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Abstract

Previously, Berg and Purcell found an expression for the diffusion current of particles into
a set of receptors in their paper Physics of Chemoreception. These receptors were assumed
to be uniformly distributed on a spherical cell’s surface and the receptors where idealized
as circular patches. For their model, the particles’ diffusion constant was the same for
all points outside of the cell. In this thesis, a model was made that mimics the scenario
when there is a higher density of crowding material close to the cell’s surface which would
obstruct the particles from moving around. This makes the diffusion constant closer to
the cell smaller than the diffusion constant further away. For computational reasons, two-
dimensional geometry was considered. The model contained a two dimensional circular
cell with diffusion constant D2 within a distance d from the cell’s surface and a diffusion
constant D1 further away from the cell. For a fully absorbing cell, the diffusion current
was obtained both analytically and numerically. Furthermore, for a cell with equidistantly
distributed receptors on its surface, where the remaining parts of the surface were perfectly
reflecting, the diffusion current was obtained by numerically solving the diffusion equation.
It was shown that the placement of receptors affected the diffusion current. Moreover, the
ratio between D1 and D2 influenced the number of receptors needed to reach half of the
maximum diffusion current.



Popular Abstract

Lets consider a single cell. On the cell’s surface, there are receptors which can absorb
a specific type of particles. If one of these particles touches a receptor, it is captured
and absorbed by the cell. The number of particles that enter the cell for a unit of time
is the diffusion current. Previously, Berg and Purcell showed in their paper Physics of
Chemoreception that only a small part of the cell needs to be covered by receptors in order
to reach half of the maximum diffusion current into a cell. More specifically, depending on
the size of the cell and the receptors, it is possible to reach half of the maximum diffusion
current when only 1/1000 of the cell’s surface is covered by receptors. The diffusion current
is at its maximum when the cell’s surface is fully absorbing.

However, it can be that there is organic material attached to the surface of the cell.
This can be imagined as some sort of gooey layer covering the cell’s surface. If a particle
is inside this goo, it will move slower than when it is outside the gooey layer.

In this thesis, I made a model that mimics this scenario with a gooey layer around the
cell. The cell’s surface was represented by a circle and the particle capturing receptors
as patches on the cell’s surface. This model was used to investigate how such a gooey
layer affects the intake of particles into the cell. Furthermore, the receptors were placed
in different positions to see how this, combined with the gooey layer, affects the intake of
particles through the receptors on the cell’s surface. It was found that when this gooey layer
slows down the particles, more receptors are needed in order to reach half the maximum
diffusion current. Furthermore, the diffusion current was higher when the receptors where
spread out uniformly over the cell than when the receptors were clustered together.
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1 Introduction

In this thesis we look at the diffusion current into a cell through receptors. The first
step of a cell signaling process is the binding of chemoattracting particles to receptors on
cell surfaces. For a diffusion capturing process, the particles attached to the receptors
are absorbed by the cell [1]. The chemoattractive particles outside the cell are in the
extracellular matrix. The extracellular matrix is composed of molecules which form a
structure between cells [2]. For the case where the extracellular matrix is more dense close
to the cell’s surface, chemoattracting particles would diffuse slower here in this denser
region. The aim of this thesis is to to see how this change in diffusion influences the
diffusion current.

In the paper Physics of Chemoreception, written by Howard C. Berg and Edward M.
Purcell[3], they looked at diffusion into a spherical cell with receptors on its surface. Diffu-
sion into the cell was only possible by binding to receptors, which where evenly distributed
over the cell. The maximum diffusion current into the cell is the diffusion current for a cell
with a surface that is absorbing everywhere. The expression for the maximum diffusion
current into a sphere is

Imax = 4πDRcellC∞ (1.1)

where D is the diffusion constant, Rcell is the radius of the sphere and C∞ is the
concentration far away from the cell [3]. They found that the diffusion current I for an N
number of receptors of radius s over the maximum diffusion current is [3]

I/Imax = Ns/(4Rcell +Ns). (1.2)

From this it can be found that only a small percentage of the cell’s surface needs to be
covered for the diffusion current to be Imax/2 [3].

The model made by Berg and Purcell considered the diffusion constant to have the
same value everywhere. During my thesis project I made a two dimensional model of a
cell where D is not the same everywhere. If the consistency of the extracellular matrix
within a distance d from the surface of the cell is more dense than outside the region,
particles would be obstructed in their movement within this region. This decrease in
movement would cause the diffusion constant to change. In this case there would be a
diffusion constant D2 within a distance d from the cell and an other diffusion constant
D1 everywhere else. In the model I made, there is a constant bulk concentration C0 at
a distance R0 away from the center of the cell. From this bulk concentration, particles
diffuse until they reach an receptor on the cell’s surface. Like in the Berg and Purcell
paper, the receptors are considered to be perfect sinks. Therefore, the absorbing surfaces
have a concentration of zero.[3]

Figure 1 shows a schematic representation of the two dimensional model described
above. At a distance d away from the cell, there is a diffusion boundary layer, represented
by a black dashed line in Figure 1. In Figure 1, the cell’s surface is represented by the
red line and green dotted line. Here, the red lines are reflecting and the green dotted line
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are absorbing receptors. The size and the number of receptors can be changed. The circle
with the blue line is the location where the concentration remains constant.

R0Rcell

d 2
&

2 3

Figure 1: Schematic model of the cell. The cell’s surface is reflective at the red line
and absorbent at the receptors represented by the green dotted line. The model allows for two
diffusion constant, D2 in the yellow region and D1 in the pink region. At the blue line, there
is a bulk concentration C0. The radius of the cell is Rcell, the radius to the start of the bulk
concentration is R0 and the distance between the cell’s surface and the diffusion boundary layer
is d.

