
Optimization algorithms
underlying neural networks

Classification of meditative states by use of recurrent neural

networks

by

Oisin Clancy

A thesis submitted in partial fulfillment

of the requirements for the degree of

Bachelor’s of Science

Mathematics

at
Lund University

2022

i

Optimization algorithms underlying neural networks

Classification of meditative states by use of recurrent neural networks

Oisin Clancy

Abstract

Neural networks can be utilized for an ever widening selection of tasks. In this thesis the
most common optimization algorithms underlying neural networks are investigated: clas-
sical momentum, Nesterov momentum, AdaGrad, AdaDelta, RMSprop, Adam, AdaMax,
and Nadam. The underlying mathematics that these algorithms are based on is described.
There is a summary of key components of a neural network—activation functions and loss
functions—which provides prerequisite knowledge for understanding the place of optimiza-
tion algorithms within the whole.

Classification of time series data (sequential modelling) can be accomplished through
the use of Recurrent Neural Networks (RNNs). These networks allow for the capture of
time dependent information. A brief overview of the structure of this type of network is
given.

The optimization algorithms, activation functions, loss functions, and RNN that have
previously been described theoretically are then implemented explicitly in a real world
problem. They are used to classify EEG data of different meditative practices that entail
subjective changes in experience. Through this it is shown how the mathematics under-
lying these tools eventually leads to results in a diverse range of scientific explorations: in
this case, the classification of conscious states.

ii

Dedication

To my mum and dad for everything they have given me.

iii

Acknowledgements

I would like to thank my thesis advisor Alexandros Sopasakis for taking on this project
and sharing his time with me. Mikael Johansson for introducing me to EEG, sharing his
knowledge, and engaging in many interesting dialogues over the years. Philippe Goldin for
precious use of his brain in recording and conversing. Alexander Hagelborn for essential
discussions regarding neural network design. Lastly, the Math and Psychology depart-
ments at Lund University for the education I have received, opportunities offered, and the
time given by various professors here.

iv

Contents

List of Figures vi

1 Introduction 1
1.1 Optimization . 1
1.2 Neural Networks . 2

1.2.1 Biological Neural Networks . 2
1.2.2 Comparison to Biological Neural Network 3
1.2.3 Basic Artificial Neural Network Structure 4

2 Activation Functions & Loss Functions 7
2.1 Activation Functions . 7

2.1.1 Rectified Linear Unit . 7
2.1.2 Sigmoid (logistic sigmoid) . 8
2.1.3 Tanh (hyperbolic tangent) . 9
2.1.4 Softmax . 9

2.2 Loss Functions . 10
2.2.1 Cross-Entropy Loss . 10
2.2.2 Binary Cross-Entropy Loss . 11
2.2.3 Multi-Class Cross-Entropy Loss . 11
2.2.4 Note on nomenclature . 12

3 Optimization Algorithms 13
3.1 Gradient Descent . 13

3.1.1 Regular Gradient Descent . 13
3.1.2 Stochastic Gradient Descent . 14
3.1.3 Mini Batch Gradient Descent . 14
3.1.4 Version of Gradient Descent Used in Algorithms 15

3.2 Background for Optimization Algorithms 15
3.2.1 Exponentially Weighted Moving Averages 15
3.2.2 Bias Correction . 17
3.2.3 Learning Rate . 17

3.3 Optimization Algorithms . 18
3.3.1 Classical Momentum . 18
3.3.2 Nesterov Momentum . 19
3.3.3 AdaGrad . 20
3.3.4 AdaDelta . 21

v

3.3.5 RMSprop . 21
3.3.6 Adam . 22
3.3.7 AdaMax . 23
3.3.8 Nadam . 24

4 Recurrent Neural Network 26
4.1 Recurrent Neural Network (RNN) . 26
4.2 Deep Recurrent Neural Networks (DRNNs) 27

5 Experiment 28
5.1 Electroencephalography (EEG) . 28
5.2 Meditation . 28
5.3 Recording . 28
5.4 Data . 29

5.4.1 Recorded Data . 29
5.4.2 Exported Data . 29

5.5 Preprocessing . 29
5.6 Train, Validation, Test Sets . 29
5.7 Model Architecture . 30

6 Results 31
6.1 Analysis 1 - Classical Momentum . 32
6.2 Analysis 2 - Nesterov Momentum . 33
6.3 Analysis 3 - AdaGrad . 34
6.4 Analysis 4 - AdaDelta . 35
6.5 Analysis 5 - RMSprop . 36
6.6 Analysis 6 - Adam . 37
6.7 Analysis 7 - AdaMax . 38
6.8 Analysis 8 - Nadam . 39
6.9 Comparison of Optimizers . 40

7 Conclusion 42

A Data Collection 44
A.1 Electroencephalogram (EEG) . 44
A.2 Emotiv Software . 45

B Meditation 46
B.1 Breath Focus . 46
B.2 Body Scan . 47
B.3 Gratitude . 48
B.4 Loving-Kindess . 49

C Data Analysis 52

Bibliography 59

vi

List of Figures

1.1 Biological neuron diagram. 2
1.2 Artificial neuron diagram. 3

2.1 ReLU activation function. 8
2.2 Sigmoid activation function. 8
2.3 Tanh activation function. 9

3.1 Gradient descent with different learning rates 19

5.1 Model architecture of recurrent neural network used for comparing the op-
timzation algorithms . 30

6.1 Accuracy and loss plot for classical momentum 32
6.2 Best performance values and confusion matrix for classical momentum . . . 32
6.3 Accuracy and loss plot for Nesterov momentum 33
6.4 Best performance values and confusion matrix for Nesterov momentum . . . 33
6.5 Accuracy and loss plot for AdaGrad . 34
6.6 Best performance values and confusion matrix for AdaGrad 34
6.7 Accuracy and loss plot for AdaDelta . 35
6.8 Best performance values and confusion matrix for AdaDelta 35
6.9 Accuracy and loss plot for RMSprop . 36
6.10 Best performance values and confusion matrix for RMSprop 36
6.11 Accuracy and loss plot for Adam . 37
6.12 Best performance values and confusion matrix for Adam 37
6.13 Accuracy and loss plot for AdaMax . 38
6.14 Best performance values and confusion matrix for AdaMax 38
6.15 Accuracy and loss plot for classical Nadam 39
6.16 Best performance values and confusion matrix for Nadam 39
6.17 Table comparing optimization algorithms with fixed learning rate 40
6.18 Table comparing optimization algorithms with different learning rates . . . 40

A.1 Emotiv Epoc Flex EEG . 45
A.2 EEG assembled for recording . 45

1

Chapter 1

Introduction

1.1 Optimization

The words optimum and optimal stem from the Latin word optimus meaning the “best
possible” or “most favourable” [14]. Optimisation refers to the process of bringing some-
thing into the best possible state. The history of optimisation is long and has had an
important role throughout the history of civilisation—before the mathematics of the topic
was well established. Optimisation was often done by simulation—imagination, e.g. what
is the best route to this location?

”Optimality is a fundamental principle, establishing natural laws, ruling biological be-
haviours, and conducting social activities.” [6]

The beginnings of optimisation within mathematics can be spotted in the geometric
studies of Ancient Greece, for instance, when Euclid considered the minimal distance be-
tween a point and a line. However, as a whole, the history of optimisation in mathematics
can be divided into three periods. [6]

In the first period, there were no known general methods for finding a maximum/minimum
point of a function. Only special techniques were found to maximize/minimize some spe-
cial functions such as the quadratic function of one variable.

The second period began in 1646 by Pierre de Fermat who proposed in a paper [4] a
general approach to compute local maxima/minima points of a differentiable function by
setting the derivative of the function equal to zero. This approach is likely the most known
method for finding such min/max points and is included in most textbooks on calculus as
an application of differentiation.

During this period, optimisation existed but was not an important branch of applied
mathematics. Hence, little attention was paid to new results and many contributions were
not documented, which leaves some mystery in the history of the topic. However, there
are works by such well known mathematicians as Joseph-Louis Lagrange, Isaac Newton,
and Carl Fredrich Gauss using calculus on continuous optimization [22].

