
MASTER’S THESIS 2023

Designing a Domain Specific
Language for Robotics
Emma Grampp, Stefan Jonsson

ISSN 1650-2884
LU-CS-EX: 2022-55

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2022-55

Designing a Domain Specific Language for
Robotics

Emma Grampp, Stefan Jonsson

Designing a Domain Specific Language for
Robotics

Emma Grampp
emma@grampp.se

Stefan Jonsson
nat14sjo.student.lth.se

March 2, 2023

Master’s thesis work carried out at

the Department of Computer Science, Lund University.

Supervisors: Elin Anna Topp, Elin_Anna.Topp(at)cs.lth.se
Christoph Reichenbach, christoph.reichenbach@cs.lth.se

Examiner: Jesper Öqvist

mailto:emma@grampp.se
mailto:nat14sjo.student.lth.se
mailto:Elin_Anna.Topp@cs.lth.se
mailto:christoph.reichenbach@cs.lth.se

Abstract

As industrial robots get cheaper it becomes more important that they are also
easy to program. For this purpose we have created a domain specific language
that is used to describe movements and interactions of robots with multiple
moveable parts. The language is inspired by an earlier language by M. Stenmark,
but adds abstraction over components and procedures. In order to evaluate the
language we have tried to translate a collection of programs from Stenmarks
language to our language for comparison. We have also had a roboticist solve a
collection of problems with the language and fill in a form about the experience.
The language has some limitations (the main one being the lack of graphical user
interface) but we hope that it can serve as a basis for further development and
research.

Keywords: robot, robot arm, robotics, DSL, JastAdd, ROS

2

Acknowledgements

We would like to thank our supervisors, Elin and Christoph, for their boundless patience,
and Alexander Dürr for his invaluable technical assistance to get us started.

3

4

Contents

1 Introduction 9
1.1 Requirements . 9
1.2 Stakeholders . 10
1.3 Research Questions . 10

2 Background 11
2.1 Existing Robot Languages . 11

2.1.1 Rapid . 11
2.1.2 Stenmark’s Language . 11
2.1.3 Others . 12

2.2 Poses and Movements . 12
2.2.1 Extra dimension in joint space and non-determinism 13
2.2.2 Singularities and Joint Ranges . 13

2.3 Tools . 14
2.3.1 ROS and Moveit . 14
2.3.2 JastAdd, Beaver and JFlex . 15

3 Language Specification 17
3.1 Syntax . 17
3.2 Static Semantics . 18

3.2.1 Placement of Statements . 18
3.2.2 Variable Declarations and Scope 18
3.2.3 Function Declarations . 19
3.2.4 Components and Inheritance . 19
3.2.5 Types . 20
3.2.6 Predefined Functions . 20

3.3 Dynamic Semantics . 21
3.3.1 Threading and Synchronization . 21
3.3.2 Transformations . 21

5

CONTENTS

4 Design Process 23
4.1 Initial Design . 23
4.2 First Design Iteration . 25

4.2.1 Changes made to the design during implementation 25
4.2.2 The first working compiler . 25
4.2.3 Simplification of the language . 26
4.2.4 Suggested additions to the language 27
4.2.5 Better synchronization . 27
4.2.6 Abstraction . 28
4.2.7 Using SRDF . 28
4.2.8 Integration with ROS and finalizing iteration 1 29
4.2.9 Workshop with roboticists . 30

4.3 Iteration 2 . 30
4.3.1 Live Programming Support . 30

5 Design Decisions 31
5.1 Syntax . 32
5.2 Included basic features . 32

5.2.1 Input and Program Flow . 32
5.2.2 Types . 33
5.2.3 Included Predefined Functions and Operations 34

5.3 Threading model and Synchronization . 36
5.3.1 Alternative sync Statements . 36

5.4 Abstraction over Components . 38
5.4.1 Relationships between components 41

5.5 Transformations . 44
5.5.1 Adjusting Origin, Axes and Planes for Transformations 45
5.5.2 Representing Translations . 46
5.5.3 Representing Rotations . 46
5.5.4 Transform-block using Variables or Expressions 47

5.6 Live programming and user interface . 48

6 Evaluation 49
6.1 Unsolved Problems . 49
6.2 Quantitative . 49

6.2.1 Methodology . 49
6.3 Qualitative . 51

6.3.1 Methodology . 51
6.3.2 Results . 51

7 Conclusions 55

References 57

6

CONTENTS

Appendix A Simplified versions of programs written in Stenmark’s language 61
A.1 bagge . 61
A.2 exp . 62
A.3 flavius . 62
A.4 give . 63
A.5 maxSkill . 63
A.6 paket . 64
A.7 paket1 . 64
A.8 presen . 65
A.9 sidefold1 . 66
A.10 sidefold2 . 67
A.11 sidefold3 . 68
A.12 WorkSpaceMajLego . 69
A.13 WorkspaceMajUseMe . 69

Appendix B Syntax 71

Appendix C Feature Suggestions at Robotics Workshop after Iteration 1 73
C.0.1 Suggested Features . 73
C.0.2 Spontaneous Questions . 76

Appendix D Evaluation Survey 79
D.1 Questions . 79

7

CONTENTS

8

Chapter 1

Introduction

Industrial robots are daily finding new uses across many sectors of industry. As they get
cheaper it becomes more important that they are easy to program, as they are going to be
used by smaller companies that might not be able to hire expert programmers. We present a
Domain Specific Language (DSL) that will make robot programming more intuitive.

Our language is inspired by Dr Stenmark’s language, as described in [9]. The main dif-
ference between our language and Stenmark’s is that the latter is graphical whereas ours is
textual (which is the main purpose behind our language). Another di�erence is that in her
language programs are lists of commands while our language provides some control structures
and abstractions to avoid code duplication.

We have tried to make our language as minimal as possible while making it easy to extend
and improve upon. Our wish is that it will serve as a base for further development.

We have used as examples two robots when creating our design: Franka Emika’s Panda
and ABB’s YuMi. The Panda robot is a single arm robot. The arm itself has seven joints and
at the end of the arm has a two-fingered gripper. The YuMi robot has two seven joint arms
with grippers. The fact that it has two arms makes it more interesting to program since it
inevitably involves simultaneous movements and interaction between robot parts.

1.1 Requirements
Our task is to create a Domain Specific Language (DSL) for programming industrial robots.
The language should provide the basic functionality found in Dr Stenmark’s framework. Fur-
thermore it should provide some abstraction to avoid code duplication. It should run on the
Panda and/or YuMi robots and preferably it should be easy to extend it to work for any robot.
It should also support live programming. As dual-arm robots (such as the YuMi) must often
use their hands together, a semantic for synchronization and interaction between di�erent
robot parts is an important feature to have. Such semantics might also be used in the future
to facilitate interactions between multiple robots controlled by the same program.

9

1. Introduction

1.2 Stakeholders
This work was done for the Robotics and Semantic Systems (RSS) and Software Development
and Environments (SDE) research groups of the computer science department at LTH. The
former is interested in a language as infrastructure for future tools. The latter is interested
in the semantics of robot control as they pertain to language development.

1.3 Research Questions
1. Does our language provide the functionality that Stenmark’s language provides?

2. Which types of abstraction are needed to facilitate easy industrial robot programming
while eliminating the need for code duplication? Does our language provide the nec-
essary abstraction?

3. Can our language be used as a platform on which to construct more tools, such as
graphical and interactive programming systems?

10

Chapter 2

Background

In this chapter we describe some of the already existing robot programming languages with
their features and limitations. We also give a brief description of the tools and methods used
to build our language.

2.1 Existing Robot Languages
Many robot programming languages have been created before ours. Here we are going to
focus on RAPID and Dr Stenmark’s programming language.

2.1.1 Rapid
Rapid is a language created by ABB in order to program their industrial robots. The language
is imperative and allows a programmer to define their own procedures which can be called
later in the program. There are also if statements, for loops and while loops, used to control
program flow. Positions and orientation are described by vectors.

The main limitation of Rapid is that it is proprietary to ABB robots and cannot readily
be adapted to other manufacturers’ robots.

2.1.2 Stenmark’s Language
Dr. Stenmark’s language is visual rather than textual, and is designed for the YuMi robot only.
Programming is done through a drag-and-drop interface to two synchronized threads. When
the program is run, the arms go through their lists of actions and perform them sequentially.
Synchronization between arms is done through sync actions. When an arm reaches a sync
action, it waits until the other arm reaches the corresponding sync action before it contin-
ues. Synchronization can also be done with special sync-moves. In that case one arm moves,

11

2. Background

while the other arm maintains a fixed position relative to the moving arm. The language
compiles to RAPID. This is a limitation as we are still relying on proprietary software that
only works on ABB robots. Another limitation is that it does not provide enough abstrac-
tion to avoid code duplication, which would make complex programs too long to be easily
understood. Our language provides a subset of the instructions provided by Stenmark’s lan-
guage but adds abstraction in the form of loops, procedures, abstract components and spatial
transformations.

2.1.3 Others
There are of course other such languages in existance. Simmons’ and Apfelbaum’s TDL[8] is
perhaps the most similar, being an extension of C++ and thus, like ours, a straightforward
imperative language. Their language has a greater set of synchronization primitives. It pre-
dates ROS, which would make it di�cult to integrate with contemporary research robots.
LightRocks[10] by Thomas et al. is another take on the same idea. It is built on top of the
MontiCore language workbench. The language is derived from a variant of UML, and is
accordingly wholly graphical. XABSL[4] by Loetzsh, Risler & Jüngel is yet another robot
programming language, conceptually based on layered state machines. It also predates ROS.
Many more are catalogued by Nordmann’s DSL survey. [5]

2.2 Poses and Movements
The pose of a robot can be described with a Joint Vector. A Joint Vector is a list of all the joint
angles, i.e. the current state of the robot’s actuators. In many cases it is much more desirable
to describe the actual position and orientation of the hand of the robot. The position can

J1

J2

Figure 2.1: Joint-angle representation of arm position

be described with three numbers (x,y,z) and the orientation with roll, pitch and yaw. These
values are usually concatenated together to form 6-dimensional vectors.

When a robot moves from one point to another it can be done in two ways:

• Specify the Joint vectors associated with the start and end pose and take the shortest
path between those points in the joint space. (Joint Move)

12

2.2 Poses and Movements

x

y

Figure 2.2: Cartesian-space representation of arm position

• Specify the Cartesian Vectors associated the start and end point and take the shortest
time path between them in euclidean space, which may not be a straight line. (Carte-
sian Move)

2.2.1 Extra dimension in joint space and non-determinism
Both the YuMi and the Panda arms have seven joints. As mentioned in the previous section,
we only need 6 numbers to specify the position and orientation of the hand. It is often
desirable to use these six numbers (the Cartesian Vector) rather than the Joint Vector because

• Cartesian Vectors can be easier to understand and reason about

• It might be possible to run the same program on two di�erent robots, since even
though the robots have di�erent joints and geometry, they might have the capability
to move to the same cartesian positions.

This means that these robots (the ones with seven joints) have one extra degree of freedom
that the programmer does not always care about. The way we see this in practice is that when
specify a CVector, the hand can be fixed at that position while the elbow is free to move along
a one dimensional curve. This means that a program only involving CVectors does not fully
specify the poses and movements of the robot (the elbow ends up in arbitrary places). In
practice, the position of the elbow at every step in the program will be determined by the
initial position, meaning that the program might behave di�erently from time to time (since
the initial pose will be di�erent).

A consequence of this is that a program that works during its first run can fail during a
subsequent run if it’s not reset between because the elbow bumps into something and stops
the program. This makes it hard to guarantee anything and instead we have to accept that
programs sometimes fail even if they seemed to work before.

2.2.2 Singularities and Joint Ranges
When velocities are specified in terms of cartesian coordinates, they somehow have to be
turned angular velocities for the joints in order to be put into practice. For each pose, there
is a matrix that describes the relationship between the joint angles and the cartesian pose.
For some particular poses, this matrix can become singular and then it becomes impossible

13

2. Background

x

y

x

y

Figure 2.3: Overdimensioned robot; di�erent joint configurations
but same end position

to compute the joint angle velocities that are necessary for a given cartesian velocity. Close
to such singularities the relationship becomes very unstable and the velocity controllers will
therefore not function very well. Because of this, robots usually halt when they come close to
singularities.

