ =
1

2
ℏωσ̂z (2.29)

8



2. Quantisation, Models and Transformations

where ω is the transition frequency between the two levels. In the 2× 2 case, the Pauli-z matrix can
also be rewritten as

1

2
σ̂z = σ̂+σ̂− −

1

2
12, (2.30)

which includes an energy shift of the Hamiltonian, but is a form which resembles the number oper-
ator for fermions or bosons, namely â†â.

A DQD is then described by just two levels according to Fig. 1.1. We also wish to include electronic
leads which are modelled by the empty state of the DQD, |0〉, connected to source and drain, repre-
sented by S andD, respectively, in Fig. 1.1. This modifies the Pauli operators of the two-level system
to include a third level, now in the basis (|e〉 , |g〉 , |0〉). For all of the above operators, this simply
amounts to adding a row and column of zeros to their matrix representations. We also introduce the
operators

ŝ†g = |g〉〈0| , and ŝe = |0〉〈e| , (2.31)

for tunnelling into andoutof theDQD, respectively. Theirmatrix representations in the (|e〉 , |g〉 , |0〉)
basis are

ŝ†g =


0 0 0

0 0 1

0 0 0

 , and ŝe =


0 0 0

0 0 0

1 0 0

 . (2.32)

These operators will be used in Sec. 6when setting up the equations for the systemdiscussed in Sec. 1.

2.4 The Baker-Campbell-Hausdorff Theorem
The Baker-Campbell-Hausdorff (BCH) theorem describes the form of a solution for Z to the equa-
tion [36–39]

eZ = eXeY , (2.33)

whereX and Y are some non-commuting operators as part of a Lie algebra. The pioneering work
which lead to the theorem and its solution was due to3 H.F. Baker, J.E. Campbell, F. Hausdorff and
E.B. Dynkin, the latter often being left out, despite important contributions [36]. The theorem and
solution can be stated in differentways (including an integral solution given inRef. [37]). Herewe are
interested in its most common form, which is the series solution in terms of Lie polynomials, known
as the BCH formula4.

2.4.1 The Baker-Campbell-Hausdorff Formula and the Hadamard Lemma
Of interest inmost applications to quantummechanics is the special casewhereX andY areHilbert-
Schmidt operators, which are denoted here by a hat (X̂, Ŷ ). The BCH formula to the first few orders
is then given by [36, 37, 39]

Ẑ = ln
(
eX̂eŶ

)
= X̂ + Ŷ +

1

2

[
X̂, Ŷ

]
+

1

12

[
X̂,
[
X̂, Ŷ

]]
− 1

12

[
Ŷ,
[
X̂, Ŷ

]]
+ . . . . (2.34)

3Related contributions were also made by F. Schur, H. Poincaré and E. Pascal [36].
4For details, the reader is referred to e.g. Refs. [36, 37], and the references therein.
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2. Quantisation, Models and Transformations

The most important consequence of the BCH theorem to quantum mechanics is the Hadamard
lemma (or sometimes just the BCH lemma) because of its use in evaluating transformations as dis-
cussed in Sec. 2.5. The Hadamard Lemma gives the series solution of eX̂ Ŷ e−X̂ to be [19, 37, 40]

eX̂ Ŷ e−X̂ =
∞∑
n=0

[(
X̂
)n
, Ŷ
]

n!
= Ŷ +

[
X̂, Ŷ

]
+

1

2!

[
X̂,
[
X̂, Ŷ

]]
+ . . . , (2.35)

since
[(
X̂
)0
, Ŷ
]
≡ Ŷ . For clarification,

(
X̂
)n refers to n nested commutators with X̂ .

2.4.2 The Zassenhaus Formula and the Kermack-McCrae Identities
The Zassenhaus formula can be described as a dual of the BCH formula where instead of giving a
solution to Eq.(2.33), it gives the solution to eX̂+Ŷ . The formula was first published in a paper by
W. Magnus in 1954 [41] in which he cites unpublished work of H. Zassenhaus. The formula is the
following unique decomposition [39, 41]

eX̂+Ŷ = eX̂eŶ
∞∏
n=2

eCn

(
X̂,Ŷ
)
, (2.36)

whereCn are Lie polynomials. For example, the first two Lie polynomials are given by

C2 = −
1

2

[
X̂, Ŷ

]
, C3 =

1

6

(
2

[
Ŷ,
[
X̂, Ŷ

]]
+

[
X̂,
[
X̂, Ŷ

]])
. (2.37)

An earlier discovery in 1931 byW.O. Kermack andW.H.McCrae [42], is a special case of the Zassen-
haus formulawhen

[
X̂, Ŷ

]
= 1. We can generalise this result slightly by reformulating it as requiring

that [
Ŷ,
[
X̂, Ŷ

]]
=

[
X̂,
[
X̂, Ŷ

]]
= 0, (2.38)

meaning thatCn = 0 for n > 2. This reduces Eq. (2.36) to

eX̂+Ŷ = eX̂eŶ e−
1
2 [X̂,Ŷ ], (2.39)

for normal ordering of the operators, or

eX̂+Ŷ = eŶ eX̂e
1
2 [X̂,Ŷ ], (2.40)

for anti-normal ordering5. Equations (2.39) and (2.40) are referred to as the Kermack-McCrae iden-
tities or as the disentangling theorem6 [26].

5Proofs or derivations of the normal-ordered Kermack-McCrae identity can be found in Refs. [33, 35, 37].
6Sometimes it is also referred to as Feynman’s disentangling theorem [43], based on a 1951 paper by R.P. Feynman

[44].
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2.5 Transformations and Symplectic Form

2.5.1 The Schrieffer-Wolff Transformation
The Schrieffer-Wolff (SW) transformation is a unitary transformation, used to diagonalise a Hamil-
tonian perturbatively to first order in the interacting part of theHamiltonian, often to remove higher
excitations and thus obtain an effective Hamiltonian for the lower energy states [45]. In Sec. 3 it will
enable us to derive the two-mode two-photon Jaynes-Cummings model. Though the SW transfor-
mation was first employed by J.M. Luttinger andW. Kohn in 1955 [46], it is commonly attributed to
J.R. Schrieffer andP.A.Wolffbased on its use in a paper of theirs from1966 [47]. With aHamiltonian
composed of a non-interacting and interacting part Ĥ0 and V̂ respectively, written as

Ĥ = Ĥ0 + V̂, (2.41)

the Hamiltonian is then transformed using the BCH formula in Eq. (2.35) to be [48]

eŜĤe−Ŝ = Ĥ +
[
Ŝ, Ĥ

]
+

1

2!

[
Ŝ,
[
Ŝ, Ĥ

]]
+ . . . , (2.42)

where Ŝ is the generator of the transformation and is assumed to be of the same energy scale as V̂ .
Because of the unitarity of eŜ , Ŝ is anti-hermitian, Ŝ† = −Ŝ [48]. If Ŝ is chosen in such a way that
its commutator with Ĥ0 cancels the interaction V̂ , that is

V̂ +
[
Ŝ, Ĥ0

]
= 0, (2.43)

then the transformed Hamiltonian becomes [48]

Ĥ ′ = Ĥ0 +
1

2

[
Ŝ, V̂

]
+O(V̂ 3), (2.44)

to lowest order in the interaction.

2.5.2 The Bogoliubov-Valatin Transformation
The Bogoliubov-Valatin transformation was developed independently by N.N. Bogoliubov and J.G.
Valatin [49, 50] in 1958, and is a canonical transformation of the canonical commutation (bosonic)
or anticommutation (fermionic) relations. Here we will consider the case of bosonic operators. The
commutation relation for a single field mode is[

â, â†
]
= 1. (2.45)

Introducing new operators as superpositions of the above operators, we have7 [24, 35, 52, 53]

b̂ = µâ+ νâ† and b̂† = µ∗â† + ν∗â. (2.46)
7This step precedes the developments of N.N. Bogoliubov and J.G. Valatin in 1958 and was used by T. Holstein and

H. Primakoff in a paper from 1940 [51].
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The canonical transformation which maps the operators of the first mode
(
â, â†

)
to the operators(

b̂, b̂†
)
is called the Bogoliubov-Valatin transformation. The transformation is canonical if the canon-

ical commutation relation is isomorphic, which provides conditions on µ and ν through[
b̂, b̂†

]
=
[
µâ+ νâ†, µâ† + ν∗â

]
=
(
|µ|2 − |ν|2

) [
â, â†

]
. (2.47)

The condition is thus |µ|2 − |ν|2 = 1, which can be identified as the hyperbolic identity up to a
phase factor

cosh(x)2 − sinh(x)2 = 1. (2.48)

Choosing to put a phase on ν, the parametrisation of the constants becomes [35, 52, 53]

µ = cosh(r), and ν = eiψ sinh(r), (2.49)

where r ∈ R and ϕ ∈ R. We can also write the transformation in matrix form as b̂
b̂†

 = S1

 â
â†

 , S1 =

 µ ν

ν∗ µ∗

 . (2.50)

Now, we can identify S1 along with the condition as the group element of the SU(1, 1) group, the
definition of which is [35]

SU(1, 1) =
{
S1 ∈ C2×2 : det(S1) = |µ|2 − |ν|2 = 1

}
. (2.51)

This condition can also be written as
S†

1σ̂zS1 = σ̂z, (2.52)

where σ̂z is the Pauli-z spinmatrix. The generators of the SU(1, 1) group, that form the su(1, 1) Lie
algebra, are the operators K̂i, i ∈ {0, 1, 2}, satisfying the commutation relations [35, 52][

K̂0, K̂1

]
= iK̂2,

[
K̂1, K̂2

]
= −iK̂0 and

[
K̂2, K̂0

]
= iK̂1. (2.53)

One can also introduce corresponding raising and lowering operators

K̂± = K̂1 ± K̂2, with K̂+ = K̂†
−, (2.54)

giving the new commutation relations[
K̂0, K̂±

]
= ±iK̂± and

[
K̂+, K̂−

]
= −2K̂0. (2.55)

One set of operators satisfying the commutation relations in Eq. (2.53) is [35, 52]

K̂0 =
1

4

(
2â†â+ 1

)
, K̂+ =

1

2
â†â† and K̂− =

1

2
ââ. (2.56)

The type of canonical transformations generated by K̂0 and K̂± are [35]

12



2. Quantisation, Models and Transformations

Ŝ†
K

 â
â†

 ŜK =

 Ŝ†
K âŜK

Ŝ†
K â

†ŜK

 =

 b̂
b̂†

 , (2.57)

with the evolution operator ŜK being

ŜK = exp
(
−iψ0K̂0 + βK̂+ − β∗K̂−

)
, (2.58)

where we introduced the polar coordinate β = reiψ, giving r = |β| and ψ = arg(β). The transfor-
mation generated by K̂0 amounts to simple multiplication of the operators with a phase, while the
transformation generated by K̂± with evolution operator

Ŝ1(β) = exp
(
βK̂+ − β∗K̂−

)
, (2.59)

is the one that mixes the operators. The explicit transformations for one mode are [52]

Ŝ†
1(β)âŜ1(β) = µâ+ νâ†, and Ŝ†

1(β)â
†Ŝ1(β) = µâ† + ν∗â. (2.60)

It is possible to disentangle the evolution operator, Ŝ1, using Gauss decomposition for the SU(1, 1)
group, giving [35]

Ŝ1(β) = exp
(
β+K̂+

)
exp
(
β0K̂0

)
exp
(
−β−K̂−

)
, (2.61)

where

β± = e±iψ tanh(r), and β0 = −2 ln
(
cosh(r)

)
. (2.62)

This disentangled form can then be written as [52, 53]

Ŝ1(β) = exp

(
ν

2µ
â†â†

)
µ−
(
â†â+

1
2

)
exp

(
−ν

∗

2µ
ââ

)
. (2.63)

Transformation of Two Modes
In the case of two field modes, the operators

K̂
(2)
0 = 2

(
â†1â1 + â†2â2 + 1

)
, K̂

(2)
+ = â†1â

†
2, and K̂

(2)
− = â1â2, (2.64)

satisfy the commutation relations of the su(1, 1) algebra in Eq. (2.53) [52], and give a two-mode
evolution operator

Ŝ2(β) = exp
(
βK̂

(2)
+ − β∗K̂

(2)
−

)
, (2.65)

which can be disentangled in the same way as before, yielding [52, 53]

Ŝ2(β) = exp

(
ν

µ
â†1â

†
2

)
µ−
(
â†1â1+â

†
2â2+

1
2

)
exp

(
−ν

∗

µ
â1â2

)
. (2.66)

Once again, we can utilise a matrix description, giving the transformation as being [52]
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Ŝ†
2(β)

â1
â†2

 Ŝ2(β) = S1

â1
â†2

 , (2.67)

with the samematrix as before. For several modes, we can also represent the transformations with the
complex form of the symplectic group Sp(2N,R). The matrix giving Bogoliubov-Valatin transfor-
mations for two modes in the basis of mode operators introduced later in Eq. (2.77) is

S2 =


µ 0 0 ν

0 µ∗ ν∗ 0

0 ν µ 0

ν∗ 0 0 µ∗

 , (2.68)

still subject to the condition |µ|2−|ν|2, though now through det(S2) = (|µ|2−|ν|2)2 = 1, which
can also be written as [40]

S†
2KζS2 = Kζ , Kζ =

2⊕
k=1

σ̂z, (2.69)

along with the condition
µν⊤ =

(
µν⊤)⊤, (2.70)

where

µ =

µ 0

0 µ∗

 , and ν =

 0 ν

ν∗ 0

 , (2.71)

giving the block form ofS2 as being

S2 =

µ ν

ν µ

 . (2.72)

We also note that the groups Sl(2,R), Sp(2,R) and SU(1, 1) are isomorphic [54].

