
MASTER’S THESIS 2021

Improving Precision and
Usefulness of Clang
Optimization Remarks
Henrik Olsson, Oskar Damkjaer

ISSN 1650-2884
LU-CS-EX: 2020-53

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2020-53

Improving Precision and Usefulness of
Clang Optimization Remarks

Henrik Olsson, Oskar Damkjaer

Improving Precision and Usefulness of
Clang Optimization Remarks

Henrik Olsson
hnrklssn@gmail.com

Oskar Damkjaer
oskar.damkjaer@gmail.com

January 6, 2021

Master’s thesis work carried out at the Computer Science department at

Lunds Tekniska Högskola.

Supervisors: Christoph Reichenbach, christoph.reichenbach@cs.lth.se
Alexandru Dura, alexandru.dura@cs.lth.se

Examiner: Jonas Skeppstedt, jonas.skeppstedt@cs.lth.se

mailto:hnrklssn@gmail.com
mailto:oskar.damkjaer@gmail.com
mailto:christoph.reichenbach@cs.lth.se
mailto:alexandru.dura@cs.lth.se
mailto:jonas.skeppstedt@cs.lth.se

Abstract

One of the essential tools at the disposal of developers is the compiler, but
despite all the work put into them, tapping into the compiler’s optimizing power
can be daunting and unapproachable. This thesis explores ways tomake compiler
optimizations in the Clang compiler, more accessible and understandable. We
attempt to use debugging information to re-create names of variables and func-
tions lost in the optimization passes to make optimization remarks more precise
and actionable. We experiment with new ways to get optimization remarks from
the compiler by adding pragmas to signal which functions and loops are of inter-
est as a more precise alternative to compilation flags. We visualize optimization
remarks with a Visual Studio Code extension for a faster edit, compile, check
optimizations cycle, fully integrated into the editor.

Keywords: LLVM, Compilers, Error messages, Compiler aided optimization, Editor
Integration

2

Acknowledgements

Wewould like to thank our supervisors Chistoph Reichenbach and Alexandru Dura for their
valuable feedback, ideas and guidance.

3

4

Individual Contributions

Henrik added support for pragmas to clang and wrote the code to reconstruct the source
level names. Henrik also performed the evaluations for this work and wrote the correspond-
ing chapters. Oskar built the editor integration and set up docker and networking for the
case study. He analysed the results of the case study and wrote the pieces on editor inte-
gration. Henrik made the example code and instructions for the case study. He also wrote
the chapter on improvement of individual remarks and LLVM background. Oskar wrote the
introduction, the related works section and the general compiler background. Both authors
read, corrected and improved the report as a whole.

5

6

Contents

1 Introduction 9
1.1 Research questions . 10

2 Background 13
2.1 A high level view on compilers . 13
2.2 LLVM IR . 14

2.2.1 Instructions . 15
2.2.2 Metadata . 16

2.3 Optimization remarks . 17
2.3.1 Remarks in Clang . 18

2.4 Loop vectorization in LLVM . 18
2.5 Global Value Numbering . 19

3 Source names from LLVM IR 21
3.1 Information unavailable during optimization 21
3.2 Reconstructing information from debug data 23
3.3 Implementation . 25

3.3.1 Calibrating DIType metadata . 27

4 Pragmas for remark output 31
4.1 Emission of optimization remarks in Clang 31
4.2 Pragmas as an alternative to compilation flags 31
4.3 Implementation . 32
4.4 Limitations . 34

5 Editor integration 35
5.1 Integrating remarks into an editor . 35
5.2 Implementation . 36

5.2.1 Visual Studio Code . 36
5.2.2 Finding function declarations and loops in C++ code 37

7

CONTENTS

6 Improvement of individual remarks 39
6.1 Lack of detail in current optimization remarks 39
6.2 Improving GVN and vectorization remarks 39

6.2.1 GVN . 40
6.2.2 Loop-Vectorize . 44

7 Evaluation 49
7.1 Usability of the editor integration . 49

7.1.1 Method . 49
7.1.2 Results . 50

7.2 Performance impact . 53
7.2.1 Method . 53
7.2.2 Results . 54

7.3 Accuracy of name reconstruction . 54
7.3.1 Method . 54
7.3.2 Results . 56

8 Related work 61
8.1 The usefulness of compiler error messages 61
8.2 Compiler guided Optimization refactoring 62

9 Conclusions and further work 63

References 65

Appendix A Exit survey questions 69

Appendix B User evaluation task 71

Appendix C Source name algorithms 75
C.1 Naming IR values . 75
C.2 Comparing value types and debug types . 82
C.3 Calibrating debug type to match value type 87

Appendix D Performance benchmark data 89

8

Chapter 1

Introduction

Compilers automatically optimize the code they compile to improve program performance.
One such optimization the Clang [12] compiler supports is loop vectorization. Modern com-
puters typically have vector instructions that can domultiple operations in parallel. Utilizing
these instructions to perform multiple iterations of a loop in parallel is called loop vector-
ization.

Vectorizing loops can significantly increase performance but compilers can’t vectorize
all loops. A problem can be if the operations depend on each other within the loop. The
optimization logic in compilers is complex and even their authors may be unable to predict
if a loop will be vectorized.

Take for example this simple loop, can the Clang compiler vectorize it?

int sum [1000] = {1, 2, 3, 4};

for (int i = 1; i < 1000; i++)
{

sum [0] += sum[i - 1];
}

It turns out Clang (version 10.0.0) cannot vectorize this loop with the following expla-
nation:

"value that could not be identified as reduction is used outside the loop"

In this context a reduction variable refers to a variable that accumulates data from every
iteration of a loop. It’s unclear what value the message refers to, where it’s used and why
it couldn’t be used as a reduction. Even a programmer with relevant compiler knowledge
can’t understand what went wrong doesn’t have enough details to do so. When reading the
source for loop-vectorization remarks the optimizer Clang uses, we found more debugging
information. By default, optimization remarks are printed to the console where space is
limited and some detail must be left out. They can also be configured to be printed in full to

9

1. Introduction

files. In chapter 6 we alter the optimization remarks from the loop-vectorization pass to be
more flexible and include more debug data.

While improving the loop vectorization pass in an opportunity for improving the Global
ValueNumbering (GVN) [4] pass also arose. GVN removes redundant computations of values
by re-using previous computations. A necessary precondition for doing so is that the com-
piler needs to know that the computation is still correct. The explanation of what code was
preventing the compiler from re-using a computed value was improved to be more correct.

The previously mentioned improvements are not easily generalized. Similarly to the ex-
ample of a missed loop vectorization many remarks emitted are vague as they miss the names
from the source code. A reason for this is that the compiler works in several standalone mod-
ules. Clang only generates an intermediate code that a project called LLVM optimizes and
generates machine code from. Because of this de-coupling, in the optimizing step of com-
pilation the program’s original representation is gone. LLVM might not even know what
the source language is. The original names are not entirely lost if debug symbols are included
when compiling and even though the original program structure is lost, it is possible to recre-
ate source names. In chapter 3 we explore how well these names can be recreated and to what
performance penalty.

In chapter 5, we built a plugin for the Visual Studio Code that allows programmers to
get our improved optimization remarks directly in the editor. We used Clangs LibTooling
to build an AST and locate function and loop headers, annotate them with an editor action.
This allows us to show only the remarks a�ecting said loop or function and let the user pick
what optimization pass they are interested in.

1.1 Research questions
RQ1: At what performance cost and to which accuracy can names of LLVM IR values
be reconstructed?

RQ2: Does increased availability of optimization remarks improve programmers’ ability
to speed up program performance?

RQ3: Do developers perceive the feedback provided by Clang e�ective for enabling opti-
mizations?

RQ4: Are scoped pragmas a good alternative to compilation flags for enabling optimiza-
tion remarks?

In this thesis we present ways to tighten the feedback loop when debugging performance
issues and improve the messages from the compiler. We claim our main contributions to be:

• Improve detail and correctness of error messages from two LLVM optimization passes
in chapter 6.

• Reconstruct source names with an accuracy in the 60%-70% range and use them to add
extra context in remark messages in 3.

• Integrate optimization remarks into the Visual Studio Code editor in chapter 5.

10

1.1 Research questions

We also implement an alternative way to enable optimization remarks with scoped prag-
mas in the source code (chapter 4) instead of file-wide compilation flags to tighten the feed-
back loop by increasing the signal to noise ratio. This was not evaluated from a usability
perspective however, due to a limited number of test users and prohibitive performance is-
sues rendering its use infeasible in a production environment in its current form. While
changes could be made to improve performance, e.g. guarding the feature behind a compiler
flag, that would a�ect the user workflow. So user testing for the current form would not
necessarily be representative of a future rearchitectured version.

11

1. Introduction

12

Chapter 2

Background

2.1 A high level view on compilers
A traditional compiler’s goal is to turn a source language into a target language, oftenmachine
code. This process is usually done in six separate steps called Scanning, Parsing, Semantic
Analysis, Intermediate Code Generation, Optimization and Target Code Generation.

Scanning Turns plain text into a list of tokens representing language concepts. In this
step errors such as illegal characters are detected, many languages don’t allow vari-
able names to start with numbers or contain emojis. The scanner could turn the text
"while (1) sayHello() ;" into a list of tokens such as (WHILE, LPAR, INT-LITERAL,
RPAR, LBRAK, FN-CALL, SEMICOLON).

Parsing Turns the token list into an abstract syntax tree (AST). An abstract syntax tree
is a tree structure where language concepts are the nodes and now unneeded prac-
ticalities such as brackets can be removed. For example the tokens (WHILE, LPAR,
INT-LITERAL, RPAR, LBRAK, FN-CALL, RBRAK, SEMICOLON) could become a
"While" node with an "Integer literal" child and a "FunctionCall" child and the brack-
ets and parentheses would be discarded. This step confirms that the structure of the
program is valid, ie that the tree is well formed.

Semantic analysis Semantic in this context refers to the meaning of AST. It checks that the
AST is a sensible program. Checks could be for example thata that the types of expres-
sions are valid and that names have been declared before use.

Intermediate code gen Generates a simple and machine independent version of machine
code from a well formed AST. The steps up until and including this one are usually
known as the "front end" of the compiler since these steps are independent on the target
language.

13

2. Background

Optimization Analyzes the intermediate code to see how it can be made faster and bet-
ter without changing the meaning of the program. The optimizations are known as
the "middle end" of the compiler since it operates only on the intermediate code and
therefore is independent on both source and target language. The optimizer often steps
through the code multiple times, each time called a pass.

Target code gen Converts the simplified intermediate code into code that is executable on
an actual machine. This step is called the "back end" of the compiler since it is only
dependent on the target language.

We work with parts of the LLVM project, a collection of reusable compiler and toolchain
technologies, of which the most relevant are Clang and the LLVM Core Libraries. LLVM
previously stood for Low Level Virtual Machine but is now a name in itself and no longer an
acronym.

LLVM is an open source compiler backend that has reached widespread use in recent
times, mainly through its companion project Clang, which is an LLVM frontend for C, C++,
Objective-C and Objective-C++. There are other compilers using LLVM as their backend
however, e.g. rustc and swift. This is much thanks to the LLVM project (including Clang)
being built with modularity and library components in mind, as well as a liberal license com-
pared to GCC. LLVM being a compiler backend library does have some limitations com-
pared to the architecture of GCC, in that it is built to be agnostic on the source language,
and instead operate solely on input in its custom low-level language called LLVM Internal
Representation, or IR. It does not have access to the Abstract Syntax Tree of the original
source code.

2.2 LLVM IR
The IR of LLVM is a low-level language with some abstractions over assembly code to al-
low for more powerful analysis and greater flexibility when optimizing, and allow output to
multiple di�erent architectures. Di�erences to assembly languages that aid static analysis
include [11]:

• Data flow representation using Single Static Assignment, where only a single code
point in the entire program can assign a value to a given variable. Programs written in
a language with mutable variables can be transformed into SSA form without chang-
ing the computational result [4]. This representation allows some static analyses used
for compiler optimizations to be performed asymptotically faster than their non-SSA
counterparts; perhaps most notably the ubiquitous GVN optimization (described in
more detail in 2.5).

• A type system that can safely encode most higher-level language types while still allow-
ing for escapes through type casts were the type system would otherwise be limiting.

• A control flow graph where the nodes (so called basic blocks) may contain multiple
instructions, but the control flow may only enter at the first instruction and leave at
the final one.

14

2.2 LLVM IR

Another di�erence to assembly languages allowing for more flexibility is the e�ectively in-
finite registers, letting the issue of register allocation be deferred to a later stage. Instead of
explicit registers, instructions in IR directly use (SSA) Values as operands, and are themselves
Values. The equivalent of a register in assembly is thus just the name (or address, depending
on if one is referring to the textual or in-memory representation) of a Value. They di�er from
registers however in the sense that they do not represent storage that can be read from and
written to. Instead, they only name or point to the result of some computation.

An IR compilation unit is called a Module. A Module contains Functions, GlobalVari-
ables and Metadata, which we will get to later. Functions consist of BasicBlocks, consisting
of Instructions and ending with a terminal instruction, such as BranchInst. Functions, Glob-
alVariables, BasicBlocks, and Instructions all inherit from the Value class.

Listing 2.1: LLVM module structure [15]
; Declare the string constant as a global constant .
@.str = private unnamed_addr constant [13 x i8] c" hello world \0A\00"

; External declaration of the puts function
declare i32 @puts (i8* nocapture) nounwind

; Definition of main function
define i32 @main () { ; i32 ()*
; Convert [13 x i8]* to i8 *...
% cast210 = getelementptr [13 x i8], [13 x i8]* @.str , i64 0, i64 0

; Call puts function to write out the string to stdout .
call i32 @puts (i8* %cast210)
ret i32 0
}

; Named metadata
!0 = !{ i32 42, null , !" string "}
!foo = !{!0}

2.2.1 Instructions
Just like in an assembly language there are many types of instructions in LLVM, e.g. for per-
forming arithmetic. We will not describe those in detail as they are not specifically relevant
for the contents of this thesis, and are usually quite intuitive in their behavior to anyone
familiar with assembly languages. There are however a few instructions that are especially
relevant to this thesis:

getelementptr This instruction, often shortened to GEP, takes a pointer value as its main
operand, a variable number of integer o�sets (whose values do not have to be statically
known), and returns a pointer that has been o�set relative to the main operand. If the
value is a struct type the o�set is the field index, while for pointers or arrays it is the
array index. Since the main operand is always a pointer, the first o�set will always be
an array index.

load/store These take a pointer operand and a value of the same type as the pointer base
type, and read or write to the memory address, respectively.

bitcast The bitcast has only one operand and returns the same value, but alters the type and
as such what the bits represent. There are some restrictions on what types a value can

15

2. Background

be cast to. For example they have to be of the same size, but a pointer can be cast to
any other pointer, even if the value pointed to has a di�erent size.

phi The phi (or sometimes ϕ) is a special instruction in the abstracted machine model intro-
duced for the sake of achieving SSA form, to model patterns where a value depends on
previous control flow [4]. In the original source code this can be due to e.g. reassigning
to a variable in one or both branches of an if statement. Since SSA does not permit
such reassignment a new variable is instead created in the basic block joining the two
branches, which is then assigned a value depending on which basic block the execution
arrives through. A special case of this is the loop structure, where a phi assigns an it-
eration variable’s initial value when arriving from outside the loop, and the next value
when arriving from within the loop.

In LLVM, if a basic block contains any phi instructions they are always at the start
of the instruction list, before any other instructions. They have the same number of
operands as there are predecessors to the basic block.

2.2.2 Metadata
Metadata can be used to add contextual information to the IR. Optimization passes can use
this information to a�ect their decision making, however it is important that the semantics
of the program does not depend on the presence of the metadata [15]. A metadata node can
contain module level information, like which compiler produced the IR and what the source
language is, but it can also be attached to functions and other Values. The type of metadata
we are interested in is debug information. This is used to embed DWARF [3] debug symbols
in the output binary for consumption by debuggers such as GDB and LLDB. The debug
information, when included (using the -g flag in the case of Clang), contains information
about the types used in the source language as well as source names of variables. This will be
used in Chapter 3 to reconstruct the source code of values in the IR.