Each joint has a specific range within which it can move (like for example ±90◦). It is
usually a good idea to keep the robot pose far away from these limits and from singularities
as these are things that can limit a robot’s potential for future movement.

?

?

Figure 2.4: Arm at singularity: joints have lined up such that the way
forward cannot easily be computed

2.3 Tools
In this section we describe the tools that we have used in the project. They consist of two
major parts: the framework that we use to interface with the robot and the tool chain for
building the compiler itself. Our language compiles to a so called ROS node, written in c++.

2.3.1 ROS and Moveit
ROS is an open source framework for writing robot control software in either C++ or Python.
[6] Though it has not yet found widespread acceptance in industry, it is extremely popular

14

2.3 Tools

among robotics researchers, and is attractive to us because it provides abstraction over robot
hardware.
MoveIt is a framework within ROS specifically intended to facilitate motion planning with
robot arms. [2] This allows us to bypass entirely the problem of motion planning and to focus
on language development.
The MoveIt project also defines the “Semantic Robot Description Format” (SRDF), which
we use in our implementation to extract information about the robot. [7]

2.3.2 JastAdd, Beaver and JFlex
A compiler itself consists of the following components:

• Scanner - responsible for dividing the program text into "words"/tokens.

• Parser - responsible for checking that the program is syntactically correct and for gen-
erating the abstract syntax tree.

• Analysis - responsible for generating errors for things like use of undeclared function-
s/variables, double declaration of variables, type errors etc. The analysis step is also
responsible for generating some important information that can be used in the code
generation step, such as associating every use of a variable/function to the appropriate
declaration.

• Code generation - converts the abstract syntax tree to code in the target language, in our
case c++ code.

JastAdd and the Abstract Syntax
JastAdd is a tool that was developed at LTH to aid the process of creating compilers and
other language tools.[3] It mainly helps with the analysis step but is also used for the code
generation and to define the abstract syntax of the language. It is based on aspect oriented
programming, which is an extension of object oriented programming.

The core component of a JastAdd project is the ast-file which declares the abstract syntax
of the language. Each line in the ast-file declares a class that is used to represent nodes in the
abstract syntax tree. The content of the ast-file is compiled to a java package with one class
for each line in the ast-file. In the ast-file we declare a class called Program. The goal of the
parser is to produce an instance of this class. The abstract syntax of a language is a basic
description of how programs are made up of smaller components. The way we describe this
is through an object oriented class hierarchy.

15

2. Background

16

Chapter 3

Language Specification

In this chapter we give a description of the language that we designed. The language is pro-
cedural and is used to generate a sequence of robot movements. The main features of the
language are:

• Components - refers to a part of a robot that can independently move at the same time
(such as di�erent arms).

• Functions - encapsulate reusable snippets of code.

• Transformations - makes it possible to execute snippets of code in a spatially trans-
formed manner (mirrored, rotated, translated or scaled).

3.1 Syntax

The full syntax is found in appendix B. A number of examples are found in appendix A
The syntax is basically procedural, with newline-separated statements and block delineated
by indentation level, i.e. the o�-side rule. Parameters and arguments for functions are comma
separated, as are numbers in vector literals Components in sync statements are space sepa-
rated.

17

3. Language Specification

CVector x = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0]
JVector y = <1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0>

left_arm.moveTo(x)
left_arm.moveTo(y)

left_arm is Arm

float Arm.f()
Arm.moveTo(x)
Arm.moveTo(y)
return 1.0

left_arm.f()

Code example

3.2 Static Semantics
3.2.1 Placement of Statements
A statement is considered a top level statement if it is not inside a block, such as in function
declarations, repeat statements and transformation statements. Function declarations and
is statements (described below) are only allowed as top level statements. Return statements
are only allowed at the end of function declarations. Functions that return void are not
allowed to have a return statement. All other statements can occur in any position (both top
level and inside blocks) and in any order.

3.2.2 Variable Declarations and Scope
Variables can be declared in the following places:

• As top level statements

• As parameters to functions

• As a statement inside any block

Two variables with the same name cannot be declared in the same scope. Every block is a
scope. The top level statements can also be viewed as a block in this context. A parameter
list counts as its own scope. In other words, it is permissible to declare a local variable in a
function block even if it has the same name as a parameter of the function. If a block occurs
inside another block, they still have di�erent scopes, although we say that the scope of the
inner block is a subscope of outer block. The subscope relation is transitive. In other words,
if A is a subscope of B and B is a subscope of C, then A is a subscope of C.

18

3.2 Static Semantics

Every time a variable is used, it refers to a variable declaration. The variable declaration
has come before the variable use in the code and the variable use has to occur in the same
scope or in a subscope of the scope where the variable is declared. If no such declaration
exists, the variable use results in an error.

3.2.3 Function Declarations
The order of function declarations does not matter. All functions are global and can be used
anywhere in the program. The signature of a function is defined by:

• An optional component declaration

• An identifier (the name of the function)

• A parameter list

Two functions with identical signatures cannot coexist. Every call expression has to refer to a
function declaration with a signature which matches that of the call expression. The function
declaration can be provided by the programmer or it can be one of the predefined functions
of the language. A call signature matches a declaration signature if and only if

• Either both signatures have no component or the call signature has a component which
inherits from the declaration signature.

• The names are identical

• The types of the provided arguments match the corresponding parameter types.

Component inheritance is discussed further in section 3.2.4. It can happen that multiple
declarations match the same call. This is also discussed in section 3.2.4.

3.2.4 Components and Inheritance
Every program in the language is written for a specific robot. When the program is compiled
the SRDF file for the robot has to be provided. The components that are declared in the
SRDF file are available for use anywhere in the program. These components are called con-
crete components. There are also abstract components. These are components which do not
correspond to one concrete component, but rather a set of concrete components with some
common set of capabilities.

Concrete components can only be declared in the SRDF file. Abstract components can
only be declared by the programmer. Abstract components are not explicitly declared, but
are instead declared implicitly the first time they are used in a function declaration or an is
statement.

Inheritance between components is declared using is-statements. A concrete component
can inherit from an abstract component. Abstract components can also inherit from other
abstract components. Inheritance is transitive. A component can occur in any number of
is-statements, both on the left hand side and on the right hand side.

19

3. Language Specification

If a function is declared on a component, it is automatically declared on all components
which inherit from that component. If a function is declared on all inheritors of a component,
it is automatically declared for that component.

It is possible that a function call matches multiple declarations. There are two rules that
are used to select between implementations in the cases where a function is implemented in
multiple places:

1. The order of the is-declarations is used to determine which implementation is selected.
For example if ’A is B’ comes before ’A is C’ in the program, and a function f is imple-
mented for both B and C, the implementation for B is selected when we call A.f.

2. Implementation that is closer in the inheritance hierarchy should be used rather than
an implementation further away. For example, if we have ’A is B’ and ’B is C’ and a
function f is implemented for both B and C, then the implementation for B, is selected
when we call A.f. Note that when a function actually runs, it always runs on a concrete
component, so ’closer’ always means further down in the hierarchy.

Rule 1 has higher priority than rule 2.

3.2.5 Types
The language has the following built in types:

• void

• single-precision float

• JVector (Joint angle vector)

• CVector (Cartesian position vector)

• Transformation (Elaborated upon below)

We allow arithmetic operations on numbers and both types of vectors, as well as vector
addition and scaling.

It is not possible for the programmer to declare their own types.
Every expression has a type. Every context where an expression can occur has a set of

expected types. If the type of an expression doesn’t match any of the expected type, the
programmer gets a type error.

3.2.6 Predefined Functions
The language provides the following predefined functions:

• float length(CVector x)

• For every component C in the SRDF file:
void C.moveTo(JVector pose)

20

3.3 Dynamic Semantics

• For every component C in the SRDF file which is declared as a chain:
void C.moveTo(CVector position)

• For every state s in the SRDF file which is declared as part of component C:
void C.s()

3.3 Dynamic Semantics

3.3.1 Threading and Synchronization
All programs run single threaded. The program executes the statements one by one. When
a statement corresponds to a movement, the program does not wait for the movement to
complete; it places the movement in a queue and immediately moves on to the next statement.
One component can only perform one movement at a time. If a component is already moving
when the program reaches a statement that tells the component to move, the new move
command is placed in a queue corresponding to that component. Movements for di�erent
components are performed simultaneously.

If the programmer wants components to wait for each other before starting the next
movements, the sync statement is used.

left_arm.moveTo(A)
right_arm.moveTo(B)
sync [left_arm right_arm]
left_arm.moveTo(C)
right_arm.moveTo(D)

All movements that come before a sync statement in the program flow have to be com-
pleted before any movement after the sync statement can be started. In the example above,
left_arm and right_arm will start moving to A and B respectively simultaneously. Then, the
arm that finishes first will wait for the other arm. Then both arms will start moving to C and
D respectively.

3.3.2 Transformations
Transformations are used to perform modified versions of movements (translated, scaled,
mirrored or rotated). A special type called Transformation is used to represent the trans-
formations. Values of this type are created using transformation literals. Transformations
can also be combined using composition. The following example showcases this, combining
mirroring of the X with rotation around the Y axis and downscaling by ¾.

Transformation F = MirrorX
Transformation G = RotateY 45
Transformation H = F << G
Transformation X = H << F << Scale 0.75

21

3. Language Specification

There are two syntactic forms to create transformed blocks. One just uses a transforma-
tion literal and one uses the keyword ’transform’ and then an expression of type Transforma-
tion. The following example showcases both forms.

left_arm.moveTo(A)
left_arm.moveTo(B)
MirrorX

left_arm.moveTo(A)
left_arm.moveTo(B)

Transformation F = MirrorX
transform (F << RotateY 45)

left_arm.moveTo(A)
left_arm.moveTo(B)

When a moveTo(CVector) statement occurs inside a transformed block, the transforma-
tion is applied to the CVector before the moveTo is executed. This does not happen with
moveTo(JVector).

When transformed blocks are nested, the transformations are composed. The innermost
transformation is always applied first. If a function call happens inside a transformed block,
all the (Cartesian) movements in the function are transformed, and any transformed blocks
within the function are pre-composed to the outer transformation.

Here is the complete list of transformation constructors.

/* Scale everything by a factor. */
Scale([float])

/* Translate everything by a vector.
You should use a vector where the euler angles are set to zero. */
Translate([CVector])

/* Rotates everything a certain angle around the X-axis.
This applies to both the position and orientation of robot components */
RotateX([float])

RotateY([float])

RotateZ([float])

/* Mirrors everything in the plane orthogonal to the X-axis. */
MirrorX

MirrorY

MirrorZ

22

Chapter 4

Design Process

This chapter describes the process of creating the language. The main steps of the process
were:

• Gathering information and talking to roboticists to get a picture of their needs and
the limitations of Stenmark’s language.

• A brainstorming session to get a simple initial design. (section 4.1)

• Implementation and refinement of this design.

• Compiling a list of possible additions and improvements to the language.

• Robotics workshop. (section 4.2.9)

• Implementation and refinement of selected additions and improvements. (section 4.3)

• Evaulation

4.1 Initial Design
We made an initial design of the language through simple brainstorming.

We settled on the following:
The language should be procedural. The choice to make it procedural seems natural given

the domain. We are trying to make robots solve tasks through sequences of actions, where
actions in turn could be described as subtasks/subroutines/functions. The choice of c-like
syntax seems natural since that is what most people are used to and it will therefore help
people learn our language quickly. We are not completely married to the c-syntax. We try to
choose syntax that is simple, pretty and easy to understand. Instead of curly brackets, we use
python style indentation to distinguish between blocks.

The initial language had the following types of statements:

23

4. Design Process

• if/else: same syntax as C and other Pascal-like languages.

