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Urban tree canopy mapping - An open source 
deep learning approach  
 

Abstract  
 

Urban trees have an important role to provide ecosystem services and to make our cities 

greener and more sustainable. The changing climate and densification of cities make it even 

more valuable to preserve and investigate in urban trees. Tree canopy detection in cities is 

challenging, with both trees and other objects of irregular shape, size and complexity. The 

aerial images from Lantmäteriet (the Swedish mapping cadastral and land registration 

authority) is a great source for image analysis on high resolution images, but the leaf-off 

images may be challenging for tree canopy detection. 

The aim of the study was to test if Light Detection and Ranging (LIDAR) could be combined 

with aerial images to develop a deep learning tool for urban tree canopy mapping under 

leaf-off conditions. The deep learning method using LIDAR and aerial leaf-off images had a 

precision of 88 % mapping urban tree canopy. Using the same method with LIDAR and IR 

leaf-on data yielded a precision of 91 %. The LIDAR data increases the accuracy for leaf-off 

data when added to the deep learning model. 

The findings of this study indicate that tree canopy mapping with LIDAR and aerial images 

taken under leaf-off conditions can be used for tree canopy mapping with comparable 

results to other methods. 

KEYWORDS: Machine learning, deep learning, urban tree canopy, remote sensing 
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1. Introduction 
 

1.1 Ecosystem services provided by urban trees  
 

Urban forestry is the sustained planning, planting, protection, maintenance, and care of 

trees, forests, greenspace in cities and communities for economic, environmental, social, 

and public health benefits for people (Deneke, 1993). 

City planning is facing a huge paradigm shift in terms of how we look at urban spaces and 

urban greenery. The Covid-19 pandemic has made us revaluate on how we use our nearby 

public green spaces. Due to urban densification green spaces are increasingly important for 

the human wellbeing and health. The value of urban green spaces has been studied more 

intense the last years and green infrastructure and urban green spaces are topics on the 

nature based solutions agenda for both stakeholders and city planners (de la Barrera et al., 

2023).   

There are many motives of doing a deep learning based urban tree mapping on city level. 

The analysis is relatively easy to perform and can be updated regularly with data from 

Lantmäteriet (the Swedish mapping cadastral and land registration authority). Another 

advantage is that data, method and competence will be owned by the municipality itself. 

Officers working with tree planning are in need of tools when communicating with local 

politicians and stakeholders. Deep learning and remote sensing can help us make data 

driven decisions on updated data. Where do we need to plant new trees? Where are the 

empty spots? Does citizen inequity regarding nearby green spaces exists? As cities densifies 

the pressure on urban green spaces increases and strategic urban green space management 

may compensate for the land use change (Balikçi et al., 2022). Detailed and updated data 

also facilitates a cost effective maintenance of urban trees, e.g. by maintaining coherent tree 

structures (A. Spets, city gardener, Borås stad, personal communication, January 31, 2023). 

Storm water management in cities face several challenges because of climate change and 

inefficient urban drainage systems (Prudencio and Null, 2018). Urban heat islands, 

characterised by higher temperatures in densely built-up areas (Oke, 1982) is another 

contemporary problem in cities. Urban trees can help with evaporation, as shading from 

leaves provides a cooling effect, where solar radiation otherwise would hit direct on a 

surface, is blocked from reaching the surface below (Hayes et al., 2022). Environmental noise 

exposure is a global public health concern, with implications for physical health, wellbeing, 

and mortality. Globally, traffic noise is a major source of environmental pollution (Karimi et 

al., 2010), and it is estimated that one million healthy life years are lost every year to traffic 

related noise in the western part of Europe (Khreis et al., 2016). Vegetation, in particular 

trees, can have a substantial impact on the level of traffic noise experienced by residential 

properties (Van Renterghem, 2014). Trees facilitate noise reduction through two main 

mechanisms: The absorption of sound energy by soft green vegetation, and the redirection 

and scattering of sound waves by woody structures e.g., trunks, branches and stems 

(Fletcher et al., 2022). Urban trees can also improve mental health. A canopy cover of 30 

percent has a proven effect (Astell-Burt and Feng, 2019) on mental health and has therefore 
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become an international guideline for the global work with urban green spaces (Bosch, 

2021).  

 

1.2 Machine learning and deep learning 
 

Data science is an interdisciplinary field focused on extracting knowledge from data sets. 

Machine learning is a subfield of artificial intelligence, which can be defined as the capability 

of a machine to imitate human behaviour. Artificial intelligence is used to perform tasks in a 

way similar to humans (Choi et al., 2020). Machine learning is used to get computers to act 

without being programmed and has helped us to develop self-driving cars, speech 

recognition and effective web search. Deep learning is a subset of machine learning  

(Figure 1). A deep learning algorithm is reiterating and performing a task repeatedly and 

improving for every iteration, in order to improve the result. Artificial neural networks are 

inspired by the human brain.  

 

 
Figure 1. Artificial neural networks used in deep learning are subfields of artificial intelligence. Image by author 

 

Neural network architectures are the most frequent deep learning methods, and that is why 

deep learning models often are called deep neural networks. Traditional neural networks 

has 2-3 hidden layers but deep networks can have as many as 150.  Large sets of labelled 

data are used as training material for neural network architectures as they learn features 

from the data. Artificial neural networks are comprised of a node layers, containing an input 

layer, one or more hidden layers, and an output layer (Figure 2) (Pyo et al., 2017). Each node 

connects to another. The input layer is responsible for accepting the inputs, the hidden layer 

processes the input data to find out hidden information and performs feature extraction, 

and the output layer gives the desired output. (“What is Deep Learning? | IBM,” 2020).  
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Figure 2. Neural network with input layer, hidden layers and output layer. Inputs are training data and outputs are 
prediction results. Image by author. 