2.5.3 Symplectic Form
The real symplectic group is defined as [40, 55]

Sp(2N,R) =
{
SR ∈ R2N×2N :

(
SR

)⊤
ΩSR = Ω

}
, (2.73)

where the matrixΩ has the form [40, 56–58]

Ω =
N⊕
k=1

iσ̂y, or conventionally Ω =
N⊕
k=1

ω, where ω =

 0 1

−1 0

 , (2.74)

14



2. Quantisation, Models and Transformations

andN is the number of field modes. Writing the quadrature operators in vector form as

R̂ =
[
x̂1, p̂1, · · · , x̂N , p̂N

]⊤
, (2.75)

the elements ofΩ are defined through the commutation relations of the elements of R̂ as[
R̂i, R̂j

]
= iΩij. (2.76)

From the quadrature operators, we can move to the basis of the mode operators, which is the basis
known as the complex form of Sp(2N,R)8, and is formed by the mode operators [40, 55]

ζ̂ =
[
â1, â†1, · · · , âN , â†N

]⊤
, (2.77)

which obey the commutation relation [
ζ̂i, ζ̂

†
j

]
= Kij. (2.78)

From this, we can construct the corresponding matrixKζ as

Kζ =
N⊕
k=1

σ̂z, or Kζ =
2N−1⊕
k=0

(−1)k11, (2.79)

where σ̂z is the third Pauli spin matrix, and 11 is the 1× 1 identity matrix. This complex form alters
the matrices entering into the definition of Sp(2N,R) to being

Sp(2N,R) =
{
S ∈ C2N×2N : S†KζS = Kζ

}
. (2.80)

The matrixS has the form [40]

S =


s11 s12 · · · s1N

s21 s22 · · ·
...

...
... . . . ...

sN1 · · · · · · sNN

 , (2.81)

where the elements sij are 2 × 2 sub-blocks containing the transformation between modes i and j.
The mode operators can also be ordered as [40]

ξ̂ =
[
â1, · · · , âN , â†1, · · · , â†N

]⊤
, (2.82)

8This should not be seen as moving to the group Sp(2N,C), but simply as a change of basis.
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giving the corresponding matrixKξ as [40]

Kξ =

1N 0

0 −1N

 . (2.83)

The reordering of the basis is achieved through [40]

ξ̂ = ∆ζ̂, with ∆ij = δj,2i−1 + δj+2N,2i, (2.84)

for i, j ∈ {1, . . . , 2N}. The same reordering of the quadrature operators will make the symplectic
matrixΩ have the block form [40, 55]

Ω∆ =

 0 1N

−1N 0

 . (2.85)

A symplectic matrix subject to the condition in Eq. (2.73) with Ω∆ or Eq. (2.80) withKξ, can be
written in block form as

S(R) =

A B

C D

 , (2.86)

and has the following conditions for the block matrices [40, 55]

A†(⊤)C =
(
A†(⊤)C

)†(⊤)
, B†(⊤)D =

(
B†(⊤)D

)†(⊤)
,

and A†(⊤)D −C†(⊤)B = 12N . (2.87)

Moving between the quadrature basis, and the mode operator basis can be done through [56] R̂ = T ζ̂

ζ̂ = T †R̂
, where T =

1√
2

N⊕
k=1

 1 1

−i i

 , (2.88)

and for a symplectic matrix through
SR = TST †, (2.89)

or easily the other way since T is unitary, T †T = 1. If we introduce the matrixW = −iKζH ,
whereH is the Hermitian Hamiltonian matrix corresponding to a quadratic Hamiltonian

Ĥ = ζ̂†Hζ̂, (2.90)

it can be shown that the commutation relation of the Hamiltonian with the mode operators is [40]

−i
[
Ĥ, ζ̂

]
= Wζ̂. (2.91)

Using the Hadamard lemma in Eq. (2.35) to transform the mode operators with the Hamiltonian
gives
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exp
(
−iĤ

)
ζ̂ exp

(
iĤ
)
= eW ζ̂. (2.92)

From this, it is possible to identify that a quadratic unitary evolution operator and its corresponding
symplectic matrix are related through [59]

Ŝζ = exp
(
−iζ̂†Hζ̂

)
−→ S = eW . (2.93)

The matrixW will thus have the same 2× 2 sub-block structure asS given in Eq. (2.81). This sub-
block structure stems from the quadratic exponent of the unitary evolution operator. A table of the
correspondences between the Hilbert space and phase space description is given in Appendix D.

2.6 Displacement, Squeezing and Beam-Splitting

2.6.1 Displacement
The displacement operator, sometimes also called the Weyl or Glauber operator, is a shift operator
similar to the translation operator and the time-evolution operator. For one bosonic field mode, it is
given by [26, 53, 60, 61]

D̂(α) = exp
(
αâ† − α∗â

)
, (2.94)

whereα ∈ C. It is a shift operator because transforming the ladder operators results in a displacement
in phase space of the creation operator by α∗, and of the annihilation operator by α as

D̂†(α)â†D̂(α) = â† + α∗, and D̂†(α)âD̂(α) = â+ α. (2.95)

Its action on the vacuum state creates what is called a coherent state, first introduced by J.R. Klauder
(see e.g. Ref. [62]), and later applied to the quantum theory of light by R.J. Glauber [63] and E.C.G.
Sudarshan [64]. Explicitly,

D̂(α) |0〉 = |α〉 (2.96)

where |α〉 is the formed coherent state.

The coherent state is also an eigenstate of the annihilation operator â |α〉 = α |α〉. The creation
operator has no eigenket, and similarly the annihilation operator has no eigenbra. The coherent state-
ket is thus not an eigenstate of the creation operator and the coherent state-bra is not an eigenstate of
the annihilation operator. Their actions are instead given by9 [53]

â† |α〉 =
(
∂

∂α
+
α∗

2

)
|α〉 , and 〈α| â = 〈α|

(
∂

∂α∗ +
α

2

)
, (2.97)

where the derivative in the second equation acts to the left on the bra.

9The action of the creation operator can also generate an Agarwal-Tara state (or simply Agarwal state), also called a

photon-added coherent state through â† |α〉 =
√
1 +|α|2 |α, 1〉, which can also be generalised to higher orders [65,

66].
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The reason for |α〉 being called a coherent state is that its coordinate representation is the minimum-
uncertainty Gaussian wave packet, which oscillates back and forth in a HO potential [61]. During
this process, it does not change its shape and can be said to cohere.

Using the Kermack-McCrae identity on the displacement operator gives its normal ordered

D̂
(
α
)
= exp

(
αâ†
)
exp

(
− α∗â

)
exp

(
−|α|

2

2

)
, (2.98)

and anti-normal ordered

D̂
(
α
)
= exp

(
− α∗â

)
exp
(
αâ†
)
exp

(
|α|2

2

)
, (2.99)

form. ForN field modes, we can introduce a vector of displacement coefficients as

λ⃗ =
[
α1, α∗

1, · · · , αN , α∗
N

]⊤
, (2.100)

which we use to generalise the displacement operator. The generalised operator simply becomes the
products of displacements of different field modes and can be written in symplectic form as

D̂
(
λ⃗
)
= exp

(
−ζ̂†Kζ λ⃗

)
. (2.101)

We also note that the displacement operator is part of the group element of the Heisenberg–Weyl
GroupH(1), since â† and â are two of the generators ofH(1)which form the h(1) algebra [35].

2.6.2 Single-Mode Squeezing
The operator in Eq. (2.61) of Sec. 2.5.2 is called the single-mode squeezing operator. If we look at the
symplectic representation of this operator in the basis of the quadrature operators, x̂ and p̂, we have
[40]

SR
1 (r, φ) =

cosh(r) + cos(φ) sinh(r) sin(φ) sinh(r)

sinh(φ) sinh(r) cosh(r)− cos(φ) sinh(r)

 , (2.102)

which reduces to diag(er, e−r) for φ = 0 [40, 58]. This is where the term squeezing stems from,
since when r > 0, this squeezes the momentum, p̂, reducing its variance proportional to the factor
e−r, while also increasing the variance of the position by er. For the angle φ = π

2
, the opposite is

true. For a review of squeezed states of light, see Ref. [67]. A derivation of the single-mode squeezing
interaction from cQED can be found in Ref. [68].

2.6.3 Two-Mode Squeezing
As for single-mode squeezing, we introduced the two-mode squeezing operator in Sec. 2.5.2, specifi-
cally Eq. (2.65). This has a similar interpretation as for a single mode, where it squeezed the variance
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of an operator exponentially. For twomodes however, the operators are now superposition operators
of the two modes of position and momentum [26]. Two-mode squeezing is also commonly used to
create continuous-variable entanglement [40].

2.6.4 Beam Splitting
The beam splitter represents the simplest case of a two-mode interaction, which is linear mixing of
the modes according to [40, 52]

B̂†(κ)â1B̂(κ) = cos(ϕ)â1 + exp(iθ) sin(ϕ)â2, (2.103)

and
B̂†(κ)â2B̂(κ) = cos(ϕ)â2 − exp(−iθ) sin(ϕ)â1, (2.104)

where [52]
B̂(κ) = exp

(
κâ†1â2 − κ∗â1â

†
2

)
, (2.105)

with κ = ϕ exp(iθ). Often the quantity τ = cos2(ϕ) is introduced, called the transmissivity, or
alternatively as ϕ = arccos

(√
τ
)
, which represents a rotation in phase space. ϕ = π

4
, or τ = 1

2
gives

symmetric beam splitting. With θ = 0, the symplectic transformation in the basis of Eq. (2.77) is
[40, 69]

B =


√
τ 0

√
1− τ 0

0
√
τ 0

√
1− τ

√
1− τ 0 −

√
τ 0

0
√
1− τ 0 −

√
τ

 . (2.106)

One can also perform a similar decomposition as before using the Schwinger two-mode boson repre-
sentation of the su(2) algebra [52].

2.6.5 Phase Shift

Rotation or phase shift of a singlemode in phase space by an angle θ
2
is performed through the unitary

operator [40, 70]
Ûk = exp

(
−iθâ†kâk

)
, (2.107)

for a single mode k. Transforming the ladder operators with this gives [70]

Û †
k(θ)âkÛk(θ) = exp(−iθ)âk, and Û †

k(θ)â
†
kÛk(θ) = exp(iθ)â†k. (2.108)

For the basis R̂, the symplectic matrix for a rotation is [40]

R̂(θ) =

cos(θ/2) − sin
(
θ/2
)

sin
(
θ/2
)

cos
(
θ/2
)
 . (2.109)
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3. Derivation of the SystemHamiltonian

3. Derivation of the System Hamiltonian
The first step in deriving our desired effective Hamiltonian in Eq. (1.1), is to derive a first quantum
Hamiltonian from a circuit equivalent of the schematic in Fig. 1.1 using cQED. Subsequently, we
apply approximations and unitary transformations to get the desired form, which is the two-mode
two-photon Jaynes-Cummings model described in Sec. 1, and discussed in relation to other quan-
tummodels in Appendix B. Important to note is that quantum tunnelling cannot be obtained from a
classical model, and has to be added into the model from outside the framework of cQED.

L1

ϕ1

C1D
ϕ2

CD
ϕ3

C2D
ϕ4

L2

C1 C2

C2V

V2

C3V

V3

Figure 3.1: Circuit equivalent of a two-level DQD coupled to two cavities. The two LC-oscillators corre-
spond to twoHO’s, and the nodes connected to the capacitorCD, to a DQD.C1D andC2D are the capacitive
couplings between the oscillators and the DQD. The ϕ are the node fluxes between the elements, taking the
role of position coordinates.

3.1 Circuit Quantum Electrodynamics
Our system, described in Sec. 1 and illustrated in Fig. 3.1, has the classical Lagrangian

Lsys. =
1

2
C1ϕ̇

2
1 −

1

2L1

ϕ2
1 +

1

2
C1D

(
ϕ̇1 − ϕ̇2

)2
+

1

2
C2V

(
ϕ̇2 − V2

)2
+

1

2
CD

(
ϕ̇2 − ϕ̇3

)2
+

1

2
C3V

(
ϕ̇3 − V3

)2
+

1

2
C2D

(
ϕ̇3 − ϕ̇4

)2
+

1

2
C2ϕ̇

2
4 −

1

2L2

ϕ2
4. (3.1)

Using the matrix form in Eq. (2.9), the capacitance matrix can be written as

C =


C1 + C1D −C1D 0 0

−C1D C1D + CD + C2V −CD 0

0 −CD CD + C2D + C3V −C2D

0 0 −C2D C2D + C2

 , (3.2)

and the inverse inductance matrix as L−1 = diag( 1
L1
, 0, 0, 1

L2
). To find the classical Hamiltonian,

wemake use of Eq. (2.12), which requires finding the inverse of the capacitance matrix. Importantly,
when finding the conjugate variables qν, from ϕ̇ν, the voltage offsets will now modify the charge ac-
cording toEq. (2.15). We expand the inverse capacitancematrix to first order in the coupling strengths
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3. Derivation of the SystemHamiltonian

C1D,CD andC2D, by introducing a small shared parameter η, thus neglecting second order processes
in η. This gives the inverse capacitance matrix

C−1 ≈


C1−ηC1D

C2
1

ηC1D

C1C2V
0 0

ηC1D

C1C2V

C2V −η(C1D+CD)

C2
2V

ηCD

C2V C3V
0

0 ηCD

C2V C3V

C3V −η(C2D+CD)

C2
3V

ηC2D

C2C3V

0 0 ηC2D

C2C3V

C2−ηC2D

C2
2

 (3.3)

From Eq. (2.12), keeping only leading order terms in η, the Hamiltonian is then

H = H0 + V , (3.4)

with

H0 =
q21
2C1

+
ϕ2

1

2L1

+
(q2 − q̃2V )2

2C2V

+
(q3 − q̃3V )2

2C3V

+
q24
2C2

+
ϕ2

4

2L2

, (3.5)

and
V =

C1Dq1 (q2 − q̃2V )
C1C2V

+
CD (q2 − q̃2V ) (q3 − q̃3V )

C2VC3V

+
C2D (q3 − q̃3V ) q4

C2C3V

. (3.6)

Here, we also introduced the two rewritings of the offset charges,

q̃2V ≡ − C2V V2, and q̃3V ≡ − C3V V3, (3.7)

for simplification.