• repeat: repeat(x) indentation block end_indentation

• while: while (condition) indentation block end_indentation

• function declaration: [type] function [name](parameters) indentation block end _inden-
tation

• variable declaration: var type x

• reference declaration: ref type x

• assignment: x = expression

• robot component execute: [name].[action]

• sync: [component].sync(label)

The following types were in the initial design of the language:

• boolean

• int

• float

• reference system/cartesian vector

• joint vector

• robot component

It also has arithmetic expressions (+, -, *, /) on numbers, logical expressions (&&, ||, !) on
booleans, variables, literals (numeric and boolean) and function calls.

In the initial design, we viewed robot component execution as a special type of statement.
The language had two types of variables: var and ref. Vars work the same as the variables

in most other languages. Refs "remember" the expression that they are assigned to, and are
updated automatically when a variable that they depend on changes. The idea was that this
could be used to set the position of one arm to be a function of the position of the other arm.

The programs in the language are single-threaded. However, multiple components can
move at once. When the program reaches a robot action, it does not wait for the action
to be completed before continuing the program. Because of this, multiple movements can
occur at the same time. Every component can, however, only do one movement at a time.
If the program reaches a robot action on a component that is already busy, the action gets
placed in a queue. In order to do synchronization between components, there are special
sync statements. The syntax is [component].sync([label]). The idea was that when
one component reaches a sync action, it has to wait until the other components reach a sync
action with the same label, before continuing.

In the initial design, there were lots of built in functions. The built in functions were
basically the ones that can be found in Dr Stenmark’s framework (moveTo, contactMove,
viaPoint, etc).

24

4.2 First Design Iteration

4.2 First Design Iteration
4.2.1 Changes made to the design during implemen-

tation
We decided to try to implement the compiler as quickly as possible in order to have something
concrete to work with. A few parts of the design were changed during implementation:

• Refs were removed. The reason for this is that our language does not allow to set the
position of an arm to a variable in a way that makes the arm move automatically as
the variable changes. Rather, arms are moved only with moveTo commands. So the
example where the position of one arm can be set to a function of the position of
another arm would not work, even if refs where included. Refs could be used for other
things, but it was not clear why refs would be particularly useful for programming
robots. Implementing refs would not be very di�cult, but it would take time and
make the language unnecessarily complicated.

• The ’function’ keyword was removed. The reason for this was that function declara-
tions with many parameters often could not fit within the margins. One way to fix it
might be to allow newlines in parameter lists so that the programmer can split up long
lines, but we figured it would be easier to just shorten the syntax a bit.

• component execute became ordinary functions. We made it possible to define func-
tions on components with the syntax:
float component.f(float arg) [code block]
These functions are called with the following syntax:
component.f(1.0)

This makes it possible for the programmer to write their own subroutines for the dif-
ferent component. Built in component actions, such as moveTo, can now be ordinary
built in functions.

• Component is not a type anymore. They are treated separately.

4.2.2 The first working compiler
The first working version of the compiler had the following features:

• if/else statements

• while statements

• repeat statements

• variable declarations

• variable assignment

• function declaration

25

4. Design Process

• function calls

• integer arithmetic

• integers and booleans

• functions on components

The language did not have any vectors, sync instructions or anything that had anything
to do with robots. It compiled to c++, but it did not use ROS.

4.2.3 Simplification of the language
In order to avoid unnecessary work, we decided to remove all features that we could not find
a concrete use for. We had already decided to remove refs.

The biggest question was whether we should keep if and while statements. It is not en-
tirely clear how the robots can get input from the environment. Many robots have cameras.
However, extracting useful information from cameras will involve advanced data processing
that our language will not support. Some robots have other sensors or direct IO-interfaces.
It is also possible to use contact moves to get information from the environment. One pos-
sibility would be to include contact moves in the language. That would justify the existence
of if/while statements, and if roboticists would like to use the cameras in the future, im-
age processing libraries from ROS can be integrated, and then add a predefined function in
our language to get the result. However, as long as the robots are running blind, if/while
statements are not justified.

We wrote an example program where contact moves are used together with if and while
statements to perform tasks. We confirmed with our roboticists that they would like to write
programs like that.

If if/while statements are removed, booleans loose their purpose and should also be re-
moved. Integers have one important purpose and that is in repeat statements. They could of
course in theory also be used to formulate conditions for if/while but this would probably
not be done very often in practice when doing robot programming. So an important question
becomes: do we keep the int type, just for the sake of repeat statements or do we simplify the
language? We ended up with these three alternatives:

• Remove int, because we don’t want to introduce features that are barely used.

• Keep int, because repeat loops with floats are ugly and having ints there doesn’t hurt.

• remove int as a type, so variables can not be of type int, functions cannot depend on
int parameter etc. But require an int literal (rather than an expression) as the argument
of a repeat loop.

We ended up going for the third option. One possible drawback is that now a variable
cannot be used as an argument, which means that this aspect of the task cannot be parameter-
ized. For example, the programmer might want to write a program that mixes two chemicals
together and then stirs. A natural way to stir, would be to have two moveTo commands that
move back and forward between two positions in a repeat loop. It seems reasonable that the

26

4.2 First Design Iteration

number of times that you go back and forth should be a parameter of the function. It then
becomes easier to reuse the function in multiple context where di�erent amounts of stirring
might be required. We asked the roboticists weather such a function would ever be written
in in practice, which they believed it would.

4.2.4 Suggested additions to the language
At this stage we also discussed some features that we might want to add:

• Infinite Repeat loop: if repeat is not given an integer argument the loop continues indef-
initely.

• comments [not added]

• getter functions for robot state: CVector currentPosition = left.getCartesianPosition()
[not added]

• setter functions for robot settings : left.setMaxForce(10), left.setMaxSpeed(2) etc. [not
added]

• Vector arithmetic for Cartesian vectors

• global function for computing length of vector

• global variables for directions: up,down,forward, etc [not added]

• void return type: at the moment a lot of functions in our example have int as their return
type. We are thinking about removing integers so maybe we need void return types.
This could be written as ’void’ or perhaps by simply not writing anything at all. [we
are using void]

The getter and setter functions are important if we are going to use contact moves to get
input.

4.2.5 Better synchronization
The initial design for synchronization works well if there are only two components. When
there are more components, it can’t express things like "component A and B should wait
for each other but C can continue". Also, compared to how little expressive power it had,
it would probably still be somewhat complex to use it. You would have to remember what
labels you have used and make sure that both components reach it somewhere.

We came up with three possible solutions:

• A sync instruction with no arguments that require all components to wait for each
other. The semantics are simple: all instructions before sync must be completed before
any instructions after sync can be started, regardless of component.

• A sync instruction that takes an arbitrary number of components as arguments. It
works the same as the first solution except the only components that have to wait for
each others are the one you specify.

27

4. Design Process

• An asymmetric sync instruction:
a sync b
this means that a can not continue until b reaches the sync. However if b arrives first,
it can continue without waiting for a.

We ended up going for solution 2.

4.2.6 Abstraction
Being able to define your own functions on components is not very useful unless there is some
abstraction over components.

We came up with three ways of doing abstraction:

• No abstraction: Simpler language. Sometimes leads to code duplication.

• component blocks

• component parameters: Let functions take components as parameters.

• Object Oriented style components:

It is possible to combine 2-4 with each other. We ended up going with 4. We might add
3 in future.

The solution we picked involves abstract component classes, allowing the user to define
functions on classes as well as on concrete components. Classes are not explicitly declared
but are created when they are used. The user can declare that a class A is a subclass of B using
an Is statement. Syntax:
A is B
the same syntax is used to declare that a concrete component is a member of a class.

Functions defined on a class automatically are available for all the concrete components
and all subclasses of the class. If a function is available for all concrete components of a class,
it becomes available on the class. This is possible since there is always a finite number of
components and they are known at compile time.

Initially we allowed functions within functions and functions within loops. Since this
would make the semantics of abstract functions unnecessarily complicated and since it would
probably never be used, we now only allow function declarations in the outermost block of
the program. The same thing is true of is statements.

4.2.7 Using SRDF
Every robot that can be used in MoveIt has a SRDF file. The SRDF file contains semantic in-
formation about the robot such as which components the robot is thought to consist of, which
joints each component has, which components are made up of other components and which
components can be described as kinematic chains. It also contains a number of predefined
states, that is pre-set joint angles, such as open and close for the grippers.

We wrote a parser that reads the SRDF file and provides this information to the compiler.
This is how the compiler can know the set of concrete components that can be used.

28

4.2 First Design Iteration

We also wanted to use the states and create one function for each state. For example the
grippers would get one function called open() and one called close(), and they would move
the grippers to the open or closed state respectively.

We have also been thinking about making the JVector type more specific. There are three
options here:

• Leave it as it is. There is only one JVector type and using the wrong "type" of JVector
in the wrong place will not yield an error.

• One JVector type for every size. When you call comp.moveTo(x), the compiler checks
that x has the right size.

• One JVector type for every component. When you call comp.moveTo(x) the compiler
checks that x was intended for comp. This might be a useful thing to do since we don’t
know if di�erent components even use the same units and it would then be stupid to
take a joint vector from one component and use it on another.

So far we have decided on 1.
How we should use the information about the subcomponents is still up for discussion.

At the moment one queue is created for each component, including supercomponents. This
is a problem since it makes it possible to execute an instruction on arm_and_gripper and arm
and gripper at the same time. This should obviously not be allowed, as the gripper would be
tasked with two simultaneous actions. We could remove the super components entirely or
we could make sure that such instructions block both queues.

We had some ideas about being able to access subcomponents as fields of the supercom-
ponents. It ended up not being practical. If we at some later stage make components into
legitimate types (they can be return types of functions) then this can be implemented by the
programmer in a way that would eliminate this potential conflict.

We also want to use the information from SRDF to know which components should have
moveTo(CVector) defined on them. The idea is that components that are chains should have
this function while components that are not chains should only have moveTo(JVector). This
might be a problem when a component is a chain but has less than 6 joints (cannot span
space). We discussed this with the robot group and confirmed treating it as a chain is still
desirable behavior.

4.2.8 Integration with ROS and finalizing iteration 1
One thing that we learned is that getting and setting controller settings such as max force
(needed for contact moves) cannot be done through moveit. Instead we have to do it at a
lower level. In order to be able to have something working to present as quickly as possi-
ble, we decided not to include those for the moment being. We also decided not to include
syncMoves.

This means that the language becomes very simple. The only interaction we have with
robots is through moveTo commands. This means that we will be running blind and we
should therefore drop if/while statements along with booleans. We can always add it back if
it is desired (discuss with roboticists).

29

4. Design Process

4.2.9 Workshop with roboticists
In order to get input into the design, we had a workshop with roboticists from the RSS
research group, where we showed them the language and asked them questions about the
usefulness of each feature of our language. Among the features that were implemented so far,
there was nothing that the roboticists didn’t expect to use. We also went through a list of
features suggestions to get a perception of what the interests and priorities were among the
roboticists. The complete list of suggestions can be found in appendix C. The feature that
seemed most important was some sort of support for live-programming.

4.3 Iteration 2
Based on the feedback from the roboticists we started working on a second iteration of the
language.

Features/tasks for consideration:

• Fix any bugs from previous iterations

• Create a Emacs mode that allows us to get the current pose of the robot and place it
in a vector literal.

• Look a bit closer into dual arm manipulation.

• Find out if there are situations where arithmetic on JVectors is needed.

• Look into contact moves just to see that it’s possible.

• Mirrored context and other transformations

• Proper testing and documentation

• Getters and Setters for robot state and settings

• Add support for comments in the language

4.3.1 Live Programming Support
We created a very minimal proof-of-concept implementation for a live programming system,
presently consisting of an emacs mode and a pair of terminal utilities. We have not taken
time, however, to test it’s utility.

30

Chapter 5

Design Decisions

In this chapter we discuss some the various decisions that have been made concerning the
design of the language. For each decision we list a few alternative solutions with some pros
and cons.