Debug metadata consists of subclasses of the DINode class. Most relevant to this the-
sis are the subclasses of the DIType class, describing the type hierarchy of the source code;
DISubprogram, describing functions or methods; and DILocalVariable, describing variables.

DIType
There are four concrete subclasses of DIType [15]:

DIBasicType Describes types such as numbers, boolean, and plain memory addresses. In-
cludes the name of the type, their size and alignment.

DICompositeType Describes types consisting of multiple types or values, such as structs,
arrays or enumerations.

DIDerivedType Describes types derived from an existing type. This can be e.g. const or
atomic types. However, the relevant derived types for this thesis are pointers and struct
members. Struct member types describe the fields of struct types, with the name of
the struct field, the o�set from the base of the struct, as well as pointing to the type of
the value at the field. Relevant information stored in pointer types is the type of the

16

2.3 Optimization remarks

value pointed to. Void pointers are represented by the base type field containing the
value null.

DISubroutineType Describes the type of a function or method. Contains the return type
(null if no return value) and the type of each parameter.

DILocalVariable and LLVM debug intrinsics
DILocalVariable represent a local variable in the source code (as opposed to global variables);
intermediate calculations that are not stored in a variable have no DILocalVariable node.
These metadata nodes are not attached to IR values directly, but are instead referenced as
the second parameter in virtual function calls to special LLVM intrinsic functions (mainly
llvm.dbg.value), whose only purpose is to link values (first parameter) and DILocalVari-
ables together. These intrinsics do not result in any actual function calls in the final binary.
A DILocalVariable instance can be referenced by multiple calls to llvm.dbg.value.

As the control flow reaches a call to the debug intrinsic, the referenced value now rep-
resents the local variable, until the control flow reaches a new debug intrinsic referencing
the same variable. This is useful since a variable may be broken up into many values during
the SSA form transformation. Debug intrinsics also contain a third parameter, of type DI-
Expression, which describes how the referenced value relates to the variable: e.g. the variable
may be a struct where each field is a fragment represented by a separate value. [19]

DISubprogram
DISubprogram nodes can be attached to functions in the IR. They point to a DISubroutine-
Type instance describing the type of the function, and a tuple of DILocalVariables represent-
ing the function parameters and local variables. [15]

2.3 Optimization remarks
The LLVM backend by default does not emit messages to the user very often. This is because
the IR is a very low level language where semantically incorrect usage of a value rarely results
in an error, but instead leaves the behavior undefined. Assuming that the frontend compiler
has already type checked the source code, the resulting IR should not contain any type is-
sues either, bar bugs in the compiler frontend. Through feature flags it is possible to enable
messages known as optimization remarks [18]. If invoked through a compiler frontend, these
are passed onwards to the frontend for display, otherwise they are displayed directly. The
advantage of having the frontend display the remark is that it has access to the source code,
and can use debug locations in the remark to display relevant context from the source code
instead of just a line and column number. There are three types of optimization remarks that
we consider in this thesis:

pass A remark emitted to signal that an optimization transformation was successfully per-
formed.

missed A remark emitted to signal that an optimization transformation could not be per-
formed, or was not deemed profitable.

17

2. Background

analysis This category is described as analysis results that can “bring more information to
the user regarding the generated code”. However, many optimizations rely heavily on
analysis results to decide whether a specific transformation is legal without changing
the observable behavior.

A remark may contain a debug location for the general location in the source code it is
relevant. It may also contain a list of key value pairs, the value of which may also contain a
debug location. For simple string messages the message key will be simply “String”, and the
value a part of the message. Other values may be textual representations of parts of the code,
such as a type or IR value, with keys describing the value kind, such as “type”, “pointer” or
“call”. When the remark is constructed in LLVM a special value called setExtraArgs may be
inserted into the list of key-value pairs. This signals that key-value pairs later in the list are
ExtraArgs; they are not necessary to convey the core message of the remark, but may add
extra context.

2.3.1 Remarks in Clang
Remarks can currently be enabled in Clang through the flags -Rpass=regex,
-Rpass-missed=regex and -Rpass-analysis=regex, where regex is a regular
expression of which all matching optimization pass names will emit remarks when invoked.
The user can also opt to have all optimization remarks emitted to a file either in the
YAML format, or a binary serialization format custom to the LLVM project, through the
flag -fsave-optimization-record with the desired format as an optional argument.
Key-value pairs occurring after setExtraArgs will be included in the optimization record,
but not in the terminal output with the -Rpass flags.

2.4 Loop vectorization in LLVM
Modern computers have so-called Single Instruction, Multiple Data (SIMD) instructions,
meaning that it’s possible to do the same operation, for example addition, on multiple values
in parallel by packing them into vectors. A SIMD instruction adding two vectors of length 4
then results in a vector with the equivalent of 4 scalar additions. LLVM has an optimization
pass called loop-vectorize, that aims to speed up loops by doing them one vector at a time
with SIMD instructions.

Since programs tend to spend a large percentage of their running time in loops, making
loops more e�cient can have a large e�ect on the total running time of the program. [5]

For a loop to be vectorizable there are a set of requirements that need to be fulfilled, the
most important ones being:

• The instructions in the loop need to have a vector equivalent in the target architecture.

• The iteration count needs to be known before execution, i.e. if the compiler wants
to use vector instructions to execute four loop iterations simultaneously, it needs to
be able to ensure that the loop will not terminate before the next four loop iterations
have passed, analogous to a loop unrolling transformation. Ideally, this is statically
predictable but in dynamic checks can also be inserted in the code, conditionally exe-
cuting either a vectorized or unvectorized version of the loop. [5]

18

2.5 Global Value Numbering

• The loop cannot have backward loop-carried dependencies, meaning the loop cannot
depend on the values from the previous iteration, since they will be executed simulta-
neously. If there are dependencies between loop iterations, they need depend with a
stride longer than the vector size.

• the loop cannot have jumps or branches, other than the loop condition itself.

Since loop bodies can be quite complex, the capabilities of the compiler also play a sig-
nificant role in whether a loop can be vectorized. LLVM can work around some of the re-
quirements for vectorization, for example loops containing if statements can sometimes be
vectorized even if they typically would contain branches; LLVM can eliminate some branches
by replacing conditional evaluation with arithmetic operations.

2.5 Global Value Numbering
Global Value Numbering (GVN) [4] is a version of Common Subexpression Elimination. It
is an optimization that removes redundant computations of values that can be shown to have
been previously computed. This is done by giving each non-derived value a unique identifier,
and then giving each derived value an identifier deterministically and uniquely derived from
the operands and the operation. Values that end up with the same number then represent the
same computation. If one of the values dominates the other – meaning that it always occurs
before the other, no matter which code path is taken through the CFG – the dominated
computation can be replaced with the result of the dominating computation. The GVN pass
in LLVM is an improved version of the original algorithm and can also optimize some partial
redundancies. In a partial redundancy some, but not all, code paths leading to a computation
have already computed the same value.

Care must be taken with memory accesses, however, where a load may not give the same
result as another load, even if the memory location is the same. This is because the mem-
ory location may have been clobbered – (potentially) written to – between two seemingly
equivalent load operations. The compiler needs to check that all writes between potentially
redundant memory accesses do not write to the same memory location, to avoid introducing
bugs during optimization. If it cannot prove this, or that any function calls between the re-
dundant memory accesses do not contain such operations, it has to be conservative and not
remove the potentially redundant memory access. LLVM’s missed optimization remark for
removing the load in this case is improved upon in 6.2.1.

19

2. Background

20

Chapter 3

Source names from LLVM IR

3.1 Information unavailable during opti-
mization

Many optimization remarks are ambiguous or hard to follow due to the lack of source names
as references in the remarks. The remark outputs often refer to LLVM values by the type of
instruction, and their source location in the form of line and column numbers. While this
may be okay for computer programs as it includes enough information to find the location
of the value, this is not a very human friendly output. This is often not an issue because the
remark is displayed by the compiler frontend, which can access the source code and display
the relevant location for context.

However there is also the case of remarks emitted to the optimization record file: reading
the YAMLfile directly is not a very pleasant experience since you lack all context of the source
code and only see line and column numbers. Again, this is not a significant issue on its own,
since it is meant to be consumed by software tools first and foremost, such as LLVM’s opt-
viewer and opt-di� tools [18]. As we shall see, however, tools parsing these YAML files to
display in a more human readable format can o�er a more streamlined user experience if the
string describing the LLVM IR value contains the value as described in the source language
instead of the LLVM instruction type.

As part of the LLVM project, opt-viewer [1][18] is a script that reads both optimization
records and source code of a project and outputs HTML files containing the source code,
with each remark visually attached to the line where it occurred, as seen in Figure 3.1. Values
mentioned in the remark include a hyper-link to the line in the source code pointed at by
its debug info metadata. However, the process of following hyper-links is not foolproof, as
the value may just be described as a “load” in the remark, and the source line may contain
multiple loads. Furthermore, even after following the link and finding out what value the
remark refers to, it can be hard to remember this context coming back to the remark later
since the code likely contains many other identical remarks. Therefore it would be good to

21

3. Source names from LLVM IR

Figure 3.1: Excerpt from HTML page generated by opt-viewer

22

3.2 Reconstructing information from debug data

have the remark texts themselves include the original name of the value.
The reason that values are not named using their original names is that LLVM, the com-

piler back-end, is completely decoupled from the front-end. When LLVM starts its execution
theASTmay already be long gone. Itmay not even be known to the optimizer what the source
language is, although in practice this is often included asmetadata in the IR. LLVMpasses op-
erate only on LLVM IR, where value names are explicitly not guaranteed to be left unchanged
[15], and are often nonsensical to a programmer not familiar with compilers. Sometimes the
name of an IR value is just an integer. A real life sample we found pretty representative of
optimized IR originating from Clang can be found in Listing 3.2. Full reconstruction of the
source code is thus not possible in the general case. So even though the source name is avail-
able (and used by) the compiler frontend, e.g. Clang, that is only part of the full tool chain.
This is why normal compilation warnings and errors can include this information, but these
remarks emitted from the optimizer cannot.

3.2 Reconstructing information from debug
data

If debug symbols are included in the output, present as metadata in the LLVM IR, they
may enable reconstruction of variable names and other identifiers since this information is
included in the final executable binary to help debuggers attach names to values and vice
versa. Even with this metadata included the operation of reconstructing source names is not
as trivial as it may seem, as many values in the IR are not named values in the source code,
but instead derived from some chain of operations on a named value. Examples of commonly
chained operations are Load and GetElementPointer.

Listing 3.1: C source code for the abstracted IR and metadata graph
in Figure 3.2.

struct wordlist {
size_t length ;
char ** words ;

};

char * example (struct wordlist words_of_length , size_t index) {
return words_of_length . words [index];

}

Reconstructing the name of full variables like %words_of_length and %index in the
example listed in Figure 3.2 is quite trivial, by just looking at the name listed in the at-
tached DILocalVariable metadata nodes. However, values like %0 and %arrayidx have
no direct metadata links, as they represent expressions consisting of multiple operations
chained together that are never saved in a variable. To name such a value we need to first
traverse the operands, partly to find the operand names as they are part of the full expres-
sion name, and partly to find metadata. Then we traverse the metadata debug type infor-
mation to find that the second (index 1) field of the wordlist struct type is named “words”
(as can be found in metadata node !6). Combining the names with knowledge about how
they are used, %0 can be named *(words_of_length.words + index), or alternatively
words_of_length.words[index], which is the original name in the source code.

23

3. Source names from LLVM IR

Figure 3.2: Illustration of metadata and simplified IR. Full arrows
indicate references, dashed arrows indicate a link between IR val-
ues and metadata nodes. In real IR, these links are represented by
the debug intrinsics described in 2.2.2. While normal IR values have
references for uses in both directions, metadata nodes only have ref-
erences in the direction of user node to used node.

24

3.3 Implementation

To keep down the complexity of the code, we currently only construct names for derived
values in C syntax.

3.3 Implementation
In our example program given in the task for the user evaluation (see Appendix B) the expres-
sion words_of_length.words[j] is represented by %0 in Listing 3.2 after optimizations
in LLVM (when compiled with function inlining disabled for the sake of this example).

Listing 3.2: IR excerpt illustrating chained operations. In this exam-
ple most values retain some resemblance to their original name, but
with trailing noise introduced by various LLVM transformations.
This naming format can not be relied upon to be stable.

;--snip --
%words_of_length .sroa .4.0.. sroa_idx20 = getelementptr inbounds %struct .wordlist , ←↩

%struct . wordlist * %dict , i64 %idxprom , i32 1, !dbg !82
%words_of_length .sroa .4.0. copyload = load i8**, i8 *** %words_of_length .sroa .4.0..←↩

sroa_idx20 , align 8, !dbg !82
call void @llvm .dbg. value (metadata i8 ** %words_of_length .sroa .4.0. copyload , ←↩

metadata !69 , metadata ! DIExpression (DW_OP_LLVM_fragment , 64, 64)), !dbg !83
;--snip --
%j .042 = phi i64 [%inc , %if.end], [0, %for.body]
call void @llvm .dbg. value (metadata i64 %j .042 , metadata !72 , metadata !←↩

DIExpression ()), !dbg !84
%arrayidx5 = getelementptr inbounds i8*, i8 ** %words_of_length .sroa .4.0. copyload ,←↩

i64 %j .042 , !dbg !91
%0 = load i8*, i8 ** arrayidx5 , align 8, !dbg !91 , !tbaa !92
;--snip --

; Named metadata
!7 = ! DIBasicType (name: "char", size: 8, encoding : DW_ATE_signed_char)
!18 = ! DIDerivedType (tag: DW_TAG_pointer_type , baseType : !7, size: 64)
!54 = distinct ! DICompositeType (tag: DW_TAG_structure_type , name: " wordlist ", ←↩

file: !55 , line: 3, size: 128 , elements : !56)
!55 = ! DIFile (filename : "./ scrabble .h", directory : "/home/ dat14hol ")
!56 = !{!57 , !61}
!57 = ! DIDerivedType (tag: DW_TAG_member , name: " length ", scope : !54 , file: !55 , ←↩

line: 4, baseType : !58 , size: 64)
!58 = ! DIDerivedType (tag: DW_TAG_typedef , name: " size_t ", file: !59 , line: 46, ←↩

baseType : !60)
!59 = ! DIFile (filename : "/usr/ local /lib/ clang /10.0.0/ include / stddef .h", directory←↩

: "")
!60 = ! DIBasicType (name: "long unsigned int", size: 64, encoding : DW_ATE_unsigned←↩

)
!61 = ! DIDerivedType (tag: DW_TAG_member , name: " words ", scope : !54 , file: !55 , ←↩

line: 5, baseType : !62 , size: 64, offset : 64)
!62 = ! DIDerivedType (tag: DW_TAG_pointer_type , baseType : !18 , size: 64)
!69 = ! DILocalVariable (name: " words_of_length ", scope : !70 , file: !3, line: 59, ←↩

type: !54)
!72 = ! DILocalVariable (name: "j", scope : !73 , file: !3, line: 60, type: !58)

The major algorithms used to name values can be found in Appendix C.
To name a value, we start by checking if we can name it directly, either because it is a

constant of a primitive type, or because it has debug metadata attached to it. For derived
values, we solve the lack of direct knowledge of the name by first naming the operands, and
then constructing the name of the derived value from those and the operation itself. This
process goes on recursively until we hit base case values that we can name directly.