The third period of optimisation started with the discovery of linear programming,
with G.B. Dantzig’s proposal of the simplex method [3] in 1947 being a significant catalyst
point. Mathematical programming relates to the theory, use, and computational solution

2

of mathematical models to help in making decisions, and now encompasses a wide array
of models such as linear programming, integer programming, nonlinear programming,
stochastic programming, etc. All of which make use of optimization methods. [22]

Today, optimization has become a very important interdisciplinary field between math-
ematics, computer science, engineering, management science, and most recently played a
prominent role in the rise and resurgence of artificial neural networks and machine learn-
ing. This wide applicability of optimization based methods points towards their continued
use and expansion within a diverse range of fields.

1.2 Neural Networks

1.2.1 Biological Neural Networks

Figure 1.1: Biological neuron diagram.

The neuron is currently considered to be the main computational unit of the brain.
While there are many different neuron types to be found in the human brain (and elsewhere
in the body) the basic structure remains similar. The neuron is composed of a cell body,
known as the soma, that contains the nucleus of the cell. Attached to this cell body are
spindly arms known as dendrites, which act as transmission wires for incoming signals.
The membrane is the outer layer of the neuron separating the interior of the neuron from
the exterior extracellular fluid in which it is contained. A voltage difference between the
interior and exterior of the cell exists and is referred to as the membrane potential.
Small pores along the membrane, ion channels, can open and close to allow different
ions to enter and exit the cell.

Electrical changes in membrane potential occur due to the opening and closing of ion
channels along the length of the dendrites (and sometimes also on the cell body itself).
The changes in membrane potential are carried towards the soma where the individual
changes in potential are summed together. If the summation of the electrical potentials
cross a specific threshold, approximately -55mV, then an action potential is triggered

3

within the cell body. This action potential then causes an electrical signal to flow down
the main axon towards the pre-synaptic terminals. The propagation of this signal is
helped along by insulating structures known as myelin sheaths, which act similarly to
the insulating plastic found on the outside of a metal wire to improve conductivity. When
this signal arrives at the pre-synaptic terminal it causes packages of neurotransmitters
(vesicles) to be released into the synaptic cleft. These neurotransmitters then attach to
the dendrites of other neurons, where they engage in a variety of biochemical signalling,
triggering biochemical cascades, opening and closing ion channels, all of which act to
change the membrane potential of the next neuron’s dendrites at which point the process
repeats itself within the next neuron.

The firing of an individual neuron—the triggering of an action potential—is thus de-
pendent on the strength and timing of the incoming signals. Although the process is
certainly a continuous one, the firing of the action potential can be modelled discretely as
a binary decision: fire or not fire (on or off). The human brain contains approximately
89 billion neurons, all of which are engaged in this constant activity of biochemical and
electrical activity—neural signalling. Many individual neurons become tightly intercon-
nected forming groups of neurons that in turn communicate regularly with other groups
of neurons, often situated in disparate regions of the brain. These connections between
groups of neurons throughout the brain form networks which are often significantly corre-
lated with specific behavioural and psychological functions; the excitation and inhibition
of different networks having been shown to effect the cognitive processing of individuals.
These neural networks provide the structure from which learning and memories are formed
and integrated across the brain. These are the biological neural networks that artificial
neural networks are based upon.

1.2.2 Comparison to Biological Neural Network

Figure 1.2: Artificial neuron diagram.

Artificial neural networks are coarse approximations of real biological neural networks.
They provide the most basic functionality of real neurons: nodes acting as cell bodies,
connections acting as dendrites and axons. Each node takes incoming signals from
an incoming connection; the incoming signal being composed of the output from the
previous node, x, multiplied by a weight, w associated with that particular connection.

4

These individual signals from each incoming connection then arrive at the node where
they are summed together,

m∑
i

wixi.

An extra value, known as a bias, b, is associated with the node and this is added to the
summation of the incoming signals,

m∑
i

wixi + b.

This value then undergoes a transformation due to a function associated with that node,
σ, an activation function. The output of this activation function is then the output of
this particular node,

σ

(
m∑
i

wixi + b

)
.

The output may travel along multiple outgoing connections, with each connection hav-
ing an associated weight, and thus becoming the input to another node. This process is
repeated throughout the network with an individual node having multiple incoming con-
nections and multiple outgoing connections. The number of nodes in the network and the
number of connections are dependent on the choice of network architecture. In this way
an artificial neural network coarsely approximates a biological neural network.

1.2.3 Basic Artificial Neural Network Structure

x1

x2

x3

x4

x5

x6

Input
layer

x
(1)
1

x
(1)
2

x
(1)
3

x
(1)
4

x
(1)
5

x
(1)
6

x
(1)
7

x
(1)
8

Hidden
layer 1

x
(2)
1

x
(2)
2

x
(2)
3

x
(2)
4

x
(2)
5

x
(2)
6

Hidden
layer 2

x
(3)
1

x
(3)
2

x
(3)
3

x
(3)
4

x
(3)
5

x
(3)
6

x
(3)
7

x
(3)
8

Hidden
layer 3

ŷ1

ŷ2

ŷ3

Output
layer

The input layer of the network is composed of n input features labelled x1, x2, . . . , xn.
Each input feature is normally in the form of a real number and each node in the input

5

layer represents one of these input features. All of these input features together can be
written in vector form, x = (x1, x2, . . . , xn). Hence the first node represents x1, second
node represents x2,. . . , the n’th node represents xn. As this is the initial layer in the
network we can use the superscript 0 to represent that these values refer to the input

layer, x(0) = (x
(0)
1 , x

(0)
2 , . . . x

(0)
n).

The hidden layers of the network can be as numerous as one wishes. The use of
networks with many layers is what is often referred to as deep neural networks. Any
network with more than 1 hidden layer can technically be referred to as a deep neural
network. The number of layers in the network is referred to as the depth of the network
(input layer is not included but output layer is).

Each hidden layer of the network contains a specific number of nodes. The number of
nodes in a hidden layer does not need to be equal to the number of nodes in the input
layer, nor must the number of nodes per each hidden layer be the same. The number of
nodes in a layer is referred to as the width of a layer.

The values associated with the nodes of a hidden layer can also be represented by the
use of x1, x2, ..., xn. However, to distinguish these from the input layer we also write
a superscript denoting the number of the layer. So in vector form we have, x(1) =

(x
(1)
1 , x

(1)
2 , . . . , x

(1)
m). Note that the subscript of the last value is given as m rather than n

as the number of nodes in the hidden layer does not need to match the number of nodes
in the input later.

We can refer to the node values of a hidden layer as x
(L)
i , where L refers to the hidden

layer number and i refers to the node number in that layer. x(L) is the vector representing
the values of the nodes in the Lth layer, x(L) = (xL1 , x

L
2 , x

L
3 , . . . , x

L
m).

If each node in a hidden layer is connected to each node in the previous layer it is
referred to as fully connected (there are occasions when this is not true and a particular
node will only be connected to a specific number of nodes in the previous layer but this is
not important for an introductory understanding). The connections between these nodes
can be referred to as edges or connections. Therefore if hidden layer 1, h1, contains 20
nodes then each one of those nodes will be connected to every node in hidden layer 2. So
a single node in hidden layer 2 will have 20 incoming connections. And similarly every
other node in hidden layer 2 will also have 20 incoming connections.

Each one of these individual edges will have a weight , w, associated with it. The

weight is a real value number. The output of the node, x
(L)
i , is multiplied by the weight

value of the edge that connects it to the next node. This weight can be written as , w
(L)
ij ,

where L refers to the layer of nodes it is being multiplied by, i refers to the number of the
node that the weight is applied to, and j denotes the node that the edge is connected to.
So the input to a node in the next layer will be given by wL

ijx
L.

Each node x
(L)
i will connect to m nodes in the next layer. Therefore if there are n

nodes in the first layer and m nodes in the second layer there will n × m edges and so
n×m weights. These weights can be more easily written as a matrix of weights,

W =

w1,1 w1,2 . . . w1,m

w2,1 w2,2 · · · w2,m
...

...
. . .

...
wn,1 wn,2 · · · wn,m

 .