For the charges of the DQD, we introduce dimensionless offset charges for the left and right dot
along with corresponding integer-valued number operators

nL ≡
q̃2V
2e
, nR ≡

q̃3V
2e
, n̂L ≡

q̂2
2e
, and n̂R ≡

q̂3
2e
. (3.8)

We nowperform canonical quantisation on the flux and charge fromEq. (2.17), giving that the quan-
tumHamiltonian, Ĥ = Ĥ0 + V̂ , has the contributions

Ĥ0 = ℏω1

(
â†1â1 +

1

2

)
+ ℏω2

(
â†2â2 +

1

2

)
+ 4EL (n̂L − nL)2 + 4ER (n̂R − nR)2 , (3.9)

and

V̂ = ELCLi
(
â†1 − â1

)
(n̂L − nL) + ELER

16CD

e2
(n̂L − nL) (n̂R − nR)

+ ERCRi
(
â†2 − â2

)
(n̂R − nR) , (3.10)

whereweused the generaliseddefinitions inEq. (2.19),making theoscillator frequencies and impedances

ω1 =
1√
L1C1

, ω2 =
1√
L2C2

, Z1 =

√
L1

C1

, and Z2 =

√
L2

C2

, (3.11)
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3. Derivation of the SystemHamiltonian

respectively. We also defined the charging energies for the left and right dot as

EL ≡
e2

2C2V

, and ER ≡
e2

2C3V

, (3.12)

and further introduced

CL =
C1D

e

√
2ℏω1

C1

, and CR =
C2D

e

√
2ℏω2

C2

. (3.13)

We restrict the DQD to be in the Coulomb blockade regime. This means that we allow only one
excess electron to reside on the DQD. If we then insert complete sets of eigenstates for the two dots,
(|0〉L(R) , |11〉L(R) , |12〉L(R) , . . . ), into our non-interacting Hamiltonian using fermionic occupa-
tion number representation, while at first neglecting the empty state, we have for the first DQDpart,

ĤDQD
0 =

(
∞∑
k=0

|1k〉L |0〉R L〈1k| R〈0|+ |0〉L |1k〉R L〈0| R〈1k|

)(
4EL

(
n̂L − nL

)2
+ 4ER

(
n̂R − nR

)2)( ∞∑
k′=0

|1k′〉L |0〉R L〈1k′ | R〈0|+ |0〉L |1k′〉R L〈0| R〈1k′ |

)
, (3.14)

which reduces to

ĤDQD
0 = 4

(
∞∑
k=0

(
EL
(
1− 2nL + n2

L

)
+ ERn

2
R

)
|1k〉L |0〉R L〈1k| R〈0|

+
(
ELn

2
L + ER

(
1− 2nR + n2

R

))
|0〉L |1k〉R L〈0| R〈1k|

)
, (3.15)

where we used orthogonality, i〈1k |1k′〉i = δkk′ , and n̂i |1k〉i = |1k〉i, i ∈ {L,R}. For clarification,
the notation |1k〉L in this case means that the k:th energy level in the left dot is occupied. Restricting
the sum to run over only the ground state, and simplifying the notation through

|10〉L |0〉R L〈10| R〈0| −→ |L〉〈L| , and |0〉L |10〉R L〈0| R〈10| −→ |R〉〈R| , (3.16)

we get

ĤDQD
0 = 4

(
EL(1− nL)2 + ERn

2
R

)
|L〉〈L|+ 4

(
ER(1− nR)2 + ELn

2
L

)
|R〉〈R|

+ 4(ELn
2
L + ERn

2
R) |0〉〈0| , (3.17)

where we now also included the empty state. Using the fact that

13 = |0〉〈0|+ |L〉〈L|+ |R〉〈R| , (3.18)

we can rewrite this as

ĤDQD
0 = 4EL(1− 2nL) |L〉〈L|+ 4ER(1− 2nR) |R〉〈R|+ 4(ELn

2
L + ERn

2
R)13. (3.19)
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Doing the same thing for V̂ gives

V̂ =ELCLi
(
â†1 − â1

)(
|L〉〈L| − nL13

)
+ ERCRi

(
â†2 − â2

)(
|R〉〈R| − nR13

)
+ ELER

16CD

e2
(
nLnR13 − nR |L〉〈L| − nL |R〉〈R|

)
. (3.20)

Here, we get terms proportional to
(
â†i − âi

)
13, which can be viewed as displacements of the oscil-

lators in phase space. To get rid of these, we perform a unitary transformation

Ĥ ′ = D̂†(α1, α2)ĤD̂(α1, α2), (3.21)

using the displacement operator for two modes from Eq. (2.101). Neglecting the above constants in
energy, we get with αi = −α∗

i = iELCLnL/(ℏωi) that the terms
(
â†i − âi

)
13 cancel, giving

Ĥ ′ = ℏω1â
†
1â1 + ℏω2â

†
2â2 + 4EL(1− 2nL) |L〉〈L|+ 4ER(1− 2nR) |R〉〈R|

+ ELCLi
(
â†1 − â1 − 2i Im(α1)

)
|L〉〈L|+ ERCRi

(
â†2 − â2 − 2i Im(α2)

)
|R〉〈R|

− ELER
16CD

e2
(
nR |L〉〈L|+ nL |R〉〈R|

)
, (3.22)

where we again neglected the constant terms resulting from the displacement. Using (|R〉 , |L〉 , |0〉)
as our local basis, we can introduce the Pauli operators

τ̂z = |R〉〈R| − |L〉〈L| , and τ̂x = |L〉〈R|+ |R〉〈L| . (3.23)

From Eq. (3.22) with the above Pauli operators, we get the non-interacting Hamiltonian

Ĥ0 = ℏω1â
†
1â1 + ℏω2â

†
2â2 +

ℏεz
2
τz, (3.24)

with εz = εR − εL, where we introduced the parametrisation

εL = −8EL
(
1− 2nL +

1

2
CL Im(α1)−

4ERCDnR
e2

)
ℏ−1, (3.25)

and
εR = 8ER

(
1− 2nR +

1

2
CR Im(α2)−

4ELCDnL
e2

)
ℏ−1. (3.26)

The Pauli operators in the above local basis can then also be used for the following rewritings of
|L〉 〈L| and |R〉 〈R|, where we for convenience set 12 ≡ diag(1, 1, 0)

|L〉〈L| = −1

2
τz +

1

2
12, and |R〉〈R| = 1

2
τz +

1

2
12. (3.27)

This we then insert into Eq. (3.22), giving

V̂ = ℏg1i
(
â†1 − â1

)
(τz + 12) + ℏg2i

(
â†2 − â2

)
(τz + 12), (3.28)
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3. Derivation of the SystemHamiltonian

where g1 = ELCL, and g2 = ERCR. We then wish to change the phase of the creation and annihi-
lation operators to change the coupling to be with position. A transformation with Û1(2)

(
3π
2

)
from

Eq. (2.107), according to Eq. (2.108), leaves Eq. (3.24) unchanged since the operator commutes, and
Eq. (3.28) becomes

V̂ = ℏg1
(
â†1 + â1

)
(τz + 12) + ℏg2

(
â†2 + â2

)
(τz + 12). (3.29)

Now, we would like to get rid of the terms proportional to
(
â†i + âi

)
12, though this time for 12. We

thus modify the displacement operator to be

D̂(Ξ1,Ξ2) = exp
(
12

(
Ξ1â

†
1 − Ξ∗

1â1
))

exp
(
12

(
Ξ2â

†
2 − Ξ∗

2â2
))
. (3.30)

Carrying out the transformation with Ξi = Ξ∗
i = −gi/ωi, we eliminate the drive to obtain

Ĥ ′ = ℏω1â
†
1â1 + ℏω2â

†
2â2

1

2
ℏεzτz + 2ℏ(g1Ξ1 + g2Ξ2)τz

+ ℏg1
(
â†1 + â1

)
τz + ℏg2

(
â†2 + â2

)
τz, (3.31)

wherewe againneglected the constants. Tunnelling cannotbe obtained froma classical circuitmodel,
and as such, needs to be added after the fact. We thus add a term tτx to the Hamiltonian. With these
considerations, taking ε = εz + 2(g1Ξ1 + g2Ξ2), we have arrived at our quantum Hamiltonian in
the (|R〉 , |L〉) basis

Ĥ = ℏω1â
†
1â1 + ℏω2â

†
2â2 +

ℏε
2
τz + ℏtτx + ℏ

[
g1
(
â†1 + â1

)
+ g2

(
â†2 + â2

)]
τz. (3.32)

The coupling τz can be seen as an electric dipole, since there can be only a single excess electron, either
on |L〉 or |R〉.

3.2 Rotation and Schrieffer-Wolff Transformation
To proceed in finding the type of two-photon interactions we are after, we want to rotate the basis
(|R〉 , |L〉) into the eigenstate basis of theDQD, spanned by the non-interacting ground state |g〉 and
the excited state |e〉. This rotation is obtained from the matrix in Eq. (2.109) as|g〉

|e〉

 = R̂(θ)

|L〉
|R〉

 , (3.33)

where θ is the mixing angle, given by cos(θ)/2 = arctan
(
2t/(ε+ Ω)

)
, and Ω =

√
ε2 + 4t2 is the

energy splitting between the eigenstates of the DQD after rotation. With the rotation, the Hamilto-
nian in the new basis is

Ĥ = ℏω1â
†
1â1 + ℏω2â

†
2â2 +

1

2
ℏΩσ̂z

+ ℏ
(
gx1 σ̂x + gz1σ̂z

)(
â†1 + â1

)
+ ℏ
(
gx2 σ̂x + gz2σ̂z

)(
â†2 + â2

)
, (3.34)
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with new coupling strengths gxi = −gi sin(θ), and gzi = gi cos(θ). σ̂z and σ̂x are now Pauli oper-
ators in the (|e〉 , |g〉) basis. Next, we wish to transform the obtained Hamiltonian into an effective
Hamiltonian, which is the two-mode two-photon Jaynes-Cummings Hamiltonian in Eq. (B.3), and
take inspiration from Ref. [71]. In order to do this, we utilise the SW transformation in Sec. 2.5.1.
To perform the transformation, we introduce the new operators

X̂ i
± = â†i σ̂− ± σ̂+âi, Ŷ i

± = â†i σ̂+ ± σ̂−âi, and Ẑi
± = σ̂z

(
â†i ± âi

)
, (3.35)

where i ∈ {1, 2}. The interaction Hamiltonian, V̂ , in terms of these operators, is

V̂ =
∑
i=1,2

gxi

(
X̂ i

+ + Ŷ i
+

)
+ gzi Ẑ

i
+. (3.36)

We make the ansatz that the generator of the transformation, Ŝ, is

Ŝ =
∑
i=1,2

(
xiX̂

i
− + yiŶ

i
− + ziẐ

i
−

)
. (3.37)

Now, we can calculate the commutator,
[
Ŝ, Ĥ0

]
, in the hopes that this will become −V̂ with the

correct choice of the parameters xi, yi and zi[
Ŝ, Ĥ0

]
=
∑
i=1,2

[
xiX

i
− + yiŶ

i
− + ziZ

i
−, Ĥ0

]
(3.38)

=
∑
i=1,2

xi(−ωi + Ω)X̂ i
+ + yi(−ωi − Ω)Ŷ c

+ + ziωiẐ
i
+. (3.39)

The appropriate choice of parameters is thus

xi =
gxi

ωi − Ω
, yi =

gxi
ωi + Ω

, and zi =
gzi
ωi
. (3.40)

In requiring that Ŝ is small, an extended requirement is thus for xi, yi, and zi to be� 1. This also
means that the difference ωi − Ω is large, and thus that the detuning is large between the DQD and
the oscillators. Having found Ŝ, the Hamiltonian from the SW transformation is

Ĥ ′ = Ĥ0 +
1

2

[
Ŝ, V̂

]
= ℏω1â

†
1â1 + ℏω2â

†
2â2 +

1

2
ℏΩσ̂z

+
1

2
ℏ
∑
i=1,2
j=1,2

[
xiX

i
− + yiY

i
− + ziZ

i
−, g

x
j (X

j
+ + Y j

+) + gzjZ
j
+

]
. (3.41)

Through evaluation of the commutators arising from the aboveHamiltonian, and application of the
rotating wave approximation (RWA), when Ω ≈ ω1 + ω2, neglecting counter-rotating terms, we
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have

Ĥ ′ = ℏω1â
†
1â1 + ℏω2â

†
2â2 + ℏ

Ω

2
σ̂z −

ℏ
2
σ̂z
∑
i=1,2

gxi
(
xi − yi

) (
2â†i âi + 1

)
+ ℏ
(
x1g

z
2 + x2g

z
1 − z1gx2 − z2gx1

)
σ̂+â1â2 + h.c.

+ ℏ
(
x1g

z
1 − z1gx1

)
σ+â1â1 + ℏ

(
x1g

z
1 − z1gx1

)
σ̂+â2â2 + h.c..

(3.42)

3.3 Frequency Tuning
The last row inEq. (3.42) is negligible under the assumption that thedetuningbetween theoscillators,
ω1−ω2, is sufficiently large such that

∣∣Ω− 2ω1(2)

∣∣� |Ω− ω1 − ω2|, as well as
∣∣Ω− 2ω1(2)

∣∣� Λ,
whereΛ is the effective coupling constant for the two-mode two-photon interaction

Λ = x1g
z
2 + x2g

z
1 − z1gx2 − z2gx1 . (3.43)

With the large detuning between the cavities, we have that ω1 � ω2. This implies that

Ω� Ω− ω2 ≈ ω1 >
Ω

2
> Ω− ω1 ≈ ω2 � Ω− ω1 − ω2. (3.44)

As a consequence of this, the effective coupling constant, Λ, becomes Λ ≈ x1g
z
2 − z2g

x
1 . We may

then set the relation between the frequencies to beΩ = ω1 + ω2, giving

Λ ≈ − 2gx1g
z
2

ω2

= −g1g2 sin(2θ)
ω2

, (3.45)

where θ is themixing angle defined in the rotation. Thus, we can see that the coupling depends on the
splitting of the levels in the DQD. The effective Hamiltonian in this special case is

(
x1(2) � y1(2)

)
Ĥ ′ ≈ ℏω1â

†
1â1 + ℏω2â

†
2â2 + ℏ

[
Ω̃

2
+

(gx1 )
2

ω2

â†1â1 +
(gx2 )

2

ω1

â†2â2

]
σ̂z

+ ℏΛ
(
σ̂+â1â2 + σ̂−â

†
1â

†
2

)
, (3.46)

where
Ω̃ = Ω +

(gx1 )
2

ω2

+
(gx2 )

2

ω1

, (3.47)

becomes the slightly renormalised eigenfrequency of the DQD. In some cases, the effect of the terms
involving (gx1 )

2

ω2
and (gx2 )

2

ω1
are small enough to be neglected, giving the desired effective Hamiltonian

for the two-mode two-photon Jaynes-Cummings model in Eq. (1.1)

Ĥ = ℏω1â
†
1â1 + ℏω2â

†
2â2 +

1

2
ℏΩσ̂z + ℏΛ

(
σ̂+â1â2 + σ̂−â

†
1â

†
2

)
. (3.48)

We give justification for why these dynamical renormalisations can be neglected in our case in Sec. 7.
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4. Open Quantum Systems
The formalism of open quantum systems is useful in providing a simplified model of the environ-
ment, which in general is very difficult to include in full. Thus, we seek to utilise this formalism in
constructing a simplified model of our system in Sec. 1.