One of the more interesting operations to name is the GetElementPtr instruction, con-
structing a new pointer with a certain o�set to another pointer. To properly name this new

25

3. Source names from LLVM IR

derived pointer, we not only need the name of the pointer operand, but also the name de-
scribing the o�set. This o�set can represent one (or even several, since one GEP instruction
can contain several o�sets) of multiple source code concepts, such as array indexing or struct
field indexing. To know what a struct field name is called, we need debug metadata describ-
ing the dereferenced data type, since LLVM IR struct types operate more like tuples and do
not actually contain any field names. Through this metadata, describing a struct type with
three di�erent fields and their names, we can get the struct field name of the element with
a given o�set. This metadata is attached to the metadata of the ancestor value however, and
not necessarily directly the value with the type itself. To access this value we need our re-
cursive naming method to return not only the name of the parent value, but also its DIType
metadata so we can traverse it in the reverse direction when returning from our method.

To illustrate this, let us walk through the example in Listing 3.2, attempting to
name %0. Since %0 is a load, we first try to name its pointer operand, %arrayidx5,
which is a getelementptr. %arrayidx5 has two operands: its base pointer,
%words_of_length.sroa.4.0.copyload, and one o�set, %j.042. %j.042 is relatively
straightforward to name, since it is referenced in a llvm.dbg.value intrinsic, attaching
the DILocalVariable metadata !72, which includes the original variable name “j”. Nam-
ing %words_of_length.sroa.4.0.copyload is slightly more complicated: there is a cor-
responding DILocalVariable (!69) naming it as “words_of_length”, however the source
expression we started with was “words_of_length.words[j]”, not “words_of_length[j]”. We
can extract this information with !DIExpression(DW_OP_LLVM_fragment, 64, 64)
included in the llvm.dbg.value intrinsic, and the DICompositeType metadata (!54)
attached to !69 as the type of the variable. The fragment expression metadata con-
tains two numbers, the o�set and the size of the value referenced by the intrinsic, com-
pared to the attached metadata. We know from !54 that the type of the variable is a
struct with two elements, !57 and !61. Iterating through these, we find that !61 is a
DIDerivedType representing a struct field with o�set 64 and size 64. Once we have
found the matching field, we can fetch its name, in this case “words”. 1 We thus name
%words_of_length.sroa.4.0.copyload “words_of_length.words”, which we can use to
name %arrayidx5. Now, the array indexing operator in C handles both o�set and derefer-
encing, so we can either name it “words_of_length.words + j”, or “words_of_length.words[j]”.
We decided to go with the latter since we found it clearer that it was a pointer o�set and not
just a common numerical addition, and instead added a special case to the naming of loads,
where a dereference asterisk is not added if the pointer operand is a GEP.

Listing 3.3: Equivalent IR to Listing 3.2, but with missing
llvm.dbg.value intrinsic for %words_of_length.4.0.copyload.

%struct . wordlist = type { i64 , i8 ** }
%words_of_length .ptr = ...
call void @llvm .dbg. value (metadata %struct . wordlist * %words_of_length .ptr , ←↩

metadata !69 , metadata ! DIExpression ()), !dbg !78
%words_of_length .sroa .4.0.. sroa_idx20 = getelementptr inbounds i8 *** , %struct .←↩

wordlist * %words_of_length .ptr , 0, i32 1, !dbg !82
%words_of_length .sroa .4.0. copyload = load i8**, i8 *** words_of_length .sroa .4.0..←↩

sroa_idx20 , align 8, !dbg !82
;--snip --
%j .042 = phi i64 [%inc , %if.end], [0, %for.body]

1This can also be applied to nested structs, for example if the fragment was instead specified as having size
32, and the matching field was itself a struct with size 64 bits, we can look at the fields inside the nested struct.

26

3.3 Implementation

call void @llvm .dbg. value (metadata i64 %j .042 , metadata !72 , metadata !←↩
DIExpression ()), !dbg !84

%arrayidx5 = getelementptr inbounds i8*, i8 ** %words_of_length .sroa .4.0. copyload ,←↩
i64 %j .042 , !dbg !91

%0 = load i8*, i8 ** %arrayidx5 , align 8, !dbg !91 , !tbaa !92
;--snip --

; Named metadata
!7 = ! DIBasicType (name: "char", size: 8, encoding : DW_ATE_signed_char)
!18 = ! DIDerivedType (tag: DW_TAG_pointer_type , baseType : !7, size: 64)
!54 = distinct ! DICompositeType (tag: DW_TAG_structure_type , name: " wordlist ", ←↩

file: !55 , line: 3, size: 128 , elements : !56)
!55 = ! DIFile (filename : "./ scrabble .h", directory : "/home/ dat14hol ")
!56 = !{!57 , !61}
!57 = ! DIDerivedType (tag: DW_TAG_member , name: " length ", scope : !54 , file: !55 , ←↩

line: 4, baseType : !58 , size: 64)
!58 = ! DIDerivedType (tag: DW_TAG_typedef , name: " size_t ", file: !59 , line: 46, ←↩

baseType : !60)
!59 = ! DIFile (filename : "/usr/ local /lib/ clang /10.0.0/ include / stddef .h", directory←↩

: "")
!60 = ! DIBasicType (name: "long unsigned int", size: 64, encoding : DW_ATE_unsigned←↩

)
!61 = ! DIDerivedType (tag: DW_TAG_member , name: " words ", scope : !54 , file: !55 , ←↩

line: 5, baseType : !62 , size: 64, offset : 64)
!62 = ! DIDerivedType (tag: DW_TAG_pointer_type , baseType : !18 , size: 64)
!69 = ! DILocalVariable (name: " words_of_length ", scope : !70 , file: !3, line: 59, ←↩

type: !54)
!72 = ! DILocalVariable (name: "j", scope : !73 , file: !3, line: 60, type: !58)

Let us revisit the naming of %words_of_length.sroa.4.0.copyload, but now with
the IR structure in Listing 3.3. In this example, the naming of this load cannot be done
through a direct link to metadata, as there is no llvm.dbg.value intrinsic linking it
to metadata. Instead, we use the pointer operand to name it. This operand is a GEP
(%words_of_length.sroa.4.0..sroa_idx20), but this timewith 2 o�set operands. The
first o�set is the array o�set, which is 0 in this case since we want the actual struct that
the pointer is pointing to. The second o�set is the o�set inside this struct, zero indexed,
meaning 1 in this case selects the second field in the %struct.wordlist struct. The
LLVM struct type carries no information of the struct field names, however. Instead we
return this debug metadata from that call to name %words_of_length.ptr. When nam-
ing this value, no matter its type, we find that it has a llvm.dbg.value intrinsic link-
ing it to metadata !69, this time with no o�set. The naming function thus returns the
name as “words_of_length”, but also returns its DIType as !54. The caller, trying to name
%words_of_length.sroa.4.0..sroa_idx20, uses this metadata to find that the second
field in the struct (!61) is named “words”, and thus returns “words_of_length.words”. Again,
the naming of %words_of_length.sroa.4.0.copyload returns the same name because
of the special case that assumes GEPs already have the dereferenced name.

3.3.1 Calibrating DIType metadata
There are cases where the debug type metadata returned from recursive application of the
naming method does not contain the DIType metadata needed to be returned to an outer call
to the naming method. A simple example of this is once again the GetElementPtr instruc-
tion. It has a pointer operand and some o�sets. We fetch the name for the pointer, together
with its DIType. The DIType instance will be of the DIDerivedType subclass and represent
the pointer type. From there we get the base type, which may be e.g. a struct type and repre-
sented by a DICompositeType instance, and within the DICompositeType instance we find

27

3. Source names from LLVM IR

the DIType of the field at the o�sets specified in the GetElementPtr instruction. However,
this DIType instance does not match the type of the GetElementPtr value: the value is a
pointer to the field, while the DIType is the type of the field itself. The DIType metadata is
structured as a graph with edges that can be followed in one direction only: a pointer type
references its base type, but the base type has no reference to the types that reference it.
There may not even be a DIType instance in the module representing this pointer type. In
this case we construct a DIDerivedType to represent the pointer type ourselves, however this
does require mutable access to the Module. This is why we chose to model this as a class with
methods instead of top level functions, to avoid having to pass around a mutable reference to
the Module (we do not always have mutable Value instances, and as such can only get an im-
mutable reference to the Module from the Value) and the accompanying DIBuilder instance
for the cases where we need it.

To help find and fix cases where we have a mismatch between the debug info type and the
value type we have developed a comparison method which recursively compares a Type with
a DIType using structural equality [24]. It returns either aMismatch if di�erences were found
between the types, Match if no significant di�erences were found, or IncompleteTypeMatch
if they did not mismatch, but one of the Matching types was (or contained) the equivalent of
a void pointer type in C: a pointer to an empty struct for Type, or a pointer whose base type
is null for DIType. The IncompleteTypeMatch case becomes relevant later.

A less trivial example of an instruction that can result in mismatch between Value type
and DIType is that of the bitcast instruction: since any pointer type can be cast to any other
pointer type its impossible to completely predict how the types relate to each other, however
there are some common patterns that we can look out for.

The first pattern is the upcast pattern, where a pointer to a struct type is cast to a pointer
to the type of the first field of the struct. Because they have the same memory address, it is
only a matter of interpretation whether a pointer points to the struct or the first field. This
pattern is common in object oriented programming, where a base type is laid out as a struct
in the first field of the subtype struct. To identify this case we check if the value is of a
pointer type with a composite type as the base type, and is cast to another pointer type. We
then recursively compare the type of the first field with the base type of the cast target type,
until we either find a match or a non-composite type. If we find a match we have found an
instance of the upcast pattern. The recursive comparison is necessary since the inheritance
chain can be arbitrarily long. To resolve the correct DIType we instead compare the base
type of the DIType instance for the bitcast operand to the target Value type. If it matches
we return this DIType. If not, we repeat the same check with the first field type in the place
of the base type until we find a match or a non-composite type. If we find a non-composite
type that does not match the cast target type we return no DIType instance.

The second pattern is the downcast pattern, where a pointer to a type (often struct) is
instead cast to a type which has this type as the first field, i.e. the inverse of the upcast. This
case is trickier because not only do we not have a reference from the base type to the subtype
to traverse, but we cannot just construct it ourselves, in contrast to the missing pointer type
for the GEP instruction. This is because the struct fields in a DICompositeType are not
the field type directly, but a DIDerivedType with the DW_TAG_member which contains the
name of the field as declared in the struct. These fields are the reason we want the DIType
of the struct in the first place, so we have to look for an existing instance. To do this we
traverse all DITypes in the module and look for struct DICompositeTypes which reference

28

3.3 Implementation

the original DIType in their first field, and see if onematches the cast target type of the bitcast
instruction. If we do not find one that matches, we try again with struct types that reference
any of the last iteration’s DITypes in their first field, again to support inheritance chains
longer than one step. To avoid an exploding runtime due to the quadratic time complexity
of searching through all DITypes once for every DIType (in the worst case) we preprocess the
DITypes of the Module and cache a def-use chain in our class instance, instead making the
worst case linear in time complexity.

Here the IncompleteTypeMatch becomes relevant, as we search among all the DITypes
in the entire Module. In larger code bases it becomes increasingly likely that we encounter
another type which matches the Value type modulo void pointers, before we encounter the
actual type. Whenwe encounter an IncompleteTypeMatch we save thematching DIType, but
continue the search and return it later if we did not end up matching anything else. When
we encounter a perfect match however, we return immediately.

29

3. Source names from LLVM IR

30

Chapter 4

Pragmas for remark output

4.1 Emission of optimization remarks in
Clang

LLVM and Clang currently have the capability to select which optimization passes should
emit remarks through compilation flags. This is split up into three categories of remarks:
pass, pass-missed and pass-analysis. For each category the passes for which to activate remarks
can be specified using a list of regular expressions giving the programmer a lot of flexibility
over which remarks to emit. However, if many or all passes are activated, the output can be
large, especially in large projects. If emitted as YAML files to be fed into opt-viewer, the opt-
viewer’s parsing of the remarks may take minutes. Potential solutions for this performance
issue has been discussed, but it has not yet been resolved. [2] A C source file can be compiled
separately and then linked to the rest of the project, allowing the programmer to only activate
remarks for that file through compilation flags. Depending on the build environment, this
might be a relatively large operation however. On top of this, LLVM outputs a separate
YAML file of remarks for each module (corresponding to a source file in C) by default, so
even when outputting remarks for a full project it is relatively easy to only get the remarks
for a single file. Still, for a large file, the output may be too large to be human friendly.

4.2 Pragmas as an alternative to compila-
tion flags

To increase the flexibility of remarks, we added pragmas that allow selectively activating
remarks for a given pass for a certain code region. We support three di�erent granularities:
file, function or loop level. The remarks, just like the compilation flags, also specify the
remark type to activate, and a regex of which matching passes will have the pragma applied.

31

4. Pragmas for remark output

Listing 4.1: C program with examples of pragmas for enabling vari-
ous remarks at various scopes

pragma Clang remark_analysis file(".*")
int id(int n) {

return n;
}
pragma Clang remark funct("licm")
int sum(int a[], int n) {

int sum = 0;
pragma Clang remark_missed loop("loop - vectorize ")

for (int i = 0; i < n; i++) {
sum += a[i];

}
return sum;

}

This allows the programmer to narrow down the scope of the remarks to only the parts
of the code they are interested in, increasing the signal to noise ratio. Depending on the
workflow, it could also reduce the friction of obtaining remarks by allowing the programmer
to never even leave their editor, if they e.g. have the compiler set to automatically recompile
on save. When using a build system where all files are compiled using the same flags, it also
allows the programmer to iterate quickly by not having to do a full rebuild each time the
global compilation flags are changed. Instead it is enough to only recompile the changed file
and its dependents.

4.3 Implementation
Since pragmas are parsed and handled in the compiler frontend while optimization remarks
are constructed in the backend, a way to communicate regional activation of remarks is
needed. To accomplish this we extended Clang to annotate the IR with metadata. These
metadata correspond to the compilation flags for remarks, starting with a string describing
whether the metadata controls passed, missed, or analysis remarks, then followed by strings
(one is often enough, but we support several in the same metadata node) corresponding to
the regex argument to the compiler flags. This metadata can be attached on the module level,
to functions or loops, each corresponding to their respective pragmas, as shown in Listing
4.2. File scoped remarks are specified in the module level metadata !llvm.remarks, which
in our example points to !1. Function scoped remarks are attached to the function as meta-
data labeled !llvm.remarks, in our example pointing to !3. Since loops are not a first class
construct in LLVM, metadata cannot be attached directly to it. However, LLVM still has an
analysis pass to reason about loops canonicalized to a certain structure [16]. For loops of this
structure, there is a convention in LLVM that metadata attached to the loop latch (the con-
ditional branch at the end of a loop iteration, determining whether to exit the loop or start
a new iteration) with the label !llvm.loop is considered to apply to the loop as a whole. So
this is where we attach the loop scoped remark metadata, in this example !9;

Listing 4.2: Listing 4.1 compiled with our modified version of Clang,
at optimization level -Oz to minimize size.