The decision areas can be divided roughly into:

• Syntactic Decisions

• Included basic features

– Program flow and control structures

– Included types

– Built in functions and operations

• Threading model and synchronization

• Component Model

• Transformations

• User interface

We have used the following somewhat subjective criteria when discussing pros and cons:

• Similarity to commonly used programming languages

• Simplicity

• Expressive power

31

5. Design Decisions

The language needs to be familiar, because it would ultimately be used by programmers
building tools upon it. We wanted it to be simple, to make our work developing a compiler
easier. We also wanted greater expressive power to make our task of writing programs easier.

In the sections below we list the major decisions that have been made during the design
process. Every feature that was included in the language is written in boldface. If the only
reason that a feature didn’t get included is because of shortage of time, it is written in cursive.

5.1 Syntax
We have borrowed most of the syntax from C and other procedural languages. The advantage
of this is that the programmers might be familiar with this syntax and will therefore not have
to learn anything new. We distinguish between blocks using the o�-side rule, i.e. python-style
indentation.

Option Pros Cons
Indentation • It can make the programs

look a bit less cluttered.
• It forces the programmer
to use correct indentation,
which is good practice also
in languages where brackets
are used.

• It breaks with the other-
wise C-like syntax.

• It creates issues when tabs
and spaces are mixed to-
gether.

Brackets

• In line with otherwise
Pascal-like syntax.

• More clutter in code.

5.2 Included basic features

5.2.1 Input and Program Flow
We discussed including the standard set of procedural control flow features (if/else, while).
We chose to not include them because currently the robots are running blind, that is, without
any external sensor input. Without input, if- and while statements are not of much use.

In the future there is a possibility of adding support for input and in that case it would
make sense to add if- and while statements back into the language. There are three potential
ways of gathering input that might be useful in the future:

32

5.2 Included basic features

• Contact Moves: Move to a position which is inside of an object just to see if the object
is there. If we actually reach the position we know that the object is not there.

• Weighing objects/measuring forces: Measure the weight of an object by sensing how much
force is required to hold it. This can also be used to measure other forces. For example
the amount of force required to move an object along a surface measures the friction.

• Input from camera: The robot might have a camera or other input device.

In order to implement the first two points we need to add communication between our
runtime system and the controllers in moveit/ROS. More about this in the section about
included functions.

For input from cameras, the best option is to implement the communication with the
camera and the image processing in c++ and then add a predefined function in our language
that retrieves the result. In order to make this more easy, it might even be worth considering
adding support in our language for calling an arbitrary c++ function.

Even if no support for input is added. There is still one potential use case for if statements.
It is possible in our language to write recursive procedures. With if statements, it is possible
to add base cases, making this feature more meaningful.

5.2.2 Types
integers and booleans
We considered adding integers and booleans. But without if- and while statements we didn’t
have use cases for booleans and very few use cases for integers. Integers can still be used in
repeat statements, but there are also two other options:

• Use floats in repeat statements

• Use integer literals in repeat statements (meaning int doesn’t have to be added as a
type)

We selected the second option. Here are some pros and cons:

Option Pros Cons

Keep int

• Intuitive
• In case support for
input is added in
the future, adding if/while
statements is easy.

• Add a whole new
type for only one use.
• Puts expectations on
future developers to add
if/while. Better to keep
a clean slate.

Use float instead
• Avoid adding more types
than necessary.

• Counter-intuitive

Int literals
• Get the pros of
both solutions above.

• Decreased power. We cannot
write repeat loops where the
number of repetitions is
given as a parameter
to a function.

33

5. Design Decisions

An example of a case where you might want to provide the number of repetitions as a
parameter:

void shakeFlask(CVector position, int amount)
CVector aboveTable = position + [0 0.2 0 0 0 0]
CVector deltaX = [0.03 0 0 0 0 0]

panda_hand.open()
panda_arm.moveTo(position)
panda_arm.moveTo(aboveTable)
repeat (amount)

panda_arm.moveTo(aboveTable + deltaX)
panra_arm.moveTo(aboveTable)

panda_arm.moveTo(position)
panda_hand.open()

Vector Types

We have included CVectors and JVectors in the language. One idea that we discussed is to
have another type to represent cartesian vectors without orientation (just the x,y,z). This
would be useful mainly for translations.

Option Pros Cons

Use CVectors
• Fewer types.
• No need to convert between types.

• Strange behaviour if
the programmer accidentally
translates by a vector
that contains euler angles.

Add new type
• More intuitive.
• Avoids strange behavior.

• Adds complexity.

5.2.3 Included Predefined Functions and Operations

Some features are so fundamental to the language that it becomes hard to reason about the
pros and cons, since it is hard to imagine what the language would be like without these
features. moveTo(JVector) and moveTo(CVector) are examples for this. In such cases we
will focus on the pros and cons that one operation has when compared to the other. This helps
us justify why we need both features and also clarifies what the use cases are for each of them.
For these operations, the "cons" are not really cons, but rather limitations. The expressiveness
of the language isn’t reduced when we add an operation that has a certain limitation. It just
means that in order to get the expressivity we want, we also need to add another operation.

34

5.2 Included basic features

Fu
nc

ti
on

/o
pe

ra
ti

on
Pr

os
C

on
s

[C
om

po
ne

nt
].m

ov
eT

o(
C

Ve
ct

or
)

•
A

llo
w

sf
or

ab
st

ra
ct

io
n

ov
er

di
�e

re
nt

ki
nd

so
fr

ob
ot

s.
•

In
te

ra
ct

sw
el

lw
it

h
tr

an
sf

or
m

at
io

ns
.

•
O

nl
y

w
or

ks
fo

rs
om

e
co

m
po

ne
nt

s.
•

Fo
rc

om
po

ne
nt

sw
it

h
m

or
e

th
an

6
jo

in
ts

it
ad

ds
no

n-
de

te
rm

in
is

m
.

[C
om

po
ne

nt
].m

ov
eT

o(
JV

ec
to

r)

•
W

or
ks

fo
ra

ll
co

m
po

ne
nt

s.
•

C
on

tr
ol

co
m

pl
et

e
po

se
of

ar
m

s
w

it
h

7
de

gr
ee

so
ff

re
ed

om
in

or
de

rt
o

ad
d

de
te

rm
in

is
m

.

•
H

ar
de

rt
o

ac
hi

ev
e

ab
st

ra
ct

io
n

ov
er

di
�e

re
nt

ki
nd

so
fr

ob
ot

s.
•

D
oe

sn
’t

in
te

ra
ct

w
el

lw
it

h
tr

an
sf

or
m

at
io

ns
.

[C
om

po
ne

nt
].[

st
at

e]
()

•
Si

m
pl

ifi
es

by
pr

ov
id

in
g

pr
ed

efi
ne

d
fu

nc
ti

on
sf

or
co

m
m

on
ly

us
ed

st
at

es
.

le
ng

th
(C

Ve
ct

or
)

•
N

or
m

al
iz

e
ve

ct
or

s.
•

Te
st

fo
rp

ro
xi

m
it

y.
A

ri
th

m
et

ic
on

flo
at

s
A

ri
th

m
et

ic
on

C
Ve

ct
or

s
•

M
or

e
ex

pr
es

si
ve

th
an

Tr
an

sf
or

m
at

io
ns

.
•

M
or

e
er

ro
rp

ro
ne

th
an

Tr
an

sf
or

m
at

io
ns

.

A
ri

th
m

et
ic

on
JV

ec
to

rs
•

C
an

ca
pt

ur
e

in
cr

em
en

ta
la

ct
io

ns
,s

uc
h

as
tu

rn
in

g
a

sc
re

w
dr

iv
er

•
H

ar
de

rt
o

re
as

on
ab

ou
t

C
om

po
sit

io
n

of
Tr

an
sf

or
m

at
io

ns
•

M
or

e
ex

pr
es

si
ve

th
an

ne
st

ed
tr

an
sf

or
m

at
io

n
bl

oc
ks

.
•

M
or

e
co

m
pa

ct
th

an
ne

st
ed

tr
an

sf
or

m
at

io
n

bl
oc

ks
,

es
pe

ci
al

ly
if

th
e

sa
m

e
tr

an
sf

or
m

at
io

n
is

us
ed

m
an

y
ti

m
es

.
Ve

ct
or

Li
te

ra
ls

w
ith

nu
m

er
ic

-li
te

ra
la

rg
um

en
ts

•
N

ec
es

sa
ry

to
de

fin
e

ve
ct

or
lit

er
al

s.

Ve
ct

or
Li

te
ra

ls
w

ith
nu

m
er

ic-
ex

pr
es

sio
n

ar
gu

m
en

ts

•
M

or
e

ex
pr

es
si

ve
th

an
lit

er
al

ar
gu

m
en

ts
.

•
M

or
e

co
nc

is
e

an
d

in
tu

it
iv

e
th

an
ar

it
hm

et
ic

+
un

it
ve

ct
or

s.
ge

tte
rs

fo
rc

om
po

ne
nt

po
sit

io
n

•
To

ge
th

er
w

it
h

co
nt

ac
tm

ov
es

,i
tw

ou
ld

al
lo

w
pr

og
ra

m
st

o
ge

ti
nf

or
m

at
io

n
fr

om
th

e
en

vi
ro

nm
en

t.

ge
tte

rs
an

d
se

tte
rs

fo
r

co
m

po
ne

nt
se

tti
ng

s

•
A

llo
w

sp
ro

gr
am

m
er

to
ad

ju
st

fo
rc

e
an

d
ve

lo
ci

ty
.

C
ri

ti
ca

lf
or

m
an

y
ap

pl
ic

at
io

ns
.

35

5. Design Decisions

Example use case, moveTowards:

void Arm.moveTowards(CVector target, float amount)
CVector delta = target - Arm.getPosition()
CVector deltaNorm = delta * (1/length(delta))
Arm.moveTo(Arm.getPosition() + delta*amount)

This illustrates a use for position getters. It also shows the length(CVector) function
being used for vector normalization.

Example use case, contactMove as a means of retrieving information:

bool Arm.blockIsPresent(CVector position, float height)
Arm.moveTo(position + [0,1.5,0,0,0,0]*height) // move to above the block
Arm.contactMove(position) //try to move inside the block
//if we aren’t close to where we wanted to be, the block is present
return length(Arm.getPosition() - position) > height/2

This is an example of a use case where length(CVector) is used to test for proximity. This
example also contains the method [Component].contactMove(CVector), which is supposed
to try going to a position without stopping the program if something is in the way. The only
reason we haven’t included this function is because we didn’t have time. This example also
includes booleans. The only reason why they aren’t included in the language is because they
don’t have any use if we don’t have a way of getting information from the environment (which
we don’t have without contact move).

5.3 Threading model and Synchronization
A main requirement was to be able to describe simultaneous movement of multiple sub-
components, such as additional arms. This requires the language to have some form of thread-
ing model. There are many di�erent possible threading models, but we settled on implicitly
parallel movement with explicit synchronization points. We believe this is the simplest model
to implement that still fulfills most requirements.

5.3.1 Alternative sync Statements
The sync statements in our language have the following syntax:

sync [Comp1 Comp2 ... CompN]

The meaning of this statement is that none of the components involved are allowed to
start any action that comes after the sync statement until all their respective actions before
the sync statement have been completed. We can call this sync statement the Symmetric Sync
statement.

We considered two alternative solutions for synchronization:

• The Asymmetric Sync Statement

36

5.3 Threading model and Synchronization

• The Universal Sync Statement

The asymmetric sync statement would have the following syntax:

Comp1 sync Comp2

and would mean that Comp1 is not allowed to start any action after the statement until
all the actions for Comp2 before the sync statement have been completed.

The universal sync statement would have the following syntax:

sync

and would mean that no component can start any action after the statement until all
actions before the statement have been completed.

Note that if asymmetric synchronization is enabled then symmetric synchronization is
automatically also possible, by simply writing two sync statements:

Comp1 sync Comp2
Comp2 sync Comp1

If there is symmetric synchronization, universal synchronization is of course also possi-
ble, since universal synchronization is just symmetric synchronization with all components
included.