6

We can then multiply this matrix of weights by the vector representing the node values
for the Lth layer so we get,

Wx =

w1,1 w1,2 . . . w1,m

w2,1 w2,2 · · · w2,m
...

...
. . .

...
wn,1 wn,2 · · · wn,m

x0
x1
...
xn

 =

w1,1x0 + w1,2x1 + · · ·+ w1,mxn
w2,1x0 + w2,2x1 + · · ·+ w2,mxn

...
wn,1x0 + wn,2x1 + · · ·+ wn,mxn

 .

This vector thus acts as the input values for the L+ 1th layer of the network.
Every individual node will also have a bias, b, associated with it. This is a scalar

value which is added to the summation of weights and outputs. This is provided so as to
determine a threshold that the summation of weights and outputs must surpass in order
for the node to output a particular value.

Wx+b =

w1,1 w1,2 . . . w1,m

w2,1 w2,2 · · · w2,m
...

...
. . .

...
wn,1 wn,2 · · · wn,m

x1
x2
...
xn

+

b1
b2
...
bn

 =

w1,1x0 + w1,2x1 + · · ·+ w1,mxn + b1
w2,1x0 + w2,2x1 + · · ·+ w2,mxn + b2

...
wn,1x0 + wn,2x1 + · · ·+ wn,mxn + bn

 .

Associated to each node there will also be an activation function, σ, which takes as
its input Wx+ b and thus produces the output of that particular node.

σ(Wx+ b) =

σ(w1,1x0 + w1,2x1 + · · ·+ w1,mxn + b1)
σ(w2,1x0 + w2,2x1 + · · ·+ w2,mxn + b2)

...
σ(wn,1x0 + wn,2x1 + · · ·+ wn,mxn + bn)

 .

The output layer of the network is a single layer composed of as many nodes as are
representative of the type of problem one is dealing with. For instance, in this paper, we
deal with a problem that is a multi-class classification problem. This means that we want
the neural network to distinguish between multiple separate classes of objects. Specifically,
we wish to classify between three different meditative states. Therefore, in this paper, the
output layer of the network will contain three nodes. Each output node can be can be
labelled as ŷ1, ŷ2, ŷ3. These output values can be written in vector form, y = (ŷ1, ŷ2, ŷ3).
The output values are predictions–probabilities–for what class the particular input values
belong to. The network is attempting to learn patterns in the data that will allow it to
distinguish between each class based off the input values.

7

Chapter 2

Activation Functions & Loss
Functions

2.1 Activation Functions[28]

Activation functions determine whether a node should be activated or not by applying a
transformation to the weighted sum and bias,

σ

(
m∑
i

wixi + b

)
. (2.1)

Below is a brief summary of some of the most common activation functions.

2.1.1 Rectified Linear Unit

The Rectified Linear Unit (Relu) provides a simple nonlinear transformation. Given an
input x, the function is defined as the maximum of the input and 0,

ReLu(x) = max(x, 0). (2.2)

The ReLU discards all negative inputs by setting the activation output to zero, and
thereby retains only the positive inputs. ReLu is piecewise linear as can be seen on the
next page.

The derivative of the ReLU is 0 when the input is negative, and 1 when the input is
positive. ReLU is not differentiable when the input is equal to 0 so in this case we choose
the left-hand side derivative and say that the derivative is equal to 0 (this is suitable in
practice because the input is rarely, if ever, zero).

The derivatives of ReLU are very well behaved: they vanish or they allow the argument
through. This is the main reason for its usage as it ensures better optimization behaviour
and mitigates the problem of vanishing gradients (which will be discussed later).

8

Figure 2.1: ReLU activation function.

2.1.2 Sigmoid (logistic sigmoid)

The sigmoid function transforms its inputs to outputs that lie on the interval ∈ (0, 1),

sigmoid(x) =
1

1 + exp(−x)
. (2.3)

For this reason, the sigmoid is often referred to as a squashing function: any input
∈ (−∞,+∞) is squashed to some value ∈ (0, 1). The function approaches a linear trans-
formation when the input is close to zero.

Figure 2.2: Sigmoid activation function.

The sigmoid function is a smooth, differentiable approximation to a thresholding ac-
tivation function (takes a value of 1 when the input is above a threshold and a value of 0
when below). It is often used as the activation function on the output layer for transform-
ing the output values into probabilites (the sigmoid can be thought of as a special case
of the Softmax function discussed below). In hidden layers, they have have mostly been
replaced by ReLU which are simpler and easier to train with.

9

In a later section on recurrent neural networks, we will see how logistic sigmoid func-
tions are used in the network architecture to control the flow of information across time.

The derivative of the sigmoid function is,

d

dx
sigmoid(x) =

exp(−x)

(1 + exp(−x))2
= sigmoid(x)(1− sigmoid(x)). (2.4)

As the input to the sigmoid function approaches 0, the derivative approaches 0.25. As
the input moves away from 0, the derivative approaches 0.

2.1.3 Tanh (hyperbolic tangent)

The tanh function transforms its inputs into values on the interval ∈ (−1, 1),

tanh(x) =
1− exp(−2x)

1 + exp(−2x)
. (2.5)

Similar to the sigmoid function, it squashes its inputs: any input is squashed to some
value ∈ (−1, 1). The function approaches a linear transformation when the input is close
to zero, as can be seen below:

Figure 2.3: Tanh activation function.

The shape of tanh is similar to the sigmoid function, but the tanh function has point
symmetry about the origin.

The derivative of the tanh function is,

d

dx
tanh(x) = 1− tanh2(x). (2.6)

As the input to the tanh function approaches 0, the derivative approaches 1. As the
input moves away from 0, the derivative approaches 0.

2.1.4 Softmax

Softmax is a function that transforms its inputs into a probability distribution. It is
different from the other activation functions covered previously as it requires a vector of

10

nodes for input, rather than a single node. It is normally used on the last layer of the
network to normalize the output values of the network to a probability distribution. This
probability distribution provides information on the prediction of what class has been used
as input.

Softmax is defined as,

S(x)i =
exi∑n
j=1 e

xj
, (2.7)

where x is an input vector consisting of n elements representing n classes, xi is the ith

element of the input vector and can take any value between −∞ and +∞.

2.2 Loss Functions [13, 28]

Let y be the true target value and ŷ be a prediction value output by the network then we
define a loss function,

L(y, ŷ), (2.8)

such that we measure the difference between our prediction value and our true target
value.

In our case, the prediction value, ŷ, is in the form of a vector representing a probability
distribution, as in our previous discussion of the Softmax activation function.

There are a range of different loss functions that can be used depending on the type
of network and task that is being implemented. In this paper, we are doing a multi-
class classification task and so the most pertinent loss functions are the cross entropy loss
functions.

2.2.1 Cross-Entropy Loss

The concept of cross-entropy originates in the field of information theory and the work of
Claude Shannon who introduced the term entropy within the context of information in
his seminal 1946 paper, The Mathematical Theory of Communication [21], which is why
it is sometimes referred to as Shannon entropy.

The entropy of a random variable, X, is the amount of uncertainty inherent in the
random variable’s possible outcomes. We define entropy as follows,

H(X) = −
c∑

i=1

P (xi) logP (xi), (2.9)

where X is a discrete random variable, xi are the possible outcomes, and P (xi) the
probability of the possible outcomes, and c is the number of outcomes. The reason for the
negative sign is that log(x) < 0 for all x ∈ (0, 1), and P is a probability distribution so all
values of P ∈ [0, 1].

An increase in H(X) means an increase in the uncertainty of the probability distribu-
tion. A decrease in H(X) means a decrease in the uncertainty of the probability of the
distribution.

11

In our model, the predicted value, ŷ, is a probability distribution for the classes that
we are attempting to distinguish between. Each predicted probability distribution, ŷ, is
compared to the true target probability distribution, y, for that particular sample. A loss
value is calculated that represents the error between the predicted probability distribution
and the expected–target–probability distribution.

Cross-entropy loss is defined as,

LCE = −
c∑

i=1

yi log ŷi, (2.10)

where yi is the target value, ŷi is the Softmax probability for the ith class, c is the
number of classes. The log is calculated to base 2.