32

4.3 Implementation

; ModuleID = 'pragma .c'
source_filename = " pragma .c"
target datalayout = "e-m:e-p270 :32:32 - p271 :32:32 - p272 :64:64 - i64 :64 - f80 :128 - n8←↩

:16:32:64 - S128"
target triple = "x86_64 -unknown -linux -gnu"

; Function Attrs : minsize norecurse nounwind optsize readnone uwtable
define dso_local i32 @id(i32 returned %n) local_unnamed_addr #0 {
entry :

ret i32 %n
}

; Function Attrs : minsize norecurse nounwind optsize readonly uwtable
define dso_local i32 @sum(i32* nocapture readonly %a , i32 %n) local_unnamed_addr ←↩

#1 !llvm. remarks !3 {
entry :

%0 = sext i32 %n to i64
br label %for.cond

for.cond: ; preds = %for.body , %entry
%indvars .iv = phi i64 [%indvars .iv.next , %for.body], [0, %entry]
%sum .0 = phi i32 [%add , %for.body], [0, %entry]
%cmp = icmp slt i64 %indvars .iv , %0
br i1 %cmp , label %for.body , label %for.cond. cleanup

for.cond. cleanup : ; preds = %for.cond
ret i32 %sum .0

for.body: ; preds = %for.cond
%arrayidx = getelementptr inbounds i32 , i32* %a , i64 %indvars .iv
%1 = load i32 , i32* %arrayidx , align 4, !tbaa !4
%add = add nsw i32 %1 , %sum .0
%indvars .iv.next = add nuw nsw i64 %indvars .iv , 1
br label %for.cond , !llvm.loop !8

}

attributes #0 = { minsize norecurse nounwind optsize readnone uwtable "correctly -←↩
rounded -divide -sqrt -fp -math"=" false " "disable -tail - calls "=" false " "frame -←↩
pointer "="none" "less -precise - fpmad "=" false " "min -legal -vector - width "="0" "no -←↩
infs -fp -math"=" false " "no -jump - tables "=" false " "no -nans -fp -math"=" false " "no -←↩
signed -zeros -fp -math"=" false " "no -trapping -math"=" false " "stack -protector -←↩
buffer -size"="8" "target -cpu"="x86 -64" "target - features "="+cx8 ,+ fxsr ,+mmx ,+sse←↩
,+ sse2 ,+ x87" "unsafe -fp -math"=" false " "use -soft - float "=" false " }

attributes #1 = { minsize norecurse nounwind optsize readonly uwtable "correctly -←↩
rounded -divide -sqrt -fp -math"=" false " "disable -tail - calls "=" false " "frame -←↩
pointer "="none" "less -precise - fpmad "=" false " "min -legal -vector - width "="0" "no -←↩
infs -fp -math"=" false " "no -jump - tables "=" false " "no -nans -fp -math"=" false " "no -←↩
signed -zeros -fp -math"=" false " "no -trapping -math"=" false " "stack -protector -←↩
buffer -size"="8" "target -cpu"="x86 -64" "target - features "="+cx8 ,+ fxsr ,+mmx ,+sse←↩
,+ sse2 ,+ x87" "unsafe -fp -math"=" false " "use -soft - float "=" false " }

!llvm. module . flags = !{!0}
!llvm. remarks = !{!1}
!llvm. ident = !{!2}

!0 = !{ i32 1, !" wchar_size ", i32 4}
!1 = !{!" remark_analysis ", !".*"}
!2 = !{!" clang version 10.0.0 (git@github .com: hnrklssn /thesis -llvm.git ←↩

f1d3279e408db9f43e350e347c8945cbe695ee51)"}
!3 = !{!" remark ", !"licm"}
!4 = !{!5 , !5, i64 0}
!5 = !{!"int", !6, i64 0}
!6 = !{!" omnipotent char", !7, i64 0}
!7 = !{!" Simple C/C++ TBAA"}
!8 = distinct !{!8 , !9}
!9 = !{!" remark_missed ", !"loop - vectorize "}

We then extended LLVMalso to search the IR for thesemetadata nodes, in addition to the
passed compilation flags, when decidingwhether to emit the remark or not. For completeness

33

4. Pragmas for remark output

sake, we also extended Clang with a file level pragma to activate optimization record output
for the current file only.

4.4 Limitations
When developing the pragmas for remark output, we initially hoped to be able to use this
feature in our IDE integration to reduce parse times (as well as serialization time) by limiting
the YAML dump to only include remarks originating in certain regions of the source file.
However, the optimization record output is structured to be a full record of every remark,
and if activated instantly outputs every constructed remark. Changing this to add a filter
was deemed too invasive of a change both to the structure of the LLVM source code, as
well as the semantics of the compilation flag. We still see a potential use for this type of
filtered optimization record, but it would likely need to be introduced as a wider discussion,
and potentially as a similar but separate compilation flag instead of changing the current
behavior.

34

Chapter 5

Editor integration

The pragmas print remarks to stdout and therefore they don’t contain all the relevant infor-
mation available, Clang only emits full remarks as YAML files. As the remarks are sent in
standard out they are removed from their source code context. Using opt-viewer, introduced
in the previous chapter, relieves some of these issues. It works by parsing YAML files emitted
fromClang and building static HTML pages of the source code with remarks included. Using
opt-viewer requires the programmer to run some commands and then make a context switch
to a web browser making the edit compile check cycle slower than it could be. Apart from
these considerations when working with the pragmas, you need to know what optimization
passes exist and read up on the syntax for using them.

5.1 Integrating remarks into an editor
To shorten the time between editing a file and seeing if it had the intended e�ect we built an
editor extension (figure 5.1) for the open source Visual Studio Code editor (VS Code) from
Microsoft. It provides a faster way to see remarks the programmer cares about on a loop or
function level. Like opt-viewer, we also include all types of remarks for the selected region,
increasing the discoverability of analysis remarks providing context to missed remarks.

To function our tools needs to:

• know the flags reqiured to run the program properly

• know the location of functions and loops in the source

• compile the program to generate YAML output and show the remarks in source

To properly run a C++ program requires knowing the compile time flags. To avoid having
to manually set up the flags for each file and making sure they are correct, build tools such as
cmake can generate a compilation database containing this information. We provide instruc-
tions on how to generate a compilation database in our documentation. Users will hopefully

35

5. Editor integration

Figure 5.1: Screenshot of a remark shown in the VS Code extension.

already have used a compilation database to set up language support in VS Code. When we
can compile the program to get output remarks, we want a way to filter only the relevant
remarks. We annotate functions and loops in the editor, enabling a user to get remarks for
those sections, rather than a full file. To do so we need to know where in the code they are
located. Parsing C++ code is more complex than it might seem, and a best e�ort regex solu-
tion to find locations of function and loops would include both false positives and negatives.
To solve this issue we used Clangs LibTooling[14] to build a standalone executable that can
accurately locate loop and function declarations.

The VS Code extension runs as a normal Node.js process which allows extensions to
spawn processes on the host machine, so we are able to use the compilation database to spawn
a Clang process and collect its YAML output. We then parse the YAML, ask the user what
passes interest them and filter out the remarks from other passes and those that are outside
the relevant parts. These are then turned into diagnostics in the editor shown on hover

5.2 Implementation

5.2.1 Visual Studio Code
VS Code is an open source, language agnostic code editor from Microsoft. In the stack
overflow developer survey of 2019 it ranked the most widely used code editor among the
respondents[22].

The editor is extendible and has strong support for extensions, its language support and
some core features use the same extension API as outside developers get access to. Notable
features used in our extension are the so-called Code Lenses and the diagnostics. Code lenses

36

5.2 Implementation

are subtle links located above a line of code, that trigger an editor action when clicked. A
common use-case for code lenses is a quick way to run or debug a function. VS Code repre-
sents diagnostics likemost other editors, as squiggly lines under the codewhere the diagnostic
is relevant and provide more details when hovered.

Before opting to build an extension for VS Code we considered using Language Server
Protocol (LSP)[21] for cross-editorial support. LSP is meant to standardize how development
tools and language servers communicate so that every editor doesn’t have to reimplement
language specific features such as auto complete. The LLVM project includes a language
server for C and C++ code called Clangd [13]. Initially the idea was to build upon Clangd
as a way to integrate remarks into editors. Clangd does syntax level actions and does not
generate any compiler remarks, we would need to make large modifications for it to do so.
We considered building an intercepting language server to combine with Clangd but decided
to build a standalone VS Code extension instead as it would be less complex and easier to
distribute.

5.2.2 Finding function declarations and loops in C++
code

Building C++ programs consist of three steps: preprocessing, compiling and linking. In C++
code there are directives for the preprocessor such as #include and #define.

The preprocessor expands include directives to the contents of the file they refer to and
the define directives expand to macros. To share function definitions between source files
the language uses so-called header files which contain function definitions that the source
files can include.

Even a trivial C++ program with a single include directive of a standard header can result
in more than a thousand lines of expanded C++ code that are treated as a single compilation
unit by the compiler. The compiler translates the compilation unit into an object file, which
is binary code with some extra metadata. After the compilation the linker joins together
these object files into one executable file. The middle step of object files avoids having to
recompile an entire project every time a single file changes.

We needed a way to know were loops and functions where declared and since we wanted
accurate results, we dismissed using a simple regular expression. C++ has a large and complex
grammar that is context-dependent, meaning that a code segment can have several di�erent
valid parses and the compiler needs the full program to correctly understand the meaning of
it.

Clang supports printing the AST using the -ast-dump flag, but it proved unfeasible with
non-trivial C++ programs since the AST also contains all included files meaning there are
false positives and that printing the AST took too long for our use case.

To solve the problem we instead use LibTooling, a part of the infrastructure Clang pro-
vides. LibTooling is a C++ interface to Clang that is used to build stand-alone tools that use
Clang to get syntactic and semantic information from a C++ file. The Clang-tools included
in the Clang project, such as the code formatter Clang-format, use LibTooling.

Clang provides a powerful AST matcher with a declarative syntax and a source manager
class that keeps track of from what file each node comes from. With these features our im-
plementation is straight forward, we match all variations of loop and function declarations

37

5. Editor integration

nodes and print the ones written in the main file.
To run our program in the VS Code extension, we bundle it with the extension and

spawn a process from node to run it and collect it’s standard output. Our executable looks
for internal Clang headers (such as stdargs.h) relative to its own location and since bundling
necessarily moves the executable, it can no longer compile any non-trivial programs properly.
For this reason we also bundled the built-in headers into the extension and adjusted where
our program searched for the headers.

38

Chapter 6

Improvement of individual remarks

6.1 Lack of detail in current optimization re-
marks

Since remarks as presented in the compiler front-end do not provide as much detail regarding
the values involved as they do in the optimization record where they include the ExtraArgs
section (as described in 2.3), it’s easy to overlook providing useful ExtraArgs in remarks when
developing a transformation. Both opt-viewer and our VSCode pluginmake these ExtraArgs
easily available to the programmer, and as such we believe the usefulness of the IDE integra-
tion would be greatly improved by improving the construction of these remarks themselves.
There is also a symbiotic e�ect with the source name reconstruction in that the values may
be even more useful when their names are provided, and the introduction of source names
provides more value when more remarks use them.

6.2 Improving GVN and vectorization re-
marks

To improve this situation we have looked at existing remarks with a critical eye, questioning
whether there may be information missing necessary to understand what happened without
reading the source code of LLVM. We then looked at the source code producing the remark
and what information is available without too large structural changes to the code. Since
there are many di�erent remarks and limited time, we have focused our e�orts on the low-
hanging fruit.

39

6. Improvement of individual remarks

6.2.1 GVN

Listing 6.1: Example code resulting in two missed gvn remarks, only
one of which suggests another access that could have been reused.
The memory accesses of pointer a cannot be reused as the compiler
does not know whether externalFunc writes to it or not.

void externalFunc ();

int f(int *a, int b) {
*a = b;
externalFunc ();
int c = *a;
externalFunc ();
*a = *a + 1;
return c;

}

Listing 6.2: Original gvn remarks from the snipped in Listing 6.1.
The second remark does not contain an “OtherAccess” field since
the load in question has multiple dominating accesses to the same
pointer.

--- ! Missed
Pass: gvn
Name: LoadClobbered
DebugLoc : { File: gvn.c, Line: 6, Column : 10 }
Function : f
Args:
- String : 'load of type '
- Type: i32
- String : ' not eliminated '
- String : ' in favor of '
- OtherAccess : store
DebugLoc : { File: gvn.c, Line: 4, Column : 5 }
- String : ' because it is clobbered by '
- ClobberedBy : call
DebugLoc : { File: gvn.c, Line: 5, Column : 2 }
...
--- ! Missed
Pass: gvn
Name: LoadClobbered
DebugLoc : { File: gvn.c, Line: 8, Column : 7 }
Function : f
Args:
- String : 'load of type '
- Type: i32
- String : ' not eliminated '
- String : ' because it is clobbered by '
- ClobberedBy : call
DebugLoc : { File: gvn.c, Line: 7, Column : 2 }
...

40

6.2 Improving GVN and vectorization remarks

Listing 6.3: GVN remarks from snipped in Listing 6.1 with im-
proved analysis. The second remark now also includes a value for
the “OtherAccess” field.

--- ! Missed
Pass: gvn
Name: LoadClobbered
DebugLoc : { File: gvn.c, Line: 6, Column : 10 }
Function : f
Args:

- String : 'load of type '
- Type: i32
- String : ' not eliminated '
- String : ' in favor of '
- OtherAccess : store

DebugLoc : { File: gvn.c, Line: 4, Column : 5 }
- String : ' because it is clobbered by '
- ClobberedBy : call

DebugLoc : { File: gvn.c, Line: 5, Column : 2 }
...
--- ! Missed
Pass: gvn
Name: LoadClobbered
DebugLoc : { File: gvn.c, Line: 8, Column : 7 }
Function : f
Args:

- String : 'load of type '
- Type: i32
- String : ' not eliminated '
- String : ' in favor of '
- OtherAccess : load

DebugLoc : { File: gvn.c, Line: 6, Column : 10 }
- String : ' because it is clobbered by '
- ClobberedBy : call

DebugLoc : { File: gvn.c, Line: 7, Column : 2 }
...

The GVN transformation emits a missed remark when it fails to reuse a value from a
memory clobber in a later load of the same memory region. This remark points out the
location of the load instruction as the debug location of the remark itself and reports the
type of the load. It includes two extra arguments in the form of the clobbering value, and
optionally another access of the same memory that could have been reused were it not for
the clobbering value. The analysis finding the otherwise reusable memory access was quite
limited, however. In fact, it was called out as such in a FIXME comment in the source code.
Although a complete analysis was deemed toomuch work since memory analysis is a complex
topic, some improvement was made in that more cases are handled than previously, as can
be seen in Listing 6.3. The reason we do not have accessible information for which value
would have been able to be forwarded were it not for the clobbering instruction is that the
analysis for eliminating the load does not try to eliminate the load using another access,
but instead tries to use knowledge about the clobbering instruction for reusing its value in
the downstream load. When this is deemed impossible the remark is constructed, and the
OtherAccess value is only added on as a hint that there is another use of the same pointer
that may have been more suitable for elimination of the load. There may not exist another
access to the pointer that would have been able to be reused to eliminate the load, and as
such we are satisfied with a best e�ort analysis that is mostly correct, especially since that
was also the case previously. An example of a case that we do not consider in the remark
construction analysis, but is considered in the decision making of the transformation itself,
is whether there are memory fences between the previous use and the load preventing the

41

6. Improvement of individual remarks

load from being eliminated.

Listing 6.4: Previous code to find other access to the load LI. From
gvn.cpp.

/// Try to locate the three instruction involved in a missed
/// load - elimination case that is due to an intervening store.
static void reportMayClobberedLoad (LoadInst *LI , MemDepResult ←↩

DepInfo ,
DominatorTree *DT ,
OptimizationRemarkEmitter *←↩

ORE) {
using namespace ore;

User * OtherAccess = nullptr ;

OptimizationRemarkMissed R(DEBUG_TYPE , " LoadClobbered ", LI);
R << "load of type " << NV("Type", LI -> getType ()) << " not ←↩

eliminated "
<< setExtraArgs ();

for (auto *U : LI -> getPointerOperand () ->users ())
if (U != LI && (isa <LoadInst >(U) || isa <StoreInst >(U)) &&

DT -> dominates (cast < Instruction >(U), LI)) {
// FIXME: for now give up if there are multiple memory ←↩

accesses that
// dominate the load. We need further analysis to decide←↩

which one is
// that we 're forwarding from.
if (OtherAccess)

OtherAccess = nullptr ;
else

OtherAccess = U;

}

if (OtherAccess)
R << " in favor of " << NV(" OtherAccess ", OtherAccess);

R << " because it is clobbered by " << NV(" ClobberedBy ", ←↩
DepInfo . getInst ());

ORE ->emit(R);
}

Listing 6.5: Our improved version of the analysis in Listing 6.4.

