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1 Abstract

Netatmo is a brand of private weather stations that over the past decade, in many countries,
have grown to outnumber the number of government based weather stations. In most fields
of research, a high number of data points can increase accuracy and precision. For a weather
forecast, the more weather condition throughout an area the forecasters know about, the better
the forecast. All of Sweden is the area of focus for this thesis.

Weather forecasts is an important function in any society, and even crucial for certain indus-
tries that are dependent of weather patterns one way or another. Therefore, if additional data
points could be added to weather forecast algorithms, likely improvements of a weather systems
predicted track and development could be done (such as; will there be rain? When and how
much?). Therefore it makes sense to investigate the basic usefulness of private weather stations.

This bachelor project was built around investigating and evaluating Netatmo stations in Swe-
den. Netatmo stations are capable of measuring a couple of different types of parameters, namely
pressure, temperature, wind strength and direction, precipitation and relative humidity. Precip-
itation is the selected parameter for this thesis. To this date, precipitation is less investigated
in the scientific community, in comparison for example to temperature, which has a rather well
evaluated accuracy.

The aims was to evaluate if it is worth doing further investigations of the Netatmo weather
station network. The preliminary results provided by this bachelor project show some problems
with the precision of the rain gauge featured with Netatmo, but the upside of having so many
more points of data show some promise. Especially when handling the data from a statistical
approach.



2 Introduction

Professional weather forecasting is, in most countries, retrieved from weather stations owned by
the country’s governing forecasting agency. Buying, setting up and maintaining these stations
is quite expensive, which is why these stations are limited in number. However, over the past
decade, private weather stations have become more and more popular. This thesis has made
an investigation of the Netatmo weather stations, which is a popular alternative in the private
weather station market.

While the Netatmo stations come with multiple challenges in terms of both precision and
accuracy, the outnumbering of the professional stations is in itself a good argument to look in to
how these private stations might be utilized for professional forecasting runs. In particular, it can
be theorized that a higher spatial fidelity of data points might be useful for more local weather
forecasts. There may be other reasons to make evaluations of these stations, like for marketing
purposes; how well does Netatmo station data perform in comparison to professional stations?
Having such generic ”benchmark tests” could be valuable in the future. It is fully possible that
future implementations of data will be done in ways that one can not foresee today, and that
they could make use of such "benchmark tests”.

All parameters (pressure, temperature, wind strength and direction, precipitation and relative
humidity) a fully equipped Netatmo weather station is able to collect data of come with a range
of difficulties in accuracy. If positioned over a surface consisting of anything else that the best
practice entails like asphalt as an example, temperatures will likely be measured to be higher
than expected. If positioned too high or too low above the ground also plays a roll, winds could
become too strong, too weak or too turbulent. Other, perhaps less expected issues, may occur
as well. An example of this is getting lag time. The Netatmo stations have a temperature sensor
casing, which adds to the time the sensor itself measures the temperature, as heating is slightly
slowed down. This lag time is decreased if the casing is removed by around ten minutes, which is
not an insignificant time span [3]|. In turn, this may be part of explaining why mean temperature
in the morning is lower than for a station measuring temperature managed by a professional
agency, in this case the UK Met Office.

For this thesis, the precipitation parameter appeared to be a good candidate to analyze.
Searching and evaluating available papers that had investigated Netatmo revealed that precipi-
tation was not as well investigated compared to other parameters.

Measuring precipitation correctly can be difficult under certain conditions. For example,
if there are very strong winds, a rain gauge device (which is what Netatmo stations can be
equipped with) may miss a lot of the rainfall, as precipitation may fall from a strong angle.
But precipitation is also known as one of the parameters that needs additional evaluation and
investigation [1]. It should also be noted that a Netatmo rain gauge does not measure all types
of precipitation, only rain, as it is lacking a heated sensor or any other function that can melt
solid precipitation. Since Sweden is a long country, about 1572 km between the most northern-
and southern points, the temperatures and climate can differ a lot. Local variations can also be
prominent, with rain or snow depending on location of the station. This needs to be taken in to
consideration when evaluating rain data.

Being able to accurately measure precipitation has a direct societal importance, like making
farming predictions, get an understanding of water reserves etc. Long term understanding how
precipitation may change as an effect of climate change is also of great importance. 6]

The Netatmo-data was analyzed in relation to data from SMHI (Swedish Meteorological and
Hydrological Institute, operating under the Swedish Ministry of the Environment), as gathered by
professionally set up and maintained stations that are able to measure precipitation. Overarching
questions, like how single Netatmo stations compare to single SMHI station(s), and how a large
number of stations averages compare to one another, was a starting point for this thesis.



SMHI’s stake in the thesis was to get an understanding, or at least indication, if it is worth
investing time and money making further investigations of the usability of Netatmo stations.
And, if possible, get an idea of what areas in weather forecasting (and climate research) the data
may show a useful potential.



3 Background

To make accurate forecast runs, various types of data is essential to solve the equations that most
forecast algorithms work with. Temperature, pressure, and relative humidity are parameters
that the basic version of the Netatmo weather station measures on top of this. A buyer may
add instruments to measure precipitation (rain only) and wind strength- and direction. But as
this comes with an extra monetary cost, not all stations will be able to provide data with these
parameters.

There are studies emerging that support the claim that the relatively new phenomenon of
crowd funded weather stations, such as Netatmo, indeed have an area of usefulness. However,
expected potential issues in over- and underestimations from readings are also highlighted. This
include, but are not limited to:

- general placement such as cover from a building or other high-reaching obstacle in certain

wind directions,

- not cleaning the tipping-buckets rain gauge properly from insects, twigs etc. that block
from water tipping,

- not levelling the device with the ground properly, or

- careless owners cleaning or handling the device may result in tipping-bucket tips, creating
measurements of artificial rain.

All of the above issues are discussed in [4].

In order to work with these unknown numbers of more or less faulty readings for private
weather stations, De Vos et al [11] created a quality control algorithm, working with time-
intervals where zero observations, high influxes and station outliers are flagged and handled. In
regards to the high density of stations, mainly in urban areas, areas with lower density of data
points are subject of lower accuracy. Consequently, the filter is not as successful in those areas.
Despite this, the filter was successfully tested with a 1-year data set of rainfall in the Netherlands,
and it was possible to construct a rainfall map over the country - showing good promise for using
private weather stations when measuring rainfall.



3.1 Rain gauges

A Netatmo rain-gauge collects water with the help of a tipping-bucket, as per Figure The
tipping-bucket design is one of the most common designs used across the world . On the inside,
it operates with the help of tilting buckets, as seen in Figure |2l When it rains, water makes the
buckets tilt and the number of bucket hits is measured using a magnet placed on the buckets. It
is a fully automated device [7].

Figure 2: The insides of a Netatmo rain
gauge.

Figure 1: The Netatmo rain gauge casing.

There are however a number of other devices and methods to measure precipitation. Manual
devices require that a bucket is emptied, whilst an automated empty itself one way or another.

SMHI manual stations are simplistic in nature, a jug (Figure [3)) is collecting precipitation .
Solid precipitation is brought inside, and is carefully melted in a controlled manner, in order to
avoid evaporation. The liquid water is measured in mainly the smaller of the measuring glasses
(in millimeter) from Figure [



Figure 3: A rain collector, used on manual Figure 4: Collected rain is measured man-
SMHI precipitation stations. ually using measuring glasses.

There exist other automated designs than the aforementioned tipping-bucket, like optical
devices. The basic principle of an optical rain gauge is that the refraction and absorption of an
optical ray is changed dependent on the amount of precipitation . The optical devices are used
by SMHI, but only as a proof-reading method to secure data measurments. The main type used
by SMHI is of the brand Geonor. With this, precipitation is measured using vibrating wire load
sensors. Anti-freeze liquid melts solid precipitation, eliminating the need for electrical heating,
which in itself can be a source error. A thin layer of oil will aid in preventing evaporation .

Figure 5: SMHI uses automated rain gauges of the brand Geonor. Depicted is model T-200B
on a stand, along with wind shields.



3.2 The wind effect

The most common and largest factor contributing to faulty readings of precipitation is the
wind [8]. Depending on wind conditions closer to the ground, the rain may fall with quite
an angle, depending on wind strength. This results in a deficiency of rain amount compared
to rain falling with irrelevant winds. During such events, (private) weather stations that are
not placed according to regular station placement practices [8], may receive less rain than it
should. Obstacles like trees, houses etc. that lie too close to the stations, can give the rain gauge
unwanted shelter. Nearby buildings or obstacles may also be problematic for the wind, as the
micro-meteorological scaled wind field might be affected, with up- and down drafts, unpredictable
turbulence and similar.

When it comes to the professional SMHI stations measuring snow, the precision is lower than
measuring rain, as snow is even more sensitive to winds than rain. However, winds do affect
professional stations as well. Using the Beaufort wind scale, in a class 3 wind (gentle breeze, 3.4
- 5.4 m/s) the loss for rain is 3.5% and for snow 8.5%. For a class 7 event (moderate gale, 13.9 -
17.1 m/s) 12% rain is not gathered, and 35% for snow [2]. The losses for a Netatmo station in a
windy scenario is not examined in this thesis.

3.3 Other sources of error and error mitigation

Adhesion is another source for receiving measuring errors (water getting stuck on the rain gauge
after emptying). Evaporation, frost (which, in Sweden, is not supposed to not be part of the
measurement) are other examples that may lead to faulty readings. Professionals emptying and
managing a rain gauge manually can mitigate these problems fairly well, especially minimizing
adhesion.

There are around 600 SMHI stations that measures precipitation, a majority of these are
being emptied manually. Only about 120 are automatic. These automatic stations are generally
at a higher risk of introducing errors [8]. Ways to mitigate these error sources naturally exist,
but may not be 100% perfect. Wind screens can for example be set up to help minimizing the
wind issues, like the Alter wind shield [2] that is used on self emptying precipitation stations.
While the Netatmo rain gauge does empty itself automatically, it does not have a wind shield.
These are factors that add potential errors in measurements.



4 Method

This project initially focused on monthly averages in order to get a more general and statistical
idea of station performance, comparing Netatmo-data with SMHI-data using temporal averages.
Looking specifically at precipitation, the given Netatmo-data ranging from 2015 to 2019, was
analyzed through statistical measurements as a function of a temporal range (daily, yearly...).
Python scripts were created in order to manage and visualize the data.

The main analyses consist of two parts, single station- and region comparisons. The two
methods share some conditions, like data must be recorded throughout the given period of 2016
- 2019 without interruptions, and also have a temporal range of one data point per month.

Gaining access to the Netatmo-data is a paid service, provided by SMHI. An issue this data
had was that December-data was unavailable, for all years. This was being worked on by SMHI-
personnel to retrieve, but the problem was not resolved for the duration of writing this thesis.
Therefore, the analysis is performed with data from December missing in the Netatmo data-set.

4.1 Single station comparisons

Being able to more directly compare Netatmo stations with professionally maintained stations
should give a good indication of Netatmo stations performances. In order to achieve this, a script
was first created to find Netatmo stations close to SMHI stations geographically. The latitude
was set to have a maximum distance of 1/111 of a nautical degree apart, which equals to a
maximum distance of 1 km latitude. Longitude condition had to be relaxed a bit, and was set
to 20 km. Calculated distances can be seen in table [II

Table 1
LOCATION | STATION DISTANCE (km)
Gunnarn A 2.5
Hofors 0.6
Komperod 194
Vargarda D 15.3

Distance between SMHI- and nearby Netatmo stations

Four candidate locations met all criteria, and were selected to be included in the study, as
per Figure [6]
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Figure 6: SMHI stations are shown with red dots, Netatmo stations blue.

The four stations

near Sodertdlje were cut, as they were lacking consecutive data in the range 2016 - 2019.

4.2 Region comparisons

Sweden was split in three regions, as per Figure a). The split is based on the rough, estimated
latitude of the regions in Figure b)7 which in turn is based on regional precipitation variability
and is utilized in climate research [5]. The motivation for this selection is simply to have some-
thing scientific and meteorological (or climatological) as a basis for the selection. The horizontal
latitudinal breaking points are simpler to program, compared to the more complex dashed lines

making up the regions in Figure b).
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Region 4

Region 1

(b) These regions have a similar precipita-
(a) SMHI stations split in to three regions. tion variability.

Figure 7: The latitudes of the regions split in (a) was selected to resemble the split of the regions

in (b)

SMHI stations split as follows: 61° >= latitude > 58.6°, giving a "north”, a "mid” and a
”south” region, with stations coloured red, orange and green respectively.

4.3 Netatmo script data structure

The Netatmo-data is structured in monthly folders. Each station, that for the most part rep-
resented by at least two csv-files, also comes with a json-file. The basic parameters a Netatmo
station records is temperature, relative humidity and pressure. Instruments to record wind and
precipitation (rain) may be purchased as extras, which is why there is less rain- and wind data
available in any month. The measured data in the csv-files can be seen in table[2]and an example
of filenames in Figure [0]
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Table 2

TYPE OF DATA | FILENAME SUBSTRING UNIT
Temperature outdoor ° Celcius
Relative humidity outdoor %
Pressure pressure hPa
Rain rain cm
Wind angle wind degrees
Wind speed wind km/h
Gust angle wind degrees
Gust speed wind km/h
Timestamp all data seconds

All data is marked with a Uniz timecode timestamp (which start counting time from 1970-01-01,
00:00). Some files contain multiple types of data, as seen in the "filename substring” column.