In this thesis, I investigated how the ratio D2/D1 and the thickness d of the layer
around the cell where D = D2 affects the diffusion current. This was done by solving the
diffusion equation [3, 4] both numerically and analytically. For the models in which the
cell’s surface is absorbing everywhere, the diffusion current was obtained both numerically
and analytically. For a cell with a not fully absorbing surface, the diffusion current is only
obtained numerically. The analytically obtained diffusion current for the two dimensional
system with two diffusion constants and a cell that is fully absorbing, is

Imax =
2πC0D1

(D1/D2) ln
(

Rcell+d
Rcell

)
+ ln

(
R0

Rcell+d

) .
In my results, I first compared the numerically and analytically obtained diffusion

current Imax. Furthermore, I used the numerical model to find I/Imax for different values
for D1 and D2. Here I is the diffusion current for a cell which is not fully absorbing. This
diffusion current I was obtained for a cell where an increasing number of receptors are
evenly distributed over the cell’s surface. This was done for a cell where the receptors are
distributed over the whole surface, a cell where the receptors are only on half of the cell’s
surface and a cell where the receptors are only on one quarter of the cell’s surface.
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2 Theory

In this section, we introduce the diffusion equation for the multi-layered geometry as de-
picted in Figure 1. The diffusion equation is used to obtain the diffusion current. To solve
this problem, first an expression for the concentration C is obtained. This concentration
is then used to find the flux. From the flux, the diffusion current is derived.

The main observable of interest in this thesis is the diffusion current, I, into the cell.
The diffusion current is the flux, J(x, t), integrated over the surface of the cell

I = −
∫

J(x, t) · n̂dS (2.1)

where x = (x, y) denotes the spatial coordinates for two dimensions, n̂ is the unit vector
in the normal direction to the surface of the cell and dS is rdθ in polar coordinates [3].
So to find the diffusion current, first the flux needs to be obtained. The flux can be
calculated using Fick’s first equation [4],

J = −D∇C. (2.2)

Here, C = C(x, t) is the concentration where t denotes time.
To obtain the flux, first an expression for C needs to be found. Conservation of mass

gives the following relation [1]:

dC

dt
= −∇J (2.3)

By inserting equation (2.2) into equation (2.3), Fick’s second equation also called the
diffusion equation, can be derived. This equation is for when the diffusion constant D has
the same value for all spatial points.

dC

dt
= D∇2C (2.4)

For a system with multilayer diffusion, the diffusion equation becomes

dCi

dt
= ∇ (Di∇Ci) . (2.5)

for layer i [5]. Here, Di is the diffusion constant for layer i and Ci is the concentration in
layer i. The matching conditions between layer i and i+ 1 are

Ci(x, t) = Ci+1(x, t) (2.6)

and

n̂i · (Di∇Ci(x, t)) = n̂i · (Di+1∇Ci+1(x, t)). (2.7)
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where x is a position between layer i and i+1 and n̂i is the normal vector to the diffusion
boundary layer separating region i and i+1 [5]. The concentration Ci = Ci(x, t) is obtained
by solving equation (2.5) and using the matching conditions.

The model contains both reflective and absorbing boundary conditions. In Figure 1,
the blue line is an absorbing boundary with a constant bulk concentration of C0 and the
green dotted line is an absorbing boundary that serves as a perfect sink and therefore has a
concentration of 0 [3]. The red line in Figure 1 is a reflective boundary where the flux into
the surface is zero. In the numerical method, the reflective boundaries are represented by
Neumann boundaries and absorbing boundaries are represented by Dirichlet boundaries.

3 Method

3.1 Analytical Solutions

In this section, an analytically obtained diffusion current, Imax, is provided for the case
when the cell’s surface is fully absorbing. The model of the cell for which the diffusion
current is obtained is as shown in Figure 1. The diffusion current is obtained for a steady
state for the cases when the diffusion constant D = D1 = D2 and when D1 ̸= D2. Here, D1

is the diffusion constant in the pink region in Figure 1 and D2 is the diffusion constant in
the yellow region. To obtain the diffusion constant, first an expression for the concentration
C(r) is found by solving equation (2.4) in polar coordinates for a steady state where r is
the distance from the center of the cell. From the expressions for the concentrations, the
flux J(r) is derived using Fick’s first equation (2.2). The diffusion currents is than obtain
using equation (2.1).

Lets first consider the case where D = D1 = D2. For steady state the diffusion
equation (2.4) becomes ∇2C(r) = 0. The boundary conditions are C(Rcell) = 0 at the
cells surface and C(R0) = C0 at r = R0 where C0 is a constant bulk concentration. The
cell’s surface and the boundary at r = R0 can be seen in Figure 1. The general solution
for C at steady state in polar coordinates is C(r) = ln(r)A1 + A2 where A1 and A2 are
two unknown constants. Now, using the boundary conditions and the general solution for
C, the diffusion equation can be solved for steady state. From this it is found that the
concentration can be expressed as

C(r) =


C0 ln

(
r

Rcell

)
ln
(

R0
Rcell

) , if Rcell < r < R0

C0, if r = R0

0, if r = Rcell.

(3.1)

Notice that C(r) depends linearly on the bulk concentration C0.
When D1 ̸= D2 the expressions for C(r) in equation (3.1) do not hold. The boundary

conditions for this set up are C(Rcell) = 0 at the cells surface, C(Rcell + d) = C1 at a
distance d from the cells surface and C(R0) = C0 at the outer Dirichlet boundary. These
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boundary conditions, together with the general solution for C(r), leads to the following
expressions for the concentration.