Raster Vision, the python framework used for this study, is using a DeepLabV3 model with a 

ResNet-50 backbone. ResNet stands for Residual Network and is a specific type of 

convolutional neural network with 50 layers (He et al., 2016). The important difference from 

a normal neural network is the residual block using skip connections. The skip connections 

preserve information without adding much of overload on the network from initial layers 

until the last. Residual networks seems easier to optimize than traditional neural networks 

(He et al., 2016). The main benefit of the residual network architecture is how it performs in 

training errors affecting the model accuracy.  

The ResNet-50 model architecture (Figure 3) starts with Zero padding, a technique that 

preserves the original input size of the image. The Rectified Linear Unit (ReLU) activation 

function is a function that will output the input directly if it is positive, otherwise, it will 

output zero. Maximum pooling is a pooling operation that calculates the maximum value in 

each patch. Average pooling is calculating the average for each patch. Convolutional layers 

are the main building blocks in convolutional neural networks. (“A Gentle Introduction to 

Pooling Layers for Convolutional Neural Networks - MachineLearningMastery.com,” 2023) 

Flattening converts the data into a single long continuous linear vector and the fully 

connected (FC) layer adds the output.(“Convolutional Neural Network Tutorial [Update],” 

2023)  
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Figure 3. The ResNet-50 model architecture. Image by author. 

The models, loss functions, and optimizers for Raster vision are based on PyTorch and are 

configurable, e.g. batch size and number of epochs can be set in the code. Augmentors used 

in this study were the default augmentors RandomRotate90, HorizontalFlip and VerticalFlip.  

Raster vision is using cross entropy loss as default loss function , which computes the loss 

between true labels and predicted labels (“Probabilistic losses,” 2023). Use this cross-

entropy loss for binary (0 or 1) classification applications. The training loss is a metric used to 

assess how a deep learning model fits the training data. Loss is a number indicating how 

incorrect the prediction was on a single example. If the prediction is perfect, the loss is zero 

(“Descending into ML: Training and Loss  |  Machine Learning Crash Course  |  Google 

Developers,” 2022). 

 

 

1.3 Mapping urban trees 
 

1.3.1 Technique and challenges in mapping urban trees 
 

Manual assessment of aerial images was a common method in the beginning of the remote 

sensing history in the forestry industry and for land-cover mapping (Heller, 1964). Tree 

canopy cover is traditionally measured using vegetation indices, e. g. normalized difference 

vegetation index (NDVI) (Rouse et al., 1973) using satellite imagery to measure the amount 

of green vegetation. Infrared (IR) images can also be used to analyse vegetation (With and 

With, 2019). Classification can be made by pixel based classification (Richards and Jia, 1999), 

using the spectral information available for an individual pixel or object based classification 

(Blaschke et al., 2014), which analyses the spatial properties of each pixel and how they 

relate to other pixels. Pixel based classification methods have their drawbacks because they 

rely on spectral signatures of individual pixels (Myint et al., 2011). The object based 

approach (OBIA) relies on the expert experience and local knowledge in the process of 

determining the most appropriate scales, parameters, functions, and classifiers. As a result, 

OBIA classification results may vary widely from case to case and from person to person 

(Wang et al., 2021). There has been a significant increase in popularity among land cover 

classification studies recent years (Abdi, 2020) and deep learning is gaining more attention in 

the field of image recognition due to faster computers, better algorithms and more easy 
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accessible frameworks and open source solutions . Deep learning minimizes the human 

interaction and expertise in the classification process results and can be used with different 

data sources, e.g. LIDAR, NVDI and RGB images. The convolutional neural network, in 

particular, has been successfully applied in object detection and semantic segmentation 

(Ondruska et al., 2016; Qian et al., 2015) and also used in urban tree mapping with highly 

accurate results (Timilsina et al., 2020). Individual tree species mapping of 8 species, using 

deep learning was done in St. Louis, USA, with an accuracy of 82.4 % using LIDAR and 

satellite images (Hartling et al., 2019). Another study used similar data to map urban tree 

cover in 34 Chinese cities (Pu and Landry, 2020). 

Lantmäteriet (the Swedish mapping cadastral and land registration authority) provides aerial 

images within the national acquisition programme. However, imagery for detailed 

measurement of urban areas for municipal detailed planning and documentation, good 

visibility towards the ground must be sought. The most suitable period is in the spring 

between snowmelt and leafing (Lantmäteriet, 2017). The aerial images from Lantmäteriet 

are a great source for image analysis on high resolution images, but the leaf-off images may 

be challenging for tree canopy detection. One drawback is the deficiency of IR-information 

before leafing, meaning that IR cannot be used in the analysis. However aerial images still 

remain very interesting if they can be used for tree canopy mapping. Adding LIDAR data is 

also be highly interesting as it may compensate for the leaf-off status by adding data input to 

the machine learning model. The elevation data is one parameter to delineate trees from 

their surroundings. 
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1.4 Research problem and objectives 
 

Tree detection in cities is challenging, given the irregular shape, size, occlusion, and 

complexity of urban areas (J. A. C. Martins et al., 2021). Open datasets e.g. LANDSAT, are still 

not detailed enough for urban tree crown mapping. The challenge in mapping urban trees 

for the scientific community is to create generalizable, replicable, and powerful models that 

allow the use of multiple data sources for urban forest inventory automation (Lin et al., 

2019; Vauhkonen et al., 2014). It´s also crucial to solve problems with different spatial and 

temporal resolution from different data sources (Ma et al., 2019). Thus, this study addresses 

the problem and test aerial images before leafing can be used for tree canopy detection with 

the combination of LIDAR data. 