The metadata is stored in the json-files, with a nested structure as seen in Figure

json-file (station metadata)

N

Station (cipher) ID Place

RN

Country Altitude Location
Latitude Longitude

Figure 8: All nested data is in code represented as a dictionary datatype. The Figure showcase
each dictionary’s Key, apart from Latitude and Longitude, which are contained in a list, that list
being the Location Key’s Value.

An example of a typical station and its related data files can be seen in Figure [0} Each json-
file has a number in the filename. This number is, for each month, represented in each related
csv-file, and this is the only thing that links the json-file and csv-files. To complicate things,
this number is sometimes not consistent throughout the months. The script checks for and deals
with eventual changes of the number in the filename.
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460.outdoor.historic.csv

460.pressure.historic.csv

- —

460.metadata.json

460.wind.historic.csv

Figure 9: Blue lines represent standard measurements from a basic Netatmo station, red dotted
lines represent data from instruments that can be purchased as extras. The ”outdoor” csv contain
relative humidity and temperature. Note that it is possible for a station to not record the standard
measurements.

Being able to work with the data in a versatile manner, the scripts have been created to be
as flexible as possible. Although rain is the parameter this thesis focuses on, the idea was to
build a script in a way so any parameter can be processed and plotted, and then later analyzed.
While this feature is not fully met, a large portion of the Netatmo code-base is built as such,
only needing a few adjustments in order to operate on any other parameter.

Certain assumed issues and discrepancies in data have been taken in to consideration in the
code structure, like if the number in the filename is changed, or if a wanted station is lacking
data during a certain period of time. Being able to check if a station is changing its coordinates
over time was a wanted feature, but got cut due to lack of time.

After these filters are run, a list of stations having data that is more or less consecutive
throughout the period of 2016 - 2019, is used to perform the analysis. In order to achieve these
feats, the code has been structured as seen in Figure

Make lists of all Match filename-
foldernames number to station
metadata. Returnsa
Felevant sations Check temporal
consistency of data Return list containing
(monthly basis) dictionaries with all
T ining data

Enter:

- Root path

- Type of data e.g. "rain",

"pressure"” etc (optional). Check stations OPTIONAL
consistency in physical Return dicor listwith all
positioning (lat & long) stations that did not

OPTIONAL INPUT meet previous criteria
Filter stations on substring

Figure 10: High level block scheme of how Netatmo-data is managed, in order to make it easily
accessible for the purposes of this thesis. The box in red indicates a feature that was cut due to
lack of time.

The end ”product” using the script is a list, that contain a number of dictionaries, which
represents one month each (dictionaries and months are used interchangeably from hereon). Each
dictionary contain a Key and a Value. The Key is the stations unique Cipher ID. The Value

13



is a list, which consist of (in order of appearance): Path on disk, json-filename, and relevant
csv-filename(s), as seen in Figure

Inde & Type Size Value

str 1a C:/cygwingd/home/ ruck..

str 17

484 .rain.historic.csv

Figure 11: An example of how the dictionaries are structured, viewing the Values of a single
station. The Key, i.e. the stations Cipher ID, is not seen in the picture.

Making use of this now structured list of dictionaries, code was created to use the metadata
json-files from each station to split the full list into different regions. After the split, actual
data is loaded (see previously discussed in section ”Region comparisons” for more info). Next, a
separate code was created to calculate the region average for each consecutive month.

A similar approach was done with the individual stations. The structured list of dictionaries
is used to identify the Netatmo stations that were found to be close to one another (as discussed
in section ”Single station comparisons”). In code, this is done using the unique Cipher-ID. Then,
data from these relevant stations are being pulled, and similar to the regions, a monthly average
is being calculated.

4.4 SMHI-data structure

The SMHI-data was available in one single xlsx-file, as provided by SMHI. The data itself was
already accumulated monthly and generally more readily available than the Netatmo-data. The
code-base created ended up being functional, but unfortunately not as well structured and ver-
satile as the Netatmo code-base.

Most checks done for the Netatmo code-base was also performed for the SMHI code base,
like filtering out all stations that did not have data in every month for the time period of 2016
through 2019. A similar region-split was performed, and after that, a monthly average using all
stations in each region respectively was performed and plotted. The data from the four indi-
vidual, single stations, could simply be plotted outright, as this data already was presented as
monthly averages.

4.5 Excel and plots

As a final stage, the now calculated structure of the data was lifted in to Excel-sheets. This was
done as a quality-check step (to make sure the monthly averages from SMHI and Netatmo-data
were aligned by the right months, among other things). It was simply easier to get a good
overview of the Netamo- and SMHI-data listed next to one another in Excel, as seen in Figure
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GUNNARN A

DATE NETATMO SMHI manually
'16-01", 1.56 22.3
'16-02°, 10.918 34.5
'16-03", 15.895 17.4
'16-04", 59.697 52.9
'16-05", 26.642 22.3
'16-06", 48.294 66.6
'16-07", 35.661 A2.6
'16-08", 86.567 95.4
'16-09°, 22.742 20.5
'16-10°, 5.458 3.8
'16-11", 9.2 49

Figure 12: An excerpt from a spread sheet where monthly SMHI- and Netatmo data was listed.

Another sanity-check was made and tested on the southern region. Using the SMHI-data
original xlsx-file, averages from each month in the southern region was accumulated manually
and lifted into the Excel-data sheet containing the rest of the results. For the manual calculation,
each month would generally have a higher number of stations than what the script would use in
the analyzed data, as no condition for the stations being consecutive in every month was applied.
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5 Results

Plotted data ranges from January 1, 2016, with the last month being November 2019. As
previously mentioned, December was not available in Netatmo-data. These months are left
blank in the plots. The SMHI-data from December 2016 was removed in all comparisons with
Netatmo-data, in order to get a mutual ending point.

In Figure [I3] a comparison between using the SMHI code-base to get the southern region
average, and manually calculating the same directly from the SMHI xlsx Excel-file is plotted
(stations with incomplete data of the period 2016 - 2019 is removed with the script, but not with
the manual method, as discussed in the "Excel and Plots”-section).

Year
2016 2017 2018 2019 2020
. . . . .
—— SMHI manual calc.
100 41 —— SMHI code base calc.
80 1
E
E
[ =
S 60
i
‘a
g
o
o
40
20 1

Figure 13: Region south, plotting the region average from the SMHI Python script results, and
the manual calculation for the same averages, performed in Excel and plotted in Python.

It was noted that the number of Netatmo stations was, during the period of October 2015 to
October 2019 on a steep increase. As seen in Figure[15| (a) and (c), the total number of stations
have increased by over six times. The number of stations featuring a rain gauge out of these total
stations saw an increase of almost ten (9.6) times, as per Figure |15 (b) and (d). This number,
both total number of stations and stations featuring rain gauges, has most likely continued to
increase since.
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(a) Total number of Netatmo stations in  (b) In October 2015, 527 Netatmo stations
Sweden, October 2015, was 1962. were equipped with a rain gauge.

(c) Total number of Netatmo stations in  (d) In October 2019, 5058 Netatmo stations
Sweden, October 2019, was 11853. were equipped with a rain gauge.

Figure 15: (a) - (d) show Netatmo station growth from 2015 to 2019, both base package and
rain gauge only

The regional split of the SMHI stations can be seen in Figure a). The total number of
stations accumulating precipitation, having any readings in the selected time period for the
analysis, was 750. However, only 549 of these stations had data in each month. Out of the 549,
227 belongs to the north region, 148 in the mid region of 148 and 174 in the south region.

In Figures and [I8] SMHI and Netatmo monthly average data from all relevant stations
is plotted.
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Figure 16: The northern region, featuring monthly averages of Netatmo- and SMHI-stations
in Sweden, located with a latitude equal to or higher than 61. The summer months are generally
seen to have a more similar result than the rest of the year.

Year
2016 2017 2018 2019 2020
100 91 — Netatmo
— SMHI ‘
If
80 - J
E ‘
E . .
— 60 . ‘k i
c
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@ 40 | | \
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/ |
20 A
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Month

Figure 17: The mid region, featuring monthly averages of Netatmo- and SMHI-stations in
Sweden, located with a latitude less than than 61, and equal to or higher than 58.6. The regions
data overall coincide more than that of the northern region, from Figure ,
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Year
2016 2017 2018 2019 2020
1 1 . 1 .

—— Netatmo
100 4 — SMHI
80 1
60
40 4
201

Figure 18: The southern region, featuring monthly averages of Netatmo- and SMHI-stations in
Sweden, located with a latitude less than 58.6. Compared to the other two regions as in Figure
[16 and[I7, the stations averages are more similar.

Precipitation (mm)

In Figures and SMHI-data from the single stations is plotted, along with the
montly average of their respective, nearby Netatmo station.

Year
2016 2017 2018 2019 2020
I

1004 — Netatmo

—— SMHI
80 -
60 -
40 4
20 -
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Month

Precipitation (mm)

Figure 19: Gunnarn A, SMHI and Netatmo monthly averages.
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Figure 20: Hofors, SMHI and Netatmo monthly averages.
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Figure 21: Vargarda D, SMHI and Netatmo monthly averages.
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Figure 22: Komperod, SMHI and Netatmo monthly averages.

Figure[23]shows a plot of SMHI and Netatmo regions, where the normalized difference between

the stations have been calculated, based on the monthly average data, as seen in Figures
and [I8

Year
2016 2017 2018 2019 2020
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Figure 23: Normalized difference on monthly averaged data, regions.
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Table [ shows the mean value of the normalized difference between SMHI and Netatmo on
monthly averaged data from all regions, averaged.

Table 3
REGION | NORM. MONTHLY AVG. MONTHLY MEAN (mm)
South 5.00
Mid 9.29
North 10.84

Mean value of normalized difference on monthly averaged data, as calculated using Excel.

Figure 24] shows monthly average normalized difference between the Netatmo and SMHI single
stations plotted.

Year
2016 2017 2018 2019 2020
L 1 1 1 1
—— Gunnam A
—— Hefors
60 1 — Komperad
— Vargdrda D

50 4

40

30 4

Precipitation (mm)

10 A

Figure 24: Normalized difference on monthly averaged data, single stations.
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Table [4 shows the mean value of the monthly average normalized difference
Netatmo and SMHI single stations plotted.

between the

Table 4
STATION | NORM. MONTHLY AVG. MONTHLY MEAN (mm)
Gunnarn A 8.94
Hofors 12.58
Komperod 20.35
Vargarda D 14.36

Mean value of normalized difference on monthly averaged data for the single stations, calculated

using Excel.
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6 Discussion

Figure showing the difference between the manually calculated monthly average (where some
stations was lacking consecutive data throughout the period of 2016 - 2019), and the same region
data calculated with the script, turned out to be very small. It seems there still is enough stations
to get a stable statistical average. This result imply that, despite the script having filtered out a
number of stations to be able to work with the same number of stations every month, the script
is very accurate.

The same approach could have been interesting to apply to the Netatmo-data, but this check
was down-prioritized in favor of other results for this thesis. If using a later starting date than
2016, and the result of Figure in mind, it seem quite possible that the difference would be
minimal though, especially if looking at regions with a large number of stations.

Because of time being short when starting to manage this data, the code-base created to
manage the SMHI-data ended up not being as well structured and robust as the Netatmo code-
base. Finding errors in the code along the way, this led to some time-consuming extra tasks, that
likely could have been avoided if a better initial design of the code would have been structured.

6.1 Regional analysis

Analyzing the region data from Figures[16] [I7]and [I8] a somewhat mixed result in terms of preci-
sion should be apparent between the averaged Netatmo- and SMHI-data. The SMHI-data come
from stations that are much more evenly spread out in all of Sweden, compared to the Netatmo-
data (as was seen in Figure (a) and (b) respectively). As a note, regional geographical
differences is not taken into account in this thesis.

Using the quality-controlled SMHI-data as a reference, the expectation was to have Netatmo-
data generally showing lower values, as no quality control for setup, maintenance etc, is being
performed on these stations. As previously discussed, a faulty placement would most commonly
mean that not as much rain is collected for a number of reasons. It should also again be noted
that the months of December on the Netatmo results are missing from the delivery, and was not
retrieved in time for the duration of this thesis being worked on.

A general pattern can be seen, especially in the northern region, of how the winter- and spring
months often show much lower values than the SMHI-data. This is because of the Netatmo rain
gauge lacks the feature of melting snow, meaning no (or at least not all) precipitation in the
form of snow being measured. For both the regions- and in particular the individual stations,
monthly average temperature would have been an interesting addition to more clearly rule out
data from periods of sub-zero temperatures.

It is likely that the fewer number of Netatmo stations and uneven spread of the same in the
northern region, plays a role. Just geographically speaking, there is a big difference throughout
the landscape of the northern part of Sweden. Some months show quite a lot lower amounts
of rain, possibly implying rather bad performance. However, looking at the mid region, values
are overall a bit closer to what the SMHI-data shows. The south region looks even better, and
the Netatmo and SMHI values are starting to look rather similar. At least on average, Netatmo
stations perform pretty well when getting a large number of stations to work with over a large
region. This points towards a high number of stations simply will minimize the errors and
make them insignificant for unchecked and potentially faulty station readings. This also implies
that if the stations were indeed checked and served, quality may increase additionally. For the
southern region, winter months generally are a lot warmer, and thus much less precipitation falls
as snow. This help in making the overall graph over the southern region look a lot more like the
SMHI-data, compared to the mid- and northern region.
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In Figures(15|(a)-(d), there is a clear rise in number of stations over time. And if the usability
of the Netatmo stations as base-data for future forecast implementations indeed is increased with
the number of stations; crowd sourced, unchecked Netatmo stations could prove to have some
usefulness. At least as averaged data seem to show some promise, with an increasing number of
stations operational likely improving the accuracy of the results.