C(r) =



C1 ln
(

r
Rcell

)
ln
(

Rcell+d

Rcell

) , if Rcell < r ≤ Rcell + d

C0 +
(C1−C0) ln

(
r

R0

)
ln

(
Rcell+d

RC0

) , if Rcell + d ≤ r < R0

C0, if r = R0

0, if r = Rcell,

(3.2)

where

C1 =
C0D1 ln

(
Rcell+d
Rcell

)
D1 ln

(
Rcell+d
Rcell

)
+D2 ln

(
R0

Rcell+d

) . (3.3)

The details of the derivation of C(r) and C1 are found in Appendix A.
Now, using the obtained expressions for C(r), the diffusion current is found. First,

the flux is derived from the obtained expressions for C(r) and Fick’s first equation (2.2).
Then, the diffusion current is obtained using equation (2.1) and the expression for the flux.
When D = D1 = D2, the diffusion current into the cell is

Imax =
2πC0D

ln
(

R0

Rcell

) , (3.4)

whereas when D1 ̸= D2, the diffusion current into the cell is

Imax =
2πC0D1

(D1/D2) ln
(

Rcell+d
Rcell

)
+ ln

(
R0

Rcell+d

) . (3.5)

The derivation of the expression for the diffusion current can be found in appendix A.
The expressions for Imax in equations (3.4) and (3.5) share some similarities. Both scale

linearly with the bulk concentration C0. Also, it can be seen that when D = D1 = D2,
equation (3.5) is equal to equation (3.4). Furthermore, if d = 0 or d = R0 −Rcell, equation
(3.5) becomes equation (3.4) where D is either D1 or D2, respectively.

3.2 Numerical Solution of the Diffusion Equation where D1 = D2

Lets now turn to the problem where the surface is not absorbing everywhere, but instead
has absorbing patches, as can be seen in Figure 1. To solve this problem, equations (2.2)
and (2.4) are solved numerically in cartesian coordinates by using a finite difference approx-
imation. A cartesian coordinate was used for. The numerical solution was obtained using
the programming language Python version 3.7. For the finite difference approximation, a
spatial and time discretization procedure is used.
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Figure 2: Spatial discretization of a two dimensional cell. The red domain is a reflective
area on the cell’s surface and the green domain is absorbing. The concentration is kept constant
in the blue domain while the concentration for each spatial point is updated in the orange domain.

The spatial discretization of the schematic model of the cell in Figure 1 can be seen
in Figure 2. For the discretization of this two dimensional model, the coordinates x and
y are discretized as x = aj and y = ak where a = 1 is the lattice spacing. The spatial
discretization as seen in Figure 2 is compiled from four binary matrices. These matrices are
masks where a matrix element equals 1 if it is part of the domain stored by the matrix and
0 otherwise. The masks are of size (2R0+1)× (2R0+1). The domains of the cell’s reflective
surfaces are marked red in Figure 2 and are stored in a mask called R. These reflective
surfaces are Neumann boundaries which have a zero flux. The green domains in Figure 2
are the receptors and are stored in a mask called G. The receptors are perfect sinks [3]
and are therefore Dirichlet boundaries with a concentration of 0. The large blue domain is
the area where the concentration maintains at a constant value C0 and is stored in a mask
called B. This blue domain contains Dirichlet boundaries with a concentration of C0. The
spatial points for which the concentration is updated, using the diffusion equation (2.4),
are part of the orange domain in Figure 2 and are stored in mask O.

To find the domains shown in Figure 2, first all the points of the cell’s surface need to
be identified. These surface points are found as follows:

• First, all the cell’s interior points where found including the points on the cell’s sur-
face. A point (j, k) was defined as being an interior point if

√
(j −R0)2 + (k −R0)2 ≤

Rcell + 0.5. These interior points form a circular like shape in the middle of the
(2R0+1)× (2R0+1) sized masks.

• Secondly, a point was defined to be part of the surface of the cell, if it is an interior
point with at least one neighbouring exterior point.

Now using the cell’s surface points, the domains of the receptors and the reflective cell
surfaces is found as follows:
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• A function θ(x, y) is defined that gives the radian angle between the line from the
center of the cell (j0, k0) to a point (j, k) and the line from (j0, k0) to a point with
x-coordinate j0 and a y-coordinate which is larges than k0.

• If θ(x, y) is between certain values at a point on the cells surface, that point part of
the receptor domain stored in mask G.

• The domains of the reflective cell surfaces stored in mask R, are all the points that
are part of the cell’s surface but not part of the domains of the receptors in mask G.

The domain in mask B, which contains all the points where the concentration stays
stable at C0, was found in a similar way as the domain of the interior points of the cell.

• A point (j, k) in mask B is 1 if
√

(j −R0)2 + (k −R0)2 ≥ R0 and 0 otherwise.

Lastly, the orange domain is obtained;

• All spatial points that are not part of the blue, red and green domain in Figure 1 and
not part of the interior of the cell, are stored as 1 on mask O. All other elements in
mask O are 0.

The diffusion equation (2.4) is used to update points that are not Dirichlet boundary,
Neumann boundary or interior points of the cell. For this a matrix u is used. For matrix u,
the concentrations at the Dirichlet boundaries are kept constant. The Dirichlet boundary
points in the domains of the receptors, green in Figure 2, have a concentration of zero and
the Dirichlet boundary points in the domain of the bulk constant, blue in Figure 2, have
a concentration of C0. The diffusion equation (2.4) can be expressed numerically by using
the forward difference derivative[6]. The left hand side of the diffusion equation (2.4) can
be approximated as

dC(xj, yk, t)

dt

∣∣∣∣
t=tn

≈
C

(n+1)
j,k − C

(n)
j,k

h
. (3.6)

Here, C
(n)
j,k = C(xj, yk, tn) is the concentration at spatial point in u, h is the step size and

n the number of time steps.
Using a finite difference approximation for the second order derivative [6], the right

hand side of the diffusion equation can be rewritten as

D∇2C
(n)
j,k = D

(
d2C

(n)
j,k

dx2
+

d2C
(n)
j,k

dy2

)
(3.7)

≈ D

a2

[
C

(n)
j+1,k + C

(n)
j−1,k + C

(n)
j,k+1 + C

(n)
j,k−1 − (4−NBj,k)C

(n)
j,k

]
. (3.8)
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Here, NBj,k is the number of neighbouring Neumann boundaries of site (j, k). Combining

equations (3.6) and (3.8) leads to the following expression for C
(n+1)
j,k .