As this function is logarithmic it means that large differences are given a high loss
value and small differences are given a low loss value.

2.2.2 Binary Cross-Entropy Loss

The binary cross-entropy loss for binary classification (classification between two classes)
is defined as,

LBCE = −
2∑

i=1

yi log ŷi

= −[y log ŷ + (1− y) log(1− ŷ)],

(2.11)

where yi is the target ∈ {0, 1} and ŷi is the Softmax probability for the ith class.
In practice, the loss is often calculated over numerous samples in the datatset before

being summed and averaged,

LBCE =
1

n

n∑
i=1

(
− [y log(ŷ)) + (1− y) log(1− ŷ)]

)
, (2.12)

where n is the number of samples chosen to average over.

2.2.3 Multi-Class Cross-Entropy Loss

For multi-class classification problems we make use of the standard cross-entropy loss
equation (2.2.3). However, in practice we calculate this over multiple samples in the
dataset,

LMCE =
1

n

n∑
i=1

(
−

n∑
i=1

yi log(ŷi)
)
, (2.13)

where n is the number of samples chosen to average over.

12

2.2.4 Note on nomenclature

It is common to see the terms objective function, cost function, and loss function used
interchangeably in machine learning literature. However, this can be confusing as there
are practical differences between those terms. So, for the sake of clarity, in this paper
we will make use of the terms loss function and objection function. We will define their
meaning below.

The loss function can be seen as the type of function that is used to calculate a value
of difference between the prediction value and the actual target value; in our case—cross
entropy. The objective function can be seen as that loss function applied to some number
of samples in the data set. The objective of the network is to minimize the value output
by the objective function by adjusting the parameters of the network, the weights and
biases, accordingly. This process is also commonly stated as reducing or decreasing the
loss.

13

Chapter 3

Optimization Algorithms

The main purpose of the optimization algorithms is to allow us to appropriately update
the parameters of the neural network–the values of the weights and biases–so that can we
decrease the value of the loss function.

3.1 Gradient Descent [19, 28]

There are three versions of gradient descent. The difference in these versions relates to
the number of samples that are used to calculate the objective function before we take the
gradient of the objective function and update the parameters.

3.1.1 Regular Gradient Descent

In regular gradient descent we calculate the objective function over the entire dataset,
i.e. over all our n samples of data, before updating our parameters. In practice, this is
very slow as it requires an unreasonable amount of computation, and also contains a lot
of redundancy.

The objective function, h(θ), is the average sum of the loss function, L, over all samples
in the data set,

h(θ) =
1

n

n∑
i

L(f(x(i),θ),y
(i)), (3.1)

where i counts the samples, n is the total number of samples, f is the prediction based on
the sample input, x(i), and the parameters, θ, and y(i) is the expected output.

Let θt ∈ Rn be a vector containing the parameters in the network where the sub-index
t denotes the iteration step, ∇h(θt) be the gradient of our objective function with respect
to the parameters at iteration step t, and α be the learning rate. Then we have a regular
gradient descent iteration given by,

θt+1 = θt − α∇h(θt), (3.2)

where θ represents the parameters which are composed of the weights, wj for j ∈ Z+,
and the biases, bk for k ∈ Z+. So, when taking the gradient we are taking the gradient
with respect to every single one of these parameters,

14

∇h(θt) =

(
∂h

∂w
,
∂h

∂b

)
=

(
∂h

∂w1
,
∂h

∂w2
,
∂h

∂w3
, ...,

∂h

∂wj
,
∂h

∂b1
,
∂h

∂b2
,
∂h

∂b3
, ...,

∂h

∂bk

)
.

3.1.2 Stochastic Gradient Descent

In stochastic gradient descent we calculate the objective function over a single uniformly
drawn random sample, x(i) for i ∈ {1, . . . , n}, in our dataset before updating our param-
eters.

The objective function, h(θ), is the loss function, L, for a single sample in the data
set,

h(θ) = L(f(x(i), θ), y(i)), (3.3)

where i is the sample number, f is the prediction based on the sample input, x(i), and the
parameters, θ, and y(i) is the expected output.

The gradient of the objective function with respect to the parameters at iteration step
t is thus,

∇h(θt) = ∇θL(f(x
(i); θ), y(i)). (3.4)

Our stochastic gradient descent iteration is then given by,

θt+1 = θt − α∇h(θt). (3.5)

3.1.3 Mini Batch Gradient Descent

In mini batch gradient descent we calculate the objective function over a mini batch of n
random uniformly drawn samples in our dataset, x(i) for i ∈ {1, . . . , n}, before updating
our parameters.

The objective function, h(θ), is the average sum of the loss function, L, over n random
samples in the data set,

h(θ) =
1

n

n∑
i

L(f(x(i); θ), y(i)), (3.6)

where i counts the samples, n is the total number of samples, f is the prediction based
on the sample input, x(i), and the parameters, θ, and y(i) is the expected output.

The gradient of the objective function with respect to the parameters at iteration step
t is thus,

∇h(θt) =
1

n
∇θ

n∑
i

L(f(x(i); θ), y(i)). (3.7)

Our mini batch gradient descent iteration is then given by,

θt+1 = θt − α∇h(θt). (3.8)

15

3.1.4 Version of Gradient Descent Used in Algorithms

As seen above the expanded notation for these algorithms can become quite cumbersome
due to the number of indices needed for describing iteration steps, sample number, batch
size, etc. For the rest of the paper all our algorithms will make use of mini batch gradient
descent. Hence, the notation for the gradient of the objective function will refer to (3.7).

3.2 Background for Optimization Algorithms

We will look at eight of the most common optimisation algorithms currently being used
in machine learning:

• Classical momentum

• Nesterov momentum

• AdaGrad

• AdaDelta

• RMSprop

• Adam

• AdaMax

• Nadam

The primary purpose of these algorithms is to increase the convergence rate to the
minimum point, i.e. decrease the amount of time needed to arrive at our optimal point,
while maintaining a reasonable computational load.

The order they are introduced should provide an increasing level of understanding as
later algorithms normally build upon or adapt previous algorithms. Classical momentum
is a method that takes into account previous gradients to adapt its current step sizes.
Nesterov’s momentum is a variant of the classical momentum. AdaGrad is an attempt to
adapt the learning rate of the algorithm individually for every parameter, and AdaDelta
and RMSprop are variants of AdaGrad. Adam is based upon a combination of Momentum
and RMSprop. Adamax is a variant of Adam which makes use of infinity norms. Nadam
is a variant of Adam which makes use of concepts from Nesterov’s momentum.

Before examining any of the optimisation algorithms in detail it is instructive to first
understand the concepts of Exponentially Weighted Moving Averages (EWMA), bias-
correction, and learning rate (step size) as these concepts provide much of the mathemat-
ical basis and motivation behind these algorithms.

3.2.1 Exponentially Weighted Moving Averages

Exponentially weighted moving averages (EWMA) can simply be thought of as averages
of a sequence of values in which weights are assigned to each value before taking the aver-
age. The most recent values receive larger weights while the earlier values receive smaller

16

weights. The purpose of an EWMA is to take an average over all previous measurements
yet only a specific amount of the most recent values—a moving window—have a large
impact on the average.

Let θt be a vector containing the parameters of the network at iteration step t and
β ∈ (0, 1) be a hyperparameter that controls the size of the moving window. At every
time step, t, we will have a new parameter value, θt. We then create a weighted sum of
these values,

vt = βvt−1 + (1− β)θt. (3.9)

By looking at multiple iterations of this equation we can clearly see how it produces
an exponentially weighted average. We will change the order of the RHS to make this
more clear,

v1 = (1− β)θ1 + βv0

v2 = (1− β)θ2 + βv1
...

vt−2 = (1− β)θt−2 + βvt−3

vt−1 = (1− β)θt−1 + βvt−2

vt = (1− β)θt + βvt−1

If we now expand vt,

vt = (1− β)θt + βvt−1

= (1− β)θt + β
(
(1− β)θt−1 + βvt−2

)
= (1− β)θt + β

(
(1− β)θt−1 + β

(
(1− β)θt−2 + βvt−3

))
= (1− β)θt + β

(
(1− β)θt−1 + β

(
(1− β)θt−2 + β

(
(1− β)θt−3 + βvt−4

)))
If we continue to expand and then multiply out we get,

vt = (1− β)θt + β(1− β)θt−1 + β2(1− β)θt−2 + · · ·βt−2(1− β)θ2 + βt−1(1− β)θ1

= (1− β)
t∑

i=1

βt−iθi.