To demonstrate that asymmetric synchronization is more powerful than symmetric syn-
chronization we provide the following example:

repeat (5)
left_arm.prepare_sandwich()
right_arm sync left_arm
right_arm.place_sandwich_in_box()

The corresponding program with symmetric synchronization is

repeat (5)
left_arm.prepare_sandwich()
sync [left_arm right_arm]
right_arm.place_sandwich_in_box()

The di�erence is quite subtle. Both programs will behave the same in the first iteration.
The left arm will prepare a sandwich and after it is done the right arm will place it in a box.
Since there is no sync statement in the beginning or end of the loop, the left arm will move
on to make the next sandwich before the right arm is done placing the first one in a box.
In the next step however the two programs potentially di�er. If the left arm completes its
second sandwich before the right arm is done with the first sandwich, it can either wait for
the right arm to complete the first sandwich before moving on to the third or it can start
working on the third sandwich immediately. If we use asymmetric synchronization then the
left arm moves on immediately. If we use symmetric synchronization it waits.

37

5. Design Decisions

Solution Pros Cons

Universal Synchronization • Very simple
• Not as powerful as
symmetric synchronization

Symmetric Synchronization • Simple
• Not as powerful as
asymmetric synchronization

Asymmetric Synchronization • Powerful
• Somewhat tedious to test
and reason about

5.4 Abstraction over Components
In the current version of the language we abstract over components using abstract compo-
nents and functions on abstract components. This is described in detailed in section 3.2.4.

Within this solution there are several decisions that had to be made:

• Whether or not to require explicit declaration of abstract components.

• Whether or not to require explicit declaration of abstract functions.

• Whether or not to allow multiple inheritance.

• What priority rules to use when selecting an implementation of a function that has
multiple implementations.

Apart from these decisions there are also alternative ways to achieve abstraction over
components:

• Component blocks

• Components as function parameters

Component blocks were one of the first solutions we considered, where an indented block
would be run for one component only. We decided against this, because we did not want to
deal with the situation where a component block could exist within a function, or decide
how inheritance would work in such a situation.

We also considered having a component type which could be passed to functions. We
decided against this because we wanted it to be abundantly clear what component a statement
is operating on. Passing components would make sense in a robotics library for a general-
purpose language, but we are designing a domain-specific robotics language.

38

5.4 Abstraction over Components

Decision Pros Cons

Explicit abstract components

• Easy to read
and understand
programs.
• Spelling errors
when using com-
ponents result in
error rather than
a new component
being created.

• Slightly longer
programs.

Explicit abstract functions

• Easy to read
and understand
programs.
• Spelling errors
when implementing
functions result in
good error message.
• Forgetting to
implement a function
results in good
error message.

• Slightly longer
programs.

Multiple inheritance • Increased power.

• Gives rise to
diamond problem
(there are two candidate
parents with di�ering
implementation).

39

5. Design Decisions

Priority Rule Pros Cons

a) Uppermost is-statement

• Avoid undefined
behaviour.
• Gives programmer
some control over
which implementation
is used.

• This rule is arbitrary
• Easily overlooked by
programmers learning
the language.

b) Most Specific Subclass

• Makes it possible
to override behaviour
defined in a superclass.
• Same as in most
object oriented
languages.

Rule a) over Rule b)

• Easier to to reason about,
since you don’t have to
count the number of
subclasses in an inheritance
chain.

• An arbitrary rule is given
higher precedence than a
commonly accepted rule.

Warning when a)
needs to be used.

• Programmer doesn’t have
to spend time
wondering why
a certain implementation
is used.

Error when a)
needs to be used.
(not included)

• Programmer doesn’t have
to spend time
wondering why
a certain implementation
is used.
• In many cases this
is indeed a programmer
mistake.

• Prohibits programmer
from using abstract
functions in certain
situations involving
multiple inheritance.

40

5.4 Abstraction over Components

Abstraction approach Pros Cons

Component Blocks

• Short syntax.
• Avoids some of the
complexity associated
with inheritance.

• No semantics for
restricting which
operations are
allowed on which
components.
• The static semantics
becomes awkward, as some
functions can only
be called in specific
contexts.

Components as parameters

• Makes it possible
to define actions
involving more than one
abstract component.
• Once components are
treated as normal
data types, other
features are also enabled.
see later discussion

• Would make our type
system more complicated
as component inheritance
would translate into
subtypes.

Functions on Components

• Same syntax for
programmer defined
functions on components as
for the built in moveTo().

• This means that it has
to be possible to
add functions on already
existing components, which
goes against the intuition
programmers might have from
other languages.

Note that any combination of these three solutions would be possible.

5.4.1 Relationships between components

It might be useful to provide the possibility to specify that two components have a specific
relation to each other, for example that left_hand is the hand corresponding to left_arm.

41

5. Design Decisions

So
lu

ti
on

1
So

lu
ti

on
2

So
lu

ti
on

3

le
ft

_a
rm

is
Ar

m
ri

gh
t_

ar
m

is
Ar

m
le

ft
_h

an
d

is
Ha

nd
ri

gh
t_

ha
nd

is
Ha

nd

vo
id

Ha
nd

.g
ra

b(
)

Ha
nd

.c
lo

se
()

vo
id

Ar
m.

pi
ck

Up
()

Ar
m.

mo
ve

To
([

so
me

po
si

ti
on

])
Ar

m.
ha

nd
.g

ra
b(

)
Ar

m.
mo

ve
To

([
so

me
ot

he
r

po
si

ti
on

])

le
ft

_a
rm

.p
ic

kU
p(

)
ri

gh
t_

ar
m.

pi
ck

Up
()

le
ft

_a
rm

is
Ar

m
ri

gh
t_

ar
m

is
Ar

m
le

ft
_h

an
d

is
Ha

nd
ri

gh
t_

ha
nd

is
Ha

nd

Ha
nd

Ar
m.

ha
nd

;

le
ft

_a
rm

.h
an

d
=

le
ft

_h
an

d
ri

gh
t_

ar
m.

ha
nd

=
ri

gh
t_

ha
nd

vo
id

Ha
nd

.g
ra

b(
)

Ha
nd

.c
lo

se
()

vo
id

Ar
m.

pi
ck

Up
()

Ar
m.

mo
ve

To
([

so
me

po
si

ti
on

])
Ar

m.
ha

nd
.g

ra
b(

)
Ar

m.
mo

ve
To

([
so

me
ot

he
r

po
si

ti
on

])

le
ft

_a
rm

.p
ic

kU
p(

)
ri

gh
t_

ar
m.

pi
ck

Up
()

le
ft

_a
rm

is
Ar

m
ri

gh
t_

ar
m

is
Ar

m
le

ft
_h

an
d

is
Ha

nd
ri

gh
t_

ha
nd

is
Ha

nd

Ha
nd

le
ft

_a
rm

.g
et

Ha
nd

()
re

tu
rn

le
ft

_h
an

d

Ha
nd

ri
gh

t_
ar

m.
ge

tH
an

d(
)

re
tu

rn
ri

gh
t_

ha
nd

vo
id

Ar
m.

pi
ck

Up
()

Ar
m.

mo
ve

To
([

so
me

po
si

ti
on

])
Ar

m.
ge

tH
an

d(
).

gr
ab

()
Ar

m.
mo

ve
To

([
so

me
ot

he
r

po
si

ti
on

])

le
ft

_a
rm

.p
ic

kU
p(

)
ri

gh
t_

ar
m.

pi
ck

Up
()

42

5.4 Abstraction over Components

We did consider three di�erent ways this could be done:

1. In the SRDF file we can see which components have other components as subcompo-
nents. We could make it so that functions defined on a subcomponent automatically
get defined on the components it is part of. This is the approach we chose.

2. Have a special type of declaration to declare that a component is accessible as a field
of another component.

3. Change the language so that Component counts as a normal data type.

An example which is possible with solution 2 or 3 but not with solution 1:

Arm is Part
Hand is Part

left_arm is Arm
right_arm is Arm
left_hand is Hand
right_hand is Hand

Part Part.opposite
left_arm.opposite = right_arm
right_arm.opposite = left_arm
left_hand.opposite = right_hand
right_hand.opposite = left_hand

void Part.someAction()
...

void Part.trulyMirrored()
Part.someAction()
MirrorX

Part.opposite.someAction()

43

5. Design Decisions

Approach Pros Cons

SRDF connections
• No extra syntax/language
constructs.
• Short programs.

• Will often result in functions
being defined on components
that they aren’t supposed
to be defined on.
• Not possible to access
functions on the other
component if they have the
same name as a function on
this component.
• Not possible to specify
relationships between
components that aren’t
physically connected.

Components as fields
• Easy to understand.
• Possible to define
any relationships.

• Requires extra syntax.

Components as datatypes

• Increases the possibility for
abstraction over components.
• Doesn’t add any new
concepts to the language.
• Removes a concept from
the language, as Component
is now a data type rather
than a separate concept.

• Slightly longer syntax.
• More complex type system.

5.5 Transformations
We want it to be possible to create versions of a procedure mirrored, translated. scaled pror
rotated in space. There are a few ways this could be done.

• Stateful: have special methods that change the state of the program between states
such as "mirrored" and "normal". It might look something like this:
arm.moveTo(x)
beginMirrored()
arm.moveTo(y)
arm.moveTo(x)
endMirrored()
arm.moveTo(x)

• Special syntax for function calls. When a function is called there might be some spe-
cial syntax that allows us to specify that the whole function should be performed in a
mirrored way.

• Transformation blocks: Introduce a special type of block where everything is mirrored.

44

5.5 Transformations

The problem with the stateful approach is that it can easily lead to bugs where the pro-
grammer has started a transformed section and forgets to end it. The other two approaches
avoid these types of bugs, because in the case of the special function syntax, the mirrored
section is automatically ended when the function is done and in the case of special blocks,
the compiler checks that every block is closed. There might be situations where the stateful
approach is more expressive. For example if we also introduce if statements, it might be pos-
sible to start or end a mirrored section under certain conditions but continue as usual if the
condition doesn’t hold.

The special syntax for function calls is very similar to the trasformation block approach.
They have the same expressive power and they are both intuitive and should help preventing
bugs. A key di�erence however is that with the block approach, it is possible to mirror a small
snippet of code that one might not want to move to a separate function. It can therefore be
argued that the block approach is to be prefered over the function approach. We also prefer
the block approach over the stateful approach, since it removes unnecessary possibilities of
making errors when programming. We will see later that the lost expressive power is easily
regained.

Since transformations do not always commute, it is important that the language specifies
in which order the transformations are applied in nested blocks. We have decided that the
innermost transformation should always be applied first.

We can’t come up with any way to make sure that the transformations are applied on
JVectors, since the transformations describe how the programmer wants robot position and
orientation to change, not the joint state. This might however not be a problem since JVectors
are primarily used for two things:

• Placing the robot in its initial position

• Moving a component to a predefined state such as hand.open() or hand.close()

The initial state will usually not be set within a transformed context. Opening and closing
the gripper can often be done in a transformed context, but we don’t expect those actions to
be changed by the transformations.

In the future, transformations could be used to describe a relationship between compo-
nents of a robot. For example, telling one arm to move a certain way, and telling the other
to stay at position as the first arm except with a certain translation. This would be the same
as Stenmark’s SyncMoves, but it can now be generalized to any transformation, such as mir-
roring and rotation.

We also considered having transformations that would change speed or force. How-
ever, because of our initial assumptions about how programs should execute, and because
of toolchain limitations, we could not find a way to implement this.

5.5.1 Adjusting Origin, Axes and Planes for Transfor-
mations

Since scale means that we multiply all vectors by a certain factor, it also means that they
move away from the origin. The choice of the origin as the reference point that everything
moves away from is arbitrary and it might be worth considering adding syntax where the ref-
erence point is provided by the programmer. We have not added this however and instead,

45

5. Design Decisions

the programmer will have to achieve this by composing scale with translations. Similar con-
siderations need to be made for Rotations and Mirror. The best thing would probably be for
the visual programming interface to provide a good visual way of creating transformations,
as composing multiple transformations and trying to visualize in your head what they will
do is not always so easy.