4.1 QuantumMaster Equations
In the theory of open quantum systems, quantum master equations are used to describe reduced
system dynamics, where the environment is traced out. An exact quantum master equation is the
Nakajima–Zwanzig equation [34, 72–74]. The first approximation to this is the Redfield equation
[75], obtained after making a Born-Markov approximation [72]. Subsequently applying the RWA
and a secondMarkov approximation gives the GKSL equation [72]. The majority of the theory con-
cerning the GKSL equation is however independent of the higher level descriptions.

4.1.1 Closed Quantum Systems
Closed quantum systems are systems which are isolated from their environment. For these systems,
the equation of motion for pure states, forming the basis of quantummechanics, is the Schrödinger
equation. The extension of this equation to mixed states can be obtained from considering the time-
evolution of the density operator ϱ̂ [34]

ϱ̂ = Û †(t, t0)ϱ̂(t0)Û(t, t0), (4.1)

from time t0 to t, where Û is the time-evolution operator. Differentiating this gives the quantum
mechanical analogue of the Liouville equation, the Liouville-von Neumann equation

d

dt
ϱ̂ = −i

[
Ĥ, ϱ̂

]
= L̂(ϱ̂), (4.2)

where L̂ is the Liouvillian. The Schrödinger and Liouville-vonNeumann equations describe the full
system dynamics and are exact in doing so. Solving theNakajima-Zwanzing equation for the reduced
system dynamics is in general as difficult as solving the Liouville-von Neumann equation for the full
system dynamics, where the environment is taken as part of the closed system, and subsequently trac-
ing over the environment [34, 72].

4.1.2 The GKSL Equation
TheGKSL equation (also commonly referred to simply as the Lindblad equation)was independently
discovered by G. Lindblad [76] and V. Gorini et al. [77] and is given by [34, 72]

d

dt
ϱ̂ = −i

[
Ĥ, ϱ̂

]
+
∑
k

γkD
[
L̂k
]
(ϱ̂) = L̂GKSL(ϱ̂), (4.3)
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where L̂GKSL is the Lindbladian (or quantum Liouvillian), γk ≥ 0, and

D
[
L̂k
]
(ϱ̂) = L̂kϱ̂L̂

†
k −

1

2

{
L̂†
kL̂k, ϱ̂

}
, (4.4)

is called the dissipator, with L̂(†)
k being arbitrary operators which are specific to the chosen environ-

ment coupled to the system. This equation is significant because a generator of the same form as
L̂GKSL guarantees that the map it generates is completely positive and trace-preserving (CPTP) [72].

4.2 Time-Evolution of the Expectation Value of Operators

The expectation value of an arbitrary time-independentHilbert-Schmidt operator, Ô, in a quantum
system with a given density matrix ϱ̂ is

〈Ô〉ϱ̂ = tr
{
Ôϱ̂
}
. (4.5)

We are interested in the time-evolution of this operator, and thus differentiate the above expression
with respect to time, which gives

d

dt
〈Ô〉ϱ̂ = tr

{
Ô d

dt
ϱ̂

}
. (4.6)

Specifically when the GKSL equation given in Eq (4.3) is used to replace d
dt
ϱ̂, Eq. (4.6) becomes

d

dt
〈Ô〉ϱ̂ = −i tr

{
Ô
[
Ĥ, ϱ̂

]}
+
∑
k

γk tr
{
ÔD

[
L̂k
]
(ϱ̂)
}
, (4.7)

where we used the linearity of the trace

tr{X + Y } = tr{X}+ tr{Y }, (4.8)

withX and Y being square matrices. Expanding the commutator and using the cyclic property for
square matricesX ,Y andZ of the same size,

tr{XY Z} = tr{ZXY } = tr{Y ZX}, (4.9)

we get that the first term is

−i tr
{
ÔĤϱ̂

}
− i tr

{
− Ôϱ̂Ĥ

}
= i tr

{[
Ĥ, Ô

]
ϱ̂

}
= i
〈[
Ĥ,O

]〉
ϱ̂
. (4.10)

Thus, the first term is analogous to the Heisenberg equation of motion

d

dt
〈Ô〉ϱ̂ = i

〈[
Ĥ,O

]〉
ϱ̂
+
∑
k

γk tr
{
ÔD

[
L̂k
]
(ϱ̂)
}
. (4.11)
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Using the dissipator form in Eq. (4.4), and performing similar steps as in Eq. (4.10), the expression in
the sum of the second term becomes

tr

{
Ô
(
L̂kϱ̂L̂

†
k −

1

2

{
L̂†
kL̂k, ϱ̂

})}
=
〈
L̂†
kÔL̂k −

1

2

{
L̂†
kL̂k, Ô

}〉
ϱ̂
. (4.12)

Wenowdefine the expression in the expectation value as the adjoint dissipator, a superoperator acting
on the operator instead of on the density matrix. Explicitly, this is

Dad.

[
L̂k
](
Ô
)
≡ L̂†

kÔL̂k −
1

2

{
L̂†
kL̂k, Ô

}
, (4.13)

or in the alternate form

Dad.

[
L̂k
](
Ô
)
=

1

2
L̂†
k

[
Ô, L̂k

]
+

1

2

[
L̂†
k, Ô

]
L̂k. (4.14)

The final expression for the time-evolution is then

d

dt
〈Ô〉ϱ̂ = i

〈[
Ĥ, Ô

]〉
ϱ̂
+
∑
k

γk

〈
Dad.

[
L̂k
](
Ô
)〉
. (4.15)

Analogous to this is the adjoint quantum master equation for a Heisenberg operator ÔH, which in
the case of the Lindblad generator being time-independent, is [34]

d

dt
ÔH = i

[
Ĥ, ÔH

]
+
∑
k

γkD
[
L̂k
](
ÔH

)
= L†

GKSL

(
ÔH

)
, (4.16)

whereL† is the adjoint Lindblad generator.

4.3 Microscopic Derivations of the GKSL Equation
There are a multitude of ways to derive the GKSL equation. For many of the possible microscopic
derivations of the GKSL equation, see Refs. [34, 72]. Here, we derive the GKSL equation from the
basic collision model.

4.3.1 The Basic Collision Model
Defining the Basic Collision Model
The derivation mostly follows that given in Ref. [78], and to a lesser extent that given in Ref. [79].
We consider an open quantum system, S, with a Hilbert-space of arbitrary dimension. The system
is coupled to a quantum bath,B, constituted of a number of smaller ancillae, which are all identical
and prepared in the same initial state η̂. The system is prepared in the arbitrary state, ϱ̂0, and together,
the initial joint state is the product state of the system with the ancillae through

σ̂0 = ϱ̂0

N⊗
i=1

η̂. (4.17)
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Since σ̂0 is a product state, there are no correlations betweenS andB, or between any of the ancillae.
The single-body Hamiltonian of the system and any given ancilla, which we label n, an integer, is

Ĥ0 = ĤS + Ĥn, (4.18)

and the operator for the S-n interaction is denoted V̂n. The interaction, combined with Eq. (4.18),
gives the unitary time-evolution operator for a single interaction

Ûn(τ) = exp

(
−i
[
Ĥ0 + V̂n

]
τ

)
, (4.19)

where τ defines the duration of the collision, and is independent of the interaction. For illustration,
we consider the system to be placed in a gas ofmoving particles, where each particle corresponds to an
ancilla. This illustration is shown in Fig. 4.1. The particles are then made to collide with the system
one by one. Next, we impose restrictions on the interactions.

S

η̂

η̂2

η̂3

η̂

η̂

η̂

η̂5

η̂

η̂

η̂

η̂

η̂

η̂1

η̂4

η̂

η̂6

η̂

η̂

Ancillae

Interaction time: τ

B

Figure 4.1: Example illustration of the basic collisionmodel. The system,S, is surrounded by a bath,B, made
up of ancillae, η̂, here shown as a gas of particles. The ancillae interact sequentially, and only once with the
system. All collisions have the same interaction/collision duration τ . The ancillae are not initially correlated
and cannot collide with each other.

Markovian Conditions

(i) There are no ancilla-ancilla interactions;

(ii) There are no initial correlations between ancillae;

(iii) Each ancilla is allowed to collide only once with the system.

These conditions, (i)-(iii), form the basis for theMarkovian behaviour of the properties of collision
models. A non-interrupted sequence of collisions with the same ancilla can be seen as not violating
condition (iii). An example of this is the sequence S-1, S-1, S-2, S-2, . . . , if the collisions in this
case are redefined to be double collisions. Condition (iii) can be understood by considering, that
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4. Open Quantum Systems

after each collision, the ancilla goes back to interacting with the environment and effectively loses the
history of the interaction. Thus, it can be seen as if the ancilla cannot collide with the system again.

Dynamics of the Open Quantum System.
After a single interaction of the initial system with an ancilla, the joint state is

σ̂1 = Û1(τ)σ̂0Û
†
1(τ). (4.20)

Neglecting to write out the time-dependence in the evolution operator explicitly, we get after n suc-
cessive interactions between the system and the ancillae, that the joint state is

σ̂n =

(
n∏
i=1

Ûn−i+1

)
σ̂0

(
n∏
i=1

Û †
i

)
. (4.21)

Inserting the initial state σ̂0 in Eq. (4.17) into Eq (4.21), we have

σ̂n =

(
n∏
i=1

Ûn−i+1

)(
ϱ̂0

n⊗
i=1

η̂

)(
n∏
i=1

Û †
i

)(
N⊗

i=n+1

η̂

)
, (4.22)

or with most of the compact notation removed as

σ̂n =
(
Ûn · · ·

(
Û2

(
Û1ϱ̂0η̂1Û

†
1

)
η̂2Û

†
2

)
· · · η̂nÛ †

n

) N⊗
i=n+1

η̂. (4.23)

By tracing over the bath as

ϱ̂n = trB
{
σ̂n
}
= trN

{
· · · trn

{
· · · tr1

{
σ̂n
}
· · ·
}
· · ·
}
, (4.24)

we see that the ancillae with labelm such thatN ≥ m > n simply vanish and can thus be ignored
henceforth. Inserting σ̂n then gives

ϱ̂n = trn

{
Ûn · · · tr2

{
Û2 tr1

{
Û1ϱ̂0η̂1Û

†
1

}
η̂2Û

†
2

}
· · · η̂nÛ †

n

}
. (4.25)

This can alternatively be expressed in the compact form

ϱ̂n = C
[
· · ·
[
C
[
ϱ̂0
]]]

= Cn
[
ϱ̂0
]
, (4.26)

meaning that the evolution of the system in the environment follows the quantum collision map C
on S

ϱ̂n = C
[
ϱ̂n−1

]
= trn

{
Ûn(ϱ̂n−1 ⊗ η̂n)Û †

n

}
. (4.27)

This form of the map also ensures that C is CPTP.

Equation of Motion for the System State
We are interested in the case when τ is small enough that we can get an continuous equation of mo-
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tion. For small τ we can thus make the approximation

Ûn ' 1− iτ
(
Ĥ0 + V̂n

)
− 1

2
τ 2V̂ 2

n . (4.28)

Using the Hadamard lemma in Eq. (2.35) on the joint state with this approximation, it evolves as

σ̂n = Û σ̂n−1Û
† = σ̂n−1 − iτ

[
Ĥ0 + V̂n, σ̂n

]
+ τ 2

(
V̂nσ̂nV̂n −

1

2

{
V̂ 2
n , σ̂n

})
. (4.29)

If we now subtract σ̂n−1 on both sides, take the partial trace over all ancillae, and divide by τ , we get

ϱ̂n − ϱ̂n−1

τ
= −i

[
ĤS + trn

{
V̂nη̂n

}
, ϱ̂n−1

]
+ τ trn

{(
V̂nϱ̂n−1η̂nV̂n −

1

2

{
V̂ 2
n , ϱ̂n−1η̂n

})}
. (4.30)

One can then spectrally decompose the initial density operator state for the ancillae as

η̂n =
∑
k

pk |k〉n n〈k|, where
∑
k

pk = 1. (4.31)

Inserting this decomposition into Eq. (4.30) gives

ϱ̂n − ϱ̂n−1

τ
= −i

[
ĤS + trn

{
V̂nη̂n

}
, ϱ̂n−1

]
+
∑
k,k′

(
L̂k,k′ ϱ̂n−1L̂

†
k,k′ −

1

2

{
L̂†
k,k′L̂k,k′ , ϱ̂n−1

})
, (4.32)

where the raising and lowering operators are given by

L̂k,k′ =
√
pkτ n〈k

′|V̂n|k〉n, (4.33)

with |k〉 and |k′〉 being eigenstates of the ancillae η̂. Finally approximating this with the backward
difference

d

dt
ϱ̂ '

ϱ̂n − ϱ̂n−1

τ
, (4.34)

we get

d

dt
ϱ̂ ' − i

[
ĤS + trn

{
V̂nη̂n

}
, ϱ̂n−1

]
+
∑
k,k′

(
L̂k,k′ ϱ̂n−1L̂

†
k,k′ −

1

2

{
L̂†
k,k′L̂k,k′ , ϱ̂n−1

})
, (4.35)

which has the form of Eq. (4.3). This expression now depends on the operator trn
{
V̂nη̂n

}
, which

is Hermitian. By choosing an appropriate form of this operator, one can derive the correct dissipator
for a specific systems. Two forms of dissipators are used in Sec. 6.

32



5. Gaussian States

5. Gaussian States

5.1 Phase Space Description of QuantumMechanics
The phase space description represents one of a number of formulations of quantummechanics (see
e.g. Ref. [80] for a review of some of these). The development of the theory was finalised by H.J.
Groenewold in 1946 [81] and later independently by J.E.Moyal in 1949 [82], both basing their work
on previous developments by E.P. Wigner [83] and H. Weyl [84]. A quantum state in this formal-
ism is represented by a quasiprobability distribution. We utilise this formalism specifically for the
resonators, which simplifies the description considerably.