C
(n+1)
j,k = C

(n)
j,k +

hD

a2

[
C

(n)
j+1,k + C

(n)
j−1,k + C

(n)
j,k+1 + C

(n)
j,k−1︸ ︷︷ ︸

Concentration flowing in

− (4−NBj,k)C
(n)
j,k︸ ︷︷ ︸

Concentration flowing out

]
(3.9)

This equation updates the spatial points in matrix u which are part of the domain stored
in mask O. Updating these points is done while keeping the concentrations of the Neu-
mann and Dirichlet boundary points, which are stored in masks R, G and B, fixed. The
concentration C

(n+1)
j,k is the updated concentration of the previous time step C

(n)
j,k . The first

four terms between the bracket are proportional to the concentration flowing into site (j,k)
from neighbouring sites and the remaining terms between the brackets are proportional
to the concentration flowing from site (j,k) to its neighbouring sites. If one or more of
the neighbouring sites of site (j, k) are Neumann boundaries, NBj,k will be larger than 0
and less concentration will flow out. Also, the Neumann boundary sites in matrix u are
zero, meaning that no concentration is flowing into site (j, k) from the Neumann boundary
either.

3.3 Numerical Solution of the Diffusion Equation where D1 ̸= D2

In the previous section the diffusion equation was solved numerically for the case when
D = D1 = D2. Now that model is expended to allow for the case when D1 ̸= D2. For this
case, three additional domains are required. The domain where D = D1 (pink in Figure
3) and the domain where D = D2 (yellow in Figure 3) are stored in masks. Furthermore,
a mask containing the points between to two diffusion domains is needed which is marked
black in Figure 3. Besides the updating equation (3.9), an additional updating equation
is needed for spatial point that are part of the diffusion boundary layer between the two
diffusion constant domains.
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Figure 3: Spatial discretization of a two dimensional cell with multilayer diffusion.
The red area is where the cell’s surface is reflective and the green area is absorbing. The con-
centration is kept constant in the blue area. The black area is the diffusion boundary layer. The
yellow area on the inside of the diffusion boundary layer has a diffusion constant D2. The pink
area outside the diffusion boundary layer has a diffusion constant D1.

When the diffusion constant is not the same everywhere, the spatial descretization has
three additional domains which can be seen in Figure 3. The black domain in Figure 3
is the diffusion boundary layer and its location is stored in a mask called L. The domain
where D = D1 is pink and the domain where D = D2 is yellow in Figure 3. These two
domains are stored in the masks P and Y respectively.

The addition domains mentioned above are obtained as followed:

• First, a circle is made that includes all points (j, k) for which the following condition
holds

√
(j −R0)2 + (k −R0)2 ≤ Rcell + d + 0.5. Here d is the distance between the

cell’s surface and the diffusion boundary layer.

• If a point inside the circle with one or more neighbouring points outside the circle is
part of the diffusion boundary layer and is stored as a 1 in mask L.

• The remaining points inside the circle, that are not part of the cell’s surface or the
interior of the cell, are part of the yellow domain where D = D2. This domain is
stored in mask Y.

• A point outside the circle that is not part of the blue domain in Figure 3, is part of
the pink domain where D = D1. This domain is stored in mask P.

When (j, k) is not a point in the domain of the diffusion boundary layer, the equation
that updates the concentration of points in matrix u is (3.9). This is the same equation
as for the case without a diffusion boundary layer. However, for the model that includes

12



diffusion boundary layers, the D in equation (3.9) is D1 for a point (j, k) in the pink domain
or D2 if (j, k) is a point in the yellow domain as can be seen in Figure 3.

If (j, k) is a point on the diffusion boundary layer a few more conditions apply [5]. The
diffusion flow between a diffusion boundary point (j, k) and a point where D = D1, has
diffusion constant D1. If that point has D = D2, the diffusion constant is D2 [5]. This
condition can be seen in equation (2.5). The flow between two points on the diffusion
boundary layer has a diffusion constant of D = Dav = (D1 + D2)/2. Figure 4 shows an
enlarged part of the diffusion boundary layer from Figure 3. This enlarged image shows
which diffusion constant is used where at the diffusion boundary layer.

Figure 4: Diffusion boundary layer point showing the diffusion constants of the
diffusion flow between neighbouring points. The black domain is part of the diffusion
boundary layer, the yellow domain has that D = D2 and the pink domain has that D = D1.