5.5.2 Representing Translations
Instead of using CVectors to represent translations we could have:

• Just let the user provide three numbers: x, y z.

• Introduced a new type that represents positions without any orientation.

Since we did use CVectors, there are a number of possible ways we can handle the case where
the user provides a vector that contains non-zero euler angles:

• Automatically set the euler angles (pitch, roll, yaw) to zero.

• Throw an exception.

• Just add the euler angles together as well when doing the translations.

• Make sure that the position is added first, and then everything, both the position and
the orientation is rotated in the way that is described by the euler angles.

At the moment we just add the euler angles together. This was easier to implement, but this
is something we might want to change.

One thing that can be done in order to make things easier for the user is to add a prede-
fined function positionPart that takes a CVector and returns a new CVector with the euler-
angles set to zero.

5.5.3 Representing Rotations
Instead of providing separate transformations for rotating around the X,Y and Z axis, we
could have provided one transformation that can rotate around an arbitrary axis. The rota-
tions could be represented as:

• Quaternions

• Euler angles

• Vectors where the direction represents the axis of rotation and the length represents
the angle to rotate by.

The first two options would force the user to learn new concepts that they might not have
worked with before. The third option however is a bit more intuitive to learn and use and
it might be worth considering this as an option. The main benefit compared to the current
solution is that it is possible to rotate around any axis. This is also possible in the current
solution but that requires composing multiple rotations in di�erent directions.

Similarly, we only allow mirroring in the planes orthogonal to the x,y and z axes. We could
have chosen a syntax where the user gets to specify an axis with a CVector. We didn’t add this.
Instead the programmer will have to achieve this by combining rotations and mirroring.

46

5.5 Transformations

5.5.4 Transform-block using Variables or Expressions
There are two syntaxes for transformed blocks of code: Syntax1:

[TransformLiteral]
arm.doSomeAction()
arm.doAnotherAction()

Syntax2:

Transform [TransformExpression]
arm.doSomeAction()
arm.doSomeOtherAction()

An expression can be either a transformation-literal, a variable of type Transformation
or a composition of transformation-expressions.

Because Transformation is a normal type, and we have variables of type Transformation
that can be assigned and reassigned to, we have regained some of the expressive power we
lost when we decided to use Transformation blocks rather than a stateful approach. If we
ever add if-statements to the language again, we can write code like this:

Transformation Id = Translate([0 0 0 0 0 0])
Transformation f = Id
Transformation g = RotateY(-30)

if ([condition])
f = g

Transform f
arm.doSomeAction()

Now the transformation f is only applied if a certain condition holds and we can achieve
the same result as we could with the stateful approach in the previous section.

Furthermore it is also possible for the programmers to define their own functions to
construct transformations.

Transformation MirrorXWithOffset(float offset)
Transformation translate = Translate([offset 0 0 0 0 0])
return translate << MirrorX << translate

This reduces some of the issues discussed above, since if the programmer needs one of the
features that we haven’t added, they can easily add it themselves.

It would be possible to make the language even more expressive by adding the possibility
to create your own transformations from scratch:

CVector f(CVector x)
return 2*x + [0 1 0.5 0 0 0]

47

5. Design Decisions

Transformation F = FromFunction(f)

Transform F
arm.doStuff()

One problem with this is that it might make static analysis of the program harder. We
should therefore not add this unless we find important use cases.

5.6 Live programming and user interface
We decided early on not to create any form of user interface. We nevertheless needed a way to
try out live programming, that is to create the program partly from reading the robot’s state.
We only needed the ability to write the current position or joint angles into source code. As
we had some experience with emacs lisp, we chose to create a major mode providing these
functions.
Those are the only two functions this mode provides, as we found no need to explore it
further.

48

Chapter 6

Evaluation

6.1 Unsolved Problems
Currently, concurrent motions do not work. We suspect this is due to an error in our usage
of the MoveIt framework, but ran out of time to investigate.

More extensive tools for live programming were originally part of the scope of the project.
This was scaled back because it proved too time-consuming to implement.

Our codebase has many very particular dependencies and is accordingly di�cult to com-
pile. Going forward, containerizing the project with a service like Docker would practically
be required. The code would then be packaged with all dependencies, giving all project par-
ticipants a consistent system. Again, we ran out of time, and we weren’t proficient in con-
tainer tools such as Docker.

6.2 Quantitative
The purpose of the quantitative evaluation is to make a systematic comparison between our
and Stenmark’s language in terms of features.

6.2.1 Methodology
We received a folder with programs that have been written in Stenmark’s language as demos.
The folder contained in total 102 programs. Out of these we have studied 13 programs. The
programs were selected according to the following criteria:

• If a program is called "nyX", "workspaceX", "demoX", "roboticsWeekX" or "testX" for
some number X, it is excluded. This is because it is hard to understand the purpose of
those programs.

49

6. Evaluation

• If a program is almost or completely empty it is excluded.

• If a program seems to be an older version of another program, it is excluded unless it
contains information that is not also in the newer version.

The programs come in the form of xml files with instructions. In order to make the
programs easier to analyse we have simplified them down to the following format:

• Each file has:

– A list of actions for the left arm
– A list of actions for the right arm
– A list of skills
– A list of world objects

• If any of those lists are empty they are left out.

• For most of the actions we only write down the name of the action (Move, Open,
ContactL, etc).

• If an action happens in relation to a world object, the name of the world object is
written after the action.

• If an action is a SyncMove, a reference to the corresponding move on the other arm is
written after the move.

• If a skill has been described in an earlier file, it is replaced with three dots.

Using this simplified format we have analyzed the programs to see weather or not they can
be implemented in our language. When a program cannot be implemented in our language,
we have noted down which features our language is missing.

program missing features line count
bagge • contact move 31
exp • master slave move 11

flavius
• locate
• via move 14

give
• sync move
• master slave move 23

maxSkill
• locate
• contact move 23

paket • via move 10
paket1 • via move 18

presen
• via move
• sync move 27

sidefold1 • via move 30
sidefold2 • via move 30
sidefold3 • via move 32

WorkspaceMajLego
• locate
• via move 17

WorkspaceMajUseMe • locate 6

50

6.3 Qualitative

6.3 Qualitative
6.3.1 Methodology
We intended to select a sample of subjects who would learn about the language through a
quick demo. The subjects were PHD students and professors who have written programs
for robots in other languages/frameworks before. During the demo they received a handout
containing a description of the language together with a few code examples. They also re-
ceive three programming tasks which they would complete after the demo. When they have
completed the tasks, they would hand in their work and we would ask them questions about
their experience of learning and using the language.
Due to scheduling di�culties we unfortunately only received a single response. While this
diminishes the value of the survey, we nevertheless feel the results have some value, and there-
fore we chose to include them.

Questions
Appendix D contains the full list of questions. Questions A through N have been taken from
the Cognitive Dimensions paper[1]. In all those questions we have replaced the term ’nota-
tion’ with either ’language’ or ’program’ depending on weather ’notation’ refers to a system of
notation or a specific instance of notation in that context. We have removed the questions
that are not relevant/applicable in our case.

Question H, fourth question was rephrased to make it more suitable for our purposes.

6.3.2 Results

Question Answer1
When you need to make changes to previous
work, how easy is it to make the change?

As easy or di�cult as usual with a text-
based programming language (i.e., some-
what tedious)

What was di�cult to change? I did not change much...
Does the language let you say what you want
reasonably briefly, or is it long-winded?

A text-based language to program physical
motion is awkward in any case, so I consider
it long-winded and not really helpful in pro-
gramming the robot directly, I see it as an
interpretable abstraction layer between a
user interface and the actual robot language
(which is even more tedious to handle)

What sorts of things take more space to de-
scribe?

I am not sure I get this question... more
space than when or where?

What kind of things require the most men-
tal e�ort with this language?

Programming "in thin air" when it comes to
transformations and synchronisations - ex-
actly those things that make robot program-
ming di�cult.

51

6. Evaluation

Do some things seem especially complex or
di�cult to work out in your head (e.g. when
combining several things)? What are they?

Anything that you have to "combine, turn,
flip, sequentialise..." in your head is a com-
plex task, which is why we want the connec-
tion to the kinaesthetic teaching...

Do some kinds of mistake seem particularly
easy to make?

Di�cult to answer, since I could not test my
program and thus did not get any feedback
on errors I might have made.

How closely related is the program code to
the actions you are describing?

Very closely.

Which parts seem to be a particularly
strange way of doing or describing some-
thing?

Transformations, where I have to define a
base point and then open a block of code
that works under this base point assump-
tion - took me a while that the term "trans-
formation" was what I would have called a
"reference pose".

When reading a program, is it easy to tell
what each part is for in the overall scheme?

I think so.

Are there some parts that are particularly
di�cult to interpret? Which ones?

Again, the more complex things like trans-
formations.

If the structure of the language means parts
of the program depend on other parts, are
those dependencies visible?

As far as I got and could see, yes, I think so.

In what ways can it get worse when you are
creating a particularly large description?

Again, anything you have to write down ex-
plicitly is prone to have conceptual errors in
it, that would propagate when you do copy
and paste of program parts.

If a change in one part of the program re-
quires a change in a second part of the pro-
gram, is it easy to see what needs to be
changed in the second part? If not, which
changes are hard to see?

I did not get up to this level of complexity
with the program.

How easy is it to stop in the middle of creat-
ing a program, and check your work so far?
Can you do this any time you like? If not,
why not?

Could not check at all.

Can you find out how much progress you
have made, or check what stage in your
work you are up to? If not, why not?

Could not check at all.

Can you try out partially-completed pro-
grams? If not, why not?

Could not check / try at all.

Question Answer1

52

6.3 Qualitative

When you are working with the DSL, can
you go about the job in any order you like,
or does the language force you to think
ahead and make certain decisions first?

It forces me to think if I need to program
based on text. If it was possible to actu-
ally program by showing and then just say
"transform this to this new point" things
were much easier.

If so, what decisions do you need to make
in advance? What sort of problems can this
cause in your work?

If you know in advance that the code
should be packaged in a function, you
have to think carefully yourself which parts
are the fixed ones and which ones are pa-
rameters that can change - in the "air", in
my case.

Where di�erent parts of the language de-
scribe similar things, is the similarity clear
from the way they appear?

yes, I guess so.

Does the language force you to start by
defining terms before you can do anything
else?

depends on what you want to do.

Are there places where some things ought
to be similar, but the notation makes them
di�erent? What are they?

Have not found any.

After completing this questionnaire, can
you think of obvious ways that the design
of the system could be improved? What are
they? Could it be improved specifically for
your own requirements?

A connection to a graphical / kinaesthetic
teaching interface is needed, otherwise we
do not win anything.

Can you give some examples of thing you
would want to be able to do that can not
currently be done (easily or at all) with the
language?

I am not sure I explored everything, which
means I have not found the limitations ei-
ther.

Do you receive the feedback/validation that
you need from the system regarding er-
rors/program quality? Do you have sug-
gestions regarding feedback/validation that
can be added or changed?

Could not test / run.

53

6. Evaluation

54

Chapter 7

Conclusions

We have shown that building a DSL for robot arms on top of ROS/MoveIt is feasible. We
have also proven one relatively simple way to do it through JFlex/Beaver/Jastadd targeting
C++/ROS/MoveIt. Our hope is that the system can be used as a starting point for further
inquiry.

Our system in its current state is still far from useful, however.
Some planned features were either not implemented or do not currently work, and thus

couldn’t be tested. Simultaneous movement with MoveIt is a major feature which we have
not implemented correctly. Fixing the broken features would allow for a better study on the
language’s practical application.

More work is warranted to investigate practical usability of such a DSL. We spent very
little time on the syntax and semantics of the language, so both are probably sub-optimal and
would benefit from more focused research.

One of our goals was to provide a framework upon which more development tools can be
built. Such tools were outside the scope of our project, but would represent a further avenue
of research.

One such tool would be a GUI interface for live programming, roughly matching that
of Stenmark’s system. Our belief is that implementing such an interface on top of, rather
than integrated in, a simple text-based system will both be easier and result in a more stable
environment. This also remains to be tested.