Yet another sanity check was done towards the end of this project on the result from the
regions, using data from SMHI’s service ”Manadens vider och vatten i Sverige” (Monthly weather
and water in Sweden) of July, 2018 [9].

This was an unusually hot and dry month, as portrayed by the deviation gradient map seen
in Figure b). Figure a) shows the monthly, accumulated precipitation amount. Just by
making a visual evaluation and comparing these gradient maps to July 2018 regional averages
from Figure and the plotted data match up well with the gradient maps. Naturally,
the SMHI-data plotted in the region Figures should be based on the same data that was used
in Figure b). Figure a)7 but also just making a visual average assessment of the regions
agrees well. Any relevant month for this thesis is represented on the SMHI web page [9].
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(a) Gradient map of accumulated precipita-  (b) Deviation from average rain amounts in
tion in Sweden, July 2018. Sweden, July 2018.

Figure 25: Gradient maps of accumulated precipitation and average rain amounts can be used
to make a quick assessment of precipitation. July, 2018, is the month of choice.

6.2 Individual station analysis

Glancing at the individual stations close to SMHI stations Gunnarn A (Figure , Hofors ,
Vargarda (Figure and Komperod (Figure , a somewhat different story is shown. These
stations does not show the accuracy seen in the south region from Figure In this case, good
accuracy mean that the values may be off often, but not that much off overall. Looking at preci-
sion however, Gunnarn A, being the most northern station of the four, show really high precision
during the summer months (i.e. results of individual months is very close to the SMHI-data).
These months show a pretty expected behavior, save August 2019, which show a higher accu-
mulation of rain than the nearby SMHI station. This unexpected anomaly appear in a handful
of months in the individually selected Netatmo stations, save the one in Vargarda, Figure
The reason for this is unclear, but in most cases, it is a summer-related anomaly. This could
for example point towards nearby water sprinklers contaminating the data. Even if the Netatmo
and SMHI stations are close, local weather variations such as highly local, convective showers
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(typical ”summer storms” ), could also be a contender for explaining these mostly summer-related
anomalies.

6.3 Normalized monthly average difference

The normalized monthly average difference plots of the regions and single stations, Figure [23]
and along with table [3| and 4 makes clear the notion that there is quite a difference between
the Netatmo and SMHI stations.

However, both the plots and the mean values in the tables fail to take the fact that Netatmo
stations can only deal with precipitation falling as rain into account. This is clear looking at the
winter months, especially 2017-2018. Table [3] clearly shows how the difference is smaller in the
southern region with about 5 mm, while the northern region counts in at around 11 mm.

Concerning the single stations, the differences are higher, as expected. However, surprisingly
the most northern station, near the SMHI station Gunnarn A, shows the smallest difference of 8
mm, while the southern stations near Komperod and Vargarda show values up to 20 mm. The
reason might be related to the respective distance or topographic features and require a more
detailed study.

Additionally, looking at a much smaller temporal scale, like hours or less, would likely give a
more representative and fair result. As would just looking at the summer months, which is quite
obvious in Figure at least when evaluating the southern region’s differences.
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7 Conclusion

This thesis has taken an overarching, first step in comparing rain amounts and analyzing Netatmo-
data in relation to SMHI-data. The Netatmo data-set lacking quality control, and the SMHI
data-set having been quality controlled. A Python-script was created in order to manage the
data and make the comparisons, as well as plotting and visualizing the results. The data was cal-
culated as monthly averages, then split regionally. Monthly averages for four individual Netatmo
stations and a, respective, nearby SMHI station was also part of the analysis.

Coding in Python has taken a majority of the time spent on this project. As the author was
rather new to coding, there are likely a number of improvements and different choices that could
be made in order to both make the code more compact, and more efficient, in order to run faster.
For example not trying to rush results, even if time is short. However, the Netatmo code-base at
least had a more structured design compared to the handling of the SMHI-data, which was a bit
more rushed. This mean the Netatmo code-base ended up being a more robust basis if further
implementations and features were to be made. It is also possible that looking into some kind
of data-base structure feature, the code could have been improved overall. The author received
this suggestion late, towards the end of the project, which meant this was not investigated at all.

Concerning precipitation under non-freezing conditions, Netatmo stations in great numbers
over a large area do points toward having some areas of usefulness. At the very least when
making statistical use of them. Considering the vast amount of stations around, the size of the
areas that can be useful should effectively shrink. The statistical number of stations required per
square kilometer for being statistically useful is, however, nothing that has been investigated in
this thesis.

When it comes to individual stations, the analysis of this thesis imply that single stations
data points are quite a bit less reliable than a quality-controlled SMHI station.

28



8 Outlook

From hereon, further analyzing Netatmo- and SMHI-data, a higher temporal fidelity would be
of interest. A better picture of station accuracy could be determined, especially if taking not
only temperature into account, but also wind-speed and direction. In terms of individual station
performance, at least one proper Netatmo reference station could be set up in close proximity
to an SMHI station. Properly setting up and maintaining these stations would naturally give an
even better reference of Netatmo’s strengths and weaknesses at its best, in comparison to SMHI
stations. If setting up more than one reference station, different geographical locations featuring
different types of regional yearly weather conditions could be interesting too, in the case that
the Netatmo stations instruments perform better or worse under certain conditions.

Future improvement of comparing Netatmo with SMHI-data for precipitation (rain), could
fare well from having automated proof-checks of the data. As an example, scripts could be written
that check for when each individual Netatmo station is experiencing sub zero temperatures.
Simply working with Netatmo’s own temperature readings would likely be sufficient to use as
threshold to flag rain data as potentially useless.

With a good understanding of how a Netatmo station should perform, nearby enough SMHI
stations could be used as reference points and make predictions of how much rain a certain region
(containing Netatmo stations) should get. If the Netatmo station(s) gather rain outside a certain
range, a script checking wind-conditions could kick in, in order to see if the wind blow with a
certain strength and from a certain direction. If this direction (and/or strength) start showing
a pattern of lower amounts of rain than predicted, station(s) could be flagged for this. When
using the data in other applications (such as weather forecast algorithms), flagged data could be
handled, removed or possibly be compensated. An example of this could be using the results as
suggested above for close proximity Netatmo- and SMHI stations, to develop compensation-tables
to manage these errors.

As for the individual stations analysis, local weather variations could be interesting to in-
vestigate in the months where anomalies shows up, at a higher temporal fidelity - weekly, daily,
hourly or even more zoomed in (Netatmo rain gauge send data about every fifth minute). This
too could serve as quality-control mechanism.

Additionally, The Netatmo rain gauge likely will collect snow when it is snowing, and if there
are quick shifts in temperature, this snow may even melt in order to be registered data. The time
span however might in that case not be the usual five minutes, rather it can look like a larger
amount of precipitation was falling at a certain time, when in fact there was no precipitation at
all - the temperature having gone above zero would instead be the trigger, creating a lag-time
of sorts for the readings. The potential behavior of such events could be analyzed if making a
nearby-station analysis, with a much higher temporal scale of the readings - maybe even down
to the five minute mark.

Checking the efficiency of professional wind shields on Netatmo stations could also be an
interesting point. Also getting a better understanding of adhesion, frost, evaporation and other
slightly smaller problems (in comparison to the wind problem) would be good in order to, when-
ever needed, update data-sets with compensated values. The spread of Netatmo stations in the
northern part of Sweden is fairly bad. If wanting to use Netatmo-data in the future, it might be
an idea to see if infrastructure could be shared between SMHI’s own professional station, and
SMHI-owned Netatmo stations. Thus they would be placed in close proximity of one another,
and cover positions where no Netatmo stations may be located over vast distances. This at least
might be better than not having a Netatmo station nearby, and also give a bit of redundancy of
these, often far out, stations.

Overall, the vast, steadily growing number of Netatmo stations is looking like a cautiously
potent complement for being used in future, professional weather data applications and perhaps
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even forecasts. This data may even provide useful local input to urban heavy rain, rural farming
and water managing in remote sites such as for hydro power stations, generally located in the
Swedish mountains.

More work needs to be done in order to fully understand the accuracy and precision of the
different parameters, however, which is crucial in order to implement Netatmo-data sets in such
applications. Considering the vast number and close proximity of these stations in many areas,
it would be interesting to look in to how local, short term, weather forecasts as a whole could
be improved upon, perhaps starting in smaller regions featuring a high population of Netatmo
stations.
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APPENDIX A: Main Python code

1 # —%— coding: utf—8 —x

Created on Sat Aug 27 21:53:18 2022
@author: ruckl

import os, json

# import pandas as pd

import cartopy.crs as ccrs

#import cartopy.feature as cf

from matplotlib import pyplot as plt
import cartopy.io.shapereader as shpreader
import csv

import re

import copy

# import numpy as np

import time

import datetime

import math

### For execution time check
# Get the start time
st = time.time ()

#H4# PLOT SWEDEN #44
### Downloaded from https://www.naturalearthdata .com/

fname = 'C:/PythonProj/VARIOUS.DATA/Natural_-Earth_quick_start/packages/Natural_Earth_quick_-start/
ne-10m_admin_O_sovereignty /ne_-10m_admin_O_sovereignty .shp’
adml_shapes = list (shpreader.Reader (fname).geometries ())
ax = plt.axes(projection=ccrs.PlateCarree ())
# plt.title ('Sweden ’)
ax.coastlines (resolution=’10m’)
ax.add_geometries (adml_shapes, ccrs.PlateCarree (),
edgecolor="black ', facecolor='gray’', alpha=0.5)
edgecolor="black’, facecolor=’'gray’', alpha=0.5)

ax.set_extent ([9, 25, 55, 70], ccrs.PlateCarree())

HHHAHHAAHAAHHA CONFIG  LINES #M#HHAHHHH

run_locally = True
laptop = True
if run-locally == True:
local = True
bi = False
else
local = False
bi = True
if True and bi == False:
if laptop == False:
data_path_root = 'Q:/exjobb/sverigedata/all_netatmo_data/’

# Below sets path for SMHI-station data, use the slightly edited version named
TAMPERED_3_monthlyTemperature-Sweden_-201510 —201911.csv”

55 path_and_filename_smhi = "Q:/exjobb/sverigedata /SMHI/
TAMPERED._3_monthlyTemperature-Sweden-201510 —201911.csv”
56 substr = “rain”
57 write_path = ”Q:/exjobb/sverigedata/Exports/”
58 months_to_keep = "Q:/exjobb/sverigedata/SMHI/smhi_-relevant_-months_clean.csv”
59 elif laptop == True:
60 data_path_root = 'C:/cygwin64/home/ruckl/sverigedata/Test_Small/’
61 # Below sets path for SMHI-station data, use the slightly edited version named
TAMPERED_3_monthlyTemperature.Sweden_201510 —201911.csv”
path_and_filename_smhi = "C:/cygwin64/home/ruckl/sverigedata /SMHI/SMHI_fixed2.csv”
substr = "rain”
write_path = "C:/cygwin64/home/ruckl/sverigedata/Exports/”
months_to_keep = ”"C:/cygwin64 /home/ruckl/sverigedata /SMHI/smhi_relevant_-months_clean.csv”
67 elif local == False and bi == True:
68 # data_path_root = 'C:/cygwin64/home/ruckl/sverigedata/Test_Small/’
69 # Below sets path for SMHI-station data
70 path_and_filename.smhi = ” /home/sm_vikis/ TAMPERED_3_monthlyTemperature_Sweden_201510 —201911.csv”
71 substr = “rain?”
72 data_path_root = ’/nobackup/smhid19/users/sm_heiko/NetAtmo/sverigedata/’

write_path = ’/home/sm_vikis/’

class DataPaths:

78 ### Call folder_list attribute to get a list of all folders, sub—folders (etc) in a given path
79 def __init-_(self, data_-path_-root = data-path_-root):

80 self .data_-path_root = data_path_root

81 def excl_dec(self):

82 # os.walk(self.data_path_root)

83 folder-list = [x[0] for x in os.walk(self.data-path-root, topdown=True)]
84 folder_list = folder_list [1:]

85 folder_list .sort ()

86 check_list [

87 ”weather—stations —measurements —2014—12—01" ,

88 ”weather—stations —measurements —2015—12—01" ,

89 ”weather—stations —measurements —2016—12—01" ,

90 ”weather—stations —measurements —2017—12—-01" ,
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91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