 
This study aims to answer the following research question: 

Q1: Can Light Detection and Ranging (LIDAR) be combined with aerial images to develop a 

deep learning tool for urban tree canopy mapping under leaf-off conditions? 

Q1 will be addressed through the following objectives: 

1. Evaluation of the prediction accuracy with validation metrics. 

2. Identification of strengths and weaknesses in the deep learning model through 

detailed examination of different categories of predictions. 
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2 Methods 
 

2.1 Study area 
 

The study area (Figure 4) is the urban area of Borås in the county of Västra Götaland in the 

southwest of Sweden. The city of Borås is situated 155 meters above sea level and the mean 

annual temperature and precipitation is 7.6 C and 1008 mm respectively (Fick and Hijmans, 

2017). The most common tree species in the urban part of Borås are European white birch 

(Betula pendula) 21.3%, English Oak (Quercus robur) 10.5% and Norway spruce (Picea abies) 

8.4%, according to an i-tree inventory (“i-Tree Eco Field Guide 4.26.2016,” 2016) conducted 

2019 at 200 randomly selected spots.   

 

Figure 4. The study area marked with blue outline. 
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2.2 Methodological overview 
 

 

Figure 5. Flowchart describing the method of tree canopy extraction. 

 

Figure 5 illustrates the process of urban canopy mapping. It is a linear process from LIDAR 

point cloud and aerial images to a final prediction model for urban tree canopy classification. 

The first step is to make a canopy height model (CHM) from LIDAR data. The CHM is then 

merged with an aerial image to create an image with 4 bands. The LIDAR point cloud is also 

used to extract labels of tree canopies using watershed image segmentation. Vectorised 

labels are combined with the 4-band image in the training phase of the deep learning model. 

The trained model is used for prediction of tree canopy on new images and the results pixel-

based prediction are evaluated with accuracy metrics. 
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2.3 Creating image input for deep learning model 
 

A canopy height model (CHM) is an elevation raster with the height of trees, buildings, and 

other structures above the ground topography. A CHM is made from LIDAR data. 

 

2.3.1 Light Detection and Ranging (LIDAR data) 
 

LIDAR data are 3D measurements of light reflections from 

the ground, vegetation, and other objects collected from an 

aircraft. The coordinate measurements are based on the 

laser pulses combined with sensor position from Global 

Navigation Satellite Systems (Figure 6) (Ressl et al., 2009).  

A LIDAR scanning for Borås municipality was done in 

November 2016. The result from the LIDAR scanning was a 

point cloud with an average of 15 points per square meter, 

with values for x, y and z coordinates. The result was 

delivered in 500*500m tiles with data.  

The LIDAR point cloud was delivered classified for ground 

and buildings (ASPRS - American Society for Photogrammetry 

& Remote Sensing, 2002). Vegetation was not classified.  

 

The process to create the CHM was done with the following steps: 

1. The ground points were normalized to 0 elevation, instead of meters above sea level. 
The height was set relative to closest ground height points. This was done because 
the deep learning model should identify trees correctly based on their absolute 
height and not based on the height, they stand above sea level. 

 
2. Outliers were removed with a filter function. Points above 95th percentile of height 

were removed. The LIDAR data may contain noise, therefore this was done. 
 
3. Null values (missing data) were removed to create a pit free CHM (Khosravipour et 

al., 2014). This was done to get a smoother final product. 
 

4. The results were saved as a 32 centimetres resolution CHM. 
 

  

 Figure 6. Airborne LIDAR-
scanning. Image by author. 
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2.3.2 Image data 
 

The image data used in the thesis was aerial images, IR-image and CHM (Table 1). The aerial 

images were captured at 3700 meters above ground with a digital camera, UltraCam Eagle 

Mark 3. The aerial image had 3 bands (red, green and blue) and covered the study area 

(Figure 4). The digital aerial images had a resolution of 16 centimetres.  The aerial image was 

cut out at same size as the CHM. The result was an aerial image tile at the same size as the 

CHM raster.  

 

Table 1. Raster data used for different band set ups. 

Imagery Resolution Acquisition 
date 

Foliage Data type 

Ortho imagery, 3 band (R,G,B) 16 cm 2020-04-20 Leaf-off Integer 32 

Ortho imagery, 3 band (R,G,B) 16 cm 2022-06-18 Leaf-on Integer 32 

Ortho imagery, 3 band (IR,G,B) 16 cm 2022-06-18 Leaf-on Integer 32 

Canopy height model (CHM) 32 cm 2016-11-24 Leaf-off Floating 
 

Image input used to train the different models Figure 7- Figure 10 show the different images 
over the training area.  
 

 

Figure 7. Leaf-off imagery from 2020-04-20, Lantmäteriet. Training area marked with green outline 
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Figure 8. Leaf-on imagery from 2022-06-28, Lantmäteriet. Training area marked with green outline. 