To fill these conditions, a matrix D is compiled using mask L which contains the
diffusion boundary layer, masks P which contains the domain where D = D1, mask Y
which contains the domain where D = D2, mask G which contains the receptors and mask
B which contains the domain of the bulk concentration. An element in matrix D has a
value of D1 if it is part domain stored in mask P or mask B, D2 if it is part of the domain
stored in mask Y or mask G and D = Dav = (D1 + D2)/2 if it is of the domain stored
in mask L. All other elements in matrix Using the diffusion equation (2.5) for multiple

layers for different D, the expression for C
(n+1)
j,k for points at the diffusion boundary layer

becomes
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C
(n+1)
j,k = C

(n)
j,k +

h

a2

[ Concentration flowing in︷ ︸︸ ︷
Dj+1,kC

(n)
j+1,k +Dj-1,kC

(n)
j−1,k +Dj,k+1C

(n)
j,k+1 +Dj,k-1C

(n)
j,k−1

− (Dj+1,k +Dj-1,k +Dj,k+1 +Dj,k-1)C
(n)
j,k︸ ︷︷ ︸

Concentration flowing out

]
(3.10)

where Dj,k is an element of matrix D. For all other spatial points in u that are not part
of the diffusion boundary layer, the concentration is updated using equation (3.9) where
D = D1 if they part of the domain stored in mask P and D = D2 if they are part of
the domain stored in mask Y. In equation (3.10), no NBj,k term is needed. Instead, if a
neighbouring site is a Neumann boundary, that point will be zero in matrix D. Therefore,
no concentration will flow in or out of the Neumann boundary point.

3.4 Obtaining the diffusion current numerically

The diffusion current is obtained by summing up the flux in the normal direction of the cell’s
surface, for each absorbing element on the cell’s surface. Due to the spatial discretization,
the normal direction of the cell’s surface is either n̂ = x̂ or n̂ = ŷ as can be seen in Figure
2. To find expressions for the flux, equation (2.2) was approximated using forward and
backward difference derivatives. The components of the flux in the normal direction that
were summed up are;

j(n)x (j, k) = −D

a2

(
C

(n)
j+1,k − C

(n)
j,k

)
if (j + 1, k) is an absorbing site, (3.11)

j(n)x (j, k) = −D

a2

(
C

(n)
j,k − C

(n)
j−1,k

)
if (j − 1, k) is an absorbing site, (3.12)

j(n)y (j, k) = −D

a2

(
C

(n)
j,k+1 − C

(n)
j,k

)
if (j, k + 1) is an absorbing site, (3.13)

j(n)y (j, k) = −D

a2

(
C

(n)
j,k − C

(n)
j,k−1

)
if (j, k − 1) is an absorbing site. (3.14)

Here, the diffusion constant is D = D2 if D1 ̸= D2, else D = D1 = D2.
The sum of the flux over all the cell’s absorbing boundary points gives the numerical

value for the diffusion current I. For this thesis, the aim was to find the stationary flux. It
takes some steps for a concentration to reach the cells surface and even more time for the
flux to reach a stable value. The number of times steps needed to reach a stationary flux
depends on the variables Rcell, R0, d, D or D1 and D2 and the distribution of receptors. I
considered the total flux stationary if during the last 10% of time steps n the flux would
change with less than 10−4. More on how long it takes to reach a steady state can be seen
in Appendix B.
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4 Results and Discussion

The aim of this thesis was to obtain the flux into a two dimensional cell. For the case
when the cell’s surface is fully absorbing, the flux is determined both numerically and
analytically. This section will start with the results for a fully absorbing cell both for the
case where D = D1 = D2 and D1 ̸= D2. Secondly, it will show the results for the flux of a
cell that has receptors on it surface through which diffusion takes place.

For the units, the concentration is in particles/length2, the diffusion constant is in
length2/time and the diffusion current is in particles/time. The values for the diffusion
constants were chosen so that the system would remain stable which was for hD ≤ 0.25
with a set to 1. The value for the bulk concentration was decided to be 20.

The numerically and analytically obtained diffusion current for a fully absorbing cell for
different radii is plotted in Figure 5. The difference between Rcell and R0 remained the same
while Rcell was increasing. In Figure 5(a), the diffusion constant is D = D1 = D2 = 2.0
and in Figure 5(b) D2 < D1 where D1 = 2.0 and D2 = 1.0. In Figure 5, it can be seen that
the diffusion current depends linearly with the radius of the cell Rcell. This was expected
since the equations (3.4) and (3.5) for the diffusion current has a linear dependency on
Rcell. Additionally, it can be seen that the diffusion current is less for the case D2 < D1

than when D = D1 = D2.
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(a) D = 2.0.
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(b) D2 = 1.0, D1 = 2.0.

Figure 5: The numerically and analytically obtained diffusion current for models
with different distances between the cells surface and the outer Dirichlet boundary.
The step size is h = 0.1 and the concentration at R0 is C0 = 20. The cell’s surface is absorbing
everywhere. The intensity is plotted versus the radius of the cell, Rcell. (a) has the same diffusion
constant D = 2.0 everywhere and (b) has diffusion constant D2 = 1.0 within a distance d = 3 of
the cells surface and a diffusion constant of D1 = 2.0 elsewhere.

The plots in Figure 6 show the numerical and analytical I/Imax for a model where either
D1 or D2 is increasing while either D2 or D1 remain constant respectively. Here, I is the
diffusion current for an increasing D1 in Figure 6(a) and for an increasing D2 in Figure
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6(b) and Imax is the maximum diffusion current obtained for I. Notice that Imax in Figure
6(a) is not the same as the Imax in Figure 6(b).

In Figure 6 it can be seen that if one of the diffusion constants is 0, the diffusion current
is 0. Additionally, for a changing D2, I/Imax reaches a value of 1/2 for a much lower value
for D2 than that D1 needs to be to reach I/Imax = 1/2 for the case when D1 is changing.
This is because with d = 1, the domain where D = D2 is smaller than the the domain
where D = D1. When d approaches a value of R0 −Rcell this effect is reversed.
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(a) D2 = 1 and D1 increases from 0 to 2.
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(b) D1 = 1 and D2 increases from 0 to 2.