5.1.1 Quasiprobability Distributions
One quasiprobability distribution, usually referred to simply as a function, stems from the Wigner-
Ville W [83, 85] representation of the phase space description. The Wigner-Ville function for N
modes is [40]

WN

(
ϱ̂, z⃗
)
=

1

π2

∫
R2N

tr
{
ϱ̂D̂
(
λ⃗
)}

exp
(
−
(
z⃗
)†
Kζ λ⃗

)
d2N λ⃗. (5.1)

where λ⃗ and D̂
(
λ⃗
)
are given in Eqs. (2.100) and (2.101) respectively, and z⃗ ∈ C2N . This function is

part of an infinite family of distribution functions [86]. There are three prominent representations
used, with their corresponding distribution functions. Besides the Wigner-Ville function, these are
the Glauber-Sudarshan P [63, 64], and Husimi-KanoQ [87, 88] functions. A given function is re-
lated to the other two through convolution with a Gaussian function, called aWeierstrass transform.
These three transforms for one field mode are [89]

W1(z, z
∗) =

2

π

∫
exp
(
−2|z − α|2

)
P1(α, α

∗)d2α, (5.2a)

Q1(z, z
∗) =

2

π

∫
exp
(
−2|z − α|2

)
W1(α, α

∗)d2α, (5.2b)

Q1(z, z
∗) =

1

π

∫
exp
(
−|z − α|2

)
P1(α, α

∗)d2α, (5.2c)

where Eq. (5.2a) relatesW1 toP1, Eq. (5.2b) relatesQ1 toW1, and finally Eq. (5.2a) relatesQ1 toP1.
These functions relate to a density operator ϱ̂, but can be generalised to any system operator Ô and a
corresponding function FÔ(α, α

∗)which is anti-normal, symmetric or normal ordered [89].

5.1.2 Characteristic Functions
The family of s-ordered characteristic functions is given by [40, 53]

χs
(
ϱ̂, λ⃗
)
= tr

{
ϱ̂D̂
(
λ⃗
)}

exp

(
1

2
s||⃗λ||2

)
, (5.3)
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where || · || denotes the extension of the Euclidean norm toC2N

||⃗λ|| =
√
|α1|2 + · · · + |αN |2. (5.4)

These were introduced by K.E. Cahill and R.J. Glauber in 1969 [90], and are related to the family of
quasi-probability distribution through the complex Fourier transform. We see that the the symmetric
case of the characteristic function, s = 0, appears in Eq. (5.1), which is thus the complex Fourier
transform in the case of the Wigner function. The normally ordered case, s = 1, then corresponds
to the P -function, and finally the antinormally ordered case, s = −1, to theQ-function [26]. The
characteristic function in theWigner-Ville representation can then be retrieved by taking the complex
inverse Fourier transform of the Wigner-Ville function. These relations hold for all the distribution
functions and their corresponding characteristic function. The characteristic function for aGaussian
state can be written as [40, 56, 57]

χs = exp

(
−1

2
λ⃗†KζΘKζ λ⃗+ 〈ζ̂〉†Kζ λ⃗

)
exp

(
1

2
s||⃗λ||2

)
. (5.5)

5.2 The Lyapunov Equation
Gaussian states are well known to be fully characterised by their first and second moments. In terms
of the mode operators in Eq. (2.77), the first moments are the expectation values of these

〈ζ̂〉 =
[
〈â1〉, 〈â†1〉, · · · , 〈âN〉, 〈â

†
N〉
]⊤
, (5.6)

and the second moments are the expectation values of the product of any two mode operators. The
second moments can then be arranged in matrix form, known as the covariance matrix (CM). To
obtain explicit forms of the moments, equations of motion and their solutions are needed, which is
the topic of Sec. 5.2.

5.2.1 The Covariance Matrix and the Equations of Motion
From the expectation value in Eq. (4.5), we can introduce the fluctuation operators [56]

δâi = âi − 〈âi〉, and δâ†i = â†i − 〈â
†
i〉, (5.7)

which we can use to define the elements of the CM as

Θij ≡
1

2

〈{
ζ̂ i, ζ̂

†
j

}〉
−
〈
ζ̂ i

〉〈
ζ̂†j

〉
=

1

2

〈{
δζ̂ i, δζ̂

†
j

}〉
. (5.8)
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This definition makes the CM Hermitian, Θ = Θ†. From the above definition in the case of two
bosonic modes, we have that the explicit form of the CM is

Θ =


〈δâ†1δâ1〉 〈δâ1δâ1〉 〈δâ1δâ

†
2〉 〈δâ1δâ2〉

〈δâ†1δâ
†
1〉 〈δâ

†
1δâ1〉 〈δâ

†
1δâ

†
2〉 〈δâ

†
1δâ2〉

〈δâ†1δâ2〉 〈δâ1δâ2〉 〈δâ
†
2δâ2〉 〈δâ2δâ2〉

〈δâ†1δâ
†
2〉 〈δâ1δâ

†
2〉 〈δâ

†
2δâ

†
2〉 〈δâ

†
2δâ2〉

+
1

2
14. (5.9)

Written in block form

Θ =

Θ1 Θ12

Θ21 Θ2

 , (5.10)

it has the nice property
tr1(2)(Θ) = Θ2(1). (5.11)

The CM in terms of mode operators can be transformed into the CM for quadrature operators, σ,
via Eq. (2.88) throughσ = TΘT †.

The equation of motion for the CM is given by

d

dt
Θ = WΘ+ΘW † + F , (5.12)

where W and F parametrise the covariance matrix. Here, F is a matrix depending only on the
dissipators. Equation (5.12) is known as the continuous1 differential Lyapunov equation2 (CDLE)
[91], and is commonly used in the field of control theory. TakingΘ to be independent of time gives
d
dt
Θ = 0, reducing the CDLE to

WΘ+ΘW † = −F , (5.13)

known as the continuous algebraic Lyapunov equation (CALE) [91], describing the steady state of
the system. The firstmoments instead evolve according to the first-order non-homogeneous ordinary
differential equation

d

dt
〈ζ̂〉 = W 〈ζ̂〉+ f , (5.14)

where 〈ζ̂〉 is the vector of first moments, andW and f parametrise the vector. We note the fact that
the matrix W appearing in both Eq. (5.12) and Eq. (5.14) are the same matrix. Since a Gaussian
state is fully characterised by its first and second moments, Eqs. (5.12) and (5.14) are sufficient for
fully describing the system. As alternatives to the above equations, one can use the expressions in
Sec. 4.2 to find the first and second moments. In the next section, we give a derivation showing that
these equations ofmotion are correct in describing the first and secondmoments for aGaussian state.

1We emphasise that it is the continuous version, since there also exists a discrete version of the form d
dtX = AXA†−

X +Q, also commonly appearing in control theory.
2TheLyapunov equation is a special case of the Sylvester equation of the form d

dtX = AX+XB+Q, withB = A†.
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Thematrices appearing in the equations of motion can be written in the symplectic form introduced
in Sec. 2.5.3. The dissipator for a HO has the form [56]

DHO

[
âi
]
(ϱ̂) = γin̄i

[
â†i ϱ̂âi −

1

2

{
âiâ

†
i , ϱ̂
}]

+ γi(n̄i + 1)

[
âiϱ̂â

†
i −

1

2

{
â†i âi, ϱ̂

}]
, (5.15)

where the n̄i are the Bose-Einstein distributions for eachmode. This dissipator gives the contribution

Γ =
1

2

N⊕
i=1

γi12, (5.16)

which leads to the matrixF , depending only on the dissipators, being

F = Γ
N⊕
i=1

(2n̄i + 1)12. (5.17)

The matrixW can then be identified with the Hamiltonian matrix in Eq. (2.91) with an added con-
tribution from the dissipator coefficients

W = −iKζH − Γ. (5.18)

The first moments can also be written in symplectic form as

d

dt
〈ζ̂〉 = W 〈ζ̂〉+ iKζ λ⃗D, (5.19)

wherewemade the replacementf = iKζ λ⃗D, and λ⃗D ∈ C2N are the drive coefficients. Furthermore,
a general quadratic Hamiltonian can be written, usingH and λ⃗D, as [40]

Ĥ = ζ̂†Hζ̂ + ζ̂†λ⃗D. (5.20)

For aGaussian state, a unitary transformation of a densitymatrix on the correspondingHilbert space,
can then be mapped to [40]

ϱ̂′ = Û †ϱ̂Û ←→

 ζ̂ ′ = Sζ̂

Θ′ = S†ΘS
, (5.21)

as is also shown in the schematic overview in Tab. D.1 of Appendix D.

5.2.2 The Lyapunov Equation From the Characteristic Function
One method of deriving the CDLE involves transforming a master equation into a partial differen-
tial equation for the phase space distributions or their characteristic functions discussed in Sec. 5.1.
Moving to a phase space description is desirable because the phase space is much smaller than the
Hilbert space, as shown in Tab. D.1 of Appendix D. The resulting differential equation is usually
called the Fokker-Planck equation, discovered by the physicists A.D. Fokker in 1914 [92] and M.
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Planck in 1917 [93] respectively, or the Kolmogorov forward equation based on its independent dis-
covery by the mathematician A. Kolmogorov in 1931 [94]. Here, we choose to consider the charac-
teristic function in its s-ordered form, given in Eq. (5.3). Using the Kermack-McCrae identities to get
the disentangled versions of the displacement operator in Eqs. (2.98) and (2.99), we get the normal
and anti-normal ordered disentangled equations for the characteristic function

χs(ϱ̂, λ⃗) = tr

{
ϱ̂

N∏
i=1

exp
(
αiâ

†
i

)
exp

(
− α∗

i âi

)}
exp

(
1

2
(s− 1)||⃗λ||2

)
(5.22a)

= tr

{
ϱ̂

N∏
i=1

exp
(
− α∗

i âi

)
exp
(
αiâ

†
i

)}
exp

(
1

2
(s+ 1)||⃗λ||2

)
. (5.22b)

Tomove from the the master equation to the Fokker-Planck equation we need a way of rewriting the
actions of âi and â†i on ϱ̂ in terms of actions on the characteristic function. As an example, â†i acting
from the right gives

χs
(
ϱ̂â†i , λ⃗

)
=

(
− 1

2
(s− 1)α∗ + ∂αi

)
χs
(
ϱ̂, λ⃗
)
. (5.23)

which is obtained from taking the partial derivative of the normal ordered characteristic function
with respect to αi

∂αi
χs
(
ϱ̂, λ⃗
)
= tr

{
ϱ̂â†i

N∏
i=1

exp
(
αiâ

†
i

)
exp

(
− α∗

i âi

)}
exp

(
1

2
(s− 1)|α|2

)
+

1

2
(s− 1)α∗

iχs
(
ϱ̂, λ⃗
)
,

(5.24)

and subsequently rearranging and factorising. In total, with two derivatives as well as normal and
anti-normal ordered equations, we can apply the derivatives in four different ways, which leads to the
actions of a single ladder operator on ϱ̂ having the following rewritings

χs
(
ϱ̂â†i , λ⃗

)
=

(
− 1

2
(s− 1)α∗

i + ∂αi

)
χs
(
ϱ̂, λ⃗
)
, (5.25a)

χs
(
â†iϱ, λ⃗

)
=

(
− 1

2
(s+ 1)α∗

i + ∂αi

)
χs
(
ϱ̂, λ⃗
)
, (5.25b)

χs
(
âiϱ̂, λ⃗

)
=

(
1

2
(s− 1)αi − ∂α∗

i

)
χs
(
ϱ̂, λ⃗
)
, (5.25c)

χs
(
ϱ̂âi, λ⃗

)
=

(
1

2
(s+ 1)αi − ∂α∗

i

)
χs
(
ϱ̂, λ⃗
)
. (5.25d)

These relations bear resemblance to the relations in Eq. (2.97). Relations similar to the ones above
also exist for the phase space distributions in Sec. 5.1, and can be found in Ref. [95]. Subsequently,
one can find successive actions of two ormore ladder operators on ϱ̂ by repeated use of the rewritings
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in Eqs. (5.25a)-(5.25d). For example, the action of â†i â
†
j on ϱ̂, acting from the right is

χs
(
ϱ̂â†i â

†
j, λ⃗
)
=

(
− 1

2
(s− 1)α∗

j + ∂αj

)(
− 1

2
(s− 1)α∗

i + ∂αi

)
χs
(
ϱ̂, λ⃗
)
. (5.26)

If the operators applied to ϱ̂ commute, then so will the corresponding differential operators.

The desired action on ϱ̂ is obtained from taking the time derivative of the characteristic function

d

dt
χs = tr

{(
d

dt
ϱ̂

)
D̂(λ⃗)

}
exp

(
1

2
s||⃗λ||2

)
= tr

{
L̂GKSL(ϱ̂)D̂(λ⃗)

}
exp

(
1

2
s||⃗λ||2

)
, (5.27)

and identifying that the time derivative of ϱ̂ can be replaced using the GKSL equation in Eq. (4.3).
Inserting the general quadratic Hamiltonian in Eq. (5.20) into the GKSL equation in Eq. (4.3) gives

L̂GKSL(ϱ̂) = −i
(
ζ̂†Hζ̂ϱ̂+ ζ̂†λ⃗Dϱ̂− ϱ̂ζ̂†Hζ̂ − ϱ̂ζ̂†λ⃗D

)
+

2N∑
k=1

γkD
[
L̂k
]
(ϱ̂). (5.28)

Accounting for all the terms and replacing the actions of the operators according to Eqs. (5.25a)-
(5.25d)will give a very complicated expression involvingmixedpartial derivatives, which is the Fokker-
Planck equationwe are after. Inserting theGaussian state inEq. (5.5) into theFokker-Planck equation
and carrying out the differentiation then gives

d

dt
χs = −

1

2
λ⃗†Kζ

(
WΘ+ΘW † + F

)
Kζ λ⃗χs +

(
W 〈ζ̂〉+ iKζ λ⃗D

)†
Kζ λ⃗χs. (5.29)

On the other hand, we have that the time derivative of the characteristic function is

d

dt
χs = −

1

2
λ⃗†Kζ

dΘ

dt
Kζ λ⃗χs +

d〈ζ̂〉†

dt
Kζ λ⃗χs. (5.30)

Thus, by setting these equal to each other, the result is

d

dt
Θ = WΘ+ΘW † + F , (5.31)

and
d

dt
〈ζ̂〉 = W 〈ζ̂〉+ iKζ λ⃗D. (5.32)

Further methods of obtaining the CDLE exist, one of which is given in Appendix Cwithout dissipa-
tion. Alternative derivations can be found in Ref. [96].