 

Figure 9. Leaf-on infrared (IR) imagery from 2022-06-28, Lantmäteriet. Training area marked with green outline. 



12 
 

 

Figure 10. Canopy height model made from LIDAR ground points and unclassified point cloud data (buildings not included), 
32 cm resolution. Elevation relative to ground level. 

 

Different raster band combinations (Table 2) were tested to analyse the difference in 

prediction accuracy with different types of image input. 

 
Table 2. Raster image band combinations as input for model training. 

Band set-up Foliage 

IR,G,B+CHM Leaf-on 

R,G,B + CHM Leaf-on 

R,G,B  Leaf-on 

R,G,B + CHM Leaf-off 

IR,G,B Leaf-on 

R,G,B  Leaf-off 

CHM Leaf-off 
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2.3.3 Image fusion  
 

For some of the band combination a 4th band was added (Figure 11). In those cases, the CMH 

(1 band) was merged with the aerial image (3 bands). The result was a 4-band image with 32 

centimetres resolution.  

 

Figure 11. Example of fusion done with canopy height model and aerial image. The result was a 4 band image. 

 

2.3.4 Watershed segmentation 
 

The tree segmentation using a CHM is based on the assumption that each tree has a treetop 

representing a local maxima regarding the elevation. The height values of the CHM have 

local maxima and minima values, those can be referred as watersheds and basins (Figure 

12). 

 

Figure 12. Illustration of the concept of watershed segmentation. Height profile of CHM, catchment basins and watersheds. 
Image by author. 
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The watershed algorithm identifies and separates image objects that stand out of the 

background (Oleś et al., 2020). The pixels are classified as canopy or ground pixels with 4 

meters as a separation between canopy and ground hits.  

The algorithm searches neighbouring pixels to decide whether the pixels are within a tree 

crown or outside. If neighbouring pixels are canopy pixels, the central pixel will be classified 

as a within the crown. All tree crown pixels in the image will be assigned the ID number of 

the associated watershed.  

The first step to get training data was to use a script conducting the watershed algorithm to 

generate tree hulls automatically (Figure 13) running a script in R (a free software 

environment for statistical computing and graphics). This speeded up the process 

substantially since creating training samples for machine learning is considered to be a time 

consuming task (“Data Preparation in Machine Learning: 6 Key Steps,” 2023) 

 

Figure 13. Tree labels from CHM with the watershed algorithm using R. 

A manual revision was done using the latest images, IR and CHM after the automatic 

delineation. The manual work was done to guarantee the best quality of the training and 

validation samples.  
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2.3.5 Setting up the machine learning framework 
 

Image data with marked annotations of trees (labels) were used as input (Figure 14) to the 

machine learning model. Feeding the model with raster data of trees of different size and 

shape will train the deep learning model to detect trees on new images. This is the core 

function of deep learning on image data. 

 

 
Figure 14. Data input, deep learning with neural network and output. 

The software used for the deep learning training was Raster Vision version 0.20.  
Raster Vision is an open source framework to build deep learning models on satellite, aerial, 
or drone images. An open source framework is a template for software development that is 
designed by a social network of software developers, e.g. github 
(https://github.com/azavea/raster-vision) as in this case. These frameworks are free for 
public use and provide the foundation for building a software application. There is built-in 
support for object detection and semantic segmentation using python code (programming 
language).  Object detection means predicting a bounding box enclosing the object of 
interest while semantic segmentation assigns a label to each pixel in an image. Since tree 
canopy area was interesting in this study semantic classification was used.  
The software was installed in a Docker environment. The reason for that is that the python 
dependencies are much easier to handle in a Docker container rather than in a local 
environment. Docker is an open source containerization platform. It enables to package 
applications into isolated development environments called containers (“What are 
containers?  |  Google Cloud,” 20230131). The input to a Raster Vision is a set of images and 

https://github.com/azavea/raster-vision
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training data. The output of a Raster Vision is a trained deep learning model that allows 
prediction on new images.  
 
The model was trained with 10 epochs (the epochs are the number of passes of the entire 
training dataset the machine learning algorithm has completed.) on a 32 GB RAM, Intel Core 
i7 processors, PC Workstation. Each epoch took approximately 15 minutes. 
 
Training and validation was performed on the same data, e.g. data trained on leaf-on and 

CHM was validated on leaf-on and CHM raster. The validation labels however were the same 

for all models.  

 

2.3.6 Evaluation metrics 
 

2.3.6.1 Precision 
 

Precision is true positives (tp) devided by true positives (tp) and false positives (fp) (Equation 

1) (Witten and Frank, 2023). Precision is an interesting measure telling us about how the 

true negatives and how they affect the accuracy. 

  

Equation 1. Derivation of the precision. True positive (tp), false negative (fn) and false positive (fp). 

2.3.6.2 F1 Score 
 

F1 score is widely used for machine learning accuracy tests (Equation 2). That is why it was 

chosen as evaluation metrics for the precision of the tree canopy classification. The F1-score, 

is a measure of the accuracy on a dataset. Recall represents the ability to correctly predict 

the positives out of actual positives. Recall is the number of true positives divided by the 

number of true positives and the number of false negatives. Precision, or positive predictive 

value, is the proportion of true positives out of the total number of positive predictions. The 

range of F1 is between 0 and 1, with 0 being the worst score and 1 the best score (Tao et al., 

2021). The F1-score is described by equation 1. The metrics is based on how each pixel in the 

images is classified, tree or background in this case.  