107
108
109
110
111

112
113
114
115
116
117
118
119
120
121

122
123
124
125
126
127
128

129
130
131
132
133
134

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

152

153
154
155
156
157
158
159
160
161
162
163
164

165
166
167
168

169
170
171
172
173
174
175
176
177

178
179

”weather—stations —measurements —2018—12—01" ,

”weather—stations —measurements —2019—-12—-01"
I
for i in range(len(check-list)):
folder_list = [ x for x in folder_list if check_list[i] not in x ]
return folder_list
# Run class without excluding specific month as per excl_.dec method
def run(self):
# os.walk(self.data_path_root)
folder_list = [x[0] for x in os.walk(self.data_-path_root)]
folder_list = folder_list [1:]
return folder_-list
class StationMetadataJson:
### Loads one json file, and makes metadata accessible through class.arguments (is this what its
called ?)
def __init__(self, data_path, filename):
### data_path & filename parameters should be strings
data_path = data_path 4+ 7 /”
with open(data-path 4+ filename) as file:
metadataJson = json.load (file)
self.cipher-id = metadataJson[” cipher_id”]
### probably possible to use ”place”—-data and compare with same metadata filename
### in other folder to check that it’s the same station in other folders
placeJson = metadataJson[” place” ]
self.country = placeJson [”country”]
# self.altitude = placeJson [” altitude”]
self.location = placeJson[”location”]
self.latitude = placeJson[”location”][0]
self.longitude = placeJson[”location” ][1]
class JsonList:
### Creates list of all json files from given path
def __init__(self, data_path):
self.data_path = data_path
def create_list (self):
json_files = [pos_json for pos_json in os.listdir (self.data_path) if pos_json.endswith(’.json’
)]
self.json_-files = json-_files
return json-_files
class FilteredStations:
##4# This class takes a path and a part of a filename (e.g. ”rain”, , ”outdoor” (which
includes temp & RH) or
##4# ”"wind”) and spits out a list of filenames in a list of the .csv type
def __init__(self, substr, data_-path, given_list = []):
self.data_path = data_path
self.substr = substr
self.given_-list = given-list
### Get list of all csv files from given path, in a list. List elements are strings
csv-files = [pos-csv for pos-csv in os.listdir (self.data-path) if pos_-csv.endswith(’.csv’) ]
self.csv_files = csv_files
# print (csv_files)
def filterspecstring (self):
### This method returns filenames in a list filtered on the given substring
return [str for str in self.csv._files if
any (sub in str for sub in [self.substr])]
class MatchFilenameAndID :
### Matches json—filename number with all csv’s of the same filename number. Leave second
parameter blank to work with a
### whole folder , or add a list of csv—files to work with (f.ex. using FilteredStations.
filterspecstring () ).
def __init__(self, data_path, csv_files = None):
self.data_path = data_path
self.station_dic =
self.csv_files = csv_files
def string-to-key (self):
### Takes the json—list , grabs one json—file at a time and exctracts the ”filenamenumber”.
### The json file’s Cipher—ID (which is in the metadata) is then added as “key” in the dictionary ,
### while the ”value” is a list containing: path, json_-filename and then all csv’s, from
### the same folder that has the corresponding ”filenamenumber” as the given json.
print (” Start running: MatchFilenameAndID () .sting_to-key ()”)
if self.csv_files None:
self.csv_files = [pos_csv for pos_csv in os.listdir(self.data_path) if pos_csv.endswith(’.
csv’) ]
json_list = JsonList(self.data_path).create_list ()
pattern=r’[0—9]+ "’
### Loops through one json—filename at a time, and within this loop, another loop goes through
#H## all csv_files to map all filemames with similar prefix —number in to a dictionary as per above
description .
for index in range(len(json_list)):
prefix = (re.findall(pattern, json_list [index]))[0] + 7.7
json_filename = json-_list [index]
current_-values = []
no_value_list = [
### This inside—loop adds csv—filenames that match with the json_filename—value.
for index2 in range(len(self.csv_files)):
prefix_csv = (re.findall(pattern, self.csv_files [index2]))[0] + ”.”
# Check for filenames with same filename number, but first add data path to the value—
list
if prefix == prefix_csv:
location = StationMetadataJson (self.data_path, json_filename).location
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180
181
182
183
184
185
186
187
188
189
190
191

192
193
194
195
196

198
199
200
201
202
203
204
205
206
207
208
209

210
211
212
213
214
215

8
239
240
241
242
243
244
245
246
247
248
249
250

if self.data_path not in current-values:
current_values .append(self.data_path )

else :
pass

if json_filename not in current_values:
current_values.append(json_filename)

else :
pass

# Adds the location coordinates

if location not in current-values:
current_values .append (location)

# Adds the csv filename and then the json filname both that has the same

filenamenumber
current_values .append(self.csv_files [index2])

else :
pass
# Fills up the dictionary
self.station_dic[StationMetadataJson(self.data_path, json_filename).cipher_id | =

current-values
### Removes items in dictionary whose values are just empty lists (if f.ex. having used
FilteredStations class to focus on f.ex. ”"rain”).
print (” Clear out empty lists”)
for key, value in self.station_dic.items():
if value == 8
no_-value_list .append (key)
for item in range(len(no-value_list)):
self.station_dic.pop(no_value_list [item])
print (” MatchFilenameAndID () .string_to_key () COMPLETE” )
return self.station_dic

class GetAllDics:
#### This class creates a list of all relevant dictionaries. The dicts. contain matched json— and
csv—files
##4# which is with or without a given substr (rain, wind, pressure etc.)

def __init__(self, data_path_root, substr = None):
self.substr = substr
print (? Substring /parameter: ” + self.substr)
def run(self):
self.all_dics-list = []

datapaths = DataPaths().excl_-dec ()
for index in range(len (datapaths)):

# Check if there’s a substring given or not (rain, pressure, wind etc...), then call other
@IBERER . -
print ("looping: ” + str(index) 4 ” time”)
if substr == None:
self.all_dics_list .append(MatchFilenameAndID (datapaths[index]) .string_to_-key ())
else :
filtered = FilteredStations (substr, datapaths[index]).filterspecstring ()

self.all_dics_list .append(MatchFilenameAndID (datapaths|[index], filtered).string_-to_key

)
print (”loop ” 4 str(index) + ” complete”)
return self.all_-dics-list

class AdjustDics () :

# This class takes a list containing dictionaries , and removes elements based on the given list
# ”"invalid_stations_list”. That list can f.ex. be created from the class FilteredCheck .” SELECTED
METHOD”
def __init__(self, all_dics, invalid_stations_list):

self.adjusted_dics = copy.deepcopy(all_dics)

self.all_-dics = all_-dics

self.invalid_-stations-list = invalid-stations-list

def run(self):
for x in range((len(self.adjusted-dics))):
for i in range(len(self.invalid_-stations_list)):
if self.invalid_stations_list[i] in self.adjusted_dics [x].keys():
self.adjusted_dics [x].pop(self.invalid_stations_list [i])
else :
pass
return self.adjusted_dics

class FilterCheck () :

# Should run class GetAllDics for argument ”all_dics?”.
def __init--(self, all_-dics):
self.all_dics = all_dics
current-month_id_-list = []
self.current_month_id_list = current_month_id_list
next_month_id_list = []
self . next_-month_id_list = next_month_id_list

def cipher_id(self):

# Takes all stations from the chronologically first month, compare it with next month in line.
Kicks out stations

# whose cipher—ID isn’t in the
and compares with 7next”

# month, and keeps doing so until comparing with the last month. Returns a list with cipher—ID
’s who were in all months.

# Returns two lists of cipher—ID’s, index O passed and index 1 failed the check.

next” month. Continues with an updated, possibly smaller list

stations_passed = []
stations_failed = []
# First loop goes through all the months
for x in range ((len(self.all_dics)) — 1):
if x < 1:
# print (” first run”)
current_month_list = list (self.all_dics[x].keys())
else :
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267 current-month_list = stations_passed

268 stations_passed = []

269 next_month_list = list (self.all_dics [x+1].keys())

270 for station in range(len(current.-month_list)):

271 current_month_selected_station_id = current_month_list [station ]
2 if current_-month_selected_station_id in next_-month_list:

stations_passed .append(current_-month_selected_station_id)
else :
if current-month_selected-station-id not in stations-failed:
stations_failed .append(current-month_selected_station_id)
return stations_-passed , stations_failed

class RegionSplit () :
# Returns a number of lists filtered on their longitude

NONNNNNNDNNDNDN

def __init__(self, dic_list):
self.dic_list = dic_list
region_1_list = []
self . region-1_-list = region_-1_list
region_2_list = []
self . region_-2_list = region_2_list
region_3_list = []
self.region-3_list = region_-3_list
region_-1_dict = {}
self.region_1_dict = region_1_dict
region_2_dict {}
self.region_2_dict = region_2_dict
region_3_dict = {}
self . region_3_dict = region_3_dict

def bands(self):
for month in range(len(self.dic-list)):
for key in self.dic-list [month]:
location = self.dic-list [month][key][2]
latitude= location [1]
if latitude > 61:
if key not in self.region_1_list:
self.region_1_list .append (key)
elif 61 >= latitude > 58.6:
if key not in self.region_2_list:
self.region_2_list .append (key)
@lse g
if key not in self.region_-3_list:
self.region_3_list .append (key)

region_1_filtered = AdjustDics(self.dic_list , self.region_2_list + self.region_3_list).run()
region_2_filtered = AdjustDics(self.dic_list , self.region_1_list + self.region_3_list).run()
region_3_filtered = AdjustDics(self.dic_list , self.region_1_list + self.region_2_list).run()
return [region_1_filtered , region_2_filtered , region_3_filtered ]
316 def Wrapper_-Id_-Band(data_path_root = data_path_root):
317 ### Function that CURRENTLY runs cipher—ID check and a region—split (should add extra
functionality when available)
substr = ”rain”
all_dics = GetAllDics(data_-path_root , substr).run ()
cipher_checked = FilterCheck (all_dics).cipher_id () [1]
adjusted_dics_.cipher = AdjustDics(all_dics , cipher_checked).run ()
[region_filterl , region_filter2 , region_filter3 | = RegionSplit(adjusted_dics_cipher).bands ()
return region_filterl , region_filter2 , region_filter3

class Csv:

data.append (row)
return data

def read-csv (filename):
”””Reads a CSV file and returns it as a list of rows.”
data = []
for row in csv.reader (open(filename) ,delimiter=";
data.append (row)
return data

,skipinitialspace=True) :

346 class Monthly () :
347 def __init__(self, dict_-list , cipher_id = None):
self.dict-list dict-list
self.cipher_id cipher_id
self.path = []
def average_plot(self):
### Sum all values from a station in a month in a separate list .

### This is used for regions, but can be used for whatever that suits.
months_xaxis = []
months_xaxis_adjusted = []

monthly_average_list =
for month in range(len(self.dict_-list)):

rain_region_monthly_total = []

for station in range(len(self.dict-list [month])):
rain_station_-list = []
rain-station-total = 0
self .path = list (self.dict_-list [month].values ())[station][0]

35

def __init_-_(self, path, filename):
self . filename = filename
self .path = path
self.path_and_filename = self.path 4+ 7 /” 4+ self.filename
def read(self):
data = []
for row in csv.reader (open(self.path_and_filename),delimiter=";’,skipinitialspace=True) :



if self.path not in months_xaxis:
months_-xaxis.append(self.path)

filename = list (self.dict-list [month].values())[station][3]
rain_data = Csv(self.path, filename).read ()
rain_data = rain_data [1:]

for i in range(len(rain_data)):
rain_station_list.append(rain_data[i][1])

rain-station-list = [ float(x) for x in rain-station-list |
# print (rain_station_-list [:10])
rain_station_-total = sum(rain_station_list) #one station total rain
rain_region_monthly_total.append(rain_station_total)
rain_region_-monthly_total_sum = sum(rain_-region_monthly_total) #all stations summed
in one month
divider = len(rain-region_-monthly_total)
rain_region_monthly_total_average = rain_region_monthly_total_sum/divider

# print (rain_region_monthly_total_average)
monthly_average_list.append(rain_region_monthly_total_average)

to_-slice = len(self.path) — 11
months_xaxis = [ x[to-slice:—6] for x in months_xaxis]
# Adjust months number, as 11 should be 10, 9 —> 8 and so on.
for i in range(len(months_xaxis)):
year_and_faulty_month months_xaxis [i]
month_value_to_change = int (year_and_faulty_month[—2:])
month_value_to_change = month_value_to_change —
month_value_changed = str(month_value_-to_change)
if len(month_value_changed ) == 1:
month_value_changed = ”0” + month_value_changed
yvear_and_correct_-month = year_and_faulty_-month [:3] 4+ month_value_changed
months_xaxis_adjusted .append(year_and_correct_month)
return months_xaxis-adjusted , monthly_average_list

394 class Station ():