Figure 6: Numerically and analytically obtained diffusion current where either D1

or D2 is held constant while the other diffusion constant is increasing. The radius of
the cell is Rcell = 10, the radius of the outer Dirichlet boundary is R0 = 20, step size is h = 0.1
and the distance between the cells surface and the diffusion boundary layer is d = 1. In (a)
D2 = 1 and D1 is increasing from 0 to 2.0 and in (b) D1 = 1 and D2 is increasing from 0 to 2.0.

For both Figures 5 and 6, the analytical and numerical results do not give the same
values, although they are close. The difference between the numerically and analytically
obtained diffusion current was up to 2.0% for D = D1 = D2 and up to 5.5% for D1 ̸= D2 for
the results shown in Figures 5 and 6. This is to large to be caused by only truncation and
round off errors. Therefore, the main source of error comes from the spatial discretization
of the model.

The plots in Figure 7 show I/Imax for different number of receptors. Here, Imax is the
diffusion current of a fully absorbing cell and I is the diffusion current of a cell where and
increasing number of receptors are either evenly spread out over the entire surface, evenly
spread out over half of the surface or evenly spread out over a quarter of the surface. This
was done to see how the diffusion current is affected by the positioning of the receptors.
More specifically, we were interested in the difference between the diffusion current that
occurs when receptors are spread out over the whole surface and the diffusion current
that occurs when receptors are clustered together. The diffusion currents for these three
receptor patterns were obtained for the cases where D1 = D2, D1 < D2 and D1 > D2.

16



0 20 40 60 80 100
Absorbing part of the cells surface in percentage

0.0

0.2

0.4

0.6

0.8

1.0

I /
 I m

ax

Full
Half
Quarter

(a) D1 = D2 = 2

0 20 40 60 80 100
Absorbing part of the cells surface in percentage

0.0

0.2

0.4

0.6

0.8

1.0

I /
 I m

ax

Full
Half
Quarter

(b) D1 = 0.2, D2 = 2

0 20 40 60 80 100
Absorbing part of the cells surface in percentage

0.0

0.2

0.4

0.6

0.8

1.0
I /

 I m
ax

Full
Half
Quarter

(c) D1 = 2, D2 = 0.2

Figure 7: Numerically obtained diffusion current for a cell with an increasing num-
ber of receptors in it surface. The receptors are either spread out evenly over the entire
surface, half of the surface or a quarter of the surface. The size of the receptors was 1/40 part
of the circumference of the circle, the radius of the cell was Rcell = 20, the radius of the outer
Dirichlet boundary is R0 = 30, the distance between the cell’s surface and the diffusion boundary
layer is d = 2, the bulk concentration at the outer Dirichlet boundary is C0 = 20 and the step
size was h = 0.1. In (a) D1 = D2 = 2, in plot (b) D1 = 0.2 and D2 = 2 and for (c) D1 = 2 and
D2 = 2.0.

In Figure 7, it can be seen that for all cases the diffusion current is less when the recep-
tors are clustered together. Furthermore, when the diffusion constant within the diffusion
boundary layer is smaller than the diffusion constant outside the diffusion boundary layer,
D1 > D2, more receptors are needed for the diffusion current to reach half of Imax. When
D1 < D2, the least number or receptors are needed to reach a diffusion current of Imax/2.
Hence, when D2 < D1 receptors can take in particles less efficiently than when D2 ≤ D1.
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5 Summary and Outlook

During this thesis, the diffusion current into a cell was obtained numerically and ana-
lytically. The main objective was to find how multilayer diffusion affects the diffusion
current. For the case when the cell is fully absorbing, the diffusion current was obtained
both numerically and analytically. When the cell is not fully absorbing and instead has
receptors on its surface through which absorption takes place, the diffusion current was
only obtained numerically. It was found that for the fully absorbing case, the numerical
and analytical method agreed with one an other. Additionally, for the case where diffusion
takes place through receptors, it was shown that the placement of receptors affected the
diffusion current. Also, the ratio between D1 and D2 influenced the number of receptors
needed to reach Imax/2. More specifically, when D2 < D1 receptors can take in particles
less efficiently than when D2 ≤ D1.

To expand on what was done in this thesis, one could try and find the analytical solution
for the diffusion current for a two dimensional cell with receptors on its surface, both for the
case where D = D1 = D2 and D1 ̸= D2. In the paper Physics of Chemoreception by Berg
and Purcell, to obtain the diffusion current of a three dimensional cell with equidistant
distributed receptors on its surface, first expressions of the diffusion current of a fully
absorbing cell and the diffusion current through a circular receptor on a flat surface were
obtain separately [3]. This model did not include multilayer diffusion. They then solved
for the diffusion current by using an analogous problem in electrostatics [3]. To solve
the two dimensional model in a similar way, one would need to find an expression for a
diffusion current through a gap in a straight line. This expression can then be combined
with the equation for a fully absorbing two dimensional diffusion current, Imax. This
maximum diffusion current for the cases with and without multilayer diffusion, can be
seen in equations (3.5) and (3.4) respectively.

Another thing that could be done is expanding the model from two dimensions to three
dimensions. A three dimensional model would more closely resemble real live situations.
Obtaining the diffusion current numerically for a three dimensional model would require
more computational effort and would take longer to run than the two dimensional method.
To avoid this problem, one could find the diffusion current of a three dimensional cell
with multilayer diffusion analytically. An expression for such a model without multilayer
diffusion is already obtained by Berg and Purcell [3].

In this thesis, the topic of how geometric arrangements of receptors affect the diffusion
current was briefly touched upon. For the three dimensional case, this has been investigated
previously, but the effect of multilayer diffusion was not taken into account [7, 8]. A three
dimensional model would significantly increase the time it takes to compute the diffusion
current numerically using the diffusion equation.