/// Assuming To can be reached from both From and Between , does←↩
Between lie on

/// every path from From to To?
static bool liesBetween (const Instruction *From , Instruction *←↩

Between ,
const Instruction *To , DominatorTree *←↩

DT) {
if (From -> getParent () == Between -> getParent ())

42

6.2 Improving GVN and vectorization remarks

return DT -> dominates (From , Between);
SmallSet < BasicBlock *, 1> Exclusion ;
Exclusion . insert (Between -> getParent ());
return ! isPotentiallyReachable (From , To , &Exclusion , DT);

}

/// Try to locate the three instruction involved in a missed
/// load - elimination case that is due to an intervening store.
static void reportMayClobberedLoad (LoadInst *LI , MemDepResult ←↩

DepInfo ,
DominatorTree *DT ,
OptimizationRemarkEmitter *←↩

ORE) {
using namespace ore;

User * OtherAccess = nullptr ;

OptimizationRemarkMissed R(DEBUG_TYPE , " LoadClobbered ", LI);
R << "load of type " << NV("Type", LI -> getType ()) << " not ←↩

eliminated "
<< setExtraArgs ();

for (auto *U : LI -> getPointerOperand () ->users ()) {
if (U != LI && (isa <LoadInst >(U) || isa <StoreInst >(U)) && ←↩

cast < Instruction >(U)->getFunction () == LI -> getFunction←↩
() &&
DT -> dominates (cast < Instruction >(U), LI)) {

// Use the most immediately dominating value
if (OtherAccess) {

if (DT -> dominates (cast < Instruction >(OtherAccess), cast <←↩
Instruction >(U)))

OtherAccess = U;
else

assert (DT -> dominates (cast < Instruction >(U),
cast < Instruction >(OtherAccess)))←↩

;
} else

OtherAccess = U;
}

}

if (! OtherAccess) {
// There is no dominating use , check if we can find a ←↩

closest non - dominating
// use that lies between any other potentially available ←↩

use and LI.
for (auto *U : LI -> getPointerOperand () ->users ()) {

if (U != LI && (isa <LoadInst >(U) || isa <StoreInst >(U)) &&
cast < Instruction >(U)->getFunction () == LI ->←↩

getFunction () &&
isPotentiallyReachable (cast < Instruction >(U), LI , ←↩

nullptr , DT)) {
if (OtherAccess) {

if (liesBetween (cast < Instruction >(OtherAccess), cast <←↩
Instruction >(U),

LI , DT)) {

43

6. Improvement of individual remarks

OtherAccess = U;
} else if (! liesBetween (cast < Instruction >(U),

cast < Instruction >(OtherAccess←↩
), LI , DT)) {

// These uses are both partially available at LI ←↩
were it not for the

// clobber , but neither lies strictly after the ←↩
other.

OtherAccess = nullptr ;
break ;

} // else: keep current OtherAccess since it lies ←↩
between U and LI

} else {
OtherAccess = U;

}
}

}
}

if (OtherAccess)
R << " in favor of " << NV(" OtherAccess ", OtherAccess);

R << " because it is clobbered by " << NV(" ClobberedBy ", ←↩
DepInfo . getInst ());

ORE ->emit(R);
}

The first improvement to the code in Listing 6.4 is to add a break statement after
OtherAccess = nullptr;, to avoid the bug of outputting an OtherAccess if the num-
ber of matching uses is odd, even when not intended. However, this break statement will be
delegated to a second for loop analyzing non-dominating uses, since we can always reason
about the order of dominating uses: if uses u1 and u2 both dominate load l, then either u1
dominates u2 or vice versa, since both code points have to be executed before reaching l. This
is not necessarily the case with partially available uses, and so if we have multiple partially
available uses where a strict ordering cannot be determined with respect to l we break and
set OtherAccess to null;

6.2.2 Loop-Vectorize
The loop-vectorizer has many remarks for di�erent ways vectorization can fail. These are
constructed and emitted in a consistent manner using a helper function. This function lim-
its the flexibility of the structure of these remarks in that it does not allow for extra argu-
ments, only a textual description and (optionally) a related instruction to copy the remark’s
debug location from. We expanded this function to accept a lambda function for adding
extra arguments where relevant, and added lambdas for extra context to some call-sites. Fur-
thermore, many cases were emitted with identical high level descriptions, while emitting
debug messages describing the low level reason. For example, 8 di�erent call sites to the
reportVectorizationFailure function all resulted in identical remarks with the description
“CFGNotUnderstood: loop control flow is not understood by the vectorizer”, with the fol-
lowing di�erent debug messages:

44

6.2 Improving GVN and vectorization remarks

• Loop doesn’t have a legal pre-header

• The loop must have a single backedge

• The loop must have an exiting block

• The exiting block is not the loop latch

• Unsupported basic block terminator

• Unsupported conditional branch

• Found a non-int non-pointer PHI

• Found an invalid PHI

While these debug messages had probably been deemed too low-level to emit to the pro-
grammer when reportVectorizationFailure was initially designed (e.g. requiring knowledge
of the LLVM IR language), the extra information may still be relevant to advanced users
in the more verbose optimization record. We opted to include this information as an extra
argument to avoid cluttering the compiler frontend remarks with rarely needed information.

Listing 6.6: Example optimization record from loop-vectorize in
YAML format

--- ! Analysis
Pass: loop - vectorize
Name: CFGNotUnderstood
DebugLoc : { File: oggenc .c, Line: 1237 , Column : 2 }
Function : main
Args:
- String : 'loop not vectorized : '
- String : loop control flow is not understood by vectorizer
...
--- ! Analysis
Pass: loop - vectorize
Name: LoopContainsSwitch
DebugLoc : { File: oggenc .c, Line: 1237 , Column : 2 }
Function : main
Args:
- String : 'loop not vectorized : '
- String : loop contains a switch statement
...
--- ! Analysis
Pass: loop - vectorize
Name: CFGNotUnderstood
DebugLoc : { File: oggenc .c, Line: 4527 , Column : 10 }
Function : main
Args:
- String : 'loop not vectorized : '
- String : loop control flow is not understood by vectorizer
...
--- ! Analysis
Pass: loop - vectorize
Name: CantVectorizeLibcall
DebugLoc : { File: oggenc .c, Line: 4527 , Column : 10 }
Function : main
Args:
- String : 'loop not vectorized : '
- String : call instruction cannot be vectorized
...
--- ! Analysis
Pass: loop - vectorize

45

6. Improvement of individual remarks

Name: NonReductionValueUsedOutsideLoop
DebugLoc : { File: oggenc .c, Line: 45361 , Column : 3 }
Function : vorbis_bitrate_addblock
Args:
- String : 'loop not vectorized : '
- String : value that could not be identified as reduction is used ←↩

outside the loop
...

Listing 6.7: 6.6 with our improvements, for example explainingwhat
was not understood with the CFG.

--- ! Analysis
Pass: loop - vectorize
Name: CFGNotUnderstood
DebugLoc : { File: oggenc .c, Line: 1237 , Column : 2 }
Function : main
Args:
- String : 'loop not vectorized : '
- String : loop control flow is not understood by vectorizer
- DebugMsg : The loop must have a single exiting block
- String : '. Exiting blocks : '
- exiting block terminator : switch

DebugLoc : { File: oggenc .c, Line: 1237 , Column : 2 }
- exiting block terminator : br

DebugLoc : { File: oggenc .c, Line: 1302 , Column : 25 }
...
--- ! Analysis
Pass: loop - vectorize
Name: LoopContainsSwitch
DebugLoc : { File: oggenc .c, Line: 1237 , Column : 2 }
Function : main
Args:
- String : 'loop not vectorized : '
- String : loop contains a switch statement
- DebugMsg : Loop contains a switch statement
...
--- ! Analysis
Pass: loop - vectorize
Name: CFGNotUnderstood
DebugLoc : { File: oggenc .c, Line: 4527 , Column : 10 }
Function : main
Args:
- String : 'loop not vectorized : '
- String : loop control flow is not understood by vectorizer
- DebugMsg : The exiting block is not the loop latch
...
--- ! Analysis
Pass: loop - vectorize
Name: CantVectorizeLibcall
DebugLoc : { File: oggenc .c, Line: 4527 , Column : 10 }
Function : main
Args:
- String : 'loop not vectorized : '
- String : call instruction cannot be vectorized
- DebugMsg : Found a non - intrinsic callsite
...
--- ! Analysis
Pass: loop - vectorize
Name: NonReductionValueUsedOutsideLoop
DebugLoc : { File: oggenc .c, Line: 45361 , Column : 3 }
Function : vorbis_bitrate_addblock
Args:
- String : 'loop not vectorized : '
- String : value that could not be identified as reduction is used ←↩

outside the loop
- DebugMsg : Found an unidentified PHI
...

46

6.2 Improving GVN and vectorization remarks

As can be see when comparing Listing 6.6 and Listing 6.7, some remarks provide more
context, while others are only marginally more descriptive. Some remarks, like LoopCon-
tainsSwitch, have the same information in the remark message and the debug message, lead-
ing to duplicated output. While we have only yet successfully added an extra context lambda
to one call-site, we have shown that it can be done successfully, and believe there is an op-
portunity to continue adding similar contexts to other remarks in the loop-vectorize pass.
In the examples above context could be added to show which block is the exiting block and
which block is the loop latch when they di�er, as well as where a non-reduction phi is used
outside of the loop.

47

6. Improvement of individual remarks

48

Chapter 7

Evaluation

We split the evaluation of our work into three parts: a user study to gauge the helpfulness of
our editor integration, the accuracy of the reconstructed source names, and the performance
impact of reconstructing source names.

7.1 Usability of the editor integration

7.1.1 Method
Students taking Jonas Skeppstedts course in Algorithm Implementation (EDAF15) at Lunds
Tekniska Högskola were invited to participate in a competition after finishing the final lab
of the course. The task was to speed up a deliberately unoptimized program we created that
found the best word to play in a game of scrabble. The code has opportunities for both
algorithmic improvements and improvements allowing the compiler to optimize further.

Since the course had few participants and it is di�cult to get test subjects students who
had recently taken courses in Algorithms, C programming and Optimizing compilers were
also invited to participate.

The participants were divided into two groups: a group using our VS Code extension,
and a control group using the existing Clang compilation flags for emitting remarks. In-
structions included an introduction to optimization remarks and their designated tool. Both
groups used ourmodified version of Clangwith improved remarkmessages and source names.
Since trials were conducted remotely due to the Covid-19 pandemic we provided each par-
ticipant with a url to a VS Code (technically a fork of the open source VS Code project for
remote development [9]) instance hosted by us, while accessible through the browser and oth-
erwise behaving just like the normal desktop version of VS Code. This served the purpose of
keeping environments identical, bar the extension and instructions, while removing the step
of installing the custom version of Clang, VS Code and our extension on the participants’
computers. It also allowed us to continuously save copies of the source code every time the

49

7. Evaluation

participants saved in the editor, allowing us to later analyze the progression of their changes
to the code. For the group using our extension we also logged each time they displayed a
remark, in the hopes of seeing a connection between performance improvements and dis-
played remarks. The students were given up to an hour to complete the task, and afterwards
asked to fill out a survey with questionsA about their experience using the remarks and their
experience levels using C or C++.

unsigned scrabble_score (char *word) {
unsigned sum = 0;
while (* word) {
sum += char_points [CHAR_INDEX (* word ++)];

}
return sum;

}

void cpystr (char *origin , char *dest) {
while ((* dest ++ = * origin ++))

;
}

/*
* The index of 'dict ' gives the list of playable words with ←↩

word size equal to
* that index. The 'best ' buffer should contain a copy of the ←↩

optimal word when
* finished . In case of a tie , the shorter word wins.
*/

void scrabble_max (struct wordlist dict [], unsigned ←↩
max_word_size ,

char best[max_word_size]) {
for (unsigned i = 0; i <= max_word_size ; i++) {

struct wordlist words_of_length = dict[i];
for (size_t j = 0; j < words_of_length . length ; j++) {

unsigned score = scrabble_score (words_of_length .words[j])←↩
;

unsigned best_score = scrabble_score (best);
if (score > best_score) {

cpystr (words_of_length .words[j], best);
}

}
}

}

7.1.2 Results
We had 8 students in total participating, split into two groups. From these 7 responded to
our survey.

The main improvements done by students were:

1. Recalculate the best_score only when the best word changes

2. Pass the word length as a parameter to scrabble_score to make it vectorizable

50

7.1 Usability of the editor integration

3. Use the built in memcopy or strcopy instead of cpystr

4. Pass the word length as a parameter to cpystr to make it vectorizable

Doing the first two and either the third or forth generally yielded a solution 3.6 times
faster than the unoptimized version. Solutions failing to add either of the first two yielded a
speedup of roughly 1.9. The students were split in half between about 3.6 times and 1.9 times
the speed of the reference solution.

Because of the low number of participants and variations in how comfortable the students
were programming in C we can’t draw any conclusions from the raw speed ups between the
control group and the one who used our tool. We don’t track when and if students without
the extension read optimization remarks directly from the compiler which makes the groups
harder to compare as well.

Instead we walk you through two anecdotes from the student sessions coupled with their
survey responses and attempt to understand how and if our tool helped them.

Azalea
Azalea is the identifier given to the student. This student was picked because they rated their
comfort with C code the highest.

Log time lime:
Minute 0-5: Viewed the instructions and all optimization remarks for the functions in

the given code
Minute 5-12: Edited the program to use the build in memcpy function instead of cpystr
Minute 12-13: Opened and read current optimization remarks
Minute 13-17: Played around with giving scrabble score a length parameter
Minute 17-19: Avoided recalculating the best score in every loop iteration
Minute 19-20: Added the length parameter to make scrabble_score vectorizable
Minute 20-25: Looked through the remaining optimization remarks but made no further

changes
Survey response: Azalea rated themselves as very confident with the C language and was

currently taking the algorithm implementation course. They found the remarks somewhat
confusing and not very actionable, but they still felt they contributed to a high degree to their
performance speed up. They give the "missed: regalloc" remark as an example of a confusing
and inactionable remark.

In the general feedback field they wrote: "The one remark which really helped me was
one about failed loop vectorization. I made scrabble_score take a length parameter and used
it in the loop, and this roughly doubled the performance."

From Azalea it seems that for a programmer comfortable with C and knowledgeable
about at least some important automatic optimization techniques the messages from the
compiler about failed vectorizations can be useful for speeding up our code problem. The
logs shows frequent use of the optimization remarks weaved together with code edits, we
assume that this means the tool was useful to know what optimizations could be done by the
compiler and to check if they passed in a way that was convenient enough to do it many times
during coding session. Azalea claimed that they got the idea to pass a length to scrabble_score
from a remark, and it might be the case that it would have taken longer to get this idea, were
the remarks less available.

51

7. Evaluation

Ecruteak
Ecruteak was picked because this student was picked because they rated their comfort with
the C language tied lowest (3/5) and had the had only read the least demanding of the relevant
courses.

Log time lime:
Minute 0-6: Viewed the instructions and looked at all optimization remarks
Minute 6-12: Avoid recalculating the best score in every loop iteration
Minute 12-34: Attempt to move copy outside of the loop
Minute 34-37: Save current best word as a local variable and then remove it
Minute 37-57: Attempt to solve the issue of the failing loop vectorization, where compiler

was missing the length by calling strlen inside the method. Add the comment "// clang still
can’t tell how many times this will run?" and then give up.

Survey response: Ecruteak rated themselves as somewhat familiar with the C language.
They found the remarks very confusing and did not know what to do about even the ones
they understood. They rate the number of remarks as appropriate and found the remarks to
contribute to their speed up to a low degree.

An excerpt from their general feedback: "The compiler feedback was exposed well, but
w/o a good understanding of what each optimization means it’s still

di�cult to act on. I ended up googling to try to get a better understanding of the missed
optimizations, perhaps hotlinks could be provided to docs/info about the warning some-
where? (Or perhaps they exist and I missed them)."