395 def __init-_-(self, dict-list , cipher_-id = None):
396 self.dict_list = dict_-list
397 self.cipher_id = cipher_id
398 self.path = ””
399 def rain_accumulated (self):
400 ##4# Loads csv—data based on a station’'s cipher—id, sums all precip per month and returns
401 ##4# a list with this monthly precip and a list with the months in question
402 rain-station_-total = []
403 rain_-station_-accumulated = []
404 months_xaxis = []
405 months_xaxis-adjusted = []
406 for month in range(len(self.dict_-list)):
407 rain_station_list = []
408 filename = self.dict_list [month][self.cipher_id][3]
409 self.path = self.dict_list [month][self.cipher_id][0]
410 if self.path not in months_xaxis:
411 months_xaxis.append(self.path)
412 # Load and manage csv—data
413 rain_data = Csv(self.path, filename).read ()
414 rain_data = rain_data[1:]
415 for i in range(len(rain_-data)):
416 rain_station_list .append(rain_data[i][1])
417 rain_station_list [ float (x) for x in rain_station_list ]
418 rain_station_total = sum(rain_station_list)
419 rain_station_accumulated .append(rain_station_total)
420 # Plotting related things below
421 to_-slice = len(self.path) — 11
422 months_xaxis = [ x[to-slice:—6] for x in months_xaxis]
423 # Adjust months number, as 11 should be 10, 9 —> 8 and so on.
for i in range(len(months_xaxis)):
yvear_and_faulty_month = months_xaxis[i]
month_value_-to_-change int (year-and_-faulty_-month[—2:])
month_value_to_change = month_value_to_change — 1
month_value.changed = str(month_value_-to_change)
if len(month_-value_changed ) == 1:
month_value_changed = 70” + month_value_changed
year_and_correct_month = year_and_faulty_month [:3] + month_value_changed
months_xaxis_adjusted .append(year_and_correct_month)
return months_xaxis-_adjusted , rain-station_-accumulated

def plot-ready-data(data_-list):
#4#4 Plots whatever readily baked Netatmo location or region that’'s wanted (i.e. monthly data here)

months_xaxis = data_list [0]
rain.accumulated = data-list [1]

x_positions = list (range(rain-accumulated))
x_positions = x_positions [0::5]

print (x_positions)

plt.xticks (rain_accumulated , months_xaxis)

plt.xlabel (” Year—Month”)

plt.ylabel (”stuff , mm”)

plt.title ("One station accum. monthly precip.”)
plt.bar(rain_accumulated , x_-positions , width=2, align='center’)
plt .show ()

def write_temp (input_list):
### Outputs temp/test data as csv.
temp_path = write_path + ”"temp/”
temp_filename = "temp.csv”
with open(temp-path + temp-filename, ’'w’) as file:
writer = csv.writer (file)
writer . writerow (input-list)
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460 def smhi-stations_all(smhi-list-all = read-csv(path_-and_-filename_smhi)):
### Imports all smhi—data and removes the first (header) row
smhi_list_all = smhi_list_all [1:]

return smhi_list_all

smhi_stations_lat () :
### Filters out SMHI-stations to only have one station/unique latitude (which month we get doesn’t
matter here)

data_smhi = read_csv(path_and_filename_smhi)
unique_-lat_list =
data_smhi = data_smhi [1:]
for i in range(len (data_smhi)):
# lat = data_smhi[i][1]
if len(unique_lat_list) == 0:
unique_lat_list.append(data_smhi[i])
else:
if data-smhi[i —1][1] != unique-lat_-list[len(unique-lat_-list) —1][1]:

unique_lat_list.append(data_smhi[i])
return unique-lat_-list

smhi_stations-name-list (smhi-list-all = smhi-stations_all()):
### Uses smhi_stations () to create a list of station names only.
smhi_names_list = []

for i in range(len (smhi_list_all)):
if smhi_list_all[i][4] not in smhi_names_list:
smhi_names_list .append(smhi_list_all[i][4])
return smhi_-names-list

smhi_stations_klimatnummer_list (smhi_list_stations = smhi_stations_all()):
##4 Creates a list of one station (element)/klimatnummer only .
smhi_stations_klimatnummer_list = []

for i in range(len(smhi-list_stations)):
if smhi_list_-stations [i][3] not in smhi_-stations_klimatnummer_list :
smhi_stations_klimatnummer_list.append(smhi_list_stations [i][3])

496 return smhi_stations_klimatnummer_list

497

498

499 def smhi-months_list (smhi-list_-stations = smhi-stations-all()):

500 # Create list of all months, should appear in numerical order, can this be automatically checked?
501 month_list = []

502 for i in range(len(smhi_list_stations)):

if smhi_list-stations[i][6] not in month._list:
month_list.append (smhi_list_stations [i][6])

(

505 else :

506 pass

507 return month_list

508

509

510 def smhi_-stations-remove_dates(data_-smhi = smhi_-stations_all()):

511 ### Removes elements based on their date, f.ex. December should be removed as that’s lacking in
the Netatmo—data ...

512 ### Note that the dates in SMHI-data marks the END of a month (the previous one).

513 data_smhi_tweaked = [] #copy.deepcopy (data_smhi)

514 months_irrelevant_list = [”1/1/2015 6:00”,”72/1/2015 6:00” ,73/1/2015 6:00” ,74/1/2015 6:00” ,”
5/1/2015 6:00”,76/1/2015 6:00”,”7/1/2015 6:00” ,”78/1/2015 6:00” ,”79/1/2015 6:00” ,710/1/2015 6:00” ,”
11/1/2015 6:00” ,”12/1/2015 6:00” ]

515 for i in range(len (data_smhi)):

if data-smhi[i][6] not in months_irrelevant_list:
data_smhi-tweaked .append (data_smhi[i])
else:
pass
return data-smhi-tweaked

def smhi_clean_up_stations (all_data = read_csv(path_and_filename_smhi)):
: ##4 Removes stations that isn’t represented in every month
passed =
526 failed =
527 station_klimatnummer_list = smhi_stations_klimatnummer-list ()
528 passed-total = 0
529 failed-total = 0
530 passed_station_-name = []
5 failed_-station_-name = []
5 range-of_given_name = 0

o

# Pick a station-—name that has been checked manually that has data for all months wanted
for i in range(len(all_data)):
if all_data[i][4] == ”Lund”:
range_of_given_name += 1

g

o
5

o

37 for x in range(len(station_-klimatnummer-list)):
38 counter = 0
9 for i in range(len (all_-data)):
0 if station_klimatnummer_list [x] all_data [i][3]:
1 counter += 1
42 else:
543 pass
544 if counter == range_of_given_name
545 passed_total +=1
546 passed_station_name .append(station_klimatnummer_list[x])
547 # print ("YES:::” + str(station_klimatnummer_list[x]) 4 ” had ” + str(counter) 4 ” counts”)
548 elif counter != range-of-given_name:
549 failed-total +=1
550 failed_-station_name .append(station_klimatnummer_list [x])
551 # print ("NO:::” + str(station_klimatnummer_list[x]) 4+ ” only had ” 4+ str (counter) + 7
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counts”)

552 for x in range(len (all-data)):

553 current_-stat = all_data [x][3]

554 if current_.stat in passed-station_name:
555 passed .append (all_data [x])

556 elif current_stat in failed_station_name:
557 failed .append(all_data [x])

558 return passed, failed

559

560

561 def smhi_specific_stations ():

562

### Creates lists for specific, manually selected stations
data_smhi = read_csv(path_and_filename_smhi)
station_-1l_smhi =

station_2_smhi =

~ o

o

566 for i in range(len (data_smhi)):

567 # print (data_smhi[i][4])

568 if data_smhi[i][4] == ” Hofors”:

569 station_-l_smhi.append(data_smhi[i])

570 elif data_-smhi[i][4] == ”Gunnarn A”:

571 station_2_smhi .append(data_smhil[i])

5 else:

573 pass

574 return station_-l_-smhi, station_-2_smhi

575

576

577 def smhi_region_split (data_smhi = smhi_stations_all()):
5 ##4 Splits up original list of data in to three lists based on station latitude.
5 data_smhi = data_smhi [1:]

5 data_-smhi_-lat_north = []

data-smhi-lat-mid =

data-smhi-lat-south =

for i in range(len(data-smhi)):
latitude = float (data-smhi[i][1])
if latitude > 61:

o on o

o

o
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586 data_smhi_lat_north.append(data_smhi[i])

587 elif 61 >= latitude > 58.6:

588 data_smhi_lat_mid .append (data_smhil[i])

589 else :

590 data_-smhi_-lat_south .append(data_-smhi[i])

591 return data-smhi_-lat_-north , data_-smhi-lat_-mid, data-smhi_-lat_-south

592

593

594 def smhi_monthly_average(region_section = read_-csv(path_and_filename_smhi)):

595 ### Add all obs. values per month, and make average value per region

596 month_list = []

597 total_data = []

598 total_data_averaged =

599 # Create list of all months, should appear in numerical order

600 for i in range(len(region_section)):

601 if region_section[i][6] not in month_list:

602 month_list .append(region_section[i][6])

603 else:

604 pass

605 for i in range(len(month_list)):

606 monthly_data = []

607 for x in range(len(region_section)):

608 if region-section[x][6] == month_list[i]: #and region-section [x] not in monthly_data:

609 monthly_data .append(region_section [x])

610 else :

611 pass

612 total_-data .append(monthly_data)

613 for i in range(len(total_-data)):

614 monthly_precip-tot = 0

615 for x in range(len(total_data[i])):

616 # test = int(total_-data[i][x][5])

617 # print(test)

618 monthly_precip-tot += float (total_-data[i][x][5])

619 monthly_precip-avg = monthly_precip_-tot / float (len(total_datal[i]))

620 total_data_averaged .append (monthly_precip-avg)

621 return total_data_averaged

Run SMHI-data: commands here

626 bad_dates_cleared = smhi_stations_remove_dates ()

627 passed, failed = smhi_clean_up.stations(bad_-dates_cleared)
hofors_all_data , gunnarn_a_all_data = smhi_specific_stations ()
bad_-dates_cleared_hofors = smhi_stations_remove_dates(hofors_all_data)
passed_hofors , failed_hofors = smhi_clean_up.stations(bad_dates_cleared)
bad_dates_cleared_gunnarn_a = smhi_stations_remove_.dates (gunnarn_a_all_data)
passed_gunnarn_a, failed_gunnarn_a = smhi_clean_up.stations (bad_dates_cleared)
region_split = smhi_region_split (passed)
north = region_split [0]

636 mid = region_split [1]

637 south region-split [2]
639 # print (len (smhi_stations_name-_list ()))
# print (len(smhi_stations_name_list (passed)))
641 # print (len(smhi_stations_name_list (north)))
#

642 print (len(smhi_stations_name_list (mid)))
643 # print (len(smhi_stations_name_list (south)))
44

645 n_avg = smhi_monthly_average (north)

646 m-avg = smhi_-monthly_average (mid)

647 s_avg = smhi_monthly_average (south)
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648 # print (” Number of N stations is ” 4+ str(len(n.avg)))
649 # print (” Number of N entries is ” 4 str(len(north)))
650 # print (” Number of Mid stations is ” -+ str(len(m-avg)))
651 # print (” Number of Mid entries is ” + str(len (mid)))
652 # print (" Number of S stations is ” + str(len(s_avg)))
653 # print (" Number of S entries is ” + str(len(south)))
654 »»»

655

656 »»»

657 #HHHHA## PLOT REMAINING SMHI STATIONS FOR REGION SPLIT bttt
658 for i in range(len(north)):

659 smhi_-long = float (north[i][0])

660 smhi_lat = float (north[i][1])

661 plt.plot(smhi_long, smhi_lat, markersize = 1, color = ”"red”, marker = ’.7)
662 for i in range(len (mid)):

663 smhi_long = float (mid[i][0])

664 smhi_lat = float (mid[i][1])

665 plt.plot(smhi_long, smhi_lat, markersize = 1, color = ”orange”, marker = ’.’)
666 for i in range(len(south)):

667 smhi_-long = float (south[i][0])

668 smhi_-lat = float (south[i][1])

669 plt.plot (smhi_-long , smhi_lat, markersize = 1, color = ”green”, marker = ’.’)
670 plt.show ()

671 7”7

672

673 77

674 HHHHHHHHA#HH# RUN NETATMO -DATA: commands here ## - - -

675 print ("START: ’GetAllDics’ to create list of all months, data in each month —> a dict. with station
ID and ev. parameter selected (rain, RH etc)”)

676 all_-dics = GetAllDics(data_-path_root , substr).run()

677 print (? FINISHED: ’GetAllDics’”)

678 print (77)

679 print (?START: ’FilterCheck().cipher_id’ to find stations that isn’t present in all months/folders”)

680 cipher_checked = FilterCheck(all_dics).cipher_id () [1]

681 print (" FINISHED: FilterCheck ().cipher_id”)

682 print (77)

683 print ("START: ’AdjustDics’ to remove stations not present in every month”)

684 adjusted.dics_cipher = AdjustDics(all_dics , cipher_checked).run ()

685 print (? FINISHED: ’AdjustDics’ ”)

686 print (77)

687

688 vargarda_cipher_id = ”enc:16:znrXQ6owWG4Ns2U3aSaVqxAHUeIMCjfqVHIF+CPv1kNBPFUiycdYLKqjmi84rpw9”

689 print (?START: ’Station().rain_accumulated’ on V rg rda Netatmo to accumulate monthly rain”)

690 vargarda-netatmo-monthly_accumulated_-rain = Station(adjusted-dics_cipher , vargarda_cipher_id).
rain_accumulated ()

691 print (" FINISHED: ’Station ().rain_accumulated’ on V rg rda Netatmo ”)

692 print (7”)

693

694 komperod_cipher_id = ”enc:16:QIBmCn/WNfQtnaYKPQKKDSmBuWT2uNiUPInrOFp/vNjyrsKfo4lmjt5kJJpyGWMY”

695 print (?START: ’Station().rain_accumulated’ on Komper d Netatmo to accumulate monthly rain”)

696 komperod-netatmo-monthly_accumulated-rain = Station(adjusted-dics_-cipher , komperod_-cipher_id) .
rain_accumulated ()

697 print (? FINISHED: ’Station ().rain_accumulated’ on Komper d Netatmo ”)

698 print (77)

699

700 hofors_cipher-id = ”enc:16:hlma8kYiCfYR+9pD1Vp7Pq4TxHEmMTIpqovjUQP1SwkCR27pgRqOzbd2drEzq2imt”

701 print (?START: ’Station ().rain_accumulated’ on Hofors Netatmo to accumulate monthly rain?”)