 

  

Equation 2. Derivation of the F1 score. True positive (tp), false negative (fn) and false positive (fp).  
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2.3.7 Training and validation area 
 

The training area (Figure 15) is situated in the city centre of Borås. The area has both single 

tree stands and denser areas of tree stands, in particular in the western part of the area. The 

training area is representative for a city centre with high-rise buildings (3-12 floors) in blocks. 

The training area contained 1103 vector labels of tree canopies used as training data. The 

validation area (Figure 15) contains the heterogeneity regarding size, colour and shape of 

tree canopies that can be found in the training area, both single trees and dense tree stands 

of tree canopies were used as validation data.  

The area is the central southern part of the dense city centre, mainly higher buildings, some 

open impervious areas and tree avenues with older trees are primary characteristics of the 

validation area. The validation area contained 616 vector labels used as validation data for 

the test of F1-score accuracy. 
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Figure 15. Training area, 45 ha, marked with green outline and validation area, 23 ha, marked with red outline. 
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3 Results 
 

7 different set-ups for band combinations (Table 3) were tested for F1-score and precision. 

True positive (TP), false negative (FN), false positive (FP) and true negative (TN) was 

automatically calculated in the Raster vision pipeline output. The results was put in a 

confusion matrix. The band setup IR,G,B,CHM scored the highest total accuracy. Leaf-on 

imagery was used in the three top predictions while R,G,B,CHM was similar of using leaf-on 

imagery only. IR,G,B,CHM scored the highest accuracy. 

 

Table 3. Confusion matrix, pixel level statistics, table shows percentage of all pixels in validation image. 

Band set-up Foliage TP TN FP FN F1 score precision 

IR,G,B,CHM Leaf-on 14.39% 82.42% 1.38% 1.81% 0.89 0.91 

R,G,B, CHM Leaf-on 14.32% 82.91% 1.50% 1.37% 0.88 0.91 

R,G,B  Leaf-on 13.43% 82.90% 1.51% 2.16% 0.87 0.90 

R,G,B, CHM Leaf-off 13.50% 82.31% 1.83% 2.10% 0.87 0.88 

IR,G,B Leaf-on 13.18% 82.22% 1.58% 3.02% 0.79 0.88 

R,G,B  Leaf-off 9.72% 82.53% 1.87% 5.88% 0.68 0.84 

CHM Leaf-off 12.32% 82.31% 2.10% 3.27% 0.68 0.83 

 

Figure 16 - Figure 19 show the predictions of tree crowns within the validation area for the 4 

prediction models that scored highest accuracy. Most predictions are similar for all 4 models, 

however there are some important diffences, e.g. how single trees are detected. All models 

are underestimating the overall tree area and the number of trees in the the validation area. 

 

Figure 16. Validation area with tree predictions by model trained on leaf-off and CHM imagery. 
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Figure 17. Validation area with tree predictions by model trained on leaf-on and CHM imagery. 

 

Figure 18. Validation area with tree predictions by model trained on leaf-on imagery. 

 



21 
 

 

Figure 19. Validation area with tree predictions by model trained on leaf-on IR and CHM imagery. 

 

3.1 Prediction details 
 

The avenue of trees (Figure 20) with small crowns shows great differences between the 4 

models. The R,G,B  leaf-on model has most problem detecting the crowns. The leaf of model 

(R,G,B, CHM) is overestimating the crown area. The model using leaf-on with IR and CHM 

(IR,G,B,CHM) only spots 2 trees in the avenue. Leaf-on CHM (R,G,B,CHM) gives the best 

result with less overestimation of tree crown area. Only RGB leaf-on data does not detect a 

single tree while the model with CHM added detects 7 trees (Figure 20).  



22 
 

 

Figure 20. Avenue of trees with small crowns predicted by different model setups. 

Large dense tree crowns in a row (Figure 21) are detected similar by all 4 models. Some 

differences can be seen for single tree predictions where leaf-on with IR and CHM is most 

correct with validation labels. 

 

Figure 21. Row of trees with dense crowns and single trees predicted by different model setups. 

The metal rails holding road signs in seems like an issue (Figure 22) for the leaf-off CHM 

model with an elongated prediction over the highway. The other prediction models do not 
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predict the rails holding road signs as a tree. 

 

Figure 22. Various tree locations predicted by different model setups. 

Figure 23 shows 10 epochs and the progress of the F1-score for every epoch for the 4 

models with highest overall accuracy. The F1 score is increasing most for the R,G,B leaf-on 

model.  

 

Figure 23. F1-score during 10 epochs for the band combinations with highest accuracy. 

Figure 24 shows 10 epochs and the progress of the precision for every epoch for the 4 

models with highest overall accuracy. The F1 score is increasing most for the IR,G,B leaf-on 

model. 
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4 Discussion 
 

Lantmäteriet takes leaf-off imagery every 4th year and leaf-on imagery every 4th year 

(image acquisition every 2nd year). LIDAR scanning is preferable done leaf-off to detect 

other objects for city planning. Always perfect data is not realistic or can be financially 

defended, but can leaf-off images with LIDAR be used instead? The objective of this thesis 

was to evaluate the prediction accuracy and to identify the strengths and weaknesses in the 

deep learning model. The deep learning method using LIDAR and aerial leaf-off images had a 

F1-score of 87% and a precision of 88% mapping urban tree canopy. The combination of leaf-

on data with IR and CHM scored the highest accuracy with a F1-score of 89% and a precision 

of 91%. The findings of this study indicates that tree canopy mapping with aerial images 

taken under leaf-off conditions is an applicable method in comparison with other methods. 