5.2.3 Solutions to the CALE, CDLE and First Moments
Using the vectorisation operator, vec, which stacks the columns of a matrix into a vector, and the
Kronecker product,⊗, we can write the CALE in the Kronecker formulation as [97]

W vec(Θ) = W⊕W ∗ vec(Θ) = (12N ⊗W +W ∗ ⊗ 12N) vec(Θ) = − vec(F ), (5.33)

38



5. Gaussian States

where 12N is the identity matrix of order 2N , the same size asW , and⊕ represents the Kronecker
sum, defined as3 [97]

A⊕B ≡ (1n ⊗A+B ⊗ 1m), (5.34)

whereA ∈ Cn×n,B ∈ Cm×m. The Kronecker sum is not to be confused with the direct sum⊕,
though they share the same symbol. The Kronecker sum is thus distinguished through the use of a
line beneath the symbol. The vectorisation allows vec(Θ) to be solved for by finding the inverse of
W

vec(Θ) = −W−1 vec(F ). (5.35)

The matrixΘ is then found by unvectorising the solution. A vectorised solution of the CDLE can
also be found [98]. From the CDLE in Eq. (5.12), we obtain

vec

(
d

dt
Θ

)
=

d

dt
vec(Θ) = vec

(
WΘ+ΘW † + F

)
= vec

(
WΘ

)
+ vec

(
ΘW †

)
+ vec(F )

=
[
(12N ⊗W ) + (W ∗ ⊗ 12N)

]
vec(Θ) + vec(F )

=Wvec(Θ) + vec(F ), (5.36)

where the identity [97]
vec(ABC) =

(
C⊤ ⊗A

)
vec(B), (5.37)

was used. Equation (5.36) has the solution [97]

vec(Θ) = exp(Wt)vec(Θ0) +

t∫
0

exp
(
W [t− τ ]

)
vec
(
F (τ)

)
dτ . (5.38)

Under the assumption that F is independent of time, or d
dt
F (t) = 0, which is the case with our

chosen dissipator, the integral above can be evaluated as follows [98]

t∫
0

exp
(
W [t− τ ]

)
dτ = exp(Wt)

t∫
0

exp(−Wτ)dτ

= exp(Wt)W−1
(
12N − exp(−Wt)

)
=W−1

(
exp(Wt)− 12N

)
, (5.39)

making the full solution

vec(Θ) = exp(Wt)vec(Θ0) +W−1
(
exp(Wt)− 12N

)
vec(F ). (5.40)

Alternatively, by using the identity [97]

exp
(
A⊕B

)
= exp(A)⊗ exp(B), (5.41)

3It is also possible to define it asA⊕B ≡ (A⊗1n+1m⊗B), which from the definition in Eq. (5.34) corresponds
toB⊕A.

39



5. Gaussian States

one obtains

vec(Θ) =
(
exp(W t)⊗ exp(W ∗t)

)
vec(Θ0)

+W−1
(
exp(W t)⊗ exp(W ∗t)− 12N

)
vec(F ). (5.42)

The solution of the CDLE in Eq. (5.12) on integral form is [99]

Θ = exp
(
W t

)
Θ0 exp

(
W †t

)
−

t∫
0

exp
(
W τ

)
F exp

(
W †τ

)
dτ , (5.43)

whereΘ0 = Θ(t = 0). IfW is a stablematrix (Routh-Hurwitz matrix), meaning that the real parts
of the eigenvalues ofW are strictly negative, i.e. Re

[
λi
]
< 0, then

Θ = −
∞∫
0

exp
(
W τ

)
F exp

(
W †τ

)
dτ , (5.44)

is the steady-state solution (in the long-time limit) [99].

The solution to the matrix equation for the first moments given in Eq. (5.14), that is the equation

d

dt
〈ζ̂〉 = W 〈ζ̂〉+ iKζ λ⃗D, (5.45)

has the same form as that in Eq. (5.38), which now is [97]

〈ζ̂〉(t) = exp(W t)〈ζ̂〉(0) + exp(W t)

t∫
0

exp(−W τ)iKζ λ⃗D(τ)dτ . (5.46)

Making the same assumption of time-independence as before, but this timewith respect to λ⃗D, which
is also true in our case, the integral can be evaluated in the same way as in Eq. (5.39), giving

〈ζ̂〉(t) = exp(W t)〈ζ̂〉(0) +W−1
(
exp(W t)− 12N

)
iKζ λ⃗D. (5.47)

The steady state solution can then be obtained from

〈ζ̂〉 = −iW−1Kζ λ⃗D. (5.48)

5.3 Entanglement
Quantum entanglement is an important aspect in the theory of quantum information, and by ex-
tension quantum computation. In our case, we want to study the entanglement of two resonators
coupled via aDQD.Here, we thus restrict ourselves to consideringbipartite quantumstates ϱ̂12. Such
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a state is separable if, and only if, it can be expressed as [100–102]

ϱ̂12 =
∑
i

piϱ̂i;1 ⊗ ϱ̂i;2, (5.49)

where pi ≥ 0 satisfying
∑

i pi = 1, and ϱ̂i;1 and ϱ̂i;2 are the density operators of the two modes
1 and 2. A number of separability criteria exist for determining when the above is true. These in-
clude entropic criteria based on the Rényi-α entropy discussed below, entanglement witnesses and
several other [100]. A necessary condition for ϱ̂12 to be separable is the Peres-Horodecki criterion,
or positive partial transpose (PPT) criterion since it involves finding if the partial transpose of ϱ̂12 is
a density operator [100]. A generalisation of the Peres-Horodecki criterion to continuous variables
was made independently by R. Simon [101] and L.-M. Duan et al. [102]. They found a necessary
and sufficient condition, in the form of an inequality relation, for the separability of Gaussian states
of two HO’s constituting a bipartite system. In the next section, we consider the approach of Duan
et al. to this condition, and expand on it to find amore useful expression for our case. For a review of
entanglement, see Ref. [100].

5.3.1 The Duan Criterion (Duan-Giedke-Cirac-Zoller)
The general statement of the Duan criterion is that a quantum state of twomodes which is separable
satisfies the inequality [100, 102]

〈(δX̂)2〉+ 〈(δP̂ )2〉 ≥ A2 − 1

A2
, (5.50)

for the Einstein-Podolsky-Rosen (EPR)-like operators

X̂ = |A|x̂1 +
1

A
x̂2, and P̂ = |A|p̂1 −

1

A
p̂2, (5.51)

subject to the constraint
[
x̂j, p̂j′

]
= iδjj′ , (j, j ′ = 1, 2). For our purposes, we will reduce it to

the case of linear combinations of quadrature operators, which have the form of the above EPR-like
operators withA = 1 and an overall pre-factor 1√

2
. The quadrature operators are

x̂1 =
1√
2

(
â†1 + â1

)
, and p̂1 =

i√
2

(
â†1 − â1

)
, (5.52)

for the first mode, as well as

x̂2 =
1√
2

(
exp(iϕ)â†2 + exp(−iϕ)â2

)
, and p̂2 =

i√
2

(
exp(iϕ)â†2 − exp(−iϕ)â2

)
, (5.53)

for the second, with phases added so that they are arbitrarily rotated compared to the first mode.
These can both be shown to satisfy the commutation relation above. We thus define our EPR-like
operators to be

X̂+ =
1√
2
(x̂1 + x̂2), and P̂− =

1√
2
(p̂1 − p̂2), (5.54)
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which in Eq. (5.50) gives

2〈(δX̂+)
2〉+ 2〈(δP̂−)

2〉 ≥ 2 =⇒ 〈(δX̂+)
2〉+ 〈(δP̂−)

2〉 ≥ 1. (5.55)

The Duan criterion, expanded in terms of the ladder operators in Eq. (5.52) is then

〈δâ†1δâ1〉+ 〈δâ
†
2δâ2〉+ exp(iϕ)〈δâ†1δâ

†
2〉+ exp(−iϕ)〈δâ1δâ2〉 ≥ 0, (5.56)

which in turn can be rewritten from the elements of the covariance matrix for the ladder operators

Θ11 +Θ33 + exp(iϕ)Θ41 + exp(−iϕ)Θ14 ≥ 1. (5.57)

The optimal choice of ϕ is the opposite angle to the phase ofΘ14 (Θ41), giving

D =
1

2
tr{Θ} − 2|Θ14| ≥ 1, (5.58)

where we have named the expression on the left side of the inequalityD.

For the case in which there is no two-mode squeezing, the elements Θ14 and Θ41 are going to be
zero, meaning that the contribution to the variance is purely thermal

1

2
tr{Θ} = 〈δâ†1δâ1〉+ 〈δâ

†
2δâ2〉+ 1 ≥ 1, (5.59)

where 〈δâ†1(2)δâ1(2)〉 ≥ 0, meaning that the state is never entangled.

5.3.2 Rényi-2 Entropy
Rényi-α entropies [103] constitute a family of additive entropies, which for a density operator, ϱ̂, is
given by [104]

S
(α)
R (ϱ̂) =

1

1− α
ln
(
tr{ϱ̂α}

)
. (5.60)

In the limit of α→ 1, the Rényi-2 entropy converges to the von Neumann entropy [100, 104, 105]

lim
α→1

S
(α)
R = − tr{ϱ̂ ln(ϱ̂)}. (5.61)

For Gaussian states, the most interesting entropy of the Rényi-α entropies is the Rényi-2 entropy4

S
(2)
R = − ln

(
tr
{
ϱ̂2
})
. (5.62)

The quantity appearing in the logarithm of the Rényi-2 entropy in Eq. (5.62) is the purity, which can
be computed from theWigner-Ville function as [40, 56, 104]

tr
{
ϱ̂2
}
= (2π)N

∫
R2N

W 2
(
z⃗
)
d2N z⃗ =

1√
det(Θ)

. (5.63)

4An important property of the Rényi-2 entropy is that it is strongly subadditive, like the vonNeumann entropy. This
means that it obeys the inequality S(ϱA,B) + S(ϱA,B) ≥ S(ϱA,B,C) + S(ϱB), for tripartite systems [104].
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With the purity inserted back into Eq. (5.62), we have

S
(2)
R =

1

2
ln
(
det(Θ)

)
. (5.64)

For a CMwith only two-mode squeezing as the interaction, it further reduces to

S
(2)
R = ln

(
|Θ11Θ44 −Θ14Θ41|

)
, (5.65)

or sinceΘ14 = Θ∗
41 to

S
(2)
R = ln

(∣∣Θ11Θ44 − |Θ14|2
∣∣). (5.66)

43



6. Mean-Field Equations

6. Mean-Field Equations

6.1 Mean-Field Method
Making a MF approximation for the coupling between the resonators and the DQD allows for the
use of the CDLE in describing the system [106, 107]. This means that we assume the correlations
between the states of the DQD and the two resonator to be sufficiently small as to be neglected. In
turn, this allows for the density matrix to be written as

ϱ̂(t) = ϱ̂DQD(t)⊗ ϱ̂12(t), (6.1)

at all times, where ϱ̂DQD is the state of the DQD, and ϱ̂12 is the joint state of the resonators. We also
assume that ϱ̂12 is not a product state, since such a state cannot facilitate entanglement. Inserting
Eq.(6.1) into the chosen form of Eq. (4.3) along with the derived effective Hamiltonian

Ĥ = ℏω1â
†
1â1 + ℏω2â

†
2â2 +

1

2
ℏΩσ̂z + Λ

(
σ̂+â1â2 + σ̂−â

†
1â

†
2

)
, (6.2)

and tracing over the degrees of freedom of either the resonators or theDQD,we getmaster equations
for the other, with dependencies on the other entering only through their expectation values.

6.2 Equation for the Double Quantum Dot
For the DQD, the resulting Hamiltonian is

ĤDQD =
1

2
ℏΩσ̂z + ℏΛ

(
〈â†1â

†
2〉σ̂− + 〈â1â2〉σ̂+

)
, (6.3)

where the Pauli operators include a third level, as described at the end of Sec. 2.3. To rewrite this in
terms of elements of the covariance matrix, we substitute in 〈δâ†1δâ

†
2〉 = 〈â

†
1â

†
2〉 − 〈â

†
1〉〈â

†
2〉 and its

hermitian conjugate

ĤDQD =
1

2
Ωσ̂z + ℏΛ

(
〈δâ†1δâ

†
2〉σ̂− + 〈δâ1δâ2〉σ̂+ + 〈â†1〉〈â

†
2〉σ̂− + 〈â1〉〈â2〉σ̂+

)
. (6.4)

From this we identify the corresponding elements to get

ĤDQD =
1

2
ℏΩσ̂z + ℏΛ

(
Θ41σ̂− +Θ14σ̂+ + 〈â†1〉〈â

†
2〉σ̂− + 〈â1〉〈â2〉σ̂+

)
. (6.5)

For the DQD, the dissipators used are

D
[
ŝ†g
]
(ϱ̂) = ŝ†gϱ̂ŝg −

1

2

{
ŝgŝ

†
g, ϱ̂
}
, and D

[
ŝe
]
(ϱ̂) = ŝeϱ̂ŝ

†
e −

1

2

{
ŝ†eŝe, ϱ̂

}
, (6.6)

making the GKSL equation for the DQD

∂tϱ̂DQD = −i
[
ĤDQD, ϱ̂DQD

]
+ γsgD

[
ŝ†g
]
(ϱ̂DQD) + γseD

[
ŝe
]
(ϱ̂DQD). (6.7)
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The density matrix includes the populations pe ∈ R and pg ∈ R, the populations of the excited and
ground state respectively, as well as the coherence c ∈ C. The last diagonal element is then given by
1 − pe − pg, since tr{ϱ̂DQD} = 1. There is also no coherence between the lead and the excited or
ground state.