702 hofors_netatmo_monthly_accumulated_rain = Station(adjusted_dics_cipher , hofors_cipher_id).
rain_accumulated ()

703 print (? FINISHED: ’Station ().rain_accumulated’ on Hofors Netatmo 7)

704 print ()

705

706 gunnarn-cipher_-id = ”enc:16:yUdylzG00XjY5+HqG1E92fyUUO3BKBEPLhIM2p5XQ8xiNsPrctONkHuk3 /t7THKc4W”

707 print (?START: ’Station().rain_accumulated’ on Gunnarn Netatmo to accumulate monthly rain”)

708 gunnarn-netatmo_-monthly_accumulated_-rain = Station(adjusted-dics-cipher , gunnarn_cipher_-id) .
rain_accumulated ()

709 print (? FINISHED: ’Station ().rain_accumulated’ on Gunnarn Netatmo ”)

710 print (77)

711

712 print ("START: ’Wrapper_.Id_Band’ to create regions for the data”)

713 region_north , region_mid, region_south = Wrapper_Id_Band ()

714 print (? FINISHED: ’Wrapper-Id_-Band’® )
715 print (77)

716

717 print (?START: ’Monthly ().average_-plot’, which on a Bl—-run returns monthly average rain from the (north
) region, doesn’t make a plot”)

718 region_north_average = Monthly(region_north).average_plot ()

719 print (" FINISHED: ’Monthly().average_-plot’ (north)”)

720 print (7”?)

721

722 print ("START: ’Monthly().average_plot’, which on a Bl—run returns monthly average rain from the (mid)
region , doesn’t make a plot”)

723 region_-mid-average = Monthly(region_mid).average-plot ()

724 print (? FINISHED: ’Monthly ().average-plot’ (mid)”)
725 print (77)

726

727 print (?START: ’Monthly ().average_-plot’, which on a Bl-run returns monthly average rain from the (south
) region, doesn’t make a plot”)

728 region_south_average = Monthly (region_south).average_plot ()

729 print (" FINISHED: ’Monthly().average.plot’ (south)”)

730 print ()

731

732 print (?"START: write data from north region to csv—file?”)
733 with open(write_path 4+ ”"north.csv”, ’'w’) as file:

734 writer = csv.writer (file)

735 writer . writerow (region_north_average)

736 print (?FINISHED: write data from north region to csv—file”)
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737 print (77)

738
739 print ("START: write data from mid region to csv—file”)
740 with open(write-path + ”"mid.csv”, 'w’') as file:

741 writer = csv.writer (file)

742 writer . writerow (region_mid_average)

743 print (" FINISHED: write data from mid region to csv—file”)
744 print (77)

745
746 print (?START: write data from south region to csv—file?”)
747 with open(write-path 4 ”south.csv”, ’w’) as file:

writer = csv.writer (file)

writer . writerow (region_south_average)
print (? FINISHED: write data from south region to csv—file?”)
print (77)

print ("START: write data from V rg rda D Netatmo station to csv—file?”)

754 with open(write_path -+ ”vargarda.csv”, ’'w’) as file:
755 writer = csv.writer (file)
756 writer . writerow (vargarda_-netatmo-monthly_accumulated_-rain)

757 print (? FINISHED: write data from V rg rda D Netatmo station to csv—file”)
758 print (77)

759
760 print (?START: write data from Komper d Netatmo station to csv—file?”)
761 with open(write-path + ”"komperod.csv”, 'w’) as file:

762 writer = csv.writer (file)

763 writer . writerow (komperod_-netatmo_-monthly_accumulated-rain)

764 print (? FINISHED: write data from Komper d Netatmo station to csv—file?”)
765 print (7”)

766

767 print (?START: write data from Hofors Netatmo station to csv—file”)
768 with open(write-path 4+ ”hofors.csv”, ’'w’) as file:

769 writer = csv.writer (file)

770 writer . writerow (hofors_-netatmo-monthly_accumulated_-rain)

771 print (? FINISHED: write data from Hofors Netatmo station to csv—file?”)
772 print (7”)

773

774 print (?START: write data from Gunnarn Netatmo station to csv—file?”)
775 with open(write_path + ”gunnarn.csv”, 'w’) as file:

776 writer = csv.writer (file)

e writer . writerow (gunnarn_-netatmo_-monthly_accumulated_-rain)

778 print (? FINISHED: write data from Gunnarn Netatmo station to csv—file”)
779 print (77)

780
781 77”
782
783 BELOW IS USED TO FIND STATIONS THAT ARE CLOSE TO ONEANOTHER
784 I.E. NETATMO & SMHI STATIONS
785 def smhi_stations () :
786 ### Filters out SMHI-stations to only have one station/unique latitude (which month we get doesn’t
matter here)
787 # path_and_-filename_smhi = 7"C:/cygwin64 /home/ruckl/sverigedata /SMHI/
TAMPERED_3_monthlyTemperature-Sweden_-201510 —201911.csv”

788 data_smhi = read_csv(path_and_filename_smhi)
789 unique_-lat_list = []
790 data_smhi = data_smhi [1:]
791 for i in range(len (data_smhi)):

# lat = data_smhi[i][1]

if len(unique_lat_list) == 0:

unique_lat_list.append(data_smhi[i])
else :
if data-smhi[i —1][1] != unique-lat_-list[len(unique-lat_-list) —1][1]:
unique_lat_list.append(data_smhi[i])

798 return unique-lat_-list
799
800
801 def check_-latitude_-distance (dict_list , unique_lat_list):
802 ### Checks if distance between relevant Netatmo and SMHI-stations is shorter than max_diff_lat &

max_diff_long
### Adjust max_diff_lat to set max distance.

first_month = dict_list [0]
max-diff-lat = 1/111 # — Bach degree of latitude is approx. 111 km apart.
# max-_diff_lat = 1/222 #USE THIS VALUE AS TEMP ONLY, SHOULD BE ABOUT MAX 500m
max-diff.-long = max_-diff_lat 20
close_stations =
for x in range(len(unique-lat_list)):
smhi_lat = float (unique_lat_list [x][1])
smhi_long = float (unique_-lat_list [x][0])
for station in range(len (first_month)):
netatmo_values = list (first_.month.values())[station ]
netatmo_key = [list (first_month.keys())[list (first-month.values()).index(netatmo_values)]]
netatmo-key-and-values = netatmo-key + netatmo-values
netatmo_-position = list (first-month.values())[station][2]
netatmo_position_-long = float (netatmo_position [0]
netatmo_-position_lat = float (netatmo_position[1])
if abs(smhi_lat — netatmo_position_lat) < max_diff_lat and abs(smhi_long —
netatmo_position_long) < max_diff_long:
close_stations.append ([unique_lat_list [x], netatmo_key_and_values, ])
aa = abs(smhi_lat — netatmo_position_lat)*111
bb abs (smhi_long — netatmo_position_long) 111
cc = math.sqrt (aaxaa + bbxbb)
print (”latitude (north — south) distance is ” + str(aa))
print (” Longitude (east — west) distance is ” + str(bb))
print (” Actual distance is ” 4 str(cc))
print (” coordinates for smhi station is 7 4+ str(smhi_-lat) 4+ 7 latitude and 7 4+ str (
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smhi_long))
print (7”)
return close_-stations

def wrapper_find_close_stations ():
### Returns list of stations that are close to one another
unique-lat-list = smhi-stations ()
all_dics = GetAllDics(data_-path_root , substr).run ()
cipher_checked = FilterCheck (all_dics).cipher_id () [1]
dict-list = AdjustDics(all_dics , cipher_checked) .run ()
result = check_latitude_distance (dict_list , unique_lat_list)
return result

844 def plot_close_stations (result_list , color = ”"red”, marker = ’.’):

845 ##4 Plots SMHI- and Netatmo—stations , that from function ”wrapper-find_close_stations” will be
close to one another.

for i in range(len(result-list)):

smhi_-long = float (result_list[i][0][0])
smhi_lat = float (result_list [i][0][1])
plt.plot(smhi_long, smhi_lat, markersize = 3, marker = marker, color = 7red”)
netatmo-long = float (result_list [i][1][3][0])
netatmo_lat = float (result_list [i][1][3][1])
plt.plot (netatmo_long , netatmo._lat, markersize = 3, marker = marker, color 7 blue”)
A PLOT NEARBY STATIONS Attt
##4# Used to plot nearby stations
result_list = wrapper_-find_close_stations ()
plot_close_stations(result_list)
plt .show ()
##4 Execution time check ###
# Get the end time
866 et = time.time ()
867 # Get the execution time
868 elapsed-time = et — st
total-time = str(datetime.timedelta (seconds=elapsed-time))
print ()
print (’Execution time:’, elapsed-time, ’seconds’)
print ()
print (?” Total time is: ” 4 total_time + 7 h:m:s”)
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APPENDIX B: Python code to plot figures

%~ coding: utf—8 —x

reated on Tue Oct 4 14:28:25 2022

author: ruckl

from matplotlib import pyplot as plt

import numpy as np

from matplotlib.ticker import FuncFormatter

from matplotlib.dates import MonthLocator, DateFormatter

x.ax = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48]
months_short = [’Jan’, ’'Feb’, ’'Mar’, ’Apr’, °'May’, ’Jun’, ’Jul’, ’Aug’, ’'Sep’, ’'Oct’, 'Nov’', ’Dec’]

months_short_48 = months_short + months_short + months_short 4+ months_short

years = [72016”, »2017”, »2018”, ”2019”, ”2020”]

fontisize = 6

x-ax-rot = 55

scatter-dot-size = 8

linewidth = 0.8

legend_fontsize = ”small”

##4 WARNING In Spyder, if collapsing a list , the list must be expanded before deleted, otherwise
code will magically linger and cause bugs...

netatmo_south = [24.7473098591549,

34.7178366 ,
24.64316564 ,
41.59566667,
19.01063934,
50.42926699,
67.96879583,
52.73585606 ,
20.76099636 ,
64.75794464 ,
57.86901993,
None ,
21.92859531,
35.17188136,
38.16503784,
37.19439241,
20.01420099,
89.61607323,
65.00179691,
83.30187738,
87.49653144,
102.8753849,
73.68707942,
None,
68.64232053
21.53185624
34.73335276
37.59308866
16.64257143,

20.76139276 ,

14.61530064,

93.74489324,

39.88516724,

66.91649055 ,

25.05786857,

None,

40.70485266 ,

48.87048765,

82.97346351,

16.23459506 ,

49.20471094,

50.89070311,

54.63052965 ,

78.27563403,

85.33269757,

97.54326736,

83.29070483,

None]

smhi_south = [45.77770115,
48.12821839,

34.8,

48.59827586 ,

26.15287356 ,

54.95229885,

65.85747126 ,

72.23735632,

22.9316092,

80.42873563,

67.89367816,

36.85977011,

.03218391,

.13448276,

.84712644 ,

66436782,

.35574713,

.75862069 ,

.8091954 ,

.87643678,

.52068966 ,

105.6327586 ,

74.43396552,
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93 90.34011494,
94 75.34517241,
95 38.94086207,
96 385.81752874,
97 387.12586207,
98 13.45109195,
99 30.06988506 ,
100 19.65936782,
101 101.4186782,
102 47.16678161 ,
103 62.25735632,
104 28.66264368,
) 55.46655172,
) 43.80425287,
107 61.93758621,
108 84.43706897
)9 14.09155172
) 58.90534483
111 47.12362069
112 62.12229885
113 79.17465517
114 81.02373563
115 86.0958046 ,
116 72.26649425,
117 #73.80390805

s
s
»
,
,
’

118 Nome]

119 smhi_south_manual
48.00052885,
34.01875,

48.72355769,
25.55961538,
54.90625 ,
65.20682927,
71.91504854,
22.44139535,
81.0682243,
68.08110599,
36.83928571,
25.18235294,
42.30776256,
45.29272727,
39.21780822,
73243243,
.09276018,
.4963964,
100.1333333,
97.76909091,
105.1922727,
74.53013699,
90.74541284,
75.78940092,
40.19087156
35.3659633,
37.19642202,
13.37627273,
30.91522727,
20.05319635,
101.143379,
151 47.63287671
2 63.10046296
53 28.37170507
1 55.66559633

>
>
>
5 44.06609091,
6 62.49409091,
57 84.78783784,
58 14.00189189,
159 58.81846847,
160 46.10495495,
161 62.08288288,
162 78.99181818,
163 81.24331797,
164 86.32018349,
165 72.97853881,
166 #75.14409091
167 None]

[45.23903846 ,

168 netatmo.mid = [16.20849057,

169 17.78693798,
170 14.61463522,
171 38.35888108,
172 29.66274884,
3 51.0123834,
1 42.12133798,
5 62.14179808,
6 19.09813814,
7 25.99061625,
8 48.42578437,
179 None,