So this is a weighted sum of θt, θt−1, ..., θ1 and since all of the coefficients βt−i(1−β) add
up to 1 it it actually an exponentially weighted average, where the value of β determines
the size of the moving window. A heuristic for choosing the value of β is that vt is an
approximate average over 1

1−β time steps. Note that an EWMA may also be referred to
as a ’decaying mean’ and the β term as the term which controls the ’decay rate’.

One of the advantages of this formula, (3.9), is that it takes up a small amount of
memory due to continuously overwriting previous averages. Although it is not the most
accurate way to compute an average, i.e. for a previous k iterations we could have a
moving window average where we explicitly sum the last k values and then divide by k,
θt−k+1+···+θt−1+θt

k , but the disadvantage of this method is that it requires us to keep the
last k parameter values in memory and so is computationally expensive. Therefore when
we need to compute averages of many variables (3.9) is a very useful way to do so due to
computational efficiency.

17

Decaying Sum Over Previous Updates

In the cases discussed below of classical momentum, section 3.3.1, and Nesterov momen-
tum, section 3.3.2, the original authors write the momentum term using a decaying sum
over previous updates rather than a decaying mean over previous gradients (EWMA).

For the sake of clarity, classical momentum and Nesterov momentum as they are
described in this paper have been written as versions using EWMA. This has precedence
as discussed by Andrew Ng [15] who suggests that writing classical momentum in this
manner is easier when implementing the algorithm due to the separation of the decay
rate, β, from the learning rate, α, when defining the momentum term. This allows for
easier manual tuning of these hyperparameters.

3.2.2 Bias Correction

Let us look at bias correction specifically in relation to EWMA. If we look at the initial
iterations of EWMA we will see that at the beginning we are largely dependent on the
(1− β) coefficient for the average value that is produced,

v0 = 0

v1 = βv0︸︷︷︸
=0

+(1− β)θ1

v2 = β v1︸︷︷︸
<<θ1

+(1− β)θ2

v3 = β v2︸︷︷︸
<<

θ1+θ2
2

+(1− β)θ3

...

This means that our initial iterations will produce averages that are significantly less
than the actual average. To rectify this bias for out initial iterations we introduce the bias
correction formula:

vt
1− βt

. (3.10)

As t becomes large βt goes to zero so the bias correction only has a noticeable impact
at the beginning of the iterations where the bias is an issue.

3.2.3 Learning Rate

The learning rate (step size), α, is typically manually tuned for the highest possible value.
Choosing greater than this value this may cause the algorithms to diverge from the mini-
mum, and choosing less than this value may cause slow learning. The choice of this learning
rate is often down to practical experience and a compromise must be made between speed
of convergence and accuracy of convergence.

18

Adapted Learning Rate

We shall see that many of the algorithms are aimed towards adapting the learning rate of
the parameter update rule. In our basic MBGD the learning rate, α, remains constant.
It is constant over time, i.e. the learning rate stays the same as the number of iterations
increase and we repeatedly apply our parameter update rule. It is also constant over the
parameter space, i.e. every parameter is updated using the same learning rate.

Further improvements in our parameter update rule make it so that the learning rate is
not constant over time, i.e. the learning rate changes as the number of iterations increase.
And that it is not constant over the parameter space, i.e. every parameter is updated
using an individually adapted learning rate.

3.3 Optimization Algorithms

3.3.1 Classical Momentum [17, 18, 25]

The classical momentum algorithm computes an exponentially weighted moving average
(EWMA) of gradients, mt, and then uses this average to decide our direction of descent.
The primary benefit of momentum is that it takes into account previous gradients and so
prevents large oscillations in valley-like areas of the loss surface and subsequently increases
the speed in direction of the decent.

Let mt be an EWMA of our gradients,

mt = βmt−1 + (1− β)∇h(θt). (3.11)

We then have our parameter update rule for classical momentum as,

θt+1 = θt − αmt. (3.12)

For instance, assume that we are the top of a valley as in Fig.3.1a. When we move
in the direction of steepest descent we may take an overly large step that brings us up to
the other side of the valley. Our next step will then move in the new direction of steepest
descent and take us back to the previous side. This process will repeat and rather than
getting to the bottom of the valley and then moving along the base we may oscillate up
and down the sides. If we were to take a smaller step size (smaller α) as in Fig.3.1b we
may be able to prevent these oscillations from occurring but the smaller step sizes will
then cause us to move very slowly.

To account for both of these issues—preventing oscillations and preventing too small
of a step size—we use the momentum algorithm. The momentum algorithm takes into
account previous gradients mt and prevents us from oscillating while maintaining our
learning rate parameter, α. For instance, assume that we are at the top of a valley as in
Fig.3.1c. Although the first step we take may bring us up the other side, the next step
we take does not take us as far back up the previous side of the valley. Over time the
oscillations are dampened out. This is because while previously we were only moving in
the direction of our current gradient, ∇h(θt), we are now moving in the direction of our
current gradient plus a weighted sum of our previous gradients, mt. The knowledge of
these previous gradients ensures that we do not oscillate as much and hence we converge

19

(a) Gradient descent with
large learning rate

(b) Gradient descent with
small learning rate

(c) Gradient descent with mo-
mentum

Figure 3.1

more quickly to the base of the valley. If there is shallow decline at the base then we will
we will also begin to move more quickly along it due to the accumulated gradients in the
same direction.

The concept of momentum is commonly used throughout the remaining algorithms
but is rarely implemented by itself.

3.3.2 Nesterov Momentum [25]

Nesterov momentum, is a variant of the classical momentum method. The difference
between the two is where the current gradient, ∇h, is evaluated in the momentum step
(3.11). In Nesterov momentum the gradient is evaluated with the previous momentum
term, mt−1, already applied.

Let us look at the momentum equation and parameter update rule from classical
momentum and let us expand the parameter update rule,

mt = βmt−1 + (1− β)∇h(θt).

θt+1 = θt − αmt

= θt − α(βmt−1 + (1− β)∇h(θt))

= θt − αβmt−1︸ ︷︷ ︸
(∗)

−α(1− β)∇h(θt)︸ ︷︷ ︸
(∗∗)

.

From this expansion we can see that we step in the direction of the previous momentum
vector, (*), and a step in the direction of our current gradient vector, (**). Recall that
both α ∈ (0, 1) and β ∈ (0, 1) are real valued scalars with beta normally being assigned a
larger value than alpha.

This expansion shows that we update our parameter value, θt+1, using (∗) and (∗∗). Let
us focus only on (∗). Notice that mt−1 has already been computed in a previous iteration
step. In Nesterov Momentum we use this (∗) to update where we take our gradient from
during our mt calculation,

mt = βmt−1 + (1− β)∇h(θt − βmt−1). (3.13)

20

This allows us a small glimpse of the future direction of θt+1. By doing so earlier in
the iteration procedure it attempts to add a correction factor to the standard method of
momentum.

We then have our parameter update rule for Nesterov momentum,

θt+1 = θt − αmt. (3.14)

3.3.3 AdaGrad [7]

The AdaGrad algorithm is the first of the so called ’adaptive learning’ algorithms. While
previously the same learning rate, α, was used for all parameters it is now adapted in-
dividually for all parameters. This ensures that we are not taking the same step size in
every parameter direction. It does this by dividing the learning rate by the square root of
past squared gradients; gradients that relate to only the specific parameter being updated.