Another useful tool would be a more advanced editor, or more likely, better support for
existing editors, possibly replacing a dedicated GUI. An attempt at such a plugin was made
for GNU Emacs, but abandoned at the proof-of-concept stage.

Better integration into the wider ROS ecosystem could also be worthwhile. A large num-
ber of tools and utilities already exist to help robot programmers, which could save significant
development time for a future development system.

55

7. Conclusions

56

References

[1] A. Blackwell, C. Britton, Anna Cox, Thomas Green, C.A. Gurr, Gada Kadoda, Maria
Kutar, Martin Loomes, Chrystopher Nehaniv, Marian Petre, C.R. Roast, Chris Roe,
A. Wong, and R. Young. Cognitive Dimensions of Notations: Design Tools for Cognitive Tech-
nology, pages 325–341. 01 2001.

[2] Sachin Chitta Nikolaus Correll David Coleman, Ioan A. S, ucan. Reducing the barrier to
entry of complex robotic software: a moveit! case study. Journal of Software Engineering
for Robotics, 5:3–16, 2014.

[3] Görel Hedin. An Introductory Tutorial on JastAdd Attribute Grammars, pages 166–200.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[4] M. Loetzsch, M. Risler, and M. Jungel. Xabsl - a pragmatic approach to behavior engi-
neering. In 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5124–5129, 2006.

[5] Arne Nordmann, Nico Hochgeschwender, Dennis Leroy Wigand, and Sebastian Wrede.
A Survey on Domain-Specific Modeling and Languages in Robotics. Journal of Software
Engineering in Robotics (JOSER), 7(1):75–99, 2016.

[6] Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote, Jeremy Leibs, Eric
Berger, Rob Wheeler, and Andrew Ng. Ros: an open-source robot operating system. In
Proc. of the IEEE Intl. Conf. on Robotics and Automation (ICRA) Workshop on Open Source
Robotics, Kobe, Japan, May 2009.

[7] Gil Jones Ioan Sucan John Hsu Sachin Chitta, Kaijen Hsiao.
http://wiki.ros.org/srdf/review.

[8] Reid Simmons and D. Apfelbaum. A task description language for robot control. In
Proceedings of (IROS) IEEE/RSJ International Conference on Intelligent Robots and Systems,
volume 3, pages 1931 – 1937, October 1998.

[9] Maj Stenmark. Intuitive Instruction of Industrial Robots : A Knowledge-Based Approach. PhD
thesis, Lund University, 05 2017.

57

REFERENCES

[10] U. Thomas, G. Hirzinger, B. Rumpe, C. Schulze, and A. Wortmann. A new skill based
robot programming language using uml/p statecharts. In 2013 IEEE International Confer-
ence on Robotics and Automation, pages 461–466, 2013.

58

Appendices

59

Appendix A

Simplified versions of programs written in
Stenmark’s language

A.1 bagge
Right:

BaggeSkillen

Skills:
Majs Lego skill:

Locate Large1
Open
Move relative to largeLego
Move relative to largeLego
Close
Move
Move (Tower)
Contact (Tower)
Move (Tilt)
Open
ContactL
Move (ViaRetract)

BaggeSkillen:
Locate smallLego
Move relative to smallLego
Open
Move relative to smallLego

61

A. Simplified versions of programs written in Stenmark’s language

Close
Move relative to smallLego
Move
Move
ContactL
Open
Move
Close
ContactL
Move

A.2 exp
Right:

MasterSlave leftFlange

Left:
Move
MasterSlave

Objects:
leftFlange
rightFlange
yellowInward
greenOutward
yellow2

A.3 flavius
Right:

Locate small2
Open
Move relative to SmallLego
Close
Move
ContactL
Open

Skills:

RightSkill:
Move
ViaMove
Open

62

A.4 give

MajLegoSkill:
...

A.4 give
Right:

SyncMove
Open
SyncMove
SyncMove
Close
MasterSlave relative to leftFlange
MasterSlave relative to leftFlange
Open

Left:
SyncMove
Open
SyncMove
SyncMove
Close
MasterSlave relative to armour
MasterSlave
Open

Objects:
rightFlange
pink
blue
armour

A.5 maxSkill
Right:

No Actions

Left:
No Actions

Skills:
MajLegoSkill

...
BaggeSkillen

63

A. Simplified versions of programs written in Stenmark’s language

...
MaxLEGO

Move To position pos with speed v
Locate small Lego
Move in relation to small Lego
Open Hand
Move in relation to small Lego
Move in relation to small Lego
Close Hand
Move in relation to small Lego
Move
ContactL position, speed, desired torque
ContactL
Open Hand
Move
ContactL
Move

A.6 paket
Right:

ViaMove

Left:
ViaMove

Objects:
leftFlange
rightFlange
lid1
lid2
corner

A.7 paket1
Right:

ViaMove
Open
Sync1

Left:
ViaMove
Open
ViaMove

64

A.8 presen

Move
Move
Move
Sync1

Objects:
leftFlange
rightFlange
lid1
lid2
corner

A.8 presen
Right:

Open
ViaMove
Move in relation to lid
Move in relation to lid
Sync1
Close
SyncMove (Slave1) in relation to leftFlange
SyncMove (Slave2) in relation to leftFlange
SyncMove (Slave3) in relation to leftFlange
SyncMove (Slave4) in relation to leftFlange
Open
SyncMove (Slave6) in relation to leftFlange

Left:
Open
ViaMove
Move (lid)
Sync1
Close
SyncMove (Master1)
SyncMove (Master2)
SyncMove (Master3) in relation to box
SyncMove (Master4) in relation to box
Open
SyncMove (Master6) in relation to box

Skills:
MoveLidRight:

Open
ViaMove

65

A. Simplified versions of programs written in Stenmark’s language

Move (lid)
Move (lid)
Sync1
Close
SyncMove (slave 11) leftFlange
SyncMove (slave 21) leftFlange
SyncMove (slave 31) leftFlange
SyncMove (slave 41) leftFlange
Open
SyncMove (slave 61) leftFlange

MoveLidLeft:
Open
ViaMove
Move (lid)
Move (lid)
Sync
Close
SyncMove (Master11)
SyncMove (Master21)
SyncMove (Master31) box
SyncMove (Master51) box
Open
SyncMove (Master61) box

Objects:
leftFlange
rightFlange
lid
box

A.9 sidefold1
Right:

ViaMove
Open
Sync1
Move corner
Move corner
HandMove
Move corner
HandMove
Move corner
Sync

66

A.10 sidefold2

Move corner
Move corner
HandMove
Move corner

Left:
ViaMove
Open
ViaMove
Move
Move
Sync
Sync
Move

Objects:
leftFlange
rightFlange
lid1
lid2
corner

A.10 sidefold2
Right:

ViaMove
Open
Sync
Move relative to corner
Move relative to corner
HandMove
Move relative to corner
HandMove
Move relative to corner
Sync
Move relative to corner
Move relative to corner
HandMove
Move relative to corner

Left:
ViaMove
Open
ViaMove
Move

67

A. Simplified versions of programs written in Stenmark’s language

Move
Sync
Sync
Move

Objects:
leftFlange
rightFlange
lid1
lid2
corner

A.11 sidefold3
Right:

ViaMove
Open
Sync
Move relative to corner
Move relative to corner
HandMove
Move relative to corner
HandMove
Move relative to corner
Sync
Move relative to corner
Move relative to corner
HandMove
Move relative to corner

Left:
ViaMove
ViaMove
Open
ViaMove
Move
Move
Move relative to corner
Sync
Sync
Move

Objects:
leftFlange
rightFlange

68

A.12 WorkSpaceMajLego

lid1
lid2
corner

A.12 WorkSpaceMajLego
Right:

Locate Large lego
Open
ViaMove relative to LargeLego
ViaMove relative to LargeLego
Move relative to LargeLego
Close
ViaMove relative to LargeLego
Move
ContactL
Move
Open
ContactL
ViaMove

Skills:
RightSkill:

...
MajLegoSkill:

...

A.13 WorkspaceMajUseMe
Right:

majLegoSkill

Left:

Skills:
majLegoSkill:

Locate(Large lego)

69

A. Simplified versions of programs written in Stenmark’s language

70

Appendix B

Syntax

program --> statement*

statement --> assignment
statement --> variable_declaration
statement --> function_declaration
statement --> call_statement
statement --> return_statement
statement --> sync_statement
statement --> repeat_statement
statement --> transformation_statement
statement --> is_statement

assignment --> ID ’=’ expression
variable_declaration --> Type ID [’=’ expression]
function_declaration --> Type [Component ’.’] ID ’(’ parameter* ’)’ block
call_statement --> call_expression
return_statement --> ’return’ expression
sync_statement --> ’sync’ ’[’ Component* ’]’
repeat_statement --> ’repeat’ [’(’ expression ’)’] block
transformation_statement --> ’transform’ expression block

| Transformation_Literal block
is_statement --> Component ’is’ Component

71

B. Syntax

expression --> expression ’<<’ expression
expression --> expression ’+’ expression
expression --> expression ’-’ expression
expression --> expression ’*’ expression
expression --> expression ’/’ expression
expression --> ’-’ expression

expression --> variable
expression --> call_expression

expression --> NUM
expression --> CVector_Literal
expression --> JVector_Literal
expression --> Transformation_Literal

CVector_Literal --> ’[’ NUM* ’]’
JVector_Literal --> ’<’ NUM* ’>’

Transformation_Literal --> ’Scale’ expression
Transformation_Literal --> ’Translate’ expression

Transformation_Literal --> ’RotateX’ expression
Transformation_Literal --> ’RotateY’ expression
Transformation_Literal --> ’RotateZ’ expression

Transformation_Literal --> ’MirrorX’
Transformation_Literal --> ’MirrorY’
Transformation_Literal --> ’MirrorZ’

variable --> ID
call_expression --> [Component ’.’] ID ’(’ expression* ’)’

block --> BEGIN_INDENTATION statement* END_INDENTATION
parameter --> Type ID

Type --> ID
Component --> ID

72

Appendix C

Feature Suggestions at Robotics Workshop
after Iteration 1

This is a list of suggestions that we prepared for the workshop in order to see if there was
interest from the roboticist. We have added their comments below each feature description.
At the end we have appended a list of spontainious questions from the roboticists that were
asked after the demonstration of iteration 1 but before we went through the feature list.

C.0.1 Suggested Features
Live Programming Support
Description
To get the current position of the robot while programming in order to be able to put it in a
vector literal.
Response
Yes, this would be very useful. Elin would actually want a graphical user interface and that
is something that might be developed in the future. But since this feature will save a lot of
time for the programmer and since we don’t have time to make a complete GUI, creating an
Emacs Mode is a good investment.

Making Component into a legitimate data type
Description
At the moment components are treated as entirely di�erent objects from ordinary types such
as float or CVector. This means that:

• components cannot be used as arguments to functions.

• components cannot be returned from functions.

73

C. Feature Suggestions at Robotics Workshop after Iteration 1

• components cannot be variables which can later be reassigned.

If we change this, two important use cases are enabled:

left_arm is Arm
right_arm is Arm

left_arm.pickUpBlock()
left_arm.handOver(right_arm)

void Arm.handOver(Arm other)
...

and

left_arm is Arm
right_arm is Arm

left_gripper is Gripper
right_gripper is Gripper

Gripper left_arm.gripper()
return left_gripper

Gripper right_arm.gripper()
return right_gripper

void Arm.pickUpBlock(CVector x, CVector aboveX)
Arm.moveTo(aboveX)
Arm.gripper().open()
Arm.moveTo(x)
Arm.gripper().close()
Arm.moveTo(aboveX)

The second use case can also be enabled in the following way:
When we scan the SRDF file we can see which components are directly connected to

other components, and make sure that the states such as open() and close() can be accessed
as part of those components aswell. In that case Arm.open() is defined because:

• open() is defined on both left_gripper and right_gripper because it is found in the
SRDF file.

• both left_gripper and right_gripper are directly connected to left_arm and right_arm
respectively and open() is therefore defined on both left_arm and right_arm.