Ecruteak indicates that they found the extension exposed compiler feedback well but
that they did not know how to act on that information. From the logs we can see they
also weaved saving and checking remarks together like Azalea, but without the compiler
knowledge needed to actually fix the issues. From this student it seems that the tool worked
well for showing that there are compiler optimizations at all and where they passed or failed.

Summary
We present two tables containing the results of the students submission7.1 and their survey
responses7.2.

52

7.2 Performance impact

Table 7.1: Data from the students submissions

Student Speed up Minutes spent working Revisions In control group
Azalea 3.65 25 27 No
Ecruteak 1.97 60 187 No
Lavender 3.6 60 133 No
Rustboro 3.5 102 339 No
Blackthorn 3.61 20 64 Yes
Cerulean 2 37 118 Yes
Petalburg 0.99 12 27 Yes
Dewford 1.77 30 74 Yes

Table 7.2: Exit Survey responses

Student Remarks confusing? Remarks actionable? Remarks helpful? Comfort with C
Azalea 3 2 To a high degree 4
Ecruteak 5 4 To a low degree 3
Lavender 4 5 To a low degree 3
Rustboro 2 4 To a low degree 4
Blackthorn 1 3 Moderately 3
Cerulean 2 2 To a high degree 3
Petalburg - - - -
Dewford 4 4 Not at all 5

7.2 Performance impact

7.2.1 Method
Gzip [7] was compiled with and without remarks, with and without our various modifica-
tions to the compiler included, to measure whether each approach had a reasonable impact
on the performance of LLVM and Clang. Since the source name reconstruction sometimes
involves searching through all metadata in a module, larger modules may prove troublesome.
Therefore we also compiled a single file version of the gzip codebase as well as a single file
version of oggenc, courtesy of Stephen McCamant [20]. Gzip consisted of a total 5738 SLOC
in 26 source files, as well as an additional 714 SLOC in 13 header files. The single file version
of gzip consisted of 5097 SLOC. The single file version of oggenc consisted of 48063 SLOC.

Because of the large manual work involved in inserting pragmas before every sin-
gle function in a codebase, pragma activated remarks were only benchmarked on
the single file version of gzip. All Clang/llvm builds in the comparison were config-
ured with cmake -G Ninja -DCMAKE_CXX_COMPILER=’/usr/bin/Clang++-10’
-DCMAKE_C_COMPILER=’/usr/bin/Clang-10’ -DCMAKE_BUILD_TYPE=Release
-DLLVM_ENABLE_ASSERTIONS=On -DLLVM_ENABLE_PROJECTS=’Clang’
-DLLVM_USE_LINKER=’lld’ ../llvm/

We also collected statistics on the number of times various operations were performed in
the added code, using the -stats flag in LLVM [17].

53

7. Evaluation

7.2.2 Results
Benchmark names and their meaning:

• ref: no remarks activated, baseline Clang

• allremarks ref: all remarks activated through compiler flags, baseline Clang

• optrecord ref: all remarks emitted to optimization record file,

• gvn optrecord: all remarks emitted to optimization record file, Clang augmented with
our changes to the gvn remarks

• lv optrecord: all remarks emitted to optimization record file, Clang augmented with
our changes to the loop vectorizer remarks baseline Clang

• sn optrecord: all remarks emitted to optimization record file, Clang augmented with
our changes to the gvn remarks

• pragma flags: all remarks activated through compiler flags, Clang augmented with
remark pragma capabilities

• pragma ref: no remarks activated, Clang augmented with remark pragma capabilities

• pragma activated: all remarks activated through function scoped remark pragmas,
Clang augmented with remark pragma capabilities

As can be seen in Table 7.3 the remark pragma augmented compiler carries a significant
penalty on compile time performance even when not emitting any remarks (compare ref
with pragma ref). This penalty is still present when emitting remarks (compare allremarks
ref with pragma flags), however the performance penalty of activating remarks via pragmas
over compiler flags is minor (compare pragma flags with pragma activated). This logically
makes sense as most of the extra work carried out by the compiler consists of checking for
metadata when deciding whether to emit remarks, which is done no matter if remarks are
emitted or not.

The changes to individual remarks did not have a significant impact on compile time,
as shown in Table 7.4. Reconstruction of source names did have some impact, especially for
oggenc. The statistics in Table 7.5 indicate that this may be due to large struct types since
the type comparison has a high recursion ratio, resulting in a very large number of function
calls.

7.3 Accuracy of name reconstruction
7.3.1 Method
To measure the accuracy of the reconstructed names we parsed the optimization record after
compiling single file versions of gzip and oggenc. For each reconstructed name found we took
the attached debug location and extracted the corresponding line in the source code to com-
pare with the name. The special case where the debug location was set to line 0 was ignored,

54

7.3 Accuracy of name reconstruction

Table 7.3: Performance comparison for Clang extended with prag-
mas for remark output, versus baseline Clang.

gzip normal gzip single oggenc single
ref 1.00 1.00 1.00
pragma ref 1.12 1.17 1.07
allremarks ref 1.39 2.05 3.96
pragma flags 1.49 2.17 4.00
pragma activated - 2.21 -

Table 7.4: Performance comparison for Clang extended with vari-
ous further analyzes for remark messages, versus baseline Clang. All
remarks were activated by enabling the optimization record. Nor-
malized to optrecord ref.

gzip normal gzip single oggenc single
optrecord ref 1.00 1.00 1.00
gvn optrecord 1.00 1.00 1.01
lv optrecord 0.99 1.00 1.00
sn optrecord 1.02 1.04 1.10

Table 7.5: General statistics captured by counters added to the code
for source naming.

statistic oggenc gzip
Constructed instances of class 53066 23988
Constructed instances w/ mutable module access 50576 22506
Top level calls to getOriginalName (Algorithm 1) 86204 40275
Nested calls to getOriginalName 363096 123642
Recursive calls per call to getOriginalName 4.2 3.1
Nested calls to getOriginalName w/ dgb info return value requested 99836 10856
Instances of missing dbg info when needed 20998 8745
Bitcasts without dbg info match 13050 0
Calls to fallback method for naming fragment w/o dbg info 19945 8745
Calls to calibrateDbgType (Algorithm 14) 112186 2441
Top level calls to compareDbgType (Algorithm 7) 360141 5872
Nested calls to compareDbgType 12513962 90375
Recursive calls per call to compareDbgType 34.8 15.4

55

7. Evaluation

as it is not a real line in the source code. Some operations can be expressed in multiple ways,
and so a conventional string comparison may indicate a mismatch between two expressions
that are in fact equivalent. This, combined with the fact that naming the operations was
trivial compared to the core problem of finding the right identifiers, led us to the decision
to split both expressions involved in the comparison on non-alphanumerical symbols and
compare each identifier in the expression with the identifier at the corresponding index in
the other expression. Only expressions with expressions of equal number of identifiers were
considered for matching. The debug location column number does not mark a range with
start and finish, but only a single point. Because the location of this point in relation to the
rest of the expression (e.g. the beginning or somewhere in the middle) is not consistent, every
substring of the line was considered as a potential match and the closest one selected.

We performed these measurements for both files with and without function inlining en-
abled, to see whether the algorithm finding multiple aliasing identifier names due to inlining
significantly a�ected the accuracy. Tomake the numbers comparable, we filtered out inlining
related remarks. These remarks just contain function names anyways, which does not need to
be reconstructed from metadata, and so had a nearly 100% match rate in our measurements.
The number of remarks in the output still di�ers somewhat between the version with and
without inlining, since inlining a�ects which optimizations can be performed.

7.3.2 Results
As can be seen in Table 7.6 and the histograms in Figure 7.1 and Figure 7.2, inlining does not
have a dramatic impact on neither themean or distribution of reconstructed name accuracies.
However, they both do show a clear (if small) trend towards improved accuracy within each
expression size when inlining is disabled. Note that it is impossible for an expression to
match more identifiers in the source code than the number of identifiers in the expression
itself, which is why the number of matching identifiers generally grows along with the size
of the expression.

Dividing the matching number of identifiers with the total number of identifiers in the
expression gives us a generalmeasurement of the accuracy for identifiers. Taking theweighted
mean (using the counts in Table 7.7) gives us an average accuracy of 65%with inlining for gzip,
and 72% without inlining. For oggenc the values are 61% and 66%, respectively.

56

7.3 Accuracy of name reconstruction

Table 7.6: Mean number of matching identifiers, grouped by num-
ber of identifiers, for reconstructed names in remarks.

number of identifiers in expression gzip gzip, no inline oggenc oggenc, no inline
1 0.735 0.832 0.613 0.663
2 1.583 1.714 1.734 1.844
3 1.923 2.130 2.067 2.206
4 1.871 1.955 2.168 2.275
5 1.394 1.667 1.774 1.903
6 2.125 2.179 1.392 1.500
7 1.667 1.846 1.162 1.258
8 1.409 1.630
9 0.571 0.818
10 0.833 -
11 0.056 0.083

Table 7.7: Remark count, grouped by number of identifiers, for re-
constructed names in remarks.

number of identifiers in expression gzip gzip, no inline oggenc oggenc, no inline
1 1111 1030 1370 1107
2 60 91 1145 1054
3 272 253 1821 1571
4 241 246 1003 866
5 33 51 651 515
6 80 56 296 238
7 30 26 130 93
8 44 27
9 21 11
10 6 0
11 18 12

57

7. Evaluation

Figure 7.1: Histograms of name accuracy with and without inlining
for gzip.

58

7.3 Accuracy of name reconstruction

Figure 7.2: Histograms of name accuracy with and without inlining
for oggenc.

59

7. Evaluation

60

Chapter 8

Related work

We introduce works related to our research questions and compare them to our work. The
first paper takes a quantitative approach to see how better error messages could help pro-
grammers perform better. The second paper covers how a modified compiler can help pro-
grammers vectorize loops, guiding them through fixing the most common and fixable issues.

8.1 The usefulness of compiler error mes-
sages

To gauge the helpfulness of readable compiler errormessages to students in their introductory
programming course Raymond Pettit, John Homer, and Roger Gee enhanced the courses
automated assessment tool [23]. They added human readable explanations and suggestions
on how to fix errors on the most common errors from previous years. Several related papers
used student feedback as the main indicator of usefulness, Pettit et. al wanted a quantitative
approach and focused on the following measurements:

• likelihood of successive compilation errors

• occurrence of compiler errors within semesters

• student progress towards a successful completion of a programming assignment

Their results show no significant benefit to these metrics to these measurements even as
anecdotal data from student surveys indicated that the tool was helpful. A qualified major-
ity of respondents said that the messages helped them identify, fix and prevent compilation
problems. Raymond Pettit et. al. speculate reasons for this contradiction. Higher achieving
students are more attentive to compiler errors and are less likely to submit non-compiling
code. Or newer programmers might not pay much attention to the messages from their

61

8. Related work

compiler at all. They also highlight an anecdote where a student purposely submitted non-
compilable code to receive better errormessages after not understanding the default compiler
and used the better message to get past the error. If this is a common occurrence it could also
help explain the quantitative results. Since the survey-responses were small compared to the
total number of participants, it’s also possible that testers that used and liked the tool were
disproportionately represented in the survey.

A key di�erence in our work is that Pettit et. al. worked with novice programmers
whereas we worked with programmers with at least one year of programming experience
and often more. We also have the benefit of the users actively asking for compiler messages
while looking for way to improve a program, rather than them being an annoyance.

8.2 Compiler guided Optimization refactor-
ing

Many programs contain loops that could be written in a such a way so they are automatically
vectorizable but the compiler can’t prove that reshaping the loops and vectorizing themwon’t
change the behavior of the program. To allow for more loops to automatically vectorized
Per Larsen et. al. [10] created an interactive compilation system that tries to hint to the
programmer what changes they should consider to make the program vectorizable. This way
you could use the knowledge of the programmer to make the work of the compiler easier.
Their approach is to create a set of patches to the automatic parallelization subsystem of
GCC [6] to emit comments back into the source code when it encounters a problem which
prevents further analysis.

They then use a library they built called libcodecomments to make the output from GCC
understandable, by generating source locations and reconstructing source level expressions
and variable names from compiler created temporaries. They combine these tools with a
plug-in for Eclipse C Development Tools [8] code editor to display the messages in an intu-
itive way directly in the source code.

Larsen et. al. use their program in two case studies of programs with a set of loops that
should be vectorizable that GCC couldn’t vectorize. They use their program to work around
issues of aliasing, unknown loop iteration counts, complicated induction variables and data
dependency issues. The now auto-vectorizable programs are benchmarked against manually
parallelized versions of the same program resulting in the automatic version being better in
12 out of 23 cases.

They conclude that there are many opportunities of auto-parallelization and that for ad-
ditional performance it should be combined with platform-specific tuning. They note the
need for prioritization of compiler remarks since a handful of missed opportunities could
result in hundreds of individual comments. In our work we allow the programmer to pick
which loop or function scope and what optimizations they are interested in as a way to pre-
vent the comments from becoming overwhelming. We did not have to create patches to
LLVM to get records of loop issues since that functionality was already present.

62

Chapter 9

Conclusions and further work

To keep down the complexity of the code, we only construct names for derived values in C
syntax. That is, the LLVM instructions are converted to the equivalent operation in C. This
is still an improvement over no high-level language names, although potentially confusing to
the programmer if the source code is in a language with significantly di�erent syntax than
C. Luckily, most use of LLVM is with C and other languages with C inspired syntax. In fact,
it may be more precise than a language with more abstraction, where pointers cannot be ac-
cessed directly, while still keeping it more readable than LLVM IR. However, we submit that
the largest benefit is of the variable names themselves and not the syntax of the derived val-
ues. As such, using a language with widespread recognition and use in the LLVM community
like C should give a lot of value.

So far we have tested our modifications on C code and LLVM IR only. A quick test with
C++ indicates a need to demangle function names and handle a wider range of DIType sub-
types for use with classes. Rewriting the source naming to not construct the string directly,
but instead first constructing a language agnostic AST, could make it feasible to build mul-
tiple language specific passes for constructing the string, allowing for output in the syntax of
the source language instead of C syntax only.

The reconstruction of source names shows good accuracy for expressions in the range
of 1-3 identifiers, which is where the majority of collected expressions fall. Our evaluation
indicates that adding logic for handling aliasing identifier names in amore consistentmanner
may improve this accuracy somewhat. Currently aliasing identifier names are handled by
simply picking one of them, but this may result in confusing remarks if names are picked
from the wrong context, or - in the case of derived names - from di�erent contexts. In the
previously mentioned AST approach multiple name alternatives and their scopes could be
stored, and when constructing the string e�ort care could be taken to be as consistent as
possible in the context of the names. Alternatively, the getOriginalName method (shown
in Algorithm 1) could have an optional DIType parameter for the scope of the value, and only
use names available in this scope, if given. Another potential source of inaccurate names is
missing debug metadata. This can be the result of either not compiling with debug symbols,

63

9. Conclusions and further work

or prior transformation passes being unable to preserve the metadata when transforming
the IR. As an example, we found that already vectorized IR often lacked debug metadata,
even when the IR in question also contained an unvectorized copy of the same code with
debug metadata attached. In either way, if we do not encounter the metadata needed to
name the value, we fall back to the original naming method. As such, the remarks have not
lost any value, but can provide clearer references when compiled with debug information.
Investigating why the accuracy for longer expressions starts to dwindle after 3 identifiers
remains to be done.

To include a link with each remark to a longer explanation of the remark message has
been discussed, and was suggested by a user in trials as well. This would require a large ef-
fort to document the analysis done by each pass, and to maintain this correspondence when
the source code changes, but has potential to further lower the threshold for understand-
ing among users less experienced with compiler construction and micro-optimizations. It
would also improve the project’s lack of documentation overall, however the general lacking
in documentation may indicate that contributors are unlikely to prioritize this e�ort.