First we create a sum of squared gradients,

at = at−1 +∇h(θt)
2. (3.15)

We then divide our learning parameter by the square root of this to get our parameter
update rule for AdaGrad,

θt+1 = θt −
α√

at + ϵ
⊙∇h(θt). (3.16)

We add an epsilon, ϵ, in the denominator to ensure that we do not divide by zero.
Here the operations are applied element wise (Hadamard product). That is, for arbi-

trary vectors of the same size, u and v, v2 has entries v2i ,
1√
v
has entries 1√

vi
, and u ⊙ v

has entries uivi.
The spaces we are optimizing over are high dimensional spaces. We may successfully

optimize in one direction of the space while failing to optimize in another direction of the
space. If the learning rate was only to decrease over time, for example αt =

α0√
t+ϵ

, then

we may successfully optimise a specific parameter, w1, but fail to optimise a different pa-
rameter, w2; the step size may have become too small to continue successful minimisation
in the direction of w2.

For this reason it is not enough to simply decrease the learning rate, α, over time. We
must also adapt it to each parameter individually. We do this by dividing the learning rate
by the square root of the past gradients—the gradients associated with that parameter.
If the gradients for a particular parameter, w1, are repeatedly large then we may wish to
have a slightly smaller learning parameter (to ensure that we do not oscillate in valleys,
see section 3.3.1). While if the gradients for a different parameter, w2, are repeatedly
small then when we divide by them it will produce a larger learning rate, thus ensuring
that we can move more quickly along a shallow decline.

An issue with AdaGrad is that our accumulated squared gradients, at, constantly grow
in size. Eventually this will cause our learning rate, α, to become extremely small after
a certain amount of iterations. Hence, AdaGrad is rarely used as there are now better
algorithms, which we will discuss below, that have improved upon it.

21

3.3.4 AdaDelta [27, 28]

AdaDelta is a variant of AdaGrad that seeks to rectify the issue of a monotonically de-
creasing learning rate. It does this by using an EWMA of squared gradients rather then
just a sum of squared gradients (3.15). It also adds a ’correcting factor’ on the numerator
to the make the units of the LHS of our algorithm match the units of the RHS of our
algorithm. In doing so it replaces our α value and so AdaGrad is sometimes said to have
no learning rate.

Let dt be the EWMA of squared gradients,

dt = βdt−1 + (1− β)∇h(θt)
2.

This gives us an intermediate parameter update rule,

θt+1 = θt −
α√
dt + ϵ

⊙∇h(θt). (3.17)

In the original paper, [27], the author notes that the square root of an EWMA ”ef-
fectively becomes the RMS of previous squared gradients up to time t”, and so begins to
refer to the EWMA as a root mean square. This is slightly confusing due to the fact that
the actual calculation is not a root mean square so we will instead make use of the explicit
formulas, as in [28].

At this point the authors consider that as the parameter updates, ∆θt, are being
applied to θ, they should have matching units. To rectify this they decide to add a new
term to the numerator, choosing to use the square root of an EWMA of our ∆θt,

√
ct =

√
βct−1 + (1− β)∆θ2t .

They then drop our manually chosen learning rate α to give the delta that the algorithm
derives its name from,

∆θt = −
√
ct−1 + ϵ√
dt + ϵ

⊙∇h(θt).

This leaves us with our parameter update rule for AdaDelta,

θt+1 = θt −
√
ct−1 + ϵ√
dt + ϵ

⊙∇h(θt)

= θt +∆θt.

(3.18)

Here the operations are applied element wise (Hadamard product). That is, for arbi-
trary vectors of the same size, u and v, v2 has entries v2i ,

√
u+ ϵ has entries

√
ui + ϵ, 1√

v

has entries 1√
vi
, the operation

√
u√
v
has entires

√
ui√
vi
, and u⊙ v has entries uivi.

3.3.5 RMSprop [9, 28]

The RMSprop algorithm is another variant of AdaGrad that adapts the learning rate
individually for all parameters. It does this by dividing the learning rate by the square root

22

of an EWMA of past squared gradients rather than an ever increasing sum of gradients.
Thereby preventing the rapidly decreasing learning rate that occurs in AdaGrad. In this
way it is actually the exact same as AdaDelta at (3.17). It simply forgoes the process
of matching units that takes place in AdaDelta. Hence, we have an EWMA of Squared
Gradients,

rt = βrt−1 + (1− β)∇h(θt)
2. (3.19)

Which then gives us our parameter update rule for RMSprop,

θt+1 = θt −
α√
rt + ϵ

⊙∇h(θt). (3.20)

Here the operations are applied element wise (Hadamard product). That is, for arbi-
trary vectors of the same size, u and v, v2 has entries v2i ,

√
u+ ϵ has entries

√
ui + ϵ, 1√

v

has entries 1√
vi
, the operation

√
u√
v
has entires

√
ui√
vi
, and u⊙ v has entries uivi.

3.3.6 Adam [12]

Adam combines the improvements discussed in previous algorithms into a single algorithm.
It replaces the gradient term, ∇h(θt), with an EWMA of the gradient (3.11),

mt = β1mt−1 + (1− β1)∇h(θt). (3.21)

It also divides the learning rate by the square root of an EWMA of squared gradients
(3.19),

rt = β2rt−1 + (1− β2)∇h(θt)
2. (3.22)

So, it is most easily understood as a combination of classical momentum and RMSprop.
It uses bias corrections to the estimates of both the momentum term and the RMSprop
term to account for their initialisation at the origin, i.e. m0 = 0 and r0 = 0. So we get,

m̂t =
mt

1− βt
1

, (3.23)

r̂t =
rt

1− βt
2

. (3.24)

This is different to the previous discussions of classical momentum and RMSprop where
no bias corrections were implemented. Note that we make use of a β1 and a β2 for (3.23)
and (3.24) respectively, as we may choose different decay rates for each. This then gives
us our parameter update rule,

θt+1 = θt −
α√
r̂t + ϵ

m̂t. (3.25)

Note that the ϵ term in the denominator is in this is case placed outside the square
root. While placing it inside the square root would also work it has been found in practice
that it works slighter better when placed outside.

23

The name Adam derives from ’adapted moment estimation’. The (3.21) term is com-
monly referred to as the first moment and the (3.22) term is commonly referred to as the
second moment. The ’adapted’ may refer to the adapted learning rate or the fact that
(3.21) and (3.22) are adapted by the bias-correction.

Adam has been show to work well across a wide range of deep learning architectures
and is currently the most popularly used optimization algorithm. In general, Adam is
deemed to be robust to the choice of hyperparameters, though the learning rate may need
to be changed from the default.

3.3.7 AdaMax [12]

The AdaMax algorithm is a variant of Adam that makes use of infinity norms. Instead of
dividing by the square root of an EWMA of squared gradients, which can be understood as
a scaled L2 norm of gradients, we will now extend this to an infinity norm, L∞, of gradients.

An Lp norm of a vector x = (x1, x2, . . . , xn) is defined as,

||x||Lp :=

(
n∑

i=1

|xi|p
) 1

p

, (3.26)

where p ≥ 1 is a real number.

The square root of the EWMA of squared gradients can be considered a scaled L2

norm,

√
rt =

√
β2rt−1 + (1− β2)∇h(θt)2 =

(
(1− β2)

t∑
i=1

βt−i
2 · |∇h(θi)|2

)1/2

.

We can generalize this to an Lp norm,

√
rt =

√
β2rt−1 + (1− β2)∇h(θt)p =

(
(1− β2)

t∑
i=1

βt−i
2 · |∇h(θi)|p

)1/p

.

For large values of p this tends to make the parameter update rule unusable, however,

if we let p → ∞ then a usable algorithm occurs. Let p → ∞ and define ut = limp→∞(rt)
1
p ,

then,

24

ut = lim
p→∞

(rt)
1
p ,

= lim
p→∞

(
(1− β2)

t∑
i=1

βt−i
2 · |∇h(θi)|p

) 1
p

,

= lim
p→∞

(1− β2)
1
p

(
t∑

i=1

βt−i
2 · |∇h(θi)|p

) 1
p

,

= lim
p→∞

(
t∑

i=1

βt−i
2 · |∇h(θi)|p

) 1
p

,

= max(βt−1
2 |∇h(θ1)|, βt−2

2 |∇h(θ2)|, ..., β1
2 |∇h(θt−1)|, |∇h(θt)|).

This then corresponds to the recursive formula,

ut = max(β2 · ut−1, |∇h(θt)|). (3.27)

with the initial value u0 = 0. In this case, there is no need to correct for initialization
bias.