• Since left_arm and right_arm are the only members of Arm, open is also defined on
Arm.

Response
Seems like it might be useful but it’s not super important right now.

74

Allowing Access to Robot State and Settings
Description
In order to be able to get information from the environment it would be nice to have things
like component.getPosition() etc. A similar thing that would be great to have is getters and
setters for things like maximum speed and maximum force.
Response
Seems useful and important.

More control structures + boolean + int
Description
If statements and while statements. If this is added it also makes sense to add ints and
booleans.
Response
This is useful and will probably be added in the future. However it is not important to add
right now. Other similar languages already have if and while so this would not make our
unique.

Other forms of synchronization
Description
A sync statement that syncs all components (rather than just the set that you specify).
An asymmetric sync statement (one component needs to wait for the other but not the other
way around).
Response
Sync for all: seems useful but not super important.

Asymmetric Sync: Cannot come up with concrete use case on the spot, but it seems like
something that would be interesting to play around with.

More specific JVector types
Description
Right now you don’t get a type error if you use a JVector on a component that it is not meant
for. You don’t even get a type error if it is of the wrong size.

Could be a good idea to have one type of JVector for every size or maybe even for each
component.
Response
Yes, that would be good. One for each component is probably best.

Explicit Declaration of abstract components and abstract func-
tions
Description
abstract Arm
abstract void Arm.pickUp(CVector pos)

75

C. Feature Suggestions at Robotics Workshop after Iteration 1

This does not add any capabilities to the language and it makes your programs a bit
longer. However it might improve readability.

Response
Not super important but might make it a bit clearer.

Expressions in Vector literals
Description
Right now vector literals have to consist of float literals. Might be a good idea to allow
expressions there.
Response
Cannot think of concrete use case on spot, but seems useful.

Explicit units
Description
Make it possible to write down units explicitly and they are automatically converted to what-
ever unit is actually needed.

JVector x = <10 deg 3.14 rad ...>
Response
Seems useful.

Comments
Description
Add ability to comment out lines so we don’t have to delete them.
Response
Very important.

Global variables for directions
Description
CVectors for up, down, forward etc.
Response
Seems useful

C.0.2 Spontaneous Questions
These are some of the most important comments, suggestions and questions that we got:

• Will there be a user interface so that it is not just text based and so that live program-
ming is possible? Jogging.

• Master Slave moves?

• Is there support for multiple robots?

76

• Couldn’t there be situations where it would be easier to use arithmetic on JVectors
than on CVectors? For example when screwing in a light bulb, it might be easier to
tell the last joint to spin a certain number of degrees than trying to use arithmetic on
euler angles.

• Is it possible to switch controller?

• Would it be possible to read entire trajectories during live programming rather than
just single points.

• Instead of having to write ’Sync’ every time we need to sync, would it be possible to
have special blocks or something where everything is synced?

• Could we add some way to do mirrored versions

• Contact moves

77

C. Feature Suggestions at Robotics Workshop after Iteration 1

78

Appendix D

Evaluation Survey

D.1 Questions
Questions from Cognitive Dimensions PART A ======

– How easy is it to see or find the various parts of the program while it is being created
or changed? Why?

– What kind of things are more di�cult to see or find?
– If you need to compare or combine di�erent parts, can you see them at the same time?

If not, why not? [not included]
PART B ======
– When you need to make changes to previous work, how easy is it to make the change?

Why?
– Are there particular changes that are more di�cult or especially di�cult to make?

Which ones?
PART C ======
– Does the language a) let you say what you want reasonably briefly, or b) is it long-

winded? Why?
– What sorts of things take more space to describe?
PART D ======
– What kind of things require the most mental e�ort with this language?
– Do some things seem especially complex or di�cult to work out in your head (e.g. when

combining several things)? What are they?
PART E ======
– Do some kinds of mistake seem particularly common or easy to make? Which ones?
– Do you often find yourself making small slips that irritate you or make you feel stupid?

What are some examples?
PART F ======
– How closely related is the program to the result that you are describing? Why?

79

D. Evaluation Survey

– Which parts seem to be a particularly strange way of doing or describing something?
PART G ======
– When reading a program, is it easy to tell what each part is for in the overall scheme?

Why?
– Are there some parts that are particularly di�cult to interpret? Which ones?
– Are there parts that you really don’t know what they mean, but you put them in just

because it’s always been that way? What are they?
PART H ======
– If the structure of the product means some parts are closely related to other parts, and

changes to one may a�ect the other, are those dependencies visible? What kind of dependen-
cies are hidden?

– In what ways can it get worse when you are creating a particularly large description?
– Do these dependencies stay the same, or are there some actions that cause them to get

frozen? If so, what are they?
- If a change in one part of the program requires a change in a second part of the program,

is it easy to see what you need to change in the second part of the program? If not, which
required changes are hard to see?

PART I ======
– How easy is it to stop in the middle of creating some notation, and check your work so

far? Can you do this any time you like? If not, why not?
– Can you find out how much progress you have made, or check what stage in your work

you are up to? If not, why not?
– Can you try out partially-completed versions of the product? If not, why not?
PART J ====== [Not sure if this will give us very much. I don’t see how this would be

very di�erent in our language compared to other languages]
– Is it possible to sketch things out when you are playing around with ideas, or when you

aren’t sure which way to proceed? What features of the notation help you to do this?
– What sort of things can you do when you don’t want to be too precise about the exact

result you are trying to get?
PART K ======
– When you are working with the notation, can you go about the job in any order you

like, or does the system force you to think ahead and make certain decisions first?
– If so, what decisions do you need to make in advance? What sort of problems can this

cause in your work?
PART L ====== – Where there are di�erent parts of the notation that mean similar

things, is the similarity clear from the way they appear? Please give examples.
– Are there places where some things ought to be similar, but the notation makes them

di�erent? What are they?
PART M ====== – Is it possible to make notes to yourself, or express information that is

not really recognised as part of the notation?
– If it was printed on a piece of paper that you could annotate or scribble on, what would

you write or draw?
– Do you ever add extra marks (or colours or format choices) to clarify, emphasise or

repeat what is there already? [If yes: does this constitute a helper device? If so, please fill in
one of the section 5 sheets describing it]

80

D.1 Questions

[I would suggest dividing this into two questions: Do you use comments, what do they
look like/what do you use them for? and Do you write pseudocode before writing code and
what does the pseudocode look like?]

PART N ======
[seems like we already know the answer to this one] – Does the system give you any way

of defining new facilities or terms within the notation, so that you can extend it to describe
new things or to express your ideas more clearly or succinctly? What are they?

[could be relevant] – Does the system insist that you start by defining new terms before
you can do anything else? What sort of things?

[this seems unnecessary] – If you wrote here, you have a redefinition device: please fill in
one of the section 5 sheets describing it.

Finally we ask two further questions which may evoke usability problems that are not ad-
dressed by any of the dimensions, or that may allow the respondent to express some problem
that other dimensions have reminded them of: [These seem very relevant]

– Do you find yourself using this notation in ways that are unusual, or ways that the
designer might not have intended? If so, what are some examples?

– After completing this questionnaire, can you think of obvious ways that the design of
the system could be improved? What are they? Could it be improved specifically for your
own requirements?

Other questions
Can you give some examples of thing you would want to be able to do that can not

currently be done (easily or at all) with the language? (add runtime environment tooling)
Do you receive the feedback/validation that you need from the system regarding er-

rors/program quality? Do you have suggestions regarding feedback/validation that can be
added or changed?

Would you use all the features of the language?

81

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD ???

EXAMENSARBETE Designing a Domain Specific Language for Robotics
STUDENTER Emma Grampp, Stefan Jonsson
HANDLEDARE Christoph Reichenbach
EXAMINATOR Jesper Öqvist

Ett programmeringsspråk för robotarmar

POPULÄRVETENSKAPLIG SAMMANFATTNING Emma Grampp, Stefan Jonsson

Industrirobotar blir allt vanligare och får hela tiden nya finesser, såsom fler och smidi-
gare armar. De är dock fortfarande knepiga att programmera. Vi har arbetat med att
ta fram ett mer specifikt språk för att styra dem.

Industrirobotar har länge bara varit till för de
allra största fabrikerna. Nu börjar det byggas
små och mer fingerfärdiga robotar även för min-
dre arbetsplatser. Det råder ingen brist på enkla
och repetitiva jobb som de skulle kunna ta över.
Programmeringsverktygen har dock ännu inte helt
hunnit ikapp. De verktyg som finns är ofta pro-
prietära, d.v.s. de är skapade av en tillverkare och
fungerar endast för dennes robotar. De är därtill
sällan enkla att använda, särskilt när robotar har
mer än bara en enkel arm.
På LTH har det under en tid pågått forskn-

ing om verktyg för robotprogrammering. Det har
bl.a. sammanställts en större mängd standardpro-
gram som ett system måste kunna representera.
Hittills har systemen som tagits fram varit hela
grafiska program, vilket gjort dem svåra att åter-
använda. Det finns därför en önskan om att skapa
ett textbaserat grundsystem, som mer avancerade
grafiska verktyg kan byggas ovanpå.
I vårt examensarbete har vi tagit fram ett pro-

gramspråk för att styra industrirobotar, och byggt
en kompilator med tillhörande runtime-system
som kan köra programmen. Vi utnyttjar det exis-
terande ramverket MoveIt, som är en del av pro-
jektet "Robot Operating System", förkortat ROS.

Ett program i vårt språk beskriver en sekvens av
rörelser som de olika komponenterna av en robot
ska genomföra när programmet körs. Flera kom-
ponenter av roboten kan vara i rörelse samtidigt.
Språker erbjuder abstraktion över både kompo-
nenter och handlingar (sekvenser av rörelser).
Handlingar kan även transformeras på olika sätt,
så att de till exempel kan göras spegelvänt.

Vi har utvärderat vårt system dels genom att
översätta en mängd standardprogram till det, och
dels genom att låta robotikexperter programmera
i det. Vi kom fram till att det i princip är en
lovande väg att gå, men fortfarande kommer kräva
mycket mer arbete för att få fram ett användbart
verktyg.

	Introduction
	Requirements
	Stakeholders
	Research Questions

	Background
	Existing Robot Languages
	Rapid
	Stenmark's Language
	Others

	Poses and Movements
	Extra dimension in joint space and non-determinism
	Singularities and Joint Ranges

	Tools
	ROS and Moveit
	JastAdd, Beaver and JFlex

	Language Specification
	Syntax
	Static Semantics
	Placement of Statements
	Variable Declarations and Scope
	Function Declarations
	Components and Inheritance
	Types
	Predefined Functions

	Dynamic Semantics
	Threading and Synchronization
	Transformations

	Design Process
	Initial Design
	First Design Iteration
	Changes made to the design during implementation
	The first working compiler
	Simplification of the language
	Suggested additions to the language
	Better synchronization
	Abstraction
	Using SRDF
	Integration with ROS and finalizing iteration 1
	Workshop with roboticists

	Iteration 2
	Live Programming Support

	Design Decisions
	Syntax
	Included basic features
	Input and Program Flow
	Types
	Included Predefined Functions and Operations

	Threading model and Synchronization
	Alternative sync Statements

	Abstraction over Components
	Relationships between components

	Transformations
	Adjusting Origin, Axes and Planes for Transformations
	Representing Translations
	Representing Rotations
	Transform-block using Variables or Expressions

	Live programming and user interface

	Evaluation
	Unsolved Problems
	Quantitative
	Methodology

	Qualitative
	Methodology
	Results

	Conclusions
	References
	Appendix Simplified versions of programs written in Stenmark's language
	bagge
	exp
	flavius
	give
	maxSkill
	paket
	paket1
	presen
	sidefold1
	sidefold2
	sidefold3
	WorkSpaceMajLego
	WorkspaceMajUseMe

	Appendix Syntax
	Appendix Feature Suggestions at Robotics Workshop after Iteration 1
	Suggested Features
	Spontaneous Questions

	Appendix Evaluation Survey
	Questions