An other way of finding the diffusion current numerically is by using random walkers
simulations instead of solving the diffusion equation. Depending on the number of random
walkers used, this method could be faster than solving the diffusion equation numerically
as was done in this thesis project.

Hopefully this thesis project will inspire further work on how multilayer diffusion and
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geometric arrangements of receptors affect cellular uptake and activation.
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A Derivations

In this section, the diffusion current is derived analytically both for a system with and
without multilayer diffusion. First, an expression for the concentration is found. From the
concentration, the flux is obtained. Than the flux is used to find an expression for the
diffusion current.

The concentration of a system will reach a steady state system such that dC(r)/dt = 0
where C(r) is the concentration at a distance r from the center. Considering equation (2.4)
this means that

∇2C(r) = 0. (A.1)

Using polar coordinates, the above equation gives the following.[9]

1

r

d

dr
r
dC(r)

dr
= 0 (A.2)

This can be rewritten as
1

r

(
r
d2C(r)

dr2
+

dC(r)

dr

)
= 0. (A.3)

Now a change of variable was made;

dC(r)

dr
= v(r) =⇒ d2C(r)

dr2
=

dv(r)

dr
. (A.4)

When plugging this into equation (A.3) the following is obtained.

1

r

(
r
dv(r)

dr
+ v(r)

)
= 0 =⇒ dv(r)

dr
= −v(r)

r
=⇒

dv(r)
dr

v(r)
= −1

r
. (A.5)

Now, both sides are integrated. This results in the following expression.

∫ dv(r)
dr

v(r)
dr = −

∫
1

r
dr =⇒ ln(v(r)) = − ln(r) + A1 =⇒ ln(v(r)r) = A1 (A.6)

Here, A1 is an unknown constant. From this, an expression for v(r) is obtained,
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v(r) =
A2

r
(A.7)

where A2 is an unknown constant. From the previous change of variable, this expression
for v(r) gives

dC(r)

dr
= v(r) =

A2

r
. (A.8)

Integrating both sides gives an expression for C where A3 is an unknown constant;∫
dC(r)

dr
dr =

∫
A2

r
dr =⇒ C(r) = ln(r)A2 + A3. (A.9)

Now, using boundary conditions, this general expression can be used to find an expres-
sion for the concentration. The radius of the cell is Rcell and the radius of the Dirichlet
boundary is RC0 . The boundary conditions are r = Rcell → C(Rcell) = 0 and r = R0

→ C(R0) = C0 where C0 is a constant concentration at the Dirichlet boundary. When
r = Rcell the general expression for C(r) becomes

C(Rcell) = A2 ln (Rcell) + A3 = 0 =⇒ −A2 ln(Rcell) = A3 (A.10)

and at r = R0 it gives

C(R0) = A2 ln(R0) + A3 = C0 =⇒ −A2 ln(R0) + C0 = A3. (A.11)

Combining the two equation above leads to the following expressions for A2 and A3.

A2 =
C0

ln( R0

Rcell
)

A3 = −C0 ln(Rcell)

ln( R0

Rcell
)

Putting this into the expression for C(r) of equation (A.9), the expression for C(r) becomes

C(r) =
C0

ln( R0

Rcell
)
(ln(r)− ln(Rcell)). (A.12)

To get the flux, this expression for C(r) is put into equation (2.2).

J = −D∇C(r) = −D
dC(r)

dr
r̂ (A.13)

Here, r̂ is the unit vector in the direction pointing away from the center of the cell. The
flux of the system for Rcell < r < R0 is

J(r) = − DC0

ln
(

R0

Rcell

) d

dr
ln(r)r̂ = − DC0

r ln
(

R0

Rcell

) r̂. (A.14)
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Using equation (2.1), the diffusion current through the cells surface for a system with a
constant D is found to be

I =
2πDC0

ln
(

R0

Rcell

) . (A.15)

Now the same way for a system with containing two diffusion constants. For this system
there is an unknown concentration C1 at r = Rcell + d where d is the distance between
the cell’s surface and the diffusion boundary layer. As with the case for the constant D
the concentrations at the Dirichlet boundaries are C(Rcell) = 0 and C(R0) = C0. When
Rcell + d ≤ r < R0, D = D1 and when Rcell < r ≤ Rcell + d, D = D2. Now equation (A.9)
is used for the above boundary condition at r = Rcell + d.

C(Rcell + d) = ln(Rcell + d)A2 + A3 = C1 (A.16)

For the case where Rcell+d ≤ r < R, combining the equation for C(Rcell+d) and equation
(A.11) for C(R0), expressions for A2 and A3 can be obtained.

A3 = C0 − ln(RC0)A2 = C1 − ln(Rcell + d)A2 (A.17)

=⇒ A2 =
C1 − C0

ln
(

Rcell+d
R0

) =⇒ A3 = C0 − ln(R0)
C1 − C0

ln
(

Rcell+d
R0

) (A.18)

Plugging these two values into equation (A.9), the expression for the concentration in the
region Rcell + d ≤ r < R0 is obtained.

C(r) = C0 +
(C1 − C0) ln

(
r
R0

)
ln
(

Rcell+d
R0

) if Rcell + d ≤ r < R0 (A.19)

Now, equation (A.13) is used to find the flux.

J(r) = −D1(C1 − C0)

ln
(

Rcell+d
R0

) d ln(r)

dr
r̂ = −D1(C1 − C0)

r ln
(

Rcell+d
R0

) r̂ if Rcell + d ≤ r < R0 (A.20)

For the case Rcell < r ≤ Rcell + d equations (A.10) and (A.16) are used to obtain A2 and
A3.