We also conclude that our editor integration anecdotally is a helpful tool for iterating
on program performance, given that the programmer is versed in what optimizations exist
and is comfortable writing C code. Measuring to see if there is any e�ciency e�ect when
using the extension and improving the extension to be distributable is left as potential future
work. Our limited sample size and lack of quantitative data prevents us from answering RQ3
conclusively, from our survey responses at least the students who responded didn’t perceive
Clangs feedback to be e�ective for enabling optimizations. The same is true to for RQ2,
although our results are inconclusive they seem to point towards that an increased availability
of optimization remarks improve programmers’ ability to speed up program performance.

Relating to RQ4 we conclude that with our current implementation, pragmas are not
a good alternative to compilation flags. Pragmas for remark output negatively a�ect com-
pile times significantly even when not in use. As such, the feature in its current form is not
suitable for a production compiler, since a vast majority of compilations will in fact not use
the feature. Potential future work may be optimizing this feature or rearchitecting it in a
way that the performance impact is minimized. We also propose a more usability focused
evaluation of the usefulness of pragmas compared to compile flags, as we only looked into
the performance aspect. Source name reconstruction also carries a somewhat noticeable per-
formance hit, especially for really large modules, however this is tolerable since this feature
does not run any extra code unless remarks are actually emitted. As for RQ1 we conclude
that the current implementation is performant enough to be usable, and the name accuracy
is high enough to provide value in the added context for remarks. However there is room
for improvement, for example by handling aliasing variables or mangled names. Our mea-
surements indicate that the type comparison, and by extension the type calibration, may be
a hot path when reconstructing source names. Improvements to this algorithm may reduce
the performance overhead significantly. This may be even more important in the future, as
LLVM is planning to transition to opaque (untyped) pointers in the IR. This could also make
it worth looking into rearchitecting the debug type handling entirely, potentially avoiding
the issue of type comparisons.

Improvements to individual remarks similarly only a�ect performance when actually
used, and furthermore only a�ect a small subset of remarks, so the performance impact is
small.

64

References

[1] Adam Nemet. Compiler Assisted Performance Analysis.
Presentation: https://www.youtube.com/watch?v=qq0q1hfzidg
Slides: http://llvm.org/devmtg/2016-11/Slides/
Nemet-Compiler-assistedPerformanceAnalysis.pdf.

[2] Bob Haarman. Rewriting opt-viewer in C++.
http://lists.llvm.org/pipermail/llvm-dev/2016-November/107039.
html.

[3] DWARF Standards Committee. The DWARF Debugging Standard.
http://www.dwarfstd.org/.

[4] RonCytron, Jeanne Ferrante, Barry K. Rosen,MarkN.Wegman, and F. Kenneth Zadeck.
E�ciently Computing Static Single Assignment Form and the Control Dependence
Graph. ACM Trans. Program. Lang. Syst., 13(4):451490, October 1991.

[5] JackW. Davidson and Sanjay Jinturkar. Aggressive loop unrolling in a retargetable opti-
mizing compiler. In Proceedings of the 6th International Conference on Compiler Construction,
CC ’96, page 59–73, Berlin, Heidelberg, 1996. Springer-Verlag.

[6] Free Software Foundation. GCC.
http://gnu.gcc.org.

[7] Free Software Foundation. gzip.
https://www.gnu.org/software/gzip/.

[8] The Eclipse Foundation. Eclipse C Development Tools.
http://eclipse.org/cdt/.

[9] Coder Technologies Inc. code-server GitHub repository.
https://github.com/cdr/code-server.

[10] Per Larsen, Razya Ladelsky, Jacob Lidman, Sally A. McKee, Sven Karlsson, and Ayal
Zaks. Automatic Loop Parallelization via Compiler Guided Refactoring. Number 12 in IMM-
Technical Report-2011. Technical University of Denmark, 2011.

65

https://www.youtube.com/watch?v=qq0q1hfzidg
http://llvm.org/devmtg/2016-11/Slides/Nemet-Compiler-assistedPerformanceAnalysis.pdf
http://llvm.org/devmtg/2016-11/Slides/Nemet-Compiler-assistedPerformanceAnalysis.pdf
http://lists.llvm.org/pipermail/llvm-dev/2016-November/107039.html
http://lists.llvm.org/pipermail/llvm-dev/2016-November/107039.html
 http://www.dwarfstd.org/
 http://gnu.gcc.org
 https://www.gnu.org/software/gzip/
 http://eclipse.org/cdt/
 https://github.com/cdr/code-server

REFERENCES

[11] Chris Lattner. LLVM: An Infrastructure for Multi-Stage Optimization. Master’s thesis,
Computer Science Dept., University of Illinois at Urbana-Champaign, Urbana, IL, Dec
2002. http://llvm.cs.uiuc.edu.

[12] LLVM. Clang Webpage.
https://clang.llvm.org/.

[13] LLVM. Clangd Webpage.
https://clangd.llvm.org/.

[14] LLVM. LibTooling Webpage.
https://clang.llvm.org/docs/LibTooling.html.

[15] LLVM. LLVM Language Reference Manual.
https://llvm.org/docs/LangRef.html.

[16] LLVM. LLVM Loop Terminology (and Canonical Forms).
https://llvm.org/docs/LoopTerminology.html.

[17] LLVM. Opt Command Line Reference.
https://llvm.org/docs/CommandGuide/opt.html.

[18] LLVM. Remarks - LLVM 12 documentation.
https://llvm.org/docs/Remarks.html.

[19] LLVM. Source Level Debugging with LLVM.
https://llvm.org/docs/SourceLevelDebugging.html.

[20] Stephen McCamant. Single file programs.
https://people.csail.mit.edu/smcc/projects/single-file-programs/.

[21] Microsoft. Language Server Protocol website.
https://microsoft.github.io/language-server-protocol/.

[22] Stack Overflow. Stack Overflow Developer Study 2019.
https://insights.stackoverflow.com/survey/2019#
development-environments-and-tools.

[23] Raymond S. Pettit, JohnHomer, andRoger Gee. Do EnhancedCompiler ErrorMessages
Help Students? Results Inconclusive. In Proceedings of the 2017 ACM SIGCSE Technical
Symposium on Computer Science Education, SIGCSE ’17, page 465–470, New York, NY,
USA, 2017. Association for Computing Machinery.

[24] Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 1st edition, 2002.

66

http://llvm.cs.uiuc.edu
 https://clang.llvm.org/
 https://clangd.llvm.org/
 https://clang.llvm.org/docs/LibTooling.html
https://llvm.org/docs/LangRef.html
 https://llvm.org/docs/LoopTerminology.html
 https://llvm.org/docs/CommandGuide/opt.html
 https://llvm.org/docs/Remarks.html
https://llvm.org/docs/SourceLevelDebugging.html
 https://people.csail.mit.edu/smcc/projects/single-file-programs/
 https://microsoft.github.io/language-server-protocol/
 https://insights.stackoverflow.com/survey/2019#development-environments-and-tools
 https://insights.stackoverflow.com/survey/2019#development-environments-and-tools

Appendices

67

Appendix A

Exit survey questions

I found the meaning of the optimization remarks confusing. Scale (1-5) "Strongly disagree" -
"Strongly agree".

Even after understanding a remark, I did not know what to do about it. Scale (1-5) "Strongly
disagree" - "Strongly agree".

I found the number of remarks. Insu�cient / Less than expected / Appropriate / More than
expected / Overwhelming

Insights gained from optimization remarks contributed to my speedup. Not at all / To a low
degree / Moderately / To a high degree / Significantly

I understood the assignment. Scale (1-5) "Strongly disagree" - "Strongly agree".
How confident are you reading and writing C/C++ code? Scale (1-5) "Not at all" - "Very confi-

dent"
Which of the following courses have you taken part in?

• EDAF05 Algorithms, data structures and complexity

• EDAF15 Algorithm implementation

• EDAA25 C programming

• EDAN75 Optimizing compilers

• None of the above

Any other feedback you would like to share, not covered by the previous questions?

69

A. Exit survey questions

70

Appendix B

User evaluation task

Listing B.1: Contents of README.md
Scrabble word picker
As part of a Scrabble bot you have previously written code compiling a list of ←↩

playable words for the current board .
You have now implemented a function that determines which of these words would ←↩

net you the most points .
However , while benchmarking your bot you find that finding the best word is ←↩

severely bottlenecking your overall performance .
Your task is to make the scrabble_max function finish (with a correct result !) as←↩

quickly as possible .
You may only make changes to scrabble .c.
Running `make ` will compile , test , and benchmark your solution .
If you need to temporarily add flags to Clang you can do so by editing the CFLAGS←↩

variable in the makefile , however these will not be used for the final ←↩
benchmark determining the winner .

Note that the test data used does not consist of actual words .
Hint: you can view the 10 test inputs used in the benchmark in the eval/ ←↩

directory . Your solution must however also pass all the examples given in the ←↩
input / directory .

Submitting a solution
You have 60 minutes starting from when you first connected to VS Code.
A solution will be submitted every time you run make.
Solutions submitted after the time has expired will not be considered .
You may submit as many solutions as you want , and we will count your best ←↩

submission .
After completing the assignment please fill out this survey about your experience←↩

solving this assignment : https :// forms .gle /6 kKYjAMgnT9mReCe8
If you wish to participate in the competition you need to fill out your email in ←↩

the form.

Optimization remarks
LLVM , and by extension Clang , can emit remarks to indicate whether a certain ←↩

optimization was applied or not.
The remarks come in 3 flavors :

- pass: A remark emitted to signal that an optimization transformation was ←↩
successfully performed

- missed : A remark emitted to signal that an optimization transformation
could not be performed , or was not deemed profitable

- analysis : A remark containing analysis results that can bring
more information to the user regarding the generated code

71

B. User evaluation task

Not all passes in LLVM emit optimization remarks , but the major ones do.
Remarks can be filtered by which pass they originated from.
Some passes that emit remarks are:

- loop - vectorize
- slp - vectorize
- gvn (Global Value Numbering)
- licm (Loop Invariant Code Motion)
- inline

Your tool
To help you find missed optimizations in LLVM you have a VS Code extension ←↩

installed that visualizes optimization remarks .
Whenever you save the source code file , the extension will generate remarks for ←↩

you.
You can then choose whether you want to show remarks for the whole file , a ←↩

specific function or even a specific loop , by clicking the gray text above it.
It will then let you choose which optimization pass you want remarks from , or all←↩

.

Terminal access
You can open the terminal in VS Code by pressing ctrl+ shift +c

Listing B.2: Contents of scrabble.h

ifndef SCRABBLE_H
define SCRABBLE_H
struct wordlist {

size_t length ;
char ** words; // length elements

};
void scrabble_max (struct wordlist dict [], unsigned ←↩

max_word_size , char best[max_word_size]);

#endif // SCRABBLE_H

Listing B.3: Contents of scrabble.c

include <stddef .h>
include <stdio.h>
include " scrabble .h"

define FIRST_CHAR 'A'
define LAST_CHAR 'Z'
define CHAR_INDEX (c) c - FIRST_CHAR
define NBR_OF_CHARS 1 + CHAR_INDEX (LAST_CHAR)

char char_points [NBR_OF_CHARS] = {
/*A: */ 1,
/*B: */ 3,
/*C: */ 3,
/*D: */ 2,
/*E: */ 1,
/*F: */ 4,
/*G: */ 2,
/*H: */ 4,
/*I: */ 1,
/*J: */ 8,
/*K: */ 5,

72

/*L: */ 1,
/*M: */ 3,
/*N: */ 1,
/*O: */ 1,
/*P: */ 3,
/*Q: */ 10,
/*R: */ 1,
/*S: */ 1,
/*T: */ 1,
/*U: */ 1,
/*V: */ 4,
/*W: */ 4,
/*X: */ 8,
/*Y: */ 4,
/*Z: */ 10

};

unsigned scrabble_score (char *word) {
unsigned sum = 0;
while (* word) {
sum += char_points [CHAR_INDEX (* word ++)];

}
return sum;

}

void cpystr (char *origin , char *dest) {
while ((* dest ++ = * origin ++))

;
}

/*
* The index of 'dict ' gives the list of playable words with ←↩

word size equal to that index. The 'best ' buffer should ←↩
contain a copy of the optimal word when finished . In case ←↩
of a tie , the shorter word wins.

*/
void scrabble_max (struct wordlist dict [], unsigned ←↩

max_word_size ,
char best[max_word_size]) {

for (unsigned i = 0; i <= max_word_size ; i++) {
struct wordlist words_of_length = dict[i];
for (size_t j = 0; j < words_of_length . length ; j++) {

unsigned score = scrabble_score (words_of_length .words[j])←↩
;

unsigned best_score = scrabble_score (best);
if (score > best_score) {

cpystr (words_of_length .words[j], best);
}

}
}

}

73

B. User evaluation task

74

Appendix C

Source name algorithms

C.1 Naming IR values

75

C. Source name algorithms

Algorithm 1 High level algorithm for reconstructing the source name of value V . A best
e�ort is made for BasicBlocks, since these have no semantic equivalent in C source code.
GetOriginalInstructionName delegates further to di�erent subprocedures based on the spe-
cific instruction type, some of which will be described in detail. GetOriginalConstantName
will not be described in detail, as it simply extracts the represented constant value.

procedure getOriginalName(V)
if hasDbgValueIntrinsic(V) then

(name, dbgType)← getNameFromDbgValueIntrinsic(V)
else

switch class(V) do
case Instruction

(name, dbgType)← getOriginalInstructionName(V)
case Constant

(name, dbgType)← getOriginalConstantName(V)
case BasicBlock

name← ”BB{”
for Instruction I ∈ V do

(iName, _)← getOriginalInstructionName(I)
name← concat(name, iName)

end for
return (concat(name, ”}”), null)

case Argument
return (argName(V), null)

end if
return (name, calibrateDbgType(dbgType, type(V)))

end procedure

76

C.1 Naming IR values

Algorithm 2 Algorithm for reconstructing a variable name from a debug variable intrinsic.
O�sets are given in number of bits.

procedure getNameFromDbgValueIntrinsic(V)
dbgVar ← dbgVar(V)
name← name(dbgVar)
dbgType← type(dbgVar)
if isFragment(expr(dbgVar)) then

nextO f f set ← o f f set(expr(dbgVar))
(f ragName, dbgType)← getVariableFragmentName(dbgType, nextO f f set)
name← concat(name, f ragName)

end if
return (name, dbgType)

end procedure
procedure getVariableFragmentName(dbgType, relativeO f f set)

switch class(dbgType) do
case Struct

for f ield ∈ dbgType do
f ← f ield
if o f f set(f ield) > relativeO f f set then

break
end if

end for
nextO f f set ← relativeO f f set − o f f set(f)
(subFragName, subFragDbgType)← getVariableFragmentName(f , nextO f f set)
return (concat(”.”, name(f), subFragName), subFragDbgType)

case Pointer
return (concat(”[”, str(relativeO f f set), ”]”), baseType(dbgType))

case Array
elemSize← size(elem(dbgType))
index ← f loor(relativeO f f set/elemSize)
nextO f f set ← relativeO f f set − index ∗ elemSize
(subFragName, subFragDbgType)← getVariableFragmentName(elem(dbgType), nextO f f set))
f ragName← concat(”[”, str(index), ”]”, subFragName)
return (f ragName, subFragDbgType)

case default
return (””, dbgType)

end procedure

77

C. Source name algorithms

Algorithm 3 Algorithm for reconstructing a variable name from a GEP instruction. Non-
constant o�sets are array/pointer o�sets and named as such, while constant o�sets are named
based on the debug type of the value they are o�set from. O�sets are actual field/element
indices, not bit sizes.
procedure getNameFromGEP(V)

(baseName, dbgType)← getOriginalName(ptrOp(V))
name← baseName
dbgType← baseType(dbgType)
arrayO f f setIndex ← 0
while arrayO f f setIndex < numOf f setOps(V) do

arrayO f f set ← o f f setOps(V)[arrayO f f setIndex]
name← concat(name, ”[”, str(arrayO f f set), ”]”)
(constO f f sets, nextNonConst)← extractConstO f f sets(o f f setOps(V), arrayO f f set+

1, numOf f setOps(V))
(f ragName, f ragDbgType)← getValueFragmentName(dbgType, constO f f sets)
name← concat(name, f ragName)
dbgType← f ragDbgType
arrayO f f setIndex ← nextNonConst

end while
return (name, calibrateDbgType(type(V), dbgType))

end procedure
procedure extractConstOffsets(o f f sets, start, end)

index ← start
constO f f sets← []
while index < end ∧ isConstant(o f f sets[index]) do

constO f f sets← concat(constO f f sets, o f f sets[index])
index ← index + 1

end while
return (constO f f sets, index)

end procedure

78

C.1 Naming IR values

Algorithm 4 Reconstructs the name of a fragment of a composite debug type. O�sets are
actual field/element indices, not bit sizes.
procedure getValueFragmentName(dbgType, o f f sets)

if isEmpty(o f f sets) then
return (””, dbgType)

end if
o f f set ← head(o f f sets)
switch class(dbgType) do

case Struct
f ← f ields(dbgType)[o f f set]
(subFragName, subFragDbgType)← getValueFragmentName(baseType(f), tail(o f f sets))
return (concat(”.”, f ieldName(f), subFragName), subFragDbgType)

case Pointer
return (concat(”[”, str(o f f sets), ”]”), baseType(dbgType))

case Array
(subFragName, subFragDbgType)← getValueFragmentName(elemType(dbgType), tail(o f f sets)))
f ragName← concat(”[”, str(o f f set), ”]”, subFragName)
return (f ragName, subFragDbgType)

case default
return (””, dbgType)

end procedure

79

C. Source name algorithms

Algorithm 5 Algorithm for reconstructing a value name from a phi node. Naively assumes
thatV is an induction variable (a variable iterated through in a loop) if the debug type found
matches the value type of V . Otherwise picks a predecessor known to terminate in some
value with a debug variable intrinsic and uses that to name the phi. CurrentPhis is a global
set used to avoid ending up in an infinite recursion: if V is in the set, the current procedure
call is a direct result of an earlier call to getNameFromPhi with the same parameter.