The parameter update rule for AdaMax is then given by,

θt+1 = θt −
α

ut
m̂t. (3.28)

3.3.8 Nadam [5]

The Nadam algorithm modifies Adam with a similar concept as was applied in Nesterov
momentum. It replaces the bias corrected momentum term, m̂t, (3.23), that occurs in
Adam’s update rule with an expanded version which then shows that we can replace a
previous time-step component, m̂t−1 for a current time-step component, m̂t.

Looking at the parameter update rule for Adam,

θt+1 = θt −
α√
r̂t + ϵ

m̂t.

We first expand the m̂t term,

θt+1 = θt −
α√
r̂t + ϵ

(
mt

1− βt
1

)
.

Then expanding mt,

θt+1 = θt −
α√
r̂t + ϵ

(
β1mt−1 + (1− β1)∇h(θt)

1− βt
1

)
= θt −

α√
r̂t + ϵ

(
β1mt−1

1− βt
1

+
(1− β1)∇h(θt)

1− βt
1

)
.

25

Notice that mt−1 is the momentum vector for the previous time step and since we have
already calculated the momentum vector for the current time step, mt, we can instead
replace it with this, which gives us our parameter update rule for Nadam,

θt+1 = θt −
α√
r̂t + ϵ

(
β1mt

1− βt
1

+
(1− β1)∇h(θt)

1− βt
1

)
. (3.29)

26

Chapter 4

Recurrent Neural Network

4.1 Recurrent Neural Network (RNN) [20, 23, 28]

Recurrent Neural Networks (RNNs) are a type of neural network architecture that are
most often used for detecting patterns in sequential data.

RNNs and multi-layer perceptrons (MLPs), a type of feedforward neural network
(FNNs), differ in how information passes through the network. In MLPs, information
is passed through the network without any cycles; an input is passed through the network
and produces an output. In RNNs, information is passed through a network that also has
cycles which transmit information back to itself. This allow RNNs to take account of both
the current input, Xt, the previous inputs, X0:t−1.

Let Ht ∈ Rn×h be the hidden state, Xt ∈ Rn×d the input at time step t, Wxh ∈ Rd×h

be a weight matrix, Whh ∈ Rh×h be a hidden-state-to-hidden-state matrix, and bh ∈ R1×h

a bias parameter, where n is number of samples, d is the number of inputs of each sample,
and h is the number of hidden units. Lastly, let ϕ be an activation function which the
above information is passed through.

We then have our hidden variable,

Ht = ϕ(XtWxh +Ht−1Whh + bh), (4.1)

and our output variable,
Ot = ϕ(HtWho + bo), (4.2)

where Who ∈ Rh×o is the weight and bo ∈ R1×o is the bias for the output layer.
As we can see, our hidden variable, Ht, is a recurrence relation as it recursively in-

cludes Ht−1, and hence contains information about previous hidden states.

The equivalent equations for MLPs clearly show the difference between them and
RNNs. The hidden variable equation is not a recurrence relation, does not include Ht−1,
and contains no information about previous hidden states,

H = ϕ(XWxh + bh). (4.3)

Hence, our output variable does not include any information about previous hidden
states either,

O = ϕ(HWho + bo). (4.4)

27

4.2 Deep Recurrent Neural Networks (DRNNs)

The RNNs discussed so far have a single unidirectional hidden layer. We can stack multiple
RNNs on top of each other to create a Deep Recurrent Neural Network (DRNN). In a
DRNN, each hidden state passes to the next time step of the current layer (as in our
regular RNN) and also passes to the next layer of the current time step. This creates a
flexible mechanism in which different forms of information may be held at different levels
in the stack. High-level data at the top and low-level data at the bottom.

Let Xt ∈ Rn×d be a minibatch input at time step t, H
(l)
t ∈ Rn×h be the hidden state

of the lth hidden layer (l = 1, ..., L), Ot ∈ Rn×o be the output layer variable, and ϕl be
the activation function at the lth hidden layer, where n is the number of examples, d is
the number of inputs for each example, h be the number of hidden units, o the number of

outputs. Also, let W
(l)
xh ∈ Rh×h and W

(l)
hh ∈ Rh×h be the weights, and b

(l)
h ∈ R1×h the bias

for the lth hidden layer. Then the hidden state of the 0th and lth hidden layer is given by,

H
(l)
0 = Xt,

H
(l)
t = ϕl(H

(l−1)
t W

(l)
xh +H

(l)
t−1W

(l)
hh + b

(l)
h).

(4.5)

The output layer is based only on the hidden state of the final Lth hidden layer,

Ot = ϕ(H
(L)
t Who + bo), (4.6)

where Whq ∈ Rn×o is weight and bo ∈ R1×o is the bias of the output layer.
The number of hidden layers and the number of hidden units are hyperparameters that

can be tuned or specified just as in a standard MLP.

28

Chapter 5

Experiment

5.1 Electroencephalography (EEG)

Electroencephalography (EEG) is a method for recording electrical activity between neu-
rons in the cortex of the brain. Electrodes are placed on the scalp where they record
changes in voltage that are representative of electrical activity occurring in the cortex
that has passed through the skull.

The particular EEG device used in this study is an Emotiv Epoc Flex with 34 Ag/AgCl
(silver-silver chloride) electrodes. This devices has a sample rate of 128 SPS (samples per
second) at a frequency range of 0.16–43 Hz.

5.2 Meditation

Meditation refers to a wide and diverse collection of practices that can be succinctly sum-
marised as methods that are used to navigate the subjective experience of consciousness.

In this study, three different meditation practices were engaged with: Breath, Body,
Gratitude. The subjective experience of the meditator differs during each of these medi-
tation types. Although the inner subjective experience may differ, from the perspective of
an external observer the outward behaviour of the meditator may seem relatively similar.
The fact that the subjective expererience of the meditator differs points to the liklihood
that there are distinct patterns of neural activity occurring in conjunction with these dif-
ferent states of consciousness. By recording the neural activity that occurs during these
practices–in this case EEG signals–we can then input these signals into an artifical neu-
ral network to see if it can find patterns in the data that can distinguish the meditation
practices from one another. Thereby providing evidence that there are distinct processes
occurring in the brain in relation to these meditative states.

These three meditative states are the three distinct classes in this multi-class classifi-
cation problem.

5.3 Recording

An electroconductive gel, EasyCap Abralyt HiCl, is spread underneath each electrode
to improve conductivity. The area of the scalp beneath each electrode is cleaned with

29

disinfectant alcohol before application of the gel. This is done to remove any dead skin
cells or grease, which may disrupt the recording signal. Electrodes are placed according
to the International 10-20 system.

A recording session lasts a total of 36mins. Each meditation practice lasts for 12mins
upon which a bell sounds that notifies the participant to move into the next meditation
practice. In this way, 3 meditation types are practiced in a single recording session (3 ×
12mins = 36mins).

5.4 Data

5.4.1 Recorded Data

The data was recorded on the Emotiv Pro software.

5.4.2 Exported Data

The recorded session is exported from the Emotiv Pro software program as a Comma
Separate Values (CSV) file. These files contain a column for each electrode specifying
the change in voltage over time, along with a number of other extraneous columns that
are removed during preprocessing. There are 128 SPS which corresponds to 128 rows in
the CSV file. Hence the CSV file contain a large number of rows, approximately 276,480
(36mins × 60sec × 128samples).

5.5 Preprocessing

The exported CSV file contains the raw data of the recording. This raw data must be
transformed into the appropriate format for use in the analysis. The extraneous columns
are removed from the file, leaving only the 31 electrodes that have the voltage information
(one electrode was dropped pre-recording). The data is searched for any errors such as
NaN values (cells which contain no value) and these are then removed. Each row of data
belongs to one of the meditation types so an extra column is added that contains the
different meditation type names. This is referred to as the the label column and the
values as labels. The first 60 seconds and the last 60 seconds of each meditation type
is deleted so that the transition between meditation types is not included. This leaves
approximately 10mins of data per meditation type. The feature values are normalized
before being input into the network, to be in-between −1 and 1, as is common practice.