6.3 Equations for the Resonators
For the HOHamiltonian, we again use Eq. (6.1), but now trace over the DQD to get

ĤHO = ℏω1â
†
1â1 + ℏω2â

†
2â2 + ℏΛ〈σ̂−〉â†1â

†
2 + ℏΛ〈σ̂+〉â1â2

+ ℏα1â
†
1 + ℏα∗

1â1 + ℏα2â
†
2 + ℏα∗

2â2, (6.8)

with drive added. The total dissipators for the HO’s are

DHO

[
â1(2)

]
(ϱ̂) = γ1(2)n̄1(2)

[
â†1(2)ϱ̂â1(2) −

1

2

{
â1(2)â

†
1(2), ϱ̂

}]
+ γ1(2)(n̄1(2) + 1)

[
â1(2)ϱ̂â

†
1,(2) −

1

2

{
â†1(2)â1(2), ϱ̂

}]
, (6.9)

though these are accounted for in thematricesΓ andF in Eqs. (5.16) and (5.17). The bosonicHamil-
tonian matrix is

H =


ω1 0 0 Λ〈σ̂−〉
0 ω1 Λ〈σ̂+〉 0

0 Λ〈σ̂−〉 ω2 0

Λ〈σ̂+〉 0 0 ω2

 , (6.10)

allowing us to findW through Eq. (5.18). The HO’s are then described by the CALE

WΘ+ΘW † = −F , (6.11)

and the first moments in the steady state

W 〈ζ̂〉+ iKζ λ⃗D = 0. (6.12)
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7. Numerical Results
The system described in the previous section is not analytically solvable in the general case (all pa-
rameters being non-zero), and thus requires a numerical treatment. In this section, we present the
numerical findings and compare them to analytical expressions for the solution of the coupled oscil-
lators without a DQDwhere possible. The Python package used for solving the system of equations
numerically was SymPy’s nsolve.

We first turn our attention to justification of removing the extra terms in Eq. (3.46). This can be seen
from rewriting the Hamiltonian as

Ĥ ≈ ℏω1â
†
1â1 + ℏω2â

†
2â2 +

1

2
ℏΩσ̂z + ηℏΛzσ̂z + ηℏΛ

(
σ̂+â1â2 + σ̂−â

†
1â

†
2

)
+ ℏα1â

†
1 + ℏα∗

1â1 + ℏα2â
†
2 + ℏα∗

2â2, (7.1)

where
Λz =

(gx1 )
2

ω2

+
(gx2 )

2

ω1

+
(gx1 )

2

ω2

â†1â1 +
(gx2 )

2

ω1

â†2â2, (7.2)

and we also introduced a shared parameter η for both Λz and Λ. Solving the MF equation with the
DQDHamiltonian from the steady state of the GKSL equation in Eq. (4.3), and expanding it to first
order in η gives

ϱ̂ ≈


0 − iηΛ⟨â†1â

†
2⟩

γse+2iΩ
0

iηΛ⟨â1â2⟩
γse−2iΩ

1 0

0 0 0

 . (7.3)

From this, we can see that there is no dependence onΛz to first order in η. Doing the same thing for
the oscillators by solving the CALE with the bosonic MF Hamiltonian, and expanding in orders of
η, gives that the zeroth order is diag(n̄1, n̄1, n̄2, n̄2) + 14/2, and the first order is

Θ ≈


n̄1 +

1
2

0 0 2ηΛ⟨σ̂−⟩(n̄1+n̄2+1)
iγ1+iγ2−2ω1−2ω2

0 n̄1 +
1
2

−2ηΛ⟨σ̂+⟩(n̄1+n̄2+1)
iγ1+iγ2+2ω1+2ω2

0

0 2ηΛ⟨σ̂−⟩(n̄1+n̄2+1)
iγ1+iγ2−2ω1−2ω2

n̄2 +
1
2

0

−2ηΛ⟨σ̂+⟩(n̄1+n̄2+1)
iγ1+iγ2+2ω1+2ω2

0 0 n̄2 +
1
2

 , (7.4)

which also has no dependence on Λz . This justifies the use of the Hamiltonian in this case for small
values of Λ. We will however push the range of Λ and α, for better visualisation of different be-
haviours. Finally, the full steady state solutions for the first moments in the MF are

〈â1(2)〉 =
−4Λ〈σ̂−〉α∗

2(1) + 2iα1(2)

(
γ2(1) − 2iω2(1)

)
4Λ2〈σ̂+〉〈σ̂−〉+

(
γ1(2) + 2iω1(2)

) (
γ2(1) − 2iω2(1)

) , (7.5)

and 〈â†1(2)〉 = 〈â1(2)〉∗, with 〈â
(†)
1(2)〉 = tr

{
â
(†)
1(2)ϱ̂

}
, where ϱ̂ is given in Eq. (6.1).
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7.1 First Moments
From the numerical solutions, we are interested in looking at how the first and second moments, as
well as the Duan criterion depend on a number of quantities, mainly the HO drive strength, α, and
the coupling strength,Λ, which we normalise by theDQD level splitting,Ω. First, we look at the first

moments, through the expression
√
〈â†i〉〈âi〉, thus neglecting the phase, since it plays a minor role.
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â
i〉

√
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Figure 7.1: The figure shows the square root of the product of first moments for the twomodes as a function
of the drive strength on the HO’s. The solid lines correspond to the numerical results, and the dashed lines
are the analytic solutions for two coupled oscillators, to zeroth order inΛ. Parameter values used areΛ = 0.1,
Ω = 1, ω1 = 2/3, ω2 = 1/3, n̄1(2) = 0 and γ1(2) = γse(sg) = 0.001. Λ is required to be small in the MF.
The frequencies are determined by the conditionΩ = ω1 + ω2, where ω1 6= ω2. The dissipation rates, γ, are
required to be small in comparison toΩ.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

α/Ω

0.00

0.05

0.10

0.15

0.20

0.25

pe

|c|

Figure 7.2: Dependence of the coherence of the
DQD on HO drive. Also shown is the popula-
tion of the excited state, pe, of the DQD. Param-
eter values are Λ = 0.1, Ω = 1, ω1 = 2/3,
ω2 = 1/3, n̄1(2) = 0, γ1(2) = γse(sg) = 0.001.

The dependence of the first moments on the HO
drive strength, α, in the MF, shown as the solid lines
in Fig. 7.1, is linear. By using the analytical solution
of the first moments in Eq. (7.5), and inserting the
numerical values of the coherence, c, a perfect match
to the numerical solution is achieved. Expanding the
analytical solutions to zeroth order inΛ, we get an ap-
proximation√

〈â†1(2)〉〈â1(2)〉 ≈
2α1(2)√

γ21(2) + 4ω2
1(2)

, (7.6)

which is not dependent on c or any other proper-
ties of the DQD. This is shown for the two modes as
dashed lines in Fig. 7.1, and has a near perfect agree-
ment for small values ofα, while still exhibiting good
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agreement for higher values. The order of themoment thusmatches the order of its dependence onα.

The firstmoments exhibit dependence on the coupling strengthΛ, as well as the oscillator dissipation
rates, γ1(2). Though, in the range where they are physical, the first moments are constant and have a
negligible dependence. There is also no dependence on the dissipation rates γse(sg). The DQD is not
isolated from the environment, since at infinite time-scales, a small γse(sg) is still significant in order
for the system to reach a steady state, even though its exact value is not.

Part of the reason for the discrepancy between the approximation in Eq. (7.6) and the full solution,
is that Λ is non-zero, and that the coherence of the DQD has a non-linear dependence on α, which
is plotted in Fig. 7.2. Also shown in Fig. 7.2 is the population of the excited state of the DQD, pe,
which is non-linear in the chosen regime.

7.2 Photon Population
Another property of the oscillators is the photon population, which is given by

〈n̂1(2)〉 = 〈â†1(2)â1(2)〉 = Θ11(33) + 〈â†1(2)〉〈â1(2)〉 −
1

2
. (7.7)

The numerical solutions for the two populations are shown as the solid lines in Fig. 7.3.
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Figure 7.3: Photon population, 〈n̂i〉, as a function of HO drive strength. Parameter values used areΛ = 0.1,
Ω = 1, ω1 = 2/3, ω2 = 1/3, n̄1(2) = 0.3, γ1(2) = 0.001 and γse(sg) = 0.001.

Similar to the first moments, we can expand the analytical solution from Eq. (5.35) to first order inΛ
to get

〈n̂1(2)〉 ≈ n̄1(2) +
4α1(2)

γ1(2) + 4ω1(2)

, (7.8)
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where n̄1(2) is the Bose-Einstein distribution [69, 108]

n̄1(2) =
1

exp
(

ℏω1(2)

kBT1(2)

)
− 1

, (7.9)

with kB being the Boltzmann constant, and T1(2) the temperature of the resonators. The total num-
ber of photons given in Eq. (7.8), 〈n̂1(2)〉, is thus constituted of both a thermal occupation at equi-
librium from the Bose-Einstein distribution, and an additional occupation from the HO drive.

Equation (7.8) also has no dependence on coherence. The approximations of the populations of
the two oscillators are also shown in Fig. 7.3, but as dashed lines. The dependence we see is close to
quadratic, with excellent agreement of the approximation in Eq. (7.8) for small values of α, while
also maintaining good agreement for higher values. The discrepancy is again caused by the coherence
being dependent on α. The behaviour is quadratic because the second moments are quadratic in
terms of operators, which are each linear with respect to α.

7.3 The Duan Criterion
In theMF, both the two-mode squeezing interaction strength,Λ, and theHOdrive strength,α, affect
D in the Duan criterion. The dependence on the drive stems from the expectation value of the Pauli
operators, which with the density matrix used evaluates to
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Figure 7.4: Contour plot ofD in theDuan crite-
rion, as a function of α andΛ. The Duan bound
at1 is indicatedwith a level line. Driving theHO’s
only contributes to entanglement in the MF. Pa-
rameter values areΩ = 1, ω1 = 2/3, ω2 = 1/3,
n̄1(2) = 0.005 and γ1(2) = γse(sg) = 0.001.

〈σ̂−〉 = c, and 〈σ̂+〉 = c∗. (7.10)

The DQD coherences in turn depend on the drive as
shown in Fig. 7.2. The dependence ofD on α andΛ
is shown as a contour plot in Fig. 7.4, where the os-
cillators are entangled if D < 1, and not entangled
if D ≥ 1. Thus, above the line indicating D = 1

in Fig. 7.4, theHO’s are entangled, and below it, they
are not. Thedependence onα andΛ seems tobe sym-
metric. Looking at cross-sections of the contour plot
for specific values, shown in Fig. 7.5, we can see that
this is the case in the range of the contour plot. We
also note that the choice of oscillators to drive makes
a very small difference, and thuswe choose to have the
same drive on both. Another point is that there needs
to be non-zero drive on both HO’s for it to affectD
as can be seen from Eq. (6.5).

Without aDQD, that is, considering only two coupled cavities,D in theDuan criterion can be found
analytically by solving theCALE. TheDuan criterion in this case has no dependence on the oscillator
drive, which can be seen from Eq. (7.4).
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Figure 7.6: Contour plots forD in the Duan criterion. Panel (a) showsD as a function of the Bose-Einstein
distributions of two oscillators from the numerical MF solution, while panel (b) shows the same thing, but as
a function of their temperatures, both with Λ = 0.3. The panels (c) and (d) showD, but from the analytical
solution for two coupled oscillators without the DQD, this time with Λ = 0.15. The other parameter values
used areΩ = 1, α1(2) = 0.3, ω1 = 2/3, ω2 = 1/3, γ1(2) = 0.001 and γse(sg) = 0.001.
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The Duan criterion from the CALE for two coupled oscillators clearly has a dependence on n̄1(2),
from the first order solution in Eq. (7.4). This dependence will extend to the MF system, where we
expect higher n̄1(2) to break entanglement for the oscillators. D in the Duan criterion is thus shown
as contour plots in the different cases in Fig. 7.6. The cases considered are: theMF solution as a func-
tion of n̄1(2) in Fig. 7.6a, and as a function of temperature T1(2) in Fig. 7.6b, when n̄1(2) is replaced
by the explicit form in Eq. (7.9).

The corresponding cases for two coupled cavities without the DQD from their analytical solutions
are shown in Figs. 7.6c and 7.6d. The analytical solution is not restricted by the value of the coher-
ences, which has a maximum value of 1/2, and thus represents the best possible way to entangle the
oscillators.

As a final aside in investigating theDuan criterion, we look at two analytical solutions for two coupled
cavities. One is that from the CALE for local dissipators, and the other is the solution for a squeezed
thermal state, which for zero temperature from Eq. (A.21) was found to be

0.0 0.1 0.2 0.3 0.4

Λ/(ω1 + ω2)

0.0

0.2

0.4

0.6

0.8

1.0

D

Thermal

Local

Figure 7.7: Plot of the Duan criterionD, comparing a
statewith local dissipators to a squeezed thermal state as
a function of Λ. Parameter values used are ω1 = 2/3,
ω2 = 1/3, n̄1(2) = 0 and γ1(2) = 0.001.

D =

√
ω1 + ω2 − 2|Λ|
ω1 + ω2 + 2|Λ|

, (7.11)

for the diagonalised Hamiltonian in Eq. (A.13)
of Appendix A. The two cases are shown in
Fig. 7.7. It is interesting to note that our model
does not predict the same result as the thermal
solution, except for small Λ. This is because
the dissipator we chose does not exactly ther-
malise the system, even if the temperatures in
bothHO’s are the same. This is a problem in the
field of open quantum systems, often described
as local dissipators (the one we use) vs. global
dissipators (which would have a thermal steady
state). There is no consensus, though, on which
approach is better, and both seem to fail in dif-
ferent situations [109–111].
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8. Outlook
One of the inspirations for this work, Ref. [9], involved an experimental setup of a DQD coupled
to a single resonator. The most exciting continuation of this work would be to do the same for the
systemwe have considered, with coplanar waveguides and a semiconductor DQD, in order to obtain
experimental data for comparison with our results.

For the purpose of simplifying calculations, aMFwas introduced, shifting away from aHilbert space
description to a phase space description, where the phase space ismuch smaller than theHilbert space.
This makes the state of the oscillators Gaussian, and allows for the use of the CDLE. These calcula-
tions were not verified in any way, however, against theoretical results from amore exact model, such
as one without the MF approximation, or against experimental data as discussed above. In Ref. [10]
however, a similar MF was employed, giving accurate results in some regimes, including the weak
coupling regime, compared to experimental data from Ref. [9]. A potential avenue to pursue is thus
the verification of the validity of the MF approximation.