180 10.39389855,
181 14.91921546,
182 20.21533405,
183 20.4749521,
184 15.60871857,
185 52.33754878,
186 28.11288372
187 72.36522153
188 64.31857313
189 89.90553353
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48.5121136,
None ,
33.50373533,
10.69370281,
10.68573664 ,
24.80440658,
14.93071508,
39.23020619,
27.14774088,
62.23373726,
58.61831787,
41.13452596,
32.1542927,
None,
13.85140084,
26.19098052
41.30397054
7.366575714
52.14489682
43.9717135,
59.02975522,
77.23375948,
61.13088524,
72.94590094,
59.27209783,
None]
smhi_mid = [41.12851351,
35.83824324,
30.61486486 ,
56.95743243,
51.33310811,

)

43.33310811
58.36351351
82.29864865,
19.89797297,
37.45945946,
63.95878378,
24.30945946,
25.78648649,
33.23851351,
36.61351351,
30.40945946,
23.23581081,
59.37297297,
32.84256757,
96.80472973,
62.94662162,
98.90743243,
74.33189189,
65.35858108,
68.2447973,
27.86006757,
22.49466216,
41.19635135,
16.62783784,
46.72459459,
36.02439189,
68.10094595,
57.58189189,
39.77547297,
32.15554054
50.84114865
38.98141892
44.85743243
67.21358108
6.375945946,
67.91412162,
51.02966216,
62.03533784,
83.61081081,
73.79074324,
0
0

92.82310811
84.51554054
None]
netatmo_north = [11.1222381,
10.64328571,
10.87396 ,
41.70857895,
37.16870213,
46.55101754 ,
75.94420588,
66.89363014,
33.21753247,
10.57455556 ,
25.08544156 ,
None,
12.16471951,
8.433853659,
19.51350588,
17.75957447,
23.73440708,
70.87774167,
57.94435338,
73.69615603,
53.88909211,
73.97394737,
28.35463816,
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287 None,
9.779292208,
2.491651899,
8.02289375,
15.50044385,
17.712125,
38.95240741,
43.67611407,
56.55083498,
206 41.99772222,
297 37.10217377,
208 18.26309524,
299 None,
7.086531136,
21.60326007,
20.25446875,
7.577176292,
304 68.67404651 ,
305 57.25479858,
306 35.5159207,
307 65.98015319,
308 67.97058836 ,
309 49.71203272,
310 36.57605423,
311 None]
312 smhi_north = [34.68577093,
: 42.64436123,
23.51497797,
59.04669604 ,
40.65330396,
57.0938326 ,
86.17136564,
91.9246696 ,
320 45.24008811,
32 12.8876652,
.72951542,
.56211454,
.56167401 ,
.06035242,
.00885463 ,
»
»

37577093
.00748899
71497797,
.96651982,
62819383,
.12378855,
.96519824,
21647577,
.99070485,
.9369163,
.95898678,
33048458,
L47863436,
99118943,
.34537445,
.56295154,
.95577093,
.89898678,
71757709,
53744493,
60484581,
63784141,
32832599,
,

.51660793

.04700441

.56665198,

.07193833,

.52656388,

.71268722,

.74339207,

.98299559 ,

.80986784 ,

None]

netatmo_gunnarn = [1.56 ,
10.918,

15.895,

59.697,

26.642,

48.294 ,

35.661,

86.567,

22.742,

5.458 ,

9.2,

None,

4.056,

5.302,

12.634,

19.02,

15.755,

53.152
72.244
55.145
32.897
52.558
5.459,
None ,
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21.828,
17.001,
21.984,
32.883,
33.777,
99.833,
26.808 ,
8.263,
20.279,
None ,
0.624,
8.266,
9.982,
2.34,
90.72,
31.17,
29.303,
56.24
45.21
37.42
8.735,
None]
smhi_gunnarn = [22.3,
34.
17.
52
22.
66
42.
95.
20.
3.8,
49,
17,
17.5,
40,
13.5,
20,
179
51.1
85.2
9
1

»
8,
4,

s
s
»
»
’
’

SN RN

55.
33.
59,
61.68,
52.56
47.06
12.67
40.64
25.82
23.

netatmo_hofors = [66.421,
29.69,
35.427,
66.813,
85.344 ,
40.87,
100.283,
145.015,
24.133,
32.995,
75.961,
468 None,
9.087,
21.239,
25.187,
31.578,
36.172,
62.575,
57.715,
75.878,
47.007,
106.955,
62.114,
480 None,




26.861,

0.638,

0,

34.619,

20.963

47.769

24.241

37.271

61.576

34.246

12.286

492 None,

0,

0,

16.847,

11.371,

78.427,

71.214,

109.739,

62.435,

98.953,

124.931,

60.478,

None]

smhi_hofors = [61.3,

33.8,

32.6,

53.1,

70.7,
9,
7,

29.

80.
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netatmo_komperod = [50.904,

61.913,

56.257,

73.427,

13.332,

) 55.146,

) 89.688,

105.646,

60.701,

60.903,

79.487,

None,

29.795,

52.217,

52.015,

48.278,

24.442,

58.681,

22.422,

66.559 ,
,
)
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42.117
69.488
52.924,
None ,

oUW =

7
7
7
7

7

oo



578 52.823,
79 25.654,
) 14.14,
1 31.714,
2 10.403,
3 723,
4 .108,
5 752,
6 189.375,
-
8

64.337,
588 42.016,
589 None,
21.513,
57.873,
95.849,
22.119,
59.287,
64.337,
33.633,
94.839,
117.867,
99.586 ,
63.731,
None]

1

2 smhi_komperod = [96.6,
3 68.1
4 77.
5

s

a7,
22,
95.9,
136.7,
116.3,
45,
57.5,
41.1,
98,
158.9,
21,
59.3,
64.4,
26.5,
118.3,
184.1,
112.2,
97,

649 # 157.9
650 None]
netatmo_-vargarda = [46.258,
51.106,
40.299,
51.409,
17.675,
84.133,
70.397,
102.818,
55.449,
36.057,
70.7,
662 None,
19.19,
30.098,
53.227,
28.987,
23.028,
66.963,
22.523,
116.453,
59.893,
96.455 ,
22.725,
674 None,




675 0.303,
676 11.009,

677 18.685,
678 41.41,
679 12.524,
680 16.16,

681 13.029,
682 24.644,
683 49.187,
’
’

64.438
17.473
686 None,

687 18.786,
688 52.116,
689 36.36,
690 17.372
691 41.713
692 23.937
23.836
70.397
19.493
T7.871
40.602
698 None]

699 smhi_vargarda = [59.7,
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s
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# 1

standard_-dev_south_test = np.array ([12.936676,
10.25116683,

.726223549,

334773536,

.914394415,

.015376241,

.771966898,

.055490168,

.769816731,

14.34147902,

3.739460537,

o,

11.72099179,

5.886354996 ,

2.992328499,

1.201897498,

11.34988359,

1.925091601,

1.835363941,

7.399949778,

6.393657579,
1 ,
4 »
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N

o

AOHNWO O

.945946845
365973911

74
7
74
74
74
7
7
7
ol
fi
(i
(i
7"
7
g
757
7
g
76
7

7

7

7

7

7

7
7
7
7
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0,

5.878247135,
11.20853723,
.262228684,
.180618027,
.304516645,
516997653,
.662049169 ,
.226354574 ,
.381987341,
.633030074,
.06984595,

.690878964 ,
.125650348,
.852785006 ,
.324191463,
.284695364 ,
.554025782,
.424217766 ,
.124972024,
.614589839,
.T67T677655 ,
.818545286 ,
B}

standard_dev_south = [12.936676,
10.25116683,
5.726223549,
0.334773536,
3.914394415,
2.015376241,
1 ,
6

CORNAWHNNHOINOOON® RO WN®

771966898
.055490168,
4.769816731,
14.34147902,
3.739460537,
None,
11.72099179,
5.886354996 ,
2.992328499
1.201897498
11.34988359
1925091601
1.835363941,
7.399949778,
6
1

»
’
’

o

.393657579,

.945946845,
4.365973911,
None,
5.878247135,
11.20853723,
.262228684,
180618027,
304516645,
.516997653,
662049169,
226354574,
.381987341,
.633030074,
06984595,
one,
690878964 ,
125650348,
852785006 ,
324191463,
284695364,
554025782,
424217766 ,
.124972024,
.614589839,
.T67677655 ,
.818545286 ,
one]

ZOANAWRNONNRONZOONO O WND

standard_-dev_mid = [17.62111721,
12.76420036,

11.31387088,

13.15116178,

15.32325799,

5.430067633,

11.48495246,

14.25304573,

0.565568636 ,

8.109696808,

10.98348922,

None,

10.88420331,

12.95369988,

11.5952639,
7.024757525
5.393168641
4.974796155
3.344391521
17.28134198
0.970116218
868 6.365303759




18.25734032,
None ,

24.5656405,
12.13845293,
8.350171314,
11.5908553,
1.200047012,
5.299332865,
6.276740123,
4.14874305,
0.732863837,
0.960995585,
0.000882354,
None,

17.76960619 ,
13.19917472
18.32086131
0.700481027
11.15052579
4.990723362
2.12526785,
4.50925624,
8.951871445,
14.05530798,
17.84980952,
None]

s
s
»
,

standard_dev_north = [16.66193385,
22.6281775,
8.93854953,
12.25990017,
2.463985589,
7.454896018,
7.231694016,
17.69961775,
8.501230619,
1.635615514,
30.86102059,
None,
16.54414518,
18.82777784 ,
7.421332267,
7.506784505,
3.728631974,
11.42879981,
18.40045035,
4.901690939,
0.165955445,
2.115133774,
30.30789603,
None,
33.34547578,
15.17969807,
15.77384875,
9.884073299,
3.732862255,
2.399190004,
4.162622697,
10.89293467,
6.204144533,
4.677796549 ,
4.436635217,
None,
20.18882511,
13.24062109,
27.76252486,
2.453538989,
8.409341974,
8.35597965,
0.007525859,
2.639300126,
10.44594968 ,
4.434240373,
10.77193291,
943 None]

945 standard-dev-gunnarn = [14.66539464,
046 16.67499211,
947 1.064195706,
048 4.806204792,
049 3.070257644,
0950 12.94429674,
951 4.906613955,
052 6.245874198,
953 1.585333403,
954 1.172383043,
055 28.14284989,
956 None,

957 9.506343566,
058 24.53519109,
959 0.612354473,
0.692964646 ,
1.516744046,
1.450983115,
9.161275457,
0.53386562,
0.143542677,




066 4.555181884,
967 39.75425035,
968 None,
060 33.27644512,
970 8.959042918,
971 13.30209277,
072 6.235974703,
973 1.022476406 ,
974 0.383958982,
2.568918936,
14.37760218,
1.27844906,
20.22820369,
1.627052704,
None,
16.86873937,
15.98344168,
19.36624052,
1.449568901,
3.931513703,
0.06363961,
3.636650176,
8.845905833,
1.733825827,
7.499574521,
22.89965311,
None |

standard_-dev_hofors = [3.621093826,
2.906208871,

1.99899087,

9.69655529,

10.3548717,

7.75696139,

13.8472721,

18.81964698,

3.983132498,

4.175465543,

1.300369371,

None,

1006 12.59569309
1007 4.710038269
1008 3.403304938
009 3.378556201
10 6.273451363,
11 6.204862005,
12 4.818932714,
13 10.8031774,
)14 4.247590435,
1015 9.584832419,
18.65771953,
None,
39.62555691,
34.19709815,
19.16259377,
8.966821092,
2.165868071,
5.069248514,
56.32741908,
36.93148007,
8.53902149,
1.452397329,
1.211981023,
1029 None,

1030 27.22361108,
K 39.03229432,
47.69647371,
0.020506097,
11.2620897,
4.393961538,
15.65463703,
1.509672978,
8.947022102,
1039 0.941159126,
1040 20.09738893,

»
’
’

1041 None]
1042
43 standard_.dev_komperod = [32.31195147,

44 4.374869655,
45 15.02106935,
)46 1.433305445,
1047 3.937170558,
1048 8.099201072,
1049 28.36346721,
1050 3.143796749,
1 6.080411211,
2 8.907424123,
53 21.15168515,
4 None,

5 22.77237389,
21.05976126 ,
1057 23.60675989,
1058 8.854391114,
1059 3.505835421,
1060 31.90395086,
1061 14.26800063,
1062 40.12194587,



1063 52.24317031,
1064 64.42591305,
1065 44.74288869,
1066 None,

1067 59.09786345,
1068 22.02354781,
1069 19.06359882,
1070 21.62756801,
1071 10.88732311,
1072 3.024295703,
1073 6.440328563,
1074 28.38892305,
1075 37.2468497,
1076 36.74338967,
1077 2.110006635,
1078 None,

1079 13.85010052,
1080 28.37407381,
1081 44.58378966 ,
1082 0.791252488,
1083 0.009192388,
1084 0.044547727,
1085 5.04379267,
1086 16.58943219,
1087 46.83380344,
1088 8.919444938,
1089 23.5247355,
1090 None]

1091

1092 standard-dev-vargarda = [9.504929353,
1093 15.83494926,
1094 2.758423553,
1095 7.630389276,
1096 2.351130047,
1097 28.9680435,
1098 0.77993878,
1099 7.765446671,
1100 6.327898585,
1101 9.152083069,
1102 3.535533906 ,
1103 None,