There was some prediction issues with rails holding road signs, but the model predicted 

trees in shadowy areas with the aid of the CHM. The results of this study indicate that LIDAR 

data seems to increase the prediction accuracy in shadowy areas.  

 

4.1 Prediction issues 
 

The prediction errors with rails holding road signs could be related to incorrect 

interpretation of LIDAR data. High objects not classified as buildings are more difficult to 

distinguish from vegetation (Lindberg et al., 2013) . Road sign rails crossing highways are 

such elements. This could affect the predictions, especially if a tree canopy is close to the 

rails. The method could possibly be developed with filters removing road sign rails from 

vegetation in the LIDAR data, by pre-processing LIDAR data with filters to refine the input in 

the model. Anyhow the leaf-on data in combination with LIDAR doesn´t predict road sign 

rails incorrect (Figure 22). Further studies could be made to validate this. 

 

4.2 LIDAR and shadowy areas 
 

Based on the results of this study, LIDAR seems to tackle the problems occurring when only 

RGB images are used, e.g. building shadow and colour related errors. Using only RGB images 

seems to yield less accurate results with problems such as other similar objects as bushes 

classified as trees (G. B. Martins et al., 2021). Other problems using only RGB-images may be 

the prediction errors related to the shape of the tree canopy edges, since they tend to have 

a less defined border without height information (G. B. Martins et al., 2021). Tree canopy 

cover was mapped in Central park, New York, using only RGB images (Yang et al., 2022). 

Darker shadows of tall buildings were an issue, resulting in undetected tree crowns. Such 

problems were found in this study, but less obvious with the CHM band added. The fusion of 

aerial and CHM data, combining the potential of both data sources, is a successful approach 

according to the results in this study. However, the LIDAR data should have at least 10 points 

per square meter to be useful for urban tree mapping (Katz et al., 2020). The use of LIDAR in 

this study seems to solve many of the issues with classification errors reported from other 
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similar studies. Tree canopy could be detected despite shadow from high buildings covering 

one side of the street. LIDAR data in combination with pléiades satellite images (Pu and 

Landry, 2020) was used with machine learning algorithms. The results showed that height 

information extracted from LIDAR data is helpful for improving the mapping of urban tree 

species. This study confirms that LIDAR height information is of value for urban tree 

detection, especially in shadowy areas. The watershed algorithm used in this study, based on 

LIDAR data, is probably an aid to create sharp edges of tree canopy as it adds important 

information to the classification. 

Some remote sensing studies used a combination of LIDAR, aerial images and information 

from the near infrared (Banzhaf et al., 2018; Hanssen et al., 2021). However, using 

vegetation indices and IR information with leaf-off images could easily lead to an 

underestimation of tree canopy cover and was therefore only tested leaf-on in this study. 

Testing the use of different image resolutions is something that could be studied further. 

Higher image resolution might detect trees better, but the CHM with height values must be 

dense enough to use in combination with the aerial image. 

Stadsträd, a Swedish remote sensing company, working with urban tree mapping, is using a 

similar method to collect training data as in this thesis. Their method is based on LIDAR-point 

clouds, e.g. with the open source data Laserdata skog (from Lantmäteriet) with a point 

density of 1–2 points/m2 and building polygons as input (S. Wiman, Stadsträd, personal 

communication, December 13, 2022). 

Local maxima is calculated on the elevation data for all trees above 5 meters above ground. 

Trees are sorted in two classes, “possible building geometry” and “potential tree”. Manual 

control are done with aerial images in combination with object height data. This can be a 

time consuming task depending on both the nature of the input data and the variation of the 

trees in different areas.  

The issues may be 

 Early LIDAR acquisition date causing large trees, with or without several trunks as 

mistaken for several smaller trees. If the tree crowns are not dense enough to return 

LIDAR pulses, these trees may appear incorrect in the elevation model (varying 

heights).  

 Exploitation of surfaces or clearings after the time of LIDAR acquisition date. 

Disappeared trees are visible in old elevation data.  

 Too few trees in contiguous forest areas – tree crowns merge into each other and 

cannot be distinguished.  

Stadsträd is doing an object detection of trees while this thesis is about conducting a 

semantic segmentation. The method of Stadsträd is human labour intensive and based on 

personal knowledge for tree delineation while the method stated in this thesis is automatic 

after training data has been collected. It is hard to compare the two methods since the 

method of Stadsträd of accuracy is relative the amount of human labour put in. 
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The benefits of object detection are that individual crown diameter and tree height can be 

obtained. But the accuracy in dense forest stands and the risk of over- or underestimation of 

individual trees are some problems related to object classification.  

 

4.3 Limitations 
 

Trees that have been cleared in between the acquisition of the LIDAR data and the aerial 

images may have been classified as trees. On the other hand, those planted after the 

acquisition of LIDAR data (2016) and taller than four metres during the acquisition of the 

aerial images might not been classified as trees. Tree crown area size could be 

underestimated both under leaf-off conditions and with LIDAR data from 2016, in particular 

with younger trees present in the aerial images. Underestimations of canopy area could lead 

to underestimations of calculations regarding C02 uptake and other metrics based on urban 

tree canopy cover.  