A possible theoretical extension to pursue would be the inclusion of more resonators. For larger sys-
tems of the type considered here, there exist similar criteria for entanglement [100]. More resonators
represents but one of the possible models discussed in Appendix B, which could be considered. For
purposes of computation, connecting several DQD-resonator systems in a network could also be ex-
plored, as mentioned in Sec. 1. The inclusion of more resonators can be handled effectively by the
CDLE in the MF. In considering several connected DQD-resonator systems, the current flowing in
the leads between the DQD’s would need to be taken into account.

One of the obvious modifications that could be made to the system is replacing the DQD with an-
other two-level system, such as a two-level atom, a single quantum dot with two levels, or a flux qubit
as in Ref. [112]. Alternative extensions of the work could include a third or a fourth level, as well as
to systems not in the Coulomb blockade regime. Moving away from the Coulomb blockade regime
would introduce new physics stemming from electron-electron interactions, which are by no means
trivial, and would have to be carefully considered.

In this work, entanglement of the systemwas analysed solely from application of the Duan criterion.
This could be extended to other criteria, such as those based on entropy, or to measures of entangle-
ment.

Similar to what was done in Ref. [10], applying the theory of counting statistics to this systemwould
provide information on the transport statistics of the system. This involves modifying the dissipa-
tors of the DQD system as in Ref. [10] to look at electron transport, or alternatively modifying the
dissipators of the oscillators to look at photon transport. More closely related to this work would be
to analyse if the quantities one obtains from this framework can in any way be used to characterise
entanglement.
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Appendix A: Coupled Cavities

A.1 Hamiltonian From cQED

L1

ϕ1

C12
ϕ2

L2

C1 C2

Figure 8.1: The circuit of two capacitively coupledLC-oscillators, corresponding to two coupled HO’s.

Having quantised the circuit of a singleLC-oscillator in Sec. 2.2.2, and the circuit for the full system
considered in Sec. 3, we look at quantising two coupled LC-oscillators. The classical Lagrangian of
the circuit in Fig. 8.1 is

L =
1

2
C1ϕ̇

2
1 −

1

2L1

ϕ2
1 +

1

2
C1D

(
ϕ̇1 − ϕ̇2

)2
+

1

2
C2ϕ̇

2
4 −

1

2L2

ϕ2
4. (A.1)

From the matrix form in Eq. (2.9), the capacitance matrix is

C =

C1 + C12 −C12

−C12 C12 + C2

 , (A.2)

and the inverse inductance matrix is1

L−1 =

 1
L1

0

0 1
L2

 . (A.3)

We proceed to find the inverse capacitance matrix as being

C−1 =
1

C1C2 + C12C1 + C12C2

C2 + C12 C12

C12 C12 + C1

 . (A.4)

Introducing a new coupling constant [33]

C0 ≡
C12√

(C1 + C12)(C2 + C12)
, (A.5)

1In this case, the inverse inductance matrix is a true inverse matrix.
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and using the first part of Eq. (2.19), we get

C−1 =

 L1ω
2
1 C0ω1ω2

√
L1L2

C0ω1ω2

√
L1L2 L2ω

2
2

 . (A.6)

Inserting this into Eq. (2.12) gives

Ĥ =
1

2
L1ω

2
1q

2
1 +

1

2L1

ϕ2
1 + C0ω1ω2

√
L1L2q1q2 +

1

2
L2ω

2
2q

2
2 +

1

2L2

ϕ2
2. (A.7)

Quantising this as before through Eq. (2.8) finally yields

Ĥ = ℏω1

(
â†1â1 +

1

2

)
+ ℏω2

(
â†2â2 +

1

2

)
+ ℏC0

√
ω1ω2

(
â†1 − â1

)(
â†2 − â2

)
. (A.8)

This can then be diagonalised with a Bogoliubov-Valatin transformation. An alternative approach to
deriving the Hamiltonian is to diagonalise the Lagrangian first. More details on this can be found in
Ref. [33].

A.2 Diagonalisation of the Two-Mode Squeezing Hamiltonian
If we restrict the Hamiltonian in the previous section to resonant emission and absorption, we get a
Hamiltonian of the form

Ĥ = ℏω1

(
â†1â1 +

1

2

)
+ ℏω2

(
â†2â2 +

1

2

)
+ ℏ
(
Λâ†1â

†
2 + Λ∗â1â2

)
. (A.9)

We can then diagonalise this Hamiltonian with a Bogoliubov-Valatin transformation fromEq. (2.65)

Ŝ2(β) = exp
(
βâ†1â

†
2 − β∗â1â2

)
, (A.10)

where the requirement on β becomes

β =
1

4
ei arg(Λ) ln

(
ω1 + ω2 − 2|Λ|
ω1 + ω2 + 2|Λ|

)
, (A.11)

or for ω1 = ω2 = ω0

β =
1

4
ei arg(Λ) ln

(
ω0 −|Λ|
ω0 +|Λ|

)
. (A.12)

With this, we get the Hamiltonian

H̃ = S†
2ĤS2 = Ω+

(
â†1â1 +

1

2

)
+ Ω−

(
â†2â2 +

1

2

)
, (A.13)
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with the new frequencies

Ω± = ±1

2
ℏ(ω1 − ω2) + ℏ

√
(ω1 + ω2)2

4
− |Λ|2. (A.14)

A.3 Squeezed Thermal State
The covariance matrix of the two-mode squeezed vacuum can be found from the symplectic form of
the two-mode squeezing operator in Eq. (2.68)

ΘSTS = S†
2ΘTh.S2, (A.15)

where the thermal state isΘTh. = diag(n̄1, n̄1, n̄2, n̄2) +
1
2
14. Evaluating this gives

ΘSTS =


A 0 0 C

0 A C∗ 0

0 C B 0

C∗ 0 0 B

+
1

2
14, (A.16)

where

A = n̄1µ
2 + n̄2|ν|2 +|ν|2 , B = n̄2µ

2 + n̄1|ν|2 +|ν|2 , (A.17)

and
C = (n̄1 + n̄2 + 1)µν. (A.18)

Using the Duan criterion in Eq. (5.50), we get

D = A+B − 2|C| = (n̄1 + n̄2)
(
µ2 + ν2

)
+ 2|ν|2 − 2(n̄1 + n̄2 + 1)µ|ν| . (A.19)

Inserting the squeezing parameter β in Eq. (A.11) which diagonalises theHamiltonian in Eq. (A.13),
gives

D = (n̄1 + n̄2 + 1)

√
ω1 + ω2 − 2|Λ|
ω1 + ω2 + 2|Λ|

, (A.20)

where the frequencies appearing in theBose-Einsteindistributions aremodified according toEq. (A.14).
For zero temperature,D for a thermal state reduces to

D =

√
ω1 + ω2 − 2|Λ|
ω1 + ω2 + 2|Λ|

. (A.21)
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AppendixB:The Jaynes-CummingsModel and
Its Extensions
Many theoretical models exist within quantum optics. The model used in the theoretical treatments
in Refs. [9, 10] is the most commonmodel, and the simplest, which is the Jaynes-Cummings model.
The model considers one oscillator and one two-level system without counter-rotating terms. The
interaction Hamiltonian is thus [26, 60, 113]

ĤJC = gâ†σ̂− + g∗âσ̂+. (B.1)

This model can be extended to include more oscillators and more photons in the interaction with a
single two-level system. The one-mode two-photon Jaynes-Cummings model would have the inter-
action Hamiltonian

Ĥ
(1,2)
JC = gâ†â†σ̂− + g∗ââσ̂+. (B.2)

If another oscillator is introduced, we have two modes and thus the two-mode two-photon Jaynes-
Cummings Model has the interaction Hamiltonian [11]

Ĥ
(2,2)
JC = gâ†1â

†
2σ̂− + g∗â1â2σ̂+. (B.3)

Model Counter-rotating terms Oscillators Two-level systems

Jaynes-Cummings No N = 1 N = 1

Extended Jaynes-Cummings No N > 1 N = 1

Jaynes-Cummings-Hubbard No N =M M > 1

Tavis-Cummings No N = 1 N > 1

Rabi Yes N = 1 N = 1

Dicke Yes N = 1 N > 1

Table B.1: Table giving an overview of theoretical models in quantum optics and some of their distinguishing
features. This includes if the model contains counter-rotating terms and the number of oscillators and two-
level systems.

The Rabi model is the Jaynes-Cummings model with the inclusion of counter-rotating terms. This
modifies the interaction Hamiltonian to be [114]

ĤR =
(
gâ† + g∗â

)
σ̂x, (B.4)

which gives back the Jaynes-Cummings interaction when the RWA is applied. A number of these
models are given in Tab. B.1 with some of their distinguishing features. Other variations on these
models also exist.
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Appendix C: The Lyapunov Equation From a
Quadratic Function Subject to a 1D ODE
The simplest case of a linear matrix ODE is

d

dt
〈ζ̂〉 = W 〈ζ̂〉, (C.1)

whereW ∈ C2N×2N and 〈ζ̂〉 ∈ C2N×1. If we introduce a time-dependent quadratic functionQ(t),
which can be written as

Q(t) = 〈ζ̂〉†(t)KζΘ(t)Kζ〈ζ̂〉(t), (C.2)

where the matrix formed byKζΘ(t)Kζ ∈ C2N×2N is a Hermitian matrix, i.e.

KζΘ(t)Kζ =
(
KζΘ(t)Kζ

)†
, (C.3)

we can take the time-derivative of this function, using the Leibniz product rule, to obtain

Q̇(t) = 〈 ˙̂ζ〉†(t)KζΘ(t)Kζ〈ζ̂〉(t) + 〈ζ̂〉†(t)KζΘ̇(t)Kζ〈ζ̂〉(t)

+ 〈ζ̂〉†(t)KζΘ(t)Kζ〈 ˙̂ζ〉(t), (C.4)

and subsequently utilise Eq. (C.1) to further obtain

Q̇(t) =
(
〈ζ̂〉†(t)W † − i⃗λ†Kζ

)
KζΘ(t)Kζ〈ζ̂〉(t) + 〈ζ̂〉†(t)KζΘ̇(t)Kζ〈ζ̂〉(t)

+ 〈ζ̂〉†(t)KζΘ(t)Kζ

(
W 〈ζ̂〉(t) + iKζ λ⃗

)
= 〈ζ̂〉†(t)

(
W †KζΘ(t)Kζ +KζΘ̇(t)Kζ +KζΘ(t)KζW

)
︸ ︷︷ ︸

=(∗)

〈ζ̂〉(t), (C.5)

where we used
(
W 〈ζ̂〉(t)

)†
= 〈ζ̂〉†(t)W †. Thus, a quadratic function subject only to Eq. (C.1) is

governed by (∗), which we can set equal to another matrix, −KζFKζ , as (∗) = −KζFKζ and
express (∗) as

Kζ

(
d

dt
Θ

)
Kζ = −W †KζΘKζ −KζΘKζW +KζFKζ . (C.6)

We can then use the symplectic form ofW and its hermitian conjugate without the dissipative com-
ponentΓ

W = −iKζH , and W † = iHKζ , (C.7)

to get
W †Kζ = iH , and KζW = −iH . (C.8)
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The latter can then be related to give

W †Kζ = −KζW . (C.9)

Using this in Eq. (C.6), we get

Kζ

(
d

dt
Θ

)
Kζ = KζWΘKζ +KζΘW †Kζ +KζFKζ , (C.10)

from which we can eliminate the matricesKζ , sinceK2
ζ = 12N , to obtain

d

dt
Θ = WΘ+ΘW † + F . (C.11)

We can also relate the quadratic functionQ to a Gaussian state through exponentiating it

χQ(t) = eQ(t), (C.12)

and taking its derivative, giving
χ̇Q(t) = Q̇(t)eQ(t). (C.13)

Thus, Q̇(t) describes the evolution of a Gaussian state, which in turn is governed by Eq. (C.11). The
omission ofΓ fromW in this derivation seems to be necessary, although the CDLE still holds when
it is included.
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Appendix D: Overviews

D.1 Correspondence of a Microwave Cavity to an LC-Oscillator
Aresonant cavity is physically, seemingly quite different compared to a resonantLC-circuit. They are
however, both extreme cases of electromagnetic resonators [115]. By carefully altering the geometry
and thenumber of inductors and capacitors of anLC-circuit, it is possible to obtain exactly a resonant
cavity. This is explained and illustrated in full detail in Ref. [115]. This is also the reason as to why
the HOHamiltonian can be derived from an LC-circuit.

D.2 Correspondence Between Hilbert Space and Phase Space
In this work, we utilise two descriptions of quantummechanics, one based onHilbert spaces and the
other on phase spaces. The correspondences between these descriptions are not immediately obvious,
and as such, they are given as a schematic overview in Tab. D.1.

Property of the Space Hilbert Space,H Phase Space, Γ

Dimension ∞ 2N

Structure
⊗ ⊕

Description ϱ̂ 〈ζ̂〉,Θ

Bona FideRelation ϱ̂ ≥ 0 Θ+ 1
2
Kζ ≥ 0

Unitary Operations
{
Û : Û †Û = 1

}
ϱ̂ 7→ Û †ϱ̂Û

{
S : S†KζS = Kζ

}
ζ̂ 7→ Sζ̂, Θ 7→ S†ΘS

Spectra Û ϱ̂Û † = diag{λi}∞i=1

0 ≤ λi ≤ 1
SΘS† = diag{(µk, µk)}∞k=1

1
2
≤ µk <∞

Pure States λi = 1, λj ̸=i = 0 µk = 1, ∀k = 1, . . . , N

Purity tr
{
ϱ̂2
}
=
∑
i

λ2i
(√

det(Θ)
)−1

=
∏
k

1
µk

Table D.1: Comparison of the properties in the Hilbert space and phase space descriptions of quantum me-
chanics for Gaussian states of N modes. The assumption made for the unitary operators Û is that they are
quadratic. The table is adapted from Refs. [40, 69] with some of the modifications taken from Ref. [56]. For
an almost equivalent table for quadrature operators, see Tab. 1 in Ref. [40].
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