1104 4.037579721,
1105 3.324816085,
1106 3.021467276,
1107 2.059802054,
1108 2.101521354,
1109 24.77490029,
1110 2.420426512,
1111 8.447804715,
1112 18.10688335,
0.809637264,
41.20664767,
None,
60.38479779,
30.46993831,
10.54649764,
11.16521607,
1.289762769,
27.74687009,
5.777769509,
38.71833891,
35.08168874,
7.468461823,
2.847519008,
None ,
16.62690885,
22.40397126,
29.93890112,
6.737313411,
12.78944035,
6.974194183,
16.66226419,
19.09400441,
51.34090206 ,
8.788630183,
13.92858938,

None]
PLOTTING COMMANDS BELOW. UNCOMMENT WANTED PLOT-TYPE

# ### PLOT NETATMO VS SMHI SOUTH REGION

# fig , axl = plt.subplots ()

# plt.scatter (x-ax, netatmo_south s = scatter_-dot.size , color = ”blue”)

# plt.scatter (x-ax, smhi_-south, s = scatter_dot-size , color = "red”)

# plt.plot(x-ax, netatmo.south, linewidth = linewidth , color = ”blue”, label = ”Netatmo”)
150 # plt.plot(x_ax, smhi_south, linewidth = linewidth , color = ”"red”, label = ”SMHI")
151 # plt.xlabel (’Month’)
1152 # plt.ylabel ('Precipitation (mm)’)
1153 # # plt.title ('Netatmo & SMHI monthly average, south region \n'’)
154 # plt.legend (loc="upper left”, fontsize = legend_fontsize)
1155 # plt.xticks (x_ax, months_short_48 , rotation = x_ax.rot, rotation_mode="anchor”, fontsize = fontisize)
1156 # ax2 = axl.twiny ()
1157 # ax2.plot (years, [40, 40, 40, 40, 40], color='blue’, linewidth = 0)
1158 # fig.tight_layout ()

1159 # plt.xlabel (’Year’)

53



1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249

250
1251
1252
1253
1254
1255
1256

AR I I A R I I R I AR R R A dE AR IR IR R AR R R A R R FR R A IR AR IR R R R ARIRRR  R H  RAR H g WA R R R R R

### PLOT SMHI VS SMHI MANUAL CACLULATIONS SOUTH REGION

fig , axl = plt.subplots ()

plt.scatter (x_ax, smhi_south_manual, s = scatter_dot_size , color = ”blue”)
plt .scatter (x_ax, smhi_south, s = scatter_dot_size , color = ”"red”)
plt.plot (x-ax, smhi_south_manual, linewidth = linewidth, color = ”blue”)
plt.plot(x-ax, smhi_south, linewidth = linewidth , color = ”red”)

# plt.title (’SMHI & SMHI manual calculations , monthly average, south region’)
plt.xlabel (’Month )

plt.ylabel ('’ Precipitation (mm) )

plt .legend (loc="upper left”)

plt.xticks (x-ax, months_short_-48 , rotation = x_ax-rot, rotation-mode="anchor” , 6 fontsize
ax2 = axl.twiny ()
ax2.plot (years, [40, 40, 40, 40, 40], color=’blue’, linewidth = 0)

fig.tight_layout ()
plt.xlabel (’Year ')

##+#+ PLOT NETATMO VS SMHI MID REGION

fig , axl = plt.subplots ()

plt.scatter (x-ax, netatmo-mid, s = scatter_.dot-size , color = ”blue”)

plt.scatter (x-ax, smhi_mid, s = scatter_dot-size , color = ”red”)

plt . plot (x-ax, netatmo_mid, linewidth = linewidth , color = ”blue”, label = ”Netatmo”)
plt . plot (x-ax, smhi_mid, linewidth = linewidth , color = “red”, label = ”?SMHI"”)

plt.xlabel (’Month *)
plt.ylabel (’Precipitation (mm)
# plt.title ('Netatmo & SMHI monthly average, mid region \n')

plt.legend (loc="upper left”, fontsize = legend_fontsize)

plt . xticks (x_ax, months_short_48 , rotation = x_ax_rot, rotation_.mode="anchor” , fontsize
ax2 = axl.twiny ()

ax2.plot (years, [40, 40, 40, 40, 40], color=’blue’, linewidth = 0)

fig.tight_-layout ()
plt.xlabel (’Year’)

### PLOT NETATMO VS SMHI NORTH REGION

fig , axl = plt.subplots ()

plt.scatter (x-ax, netatmo-north, s = scatter-dot-size , color = ”blue”)

plt.scatter (x_ax, smhi_north, s = scatter_dot_size , color = "red”)

plt.plot (x_ax, netatmo.north, linewidth = linewidth, color = "blue”, label = ”Netatmo”)
plt.plot(x_ax, smhi_north, linewidth = linewidth, color = ”"red”, label = "SMHI")

plt.xlabel (’Month )
plt.ylabel (’Precipitation (mm)
# plt.title (’Netatmo & SMHI monthly average, north region \n'’)

B

plt .legend (loc="upper left”, fontsize = legend_fontsize)

plt.xticks (x-ax, months_short_-48 , rotation = x_ax-rot, rotation_-mode="anchor” , 6 fontsize
ax2 = axl.twiny ()

ax2.plot (years, [40, 40, 40, 40, 40], color=’blue’, linewidth = 0)

fig.tight_layout ()
plt.xlabel (’Year ')

#44# PLOT NETATMO VS SMHI GUNNARN A

fig , axl = plt.subplots ()

plt.scatter (x-ax, netatmo_gunnarn, s = scatter_-dot-size , color = ”"blue”)

plt.scatter (x-ax, smhi_gunnarn, s = scatter_-dot_-size , color = "red”)

plt . plot (x-ax, netatmo_gunnarn, linewidth = linewidth , color = ”blue”, label = ”Netatmo”)
plt . plot (x-ax, smhi_gunnarn, linewidth = linewidth , color = "red”, label = ?SMHI”)

plt.xlabel (’Month *)
plt.ylabel (’Precipitation (mm)’)
# plt.title ('Netatmo & SMHI monthly average, Gunnarn A\n’)

plt.legend (loc="upper left”, fontsize = "x—small”)

plt . xticks (x-ax, months_short_48 , rotation = x_ax_rot, rotation_.mode="anchor” , fontsize
ax2 = axl.twiny ()

ax2.plot (years, [40, 40, 40, 40, 40], color=’blue’, linewidth = 0)

fig.tight_-layout ()
plt.xlabel (’Year )

### PLOT NETATMO VS SMHI HOFORS

fig , axl = plt.subplots ()

plt.scatter (x-ax, netatmo-hofors, s = scatter-dot-size , color = ”blue”)

plt.scatter (x_ax, smhi_hofors, s = scatter.dot.size , color = ”"red”)

plt.plot (x_ax, netatmo_hofors, linewidth = linewidth, color = ”"blue”, label = ”Netatmo”)
plt.plot(x_ax, smhi_hofors, linewidth = linewidth, color = ”"red”, label = "SMHI")

plt.xlabel (’Month )
plt.ylabel (’Precipitation (mm) ')
# plt.title (’Netatmo & SMHI monthly average, Hofors A\n’)

plt .legend (loc="upper left”, fontsize = "x—small”)

plt.xticks (x-ax, months_short_-48 , rotation = x_ax-rot, rotation-mode="anchor” , 6 fontsize
ax2 = axl.twiny ()

ax2.plot (years, [40, 40, 40, 40, 40], color=’blue’, linewidth = 0)

fig.tight-layout ()
plt.xlabel (’Year ')

## PLOT NETATMO VS SMHI KOMPERD

fig , axl = plt.subplots ()

plt.scatter (x-ax, netatmo_-komperod, s = scatter_-dot_-size , color = ”"blue”)
plt.scatter (x-ax, smhi_.komperod, s = scatter_-dot_-size , color = "red”)

plt . plot (x-ax, netatmo_komperod, linewidth = linewidth , color = "blue”, label

plt .plot (x-ax, smhi_komperod, linewidth = linewidth , color = "red”, label = ?SMHI”)

plt.xlabel (’Month *)
plt.ylabel (’Precipitation (mm)’)
# plt.title ('Netatmo & SMHI monthly average, Komper d A\n’)

plt .legend (loc="upper left”, fontsize = ”"x—small”)

plt.xticks (x_ax, months_short_48 , rotation = x_ax_rot, rotation_mode="anchor”, fontsize
ax2 = axl.twiny ()

ax2.plot (years, [40, 40, 40, 40, 40], color=’'blue’, linewidth = 0)

fig.tight_-layout ()
plt.xlabel (’Year )
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1257 # ### PLOT NETATMO VS SMHI V RG RDA

1258 # fig , axl = plt.subplots ()

1259 # plt.scatter (x.ax, netatmo_vargarda, s = scatter_dot_size , color = ”blue”)

1260 # plt.scatter (x-ax, smhi_vargarda, s = scatter_.dot_size , color = ”"red”)

1261 # plt.plot(x_ax, netatmo_vargarda, linewidth = linewidth , color = "blue”, label = ”Netatmo”)

1262 # plt.plot(x_ax, smhi_vargarda, linewidth = linewidth, color = "red”, label = »SMHI”)

1263 # plt.xlabel (’Month ')

1264 # plt.ylabel(’Precipitation (mm) ’

1265 # # plt.title (’Netatmo & SMHI monthly average, V rg rda D\n’)

1266 # plt.legend (loc="upper left”, fontsize = "x—small”)

1267 # plt.xticks(x-ax, months_short_48 , rotation = x_ax_-rot, rotation_.mode="anchor”,fontsize = fontisize)

1268 # ax2 = axl.twiny ()

1269 # ax2.plot(years, [40, 40, 40, 40, 40], color=’blue’, linewidth = 0)

1270 # fig.tight_layout ()

1271 # plt.xlabel (' Year ')

1272

1273 ### PLOT NETATMO VS SMHI SINGLE STATIONS STANDARD DEVIATION

1274 # fig , axl = plt.subplots ()

1275 # plt.scatter (x-ax, standard-dev_-gunnarn, s = scatter_-dot_-size , color = ”blue”)

1276 # plt.scatter (x-ax, standard-dev_-hofors, s = scatter_dot_size , color = ”red”)

1277 # plt.scatter (x-ax, standard-dev_komperod, s = scatter_-dot_-size , color = ”green”)

1278 # plt.scatter (x-ax, standard_-dev_-vargarda, s = scatter_dot_size , color = ”purple”)

1279

1280 # plt.plot (x-ax, standard_-dev_gunnarn, linewidth = linewidth , color = ”blue”, label = ”Gunnarn A7)

1281 # plt.plot(x-ax, standard_dev_hofors, linewidth = linewidth , color = 7red”, label = ”"Hofors”)

1282 # plt.plot (x_ax, standard.dev_komperod, linewidth = linewidth , color = ”green”, label = ”"Komper d”)

1283 # plt.plot (x_ax, standard_dev_vargarda, linewidth = linewidth , color = ”purple”, label = "V rg rda D
»
)

1284

1285 # plt.xlabel (’Month )

1286 # plt.ylabel(’Precipitation (mm) ’

1287 # # plt.title (’Netatmo & SMHI monthly average, V rg rda D\n’)

1288 # plt.legend (loc="upper left”, fontsize = ”x—small”)

1289 # plt.xticks (x-ax, months_short_48 , rotation = x_ax_-rot , rotation_mode="anchor” ,fontsize = fontisize)

1290 # ax2 = axl.twiny ()

1291 # ax2.plot(years, [40, 40, 40, 40, 40], color=’blue’, linewidth = 0)

1202 # fig.tight_layout ()

1203 # plt.xlabel (' Year ')

1294

1295 # ### PLOT NETATMO VS SMHI MONTHLY STANDARD DEVIATION REGION SOUTH

1296 # fig , axl = plt.subplots ()

1297 # ymin = 0

1298 # ymax = 35

1299 # axl.set (ylim=(ymin, ymax))

1300

1301 # plt.scatter (x-ax, standard_dev._north, s = scatter_dot_size , color = ”blue”)

1302 # plt.scatter (x-ax, standard_dev_mid, s = scatter_dot_size , color = 7green”)

1303 # plt.scatter (x.ax, standard_dev_south, s = scatter_dot_size , color = "red”)

1304 # plt.plot(x_ax, standard.dev_north, linewidth = 0.4, color = ”blue”, label = »North region?”)

1305 # plt.plot(x_ax, standard_-dev_mid, linewidth = 0.4, color = “green”, label = "Mid region”)

1306 # plt.plot(x-ax, standard-dev.south , linewidth = 0.4, color = ”"red”, label = ”South region”)

1307

1308 # plt.xlabel (’Month )

1309 # plt.ylabel (’Standard deviation ’

1310 # # plt.title (’Netatmo & SMHI monthly std average, Standard deviation regions\n’)

1311 # plt.legend (loc="upper left”, fontsize = ”"x—small”)

1312 # plt.xticks(x_-ax, months_short_48 , rotation = x_ax_rot, rotation_.mode="anchor”,fontsize = fontisize)

1313 # ax2 = axl.twiny ()

1314 # ax2.plot (years, [40, 40, 40, 40, 40], color=’'blue’, linewidth = 0)

1315 # fig.tight_layout ()

1316 # plt.xlabel (’Year’)
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