CurrentPhis← {}
procedure getNameFromPhi(V)

if V ∈ CurrentPhis then
return (null, null)

end if
CurrentPhis← CurrentPhis ∪ V
Visited ← {}
Queue← []
name← null
dbgType← null
for Pred ∈ V do

enqueue(Queue, (Pred,Pred))
end for
while ¬isEmpty(Queue) ∧ name 6= null do

(n, originalPred)← dequeue(Queue)
if hasDbgValueIntrinsic(V) then

(name, dbgType)← getNameFromDbgValueIntrinsic(V)
else

Visited ← Visited ∪ n
for Op ∈ n do

if Op /∈ Visited then
enqueue(Queue, (Op, originalPred))

end if
end for

end if
end while
if name 6= null ∧ compareDbgType(type(V), dbgType) = NoMatch then

(name, dbgType)← getOriginalName(originalPred)
end if
CurrentPhis← CurrentPhis \ V
return (name, dbgType)

end procedure

80

C.1 Naming IR values

Algorithm 6 Handling of bitcasts. Does not alter the name of the operand, but makes at-
tempts to find a matching debug type to return.

procedure getNameFromBitCast(V)
(name, dbgType)← getOriginalName(op(V))
if isFirstFieldNested(type(op(v)), type(V)) then

(_, dbgType)← calibrateDbgType(type(V), dbgType)
else if isFirstFieldNested(type(V), type(op(v))) then

if class(dbgType) = Pointer then
dbgType← baseType(dbgType) .Want to find the subtype relationship of

the base types.
end if
Users← users(dbgType)
Visited ← {}
partial ← null
while ¬isEmpty(Users) do

for user ∈ Users do
(matchResult, calibratedType)← calibrateDbgType(type(V), user)
if matchResult = Match then

return (name, calibratedType)
end if
if matchResult = IncompleteMatch then

partial ← calibratedType
end if
Visited ← Visited ∪ user

end for
NextUsers← {}
for user ∈ Users do

for nextUser ∈ users(user) do
if f ields(nextUser)[0] = user ∧ nextUser /∈ Visited then . Only

first field uses are relevant for subtype in the cases considered
NextUsers← NextUsers ∪ nextUser

end if
end for

end for
Users← NextUsers

end while
dbgType← partial

else
dbgType← null

end if
return (name, dbgType)

end procedure

81

C. Source name algorithms

C.2 Comparing value types and debug types

Algorithm 7 Compare value type with debug type for exact or approximate equivalence.
Approximate equivalence results in the return value IncompleteMatch, and can represent
cases such as subtype relationships, or one side having a void pointer where the other has a
concrete type. Equivalent and dissimilar types have the return values Match and NoMatch,
respectively.

procedure compareDbgType(valueType, dbgType)
switch class(valueType) do

case StructType
matchResult ← compareStructType(valueType, dbgType)

case PointerType
matchResult ← comparePointerType(valueType, dbgType)

case ArrayType
matchResult ← compareArrayType(valueType, dbgType)

case IntegerType
matchResult ← compareIntegerType(valueType, dbgType)

case FloatType
matchResult ← compareFloatType(valueType, dbgType)

case FunctionType
matchResult ← compareFuncType(valueType, dbgType)

return matchResult
end procedure

82

C.2 Comparing value types and debug types

Algorithm 8 Compare struct value type with debug type. If the debugType has previously
been compared with any value type without finding any inconsistencies, that value type
(stored in EquivalentStructTypes) must also be equivalent to valueType. To handle recur-
sive type structures, the value typemust be added to EquivalentStructTypes before recursing
on field members.

EquivalentStructTypes← () . Needed for recursive types
procedure compareStructType(valueType, dbgType)

if numFields(valueType) = 0 then . Void type, fuzzy matches anything
return IncompleteMatch

end if
if dbgType ∈ EquivalentStructTypes then

prevMatch← EquivalentStructTypes(dbgType)
if prevMatch = valueType then

return Match
else

return NoMatch
end if

end if
if class(dbgType) 6= StructType ∨ numFields(dbgType) 6=

numFields(valueType) then
return NoMatch

end if
EquivalentStructTypes(dbgType)← valueType
matchResult ← Match
for i ∈ [0..numFields(dbgType)] do

f ieldMatch← compareDbgType(f ield(valueType, i), f ield(dbgType, i))
if f ieldMatch = NoMatch then

return NoMatch
end if
if f ieldMatch = IncompleteMatch then

matchResult ← IncompleteMatch
end if

end for
return matchResult

end procedure

83

C. Source name algorithms

Algorithm 9 Pointers can be either a pointer to a single object, or represent an array of
objects, pointing to the first one. Depending on the context, a pointer representing an array
can either just be of pointer type with the element type as its base type, or it can be a pointer
to an array type.

procedure comparePointerType(valueType, dbgType)
if class(dbgType) = PointerType then

if baseType(dbgType) = null then . Void pointer
return IncompleteMatch

end if
matchResult ← compareDbgType(baseType(valueType), baseType(dbgType))
if matchResult = NoMatch ∧ baseType(valueType) = IntegerType then

matchResult ← IncompleteMatch . Integer pointers can sometimes
represent void pointers

end if
else if class(dbgType) = ArrayType then

if class(baseType(valueType)) = ArrayType then
matchResult ← compareDbgType(baseType(valueType), dbgType)

else
matchResult ← compareDbgType(baseType(valueType), elementType(dbgType))

end if
else

matchResult ← NoMatch
end if
return matchResult

end procedure

Algorithm 10An array of longer length is a subtype of a shorter array with the same element
type, so we allow them to fuzzy match.

procedure compareArrayType(valueType, dbgType)
if class(dbgType) 6= ArrayType then

return NoMatch
end if
matchResult ← compareDbgType(elemType(valueType), elemType(dbgType))
if matchResult = Match ∧ numElements(valueType) 6= numElements(dbgType)

then
matchResult ← IncompleteMatch

end if
return matchResult

end procedure

84

C.2 Comparing value types and debug types

Algorithm 11 Enum types do not exist in the LLVM value type system, so they are represented
by normal integer values.

procedure compareIntegerType(valueType, dbgType)
if class(dbgType) = BasicType then

if size(dbgType) = size(valueType) then
matchResult ← Match

else
matchResult ← NoMatch

end if
else if class(dbgType) = EnumType then

if size(dbgType) = size(valueType) then
matchResult ← Match

else
matchResult ← IncompleteMatch . Enum value sizes can be inconsistent

end if
else

matchResult ← NoMatch
end if
return matchResult

end procedure

Algorithm 12 The basic type has a tag o�ering type information of finer granularity, indi-
cating e.g. whether the value is an address, a signed integer or a floating point value. We do
not currently check this tag.

procedure compareFloatType(valueType, dbgType)
if class(dbgType) = BasicType ∧ size(dbgType) = size(valueType) then

matchResult ← Match
else

matchResult ← NoMatch
end if
return matchResult

end procedure

85

C. Source name algorithms

Algorithm 13 Since IncompleteMatch does not o�er information as to which type is super-
type andwhich is subtype in cases where applicable, some functions which could be decidedly
type mismatched will still end up fuzzy matched, e.g. the case where both the return type
and parameter type(s) of either function type have a (strict) subtype relationship with the
other function type’s equivalent. This is not considered an important enough case to be in
scope of this thesis, and so we are satisfied with this approximation for now.

procedure compareFuncType(valueType, dbgType)
if class(dbgType) 6= SubroutineType ∨ numArgs(dbgType) 6=

numArgs(valueType) then
return NoMatch

end if
matchResult ← compareDbgType(returnType(valueType), returnType(dbgType))
for i ∈ [0..numArgs(dbgType)] do

argMatch← compareDbgType(arg(valueType, i), arg(dbgType, i))
if argMatch = NoMatch then

return NoMatch
end if
if argMatch = IncompleteMatch then

matchResult ← IncompleteMatch
end if

end for
return matchResult

end procedure

86

C.3 Calibrating debug type to match value type

C.3 Calibrating debug type to match value
type

Algorithm 14 Attempt to reach correct debug type for given value type if the debug type is
slightly mismatched.

procedure calibrateDbgType(valueType, dbgType)
Visited ← {} . Avoid endless loop in recursive types
(result, dbgType)← compareDbgType(valueType, dbgType)
while dbgType 6= null ∧ result = NoMatch do

if dbgType ∈ Visited then
return (NoMatch, null)

end if
if valueTypeTransitivelyPointsToDbgType(valueType, dbgType) then

while valueTypeTransitivelyPointsToDbgType(valueType, dbgType) do
dbgType← makePointerTypeFromBaseType(dbgType)

end while
return (compareDbgType(valueType, dbgType), dbgType)

end if
Visited ← Visited ∪ dbgType
switch class(dbgType) do

case StructType
dbgType← f ields(dbgType)[0]

case DerivedType . Includes pointer type
dbgType← baseType(dbgType)

case ArrayType
dbgType← elementType(dbgType)

case default
return (NoMatch, null)

(result, dbgType)← compareDbgType(valueType, dbgType)
end while
return (result, dbgType)

end procedure

87

C. Source name algorithms

88

Appendix D

Performance benchmark data

Table D.1: All performance benchmarks normalized by ref.

gzip normal gzip single oggenc single
ref 1.00 1.00 1.00
allremarks ref 1.39 2.05 3.96
pragma ref 1.12 1.17 1.07
pragma flags 1.49 2.17 4.00
pragma activated - 2.21 -
optrecord ref 1.03 1.07 1.05
gvn optrecord 1.03 1.07 1.05
lv optrecord 1.02 1.07 1.05
sn optrecord 1.05 1.11 1.15

89

D. Performance benchmark data

Table D.2: Mean time in seconds for all performance benchmarks.

gzip normal gzip single oggenc single
ref 2.55 2.3272 9.0855
allremarks ref 3.5371 4.7670 35.9443
pragma ref 2.8607 2.7144 9.748
pragma flags 3.8033 5.0501 36.3466
pragma activated - 5.1421 -
optrecord ref 2.6196 2.4941 9.5044
gvn optrecord 2.6277 2.4900 9.5588
lv optrecord 2.6053 2.4864 9.503
sn optrecord 2.5921 2.5915 10.4378

90

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2020-08-27

EXAMENSARBETE Improving Precision and Usefulness of Clang Optimization Remarks
STUDENTER Henrik Olsson, Oskar Damkjaer
HANDLEDARE Christoph Reichenbach (LTH)
EXAMINATOR Jonas Skeppstedt(LTH)

Precise Clang Optimization Remarks
Right In Your Editor

POPULÄRVETENSKAPLIG SAMMANFATTNING Henrik Olsson, Oskar Damkjaer

With some success we recover information lost in the Clang compiler’s optimization
passes to improve messages. We experiment with ways of interacting with the compiler
by adding support for inline commands in the source code and by allowing interaction
with the compilers optimization messages into the VSCode editor.

To improve program performance compilers au-
tomatically optimize the code they compile, mean-
ing that for some programs they are able to keep
the exact same behavior but make the program
run faster. Clang is a compiler for the C-family
of languages. A programmer who wants to know
what optimizations were and were not applied to
a program can enable so called optimization re-
marks using feature flags when invoking Clang.
However these messages can often be abstract and
overwhelming in numbers.
In our thesis we attempt to improve the expe-

rience of working with Clang’s optimization re-
marks. The issue of the messages being abstract is
partly due to the complexity involved but also be-
cause of the architecture of Clang where the names
of functions and variables the programmer used
are no longer present at the time of optimization.
When debug data is present in the optimization
pass we use this information to attempt to recreate
the original names and include them in remarks
where relevant. With this compiler improvement
programmers would hopefully better understand
what went wrong when the compiler fails to op-
timize a given program as the compiler is more

precise.
We’ve tried to address the issue of optimiza-

tion remarks being overwhelming in numbers and
make them easier to discover in two ways. The
first being adding support for writing pragmas in
the source code to specify what function or loop is
of interest for optimization remarks. Our exper-
iments estimate that compilation is slowed down
by 7-17% even when not emitting any remarks,
purely from looking for pragmas in the meta-
data. Although functional, these performance is-
sues render the feature unfeasible.
We also built a plugin to the Visual Studio

Code editor. This tool annotates functions and
loops and allows the programmer to pick an op-
timization pass right in their editor. The code is
then annotated with relevant remarks. In our case
study where students were tasked with optimizing
a small C program, our tool seemed to speed up
and improve the process of working with optimiza-
tion remarks, given that the student was already
comfortable with the C language. The VSCode
extension could be released to the public and then
easily be installed for developers who want to learn
more on how Clang optimizations work.

	Introduction
	Research questions

	Background
	A high level view on compilers
	LLVM IR
	Instructions
	Metadata

	Optimization remarks
	Remarks in Clang

	Loop vectorization in LLVM
	Global Value Numbering

	Source names from LLVM IR
	Information unavailable during optimization
	Reconstructing information from debug data
	Implementation
	Calibrating DIType metadata

	Pragmas for remark output
	Emission of optimization remarks in Clang
	Pragmas as an alternative to compilation flags
	Implementation
	Limitations

	Editor integration
	Integrating remarks into an editor
	Implementation
	Visual Studio Code
	Finding function declarations and loops in C++ code

	Improvement of individual remarks
	Lack of detail in current optimization remarks
	Improving GVN and vectorization remarks
	GVN
	Loop-Vectorize

	Evaluation
	Usability of the editor integration
	Method
	Results

	Performance impact
	Method
	Results

	Accuracy of name reconstruction
	Method
	Results

	Related work
	The usefulness of compiler error messages
	Compiler guided Optimization refactoring

	Conclusions and further work
	References
	Appendix Exit survey questions
	Appendix User evaluation task
	Appendix Source name algorithms
	Naming IR values
	Comparing value types and debug types
	Calibrating debug type to match value type

	Appendix Performance benchmark data
	Tom sida