The fact that LIDAR data is increasing the accuracy is a limitation. This could be a problem in 

smaller municipalities with a limited budget not allowing a LIDAR scanning. It could also be a 

problem if the LIDAR scanning is not up to date due to temporal differences with the aerial 

image, e.g. the data is mismatching. The possibility to use the suggested approach on 

another geographical site may be even higher only using only 3 channels as input; R,G,B. 

Point cloud data is however common data for most larger Swedish cities and seems to add 

higher value of accuracy to the model. If using RGB images only, the results of this study 

indicate that using images closer to the peak of the vegetation season would result in a 

higher accuracy. 

 

4.4 Conclusions & Recommendations 
 

The objectives to evaluate the deep learning model predictions has been detailed examined 

in this study by using a validation test, but also by looking at different types of trees, e.g. 

single trees, dense tree stands, small trees and large trees. Challenges, e.g. shadows and 

road sign rails have also been investigated.  

The outcome of this thesis is that elevation data (CHM) is favourable to use with leaf-off data 

to increase tree mapping accuracy. The F1-score for leaf-off data increased from 68% to 88% 

when an extra band with CHM was added to the model. The elevation data is also favourable 

for IR and leaf-on data accuracy. This method is applicable to map urban tree canopy in a 

fast and accurate way, but possible improvements could be made using data LIDAR and 

aerial images with closer acquisition dates. 

As an alternative of semantic segmentation used in this study, deep learning with object 

detection for trees is another field that could be further explore. This could add value in the 

work with green infrastructure as individual tree prediction is interesting for tree counts and 

urban tree plans on a detailed level. The challenges are difficulties with dense tree stands 

related to accuracy with object detection (Zhang et al., 2022).  



28 
 

The prediction models were tested in a dense urban area similar to the environment where 

the model was trained. Further studies and work must be made to train with more data and 

test the models in a larger area or a more heterogeneous urban structure regarding 

buildings and tree canopy.  

The suggested approach of this thesis can add input value to the field of green infrastructure 

as it maps the current state of urban tree cover in a fast and accurate way. The method has 

the benefit of being open source and with a low threshold to get started without previous 

knowledge. 
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6 Appendix 
 

R-code 
 
Creation of CHM 
.libPaths( c( "C:/Users/Public/R/win-library/4.2" , .libPaths() ) )  
library(lidR) 
# Path to data   
LASfile <- ("path/file.las")  
# Sorting out points in point cloud data, keeping vegetation and ground point classes. 
las <- readLAS(LASfile, filter="-keep_class 1 2") # Keep high vegetation and ground point classes 
 
# Normalizing ground points to 0 elevation (idwinterpolation), instead of meters above sea level. 
dtm <- grid_terrain(las, algorithm = knnidw(k = 8, p = 2)) 
las_normalized <- normalize_height(las, dtm) 
# Create a filter to remove points above 95th percentile of height 
lasfilternoise = function(las, sensitivity) 
{ 
  p95 <- grid_metrics(las, ~quantile(Z, probs = 0.95), 10) 
  las <- merge_spatial(las, p95, "p95") 
  las <- filter_poi(las, Z < p95*sensitivity) 
  las$p95 <- NULL 
  return(las) 
} 
# Generating a pitfree canopy height model without null values (Khosravipour et al., 2014) 
las_denoised <- lasfilternoise(las_normalized, sensitivity = 1.2) 
chm <- grid_canopy(las_denoised, 0.32, pitfree(c(0,2,5,10,15), c(3,1.5), subcircle = 0.2)) 
# Applying a median filter, 3x3 moving window to smooth the image and remove noise 
ker <- matrix(1,3,3) 
chms <- raster::focal(chm, w = ker, fun = median) 
library(raster) 
# Writing output file 
writeRaster(chms, filename="path/file.asc", format="ascii", overwrite=TRUE)  
citation("lidR") 
#> Roussel, J.R., Auty, D., Coops, N. C., Tompalski, P., Goodbody, T. R. H., Sánchez Meador, A., Bourdon, J.F., De 
Boissieu, F., Achim, A. (2020). lidR : An R package for analysis of Airborne Laser Scanning (ALS) data. Remote 
Sensing of Environment, 251 (August), 112061. <doi:10.1016/j.rse.2020.112061>. 
#> Jean-Romain Roussel and David Auty (2021). Airborne LiDAR Data Manipulation and Visualization for 
Forestry Applications. R package version 3.1.0. https://cran.r-project.org/package=lidR 

 
 
 
 
  

https://cran.r-project.org/package=lidR
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Hull generation 
 
.libPaths( c( "C:/Users/Public/R/win-library/4.2" , .libPaths() ) )  
library(lidR) 
# Path to data   
LASfile <- ("path/file.las")  
# Sorting out points in point cloud data, keeping vegetation and ground point classes. 
las <- readLAS(LASfile, filter="-keep_class 1 2") # Keep high vegetation and ground point classes 
 