A3 = − ln(Rcell)A2 = C1 − ln(Rcell + d)A2 (A.21)

=⇒ A2 =
C1

ln
(

Rcell+d
Rcell

) =⇒ A3 = − ln(Rcell)C1

ln
(

Rcell+d
Rcell

) (A.22)
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These values for A2 and A3 give the following expression for the concentration;

C(r) =
ln
(

r
Rcell

)
C1

ln
(

Rcell+d
Rcell

) if Rcell < r ≤ Rcell + d. (A.23)

The same way as before, equation (A.13) was used to find the flux.

J(r) = − D2C1

ln
(

Rcell+d
Rcell

) d ln(r)
dr

r̂ = − D2C1

r ln
(

Rcell+d
Rcell

) r̂ if Rcell < r ≤ Rcell + d. (A.24)

Now the matching conditions from equations (2.6) and (2.7) are used to find an ex-
pression for C1. Equation (2.7) gives the following condition for C which only depends on
r;

D1
d

dr
CRcell+d≤r<R0(r)

∣∣∣
r=Rcell+d

= D2
d

dr
CRcell<r≤Rcell+d(r)

∣∣∣
r=Rcell+d

(A.25)

=⇒ D2C1

(Rcell + d) ln
(

Rcell+d
Rcell

) =
D1(C1 − C0)

(Rcell + d) ln
(

Rcell+d
R0

) (A.26)

Rewriting the above equation gives the following expression for C1 for which the condition
of equation (2.7) holds.

C1 =
C0D1 ln

(
Rcell+d
Rcell

)
D1 ln

(
Rcell+d
Rcell

)
−D2 ln

(
Rcell+d

R0

) . (A.27)

Equation (2.6) gives the following condition;

CRcell+d≤r<R0(Rcell + d) = CRcell<r≤Rcell+d(Rcell + d) (A.28)

=⇒ C0 +
(C1 − C0) ln

(
Rcell+d

R0

)
ln
(

Rcell+d
R0

) =
ln
(

Rcell+d
Rcell

)
C1

ln
(

Rcell+d
Rcell

) . (A.29)

To see if the expression for C1 as shown in equation (A.27) holds for the above condition,
the expression for C1 is put into equation (A.29).

C0 +
C0D1 ln

(
Rcell+d
Rcell

)
D1 ln

(
Rcell+d
Rcell

)
−D2 ln

(
Rcell+d

R0

) − C0 =
C0D1 ln

(
Rcell+d
Rcell

)
D1 ln

(
Rcell+d
Rcell

)
−D2 ln

(
Rcell+d

R0

) (A.30)
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Since the left and right hand side of the above equation are equal to each other, the
condition of equation (2.6) holds for the expression for C1 in equation (A.27).

Now, equation (2.1) is used to find the diffusion current. This gives the following
expressions for the diffusion current I for a model with two different diffusion currents.

I(r) =


2πD2C1

ln
(

Rcell+d

Rcell

) , if Rcell < r ≤ Rcell + d

2πD1(C1−C0)

ln
(

Rcell+d

R0

) , if Rcell + d ≤ r < R0

0, otherwise

(A.31)

When plugging in the expression for C1, it can be found that IRcell<r≤Rcell+d = IRcell+d≤r<R0 .
This leaves the following expression for the diffusion current for a system with two diffusion
currents.

I(r) =
2πD1C0

D1/D2 ln
(

Rcell+d
Rcell

)
+ ln

(
R0

Rcell+d

) (A.32)

B Run time and time to steady state

As mentioned in section 3.4, diffusion current is the total flux through the cell’s surface
once the flux has met some criteria for stability. The number of steps n needed to reach a
stationary flux depends on the distance between the cell’s surface and the outer Dirichlet
boundary, the number and the position of receptors, the diffusion constant or constants,
step size h and the size of the system. The size of the system also affects the number of n
needed but this effect is relatively small.

How different number of receptors that are evenly spread out of the cells surface affect
the number of time needed to reach a stationary flux can be seen in Figure 8. Here,
D = D1 = D2 = 2, Rcell = 20 and R0 = 30. The I/Imax of this set up can be seen in Figure
7(a). The time it took to run for each number of receptors was between 2-3.5 minutes.
The computer used to solve the diffusion equation numerically has an Intel Core i5.

23



0 500 1000 1500 2000 2500
Number of steps n

0

100

200

300

400

500

600
Di

ffu
sio

n 
cu

rre
nt

 I
Absorbing = 2.6%
Absorbing = 12.5%
Absorbing = 21.4%
Absorbing = 31.2%
Absorbing = 41.0%
Absorbing = 51.7%
Absorbing = 61.6%
Absorbing = 73.2%
Absorbing = 83.0%
Absorbing = 92.8%
Absorbing = 100.0%

Figure 8: Numerically obtained diffusion current for different number of receptors
over time. The coverage is the percentage of the cell that is covered by absorbing patches. The
diffusion current is of a cell with an increasing number of receptors on its surface. The cell’s
radius is Rcell = 20, the outer Dirichlet boundary is R0 = 30, the diffusion constant is D = 2,
step size is h = 0.1 and the absorbing patches have a length of 1/40th of the cell’s circumference.

As mentioned above, the time it takes to run strongly depends on the diffusion constant.
For a set up that is the same as that was used to obtain the results in Figure 8 but with
D1 = 0.2, it takes longer to run. The time it takes to run is between 5-16 minutes,
depending on the number of receptors. The I/Imax that was obtained for this set up can
be seen in Figure 7(b).

Additionally, the distance between between the cell and the bulk concentration and the
size of the system affect the run time. For the case where the cell is fully absorbing, where
the difference between the cell and the bulk concentration is 5 and D = 2, from which the
result can be seen in Figure 5(a), the run time was between 4 and 14 seconds. Here, the
larger the cell’s radius, and therefore the larger the system as a whole, the longer it took.
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