# Normalizing ground points to 0 elevation (idwinterpolation), instead of meters above sea level. 
dtm <- grid_terrain(las, algorithm = knnidw(k = 8, p = 2)) 
las_normalized <- normalize_height(las, dtm) 
# Create a filter to remove points above 95th percentile of height 
lasfilternoise = function(las, sensitivity) 
{ 
  p95 <- grid_metrics(las, ~quantile(Z, probs = 0.95), 10) 
  las <- merge_spatial(las, p95, "p95") 
  las <- filter_poi(las, Z < p95*sensitivity) 
  las$p95 <- NULL 
  return(las) 
} 
# Generating a pitfree canopy height model without null values (Khosravipour et al., 2014) 
las_denoised <- lasfilternoise(las_normalized, sensitivity = 1.2) 
chm <- grid_canopy(las_denoised, 0.32, pitfree(c(0,2,5,10,15), c(3,1.5), subcircle = 0.2)) 
# Applying a median filter, 3x3 moving window to smooth the image and remove noise 
ker <- matrix(1,3,3) 
chm_s <- raster::focal(chm,th = 4, w = ker, fun = mean, na.rm = TRUE) 
las_watershed <- segment_trees(las, watershed(chm_s)) 
# Removing points that are not assigned to a tree 
trees <- filter_poi(las_watershed, !is.na(treeID)) 
hulls <- delineate_crowns(trees, type = "concave", concavity = 2, func = 
.stdmetrics) 
plot(hulls) 
plot(chm_s) 
require(rgdal) 
require(rgeos) 
writeOGR(hulls,"path/","filename", driver = "ESRI Shapefile") 
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Python code, raster vision 
 

import os 

from os.path import join, basename 

 

from rastervision.core.rv_pipeline import * 

from rastervision.core.backend import * 

from rastervision.core.data import * 

from rastervision.core.analyzer import * 

from rastervision.pytorch_backend import * 

from rastervision.pytorch_learner import * 

from rastervision.pytorch_backend.examples.utils import (get_scene_info, 

                                                         save_image_crop) 

from rastervision.pytorch_backend.examples.semantic_segmentation.utils import ( 

    example_multiband_transform, example_rgb_transform, imagenet_stats, 

    Unnormalize) 

 

 

def get_config(runner, 

               multiband: bool = True, 

               external_model: bool = False, 

               augment: bool = False, 

               nochip: bool = False, 

               test: bool = False): 

    root_uri = '/opt/data/output/' 

    train_image_uris = ['/opt/data/data_input/images/1.tif'] 

    train_label_uris = ['/opt/data/data_input/labels/1.geojson'] 

    train_scene_ids = ['1'] 

    train_scene_list = list(zip(train_scene_ids, train_image_uris, train_label_uris)) 

 

    val_image_uri = '/opt/data/data_input/images/2.tif' 

    val_label_uri = '/opt/data/data_input/labels/2.geojson' 

    val_scene_id = '2' 
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    train_scenes_input = [] 

    

    channel_order = [0, 1, 2,3] 

    channel_display_groups = None 

    aug_transform = example_rgb_transform 

 

    if augment: 

        mu, std = imagenet_stats['mean'], imagenet_stats['std'] 

        mu, std = mu[channel_order], std[channel_order] 

 

        base_transform = A.Normalize(mean=mu.tolist(), std=std.tolist()) 

        plot_transform = Unnormalize(mean=mu, std=std) 

 

        aug_transform = A.to_dict(aug_transform) 

        base_transform = A.to_dict(base_transform) 

        plot_transform = A.to_dict(plot_transform) 

    else: 

        aug_transform = None 

        base_transform = None 

        plot_transform = None 

 

    chip_sz = 300 

    img_sz = chip_sz 

    if nochip: 

        chip_options = SemanticSegmentationChipOptions() 

    else: 

        chip_options = SemanticSegmentationChipOptions( 

            window_method=SemanticSegmentationWindowMethod.sliding, 

            stride=chip_sz) 

 

    class_config = ClassConfig( 

    names=['tree', 'background'], colors=['red', 'black']) 

 

    def make_scene(scene_id, image_uri, label_uri): 
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        raster_source = RasterioSourceConfig( 

            uris=[image_uri], 

            channel_order=channel_order, 

            transformers=[StatsTransformerConfig()]) 

        vector_source = GeoJSONVectorSourceConfig( 

            uri=label_uri, transformers=[ClassInferenceTransformerConfig(default_class_id=0)], 
ignore_crs_field=True) 

        label_source = SemanticSegmentationLabelSourceConfig( 

            raster_source=RasterizedSourceConfig( 

                vector_source=vector_source, 

                rasterizer_config=RasterizerConfig(background_class_id=1))) 

                

        label_store = SemanticSegmentationLabelStoreConfig( 

            rgb=True, vector_output=[PolygonVectorOutputConfig(class_id=0)]) 

        return SceneConfig( 

            id=scene_id, 

            raster_source=raster_source, 

            label_source=label_source, 

            label_store=label_store) 

 

 

    for scene in train_scene_list: 

        train_scenes_input.append(make_scene(*scene)) 

        

    dataset = DatasetConfig( 

    class_config=class_config, 

    train_scenes= 

        train_scenes_input 

    , 

    validation_scenes=[ 

        make_scene(val_scene_id, val_image_uri, val_label_uri) 

    ]) 

    

    chip_sz = 300 
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    backend = PyTorchSemanticSegmentationConfig( 

        data=SemanticSegmentationImageDataConfig(img_channels=len(channel_order), img_sz=img_sz), 

        model=SemanticSegmentationModelConfig(backbone=Backbone.resnet50), 

        solver=SolverConfig(lr=1e-4, num_epochs=10, batch_sz=4)) 

    chip_options = 
SemanticSegmentationChipOptions(window_method=SemanticSegmentationWindowMethod.sliding) 

 

    return SemanticSegmentationConfig( 

        root_uri=root_uri, 

        dataset=dataset, 

        backend=backend, 

        train_chip_sz=chip_sz, 

        predict_chip_sz=chip_sz) 
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