5.6 Train, Validation, Test Sets

The data must then be split into training, validation, and testing sets. Each set contains
a balanced number of each meditation type.

The training set is used to train the model; it is the set from which the model learns
to distinguish patterns that may be useful in differentiating–classifying–the different med-
itation types. The validation set is used during the training process to provide validation
that the model is learning patterns that are general instead of just memorizing the training

30

set. The model attempts to predict the correct labels for the validation set based off of
what it has learnt from the training set.

This provides real time feedback on how well the model is learning and allows for the
output of metrics that can be used to stop the model during the learning process, i.e.
validation loss and validation accuracy can be used to determine whether to stop training
the model early because it is already of sufficient quality or because it it does not seem to
be improving.

The test set is then used to compare the trained model against an unknown dataset.
The model attempts to predict the correct labels for the test set based off of the patterns
that it has learnt. The data that the test set contains has not been used in training the
model so a high prediction accuracy for the test set provides evidence that model has
learnt general patterns related to each label rather than patterns specific to the training
set.

5.7 Model Architecture

The model is trained on a specific configuration—model architecture—of a neural network.
There are a wide variety of model architectures that can be chosen with many hyperpa-
rameters that can be manually tuned. In theory, there is no perfect configuration of a
neural network, so in practice, different configurations must be implemented in order to
discover what works best.

Due to time and computational constraints a specific choice of model architecture
and hyperparameter configuration was needed to adequately compare the different opti-
mization algorithms. The model architecture chosen for comparison of the optimization
algorithms is shown below:

Figure 5.1: Model architecture of recurrent neural network used for comparing the opti-
mzation algorithms with the values chosen for various hyperparamters

31

Chapter 6

Results

In this section, we display the results for the analysis described in the previous section. An
LSTM recurrent neural network was run using each optimizer algorithm with the model
architecture described in section 5.7. The results of these analyses are shown using a
selection of plots and tables: a prediction accuracy plot for the training dataset and the
testing dataset–displaying the model’s ability to accurately predict the correct meditation
class during learning; a loss plot for the training dataset and the testing dataset–displaying
the value output by the loss function during learning; a best performance table providing
the accuracy, loss, and epoch values related to the top prediction accuracy result; and a
confusion matrix giving the normalized prediction accuracy per meditation class.

There is also a comparison of the optimization algorithms and an example of how
changing even a single hyperparameter of the model architecture can produce significantly
different results.

32

6.1 Analysis 1 - Classical Momentum

Figure 6.1: Accuracy plot (left figure) and loss plot (right figure) for classical momentum displaying
learning trajectories for the training dataset (labelled Train) and the testing dataset (labelled Test) during
model learning over a duration of 50 epochs. The train and test curves converge with one another in both
the accuracy and loss plots, hence, there is no overfitting of the train data. However, there is barely any
improvement in performance between the start and end as can be seen from the relatively static behaviour
of the loss and accuracy curves.

Figure 6.2: Best performance values (left figure) and confusion matrix (right figure) for classical
momentum—based on the testing dataset—displaying the accuracy/loss/epoch values related to the top
prediction accuracy result and the normalized prediction accuracy per meditation class, respectively. The
classical momentum optimizer achieved a top overall accuracy of 52% with a loss of 0.98 at epoch 13. The
confusion matrix shows that the model classified gratitude correctly 94% of the time. But it was poor at
classifying breath and body, correctly distinguishing them only 16% and 12% of the time, respectively.

33

6.2 Analysis 2 - Nesterov Momentum

Figure 6.3: Accuracy plot (left figure) and loss plot (right figure) for Nesterov momentum displaying
learning trajectories for the training dataset (labelled Train) and the testing dataset (labelled Test) during
model learning over a duration of 50 epochs. The train and test curves, once again, converge with one
another in both the accuracy and loss plots. There is little improvement in performance as loss and
accuracy curves exhibit relatively static behaviour.

Figure 6.4: Best performance values (left figure) and confusion matrix (right figure) for Nesterov
momentum—based on the testing dataset—displaying the accuracy/loss/epoch values related to the top
prediction accuracy result and the normalized prediction accuracy per meditation class, respectively. The
Nesterov momentum optimizer achieved a top overall accuracy of 45% with a loss of 1.06 at epoch 32.
The confusion matrix shows that the model classified gratitude correctly 69% of the time. It was close to
random at classifying breath and body, achieving 36% and 39% respectively.

34

6.3 Analysis 3 - AdaGrad

Figure 6.5: Accuracy plot (left figure) and loss plot (right figure) for AdaGrad displaying learning
trajectories for the training dataset (labelled Train) and the testing dataset (labelled Test) during model
learning over a duration of 50 epochs. The train and test curves converge with another implying that
overfitting of the train set was not occurring. There is a steady, if slow, increase in the accuracy for most
of the learning and a similar decrease in the loss; this behaviour provides some evidence that AdaGrad is
an improvement upon classical momentum and Nesterov momentum.

Figure 6.6: Best performance values (left figure) and confusion matrix (right figure) for AdaGrad—based
on the testing dataset—displaying the accuracy/loss/epoch values related to the top prediction accuracy
result and the normalized prediction accuracy per meditation class, respectively. The AdaGrad algorithm
achieved a top overall accuracy of 59% with a loss of 0.87 at epoch 41. The confusion matrix provides
some further evidence of this, as gratitude is classified correctly 95% of the time, and body is classified
correctly 78% of the time. Breath is classified correctly only 6% of the time, however, overall the model
appears to be improved by being able to distinguish between two out of three meditations.

35

6.4 Analysis 4 - AdaDelta

Figure 6.7: Accuracy plot (left figure) and loss plot (right figure) for AdaDelta displaying learning
trajectories for the training dataset (labelled Train) and the testing dataset (labelled Test) during model
learning over a duration of 50 epochs. The accuracy and loss appears to remain static throughout the
learning.

Figure 6.8: Best performance values (left figure) and confusion matrix (right figure) for AdaDelta—based
on the testing dataset—displaying the accuracy/loss/epoch values related to the top prediction accuracy
result and the normalized prediction accuracy per meditation class, respectively. The AdaDelta algorithm
achieved a top overall accuracy of 34% with a loss value of 1.10 at epoch 15. However, these particular
values are representative of the entirety of the model, as the accuracy and loss appears to remain static
throughout the learning. The confusion matrix shows that the model classified breath, body, gratitude
with 56%, 10%, 38% accuracy, respectively. So, it may be that the model learnt patterns for breath more
easily and hence recognised it throughout the model, as body is classified as breath 54% of the time and
gratitude classified as breath 59% of the time.

36

6.5 Analysis 5 - RMSprop

Figure 6.9: Accuracy plot (left figure) and loss plot (right figure) for RMSprop displaying learning
trajectories for the training dataset (labelled Train) and the testing dataset (labelled Test) during model
learning over a duration of 50 epochs. The train and test curves in both the accuracy and loss plots begin
to diverge after approximately 10-15 epochs. The train set steadily improves in both accuracy and loss,
while the test set stops improving. Overfitting of the train set is likely occurring. Yet, even before this,
RMSprop is already more successful than previous optimizers.

Figure 6.10: Best performance values (left figure) and confusion matrix (right figure) for RMSprop—
based on the testing dataset—displaying the accuracy/loss/epoch values related to the top prediction
accuracy result and the normalized prediction accuracy per meditation class, respectively. The RMSprop
algorithm achieved a top overall accuracy of 79% with a loss of 0.56 at epoch 29. The confusion matrix
shows that the model classified breath, body, gratitude with 64%, 79%, 94% accuracy, respectively. This
is a marked improvement upon previous algorithms and begins to provide evidence that the network may
be able to successfully distinguish between meditations.

37

6.6 Analysis 6 - Adam

Figure 6.11: Accuracy plot (left figure) and loss plot (right figure) for Adam displaying learning trajecto-
ries for the training dataset (labelled Train) and the testing dataset (labelled Test) during model learning
over a duration of 50 epochs. The train and test curves in both the accuracy and loss plots begin to diverge
after approximately 25 epochs–displaying overfitting of the train set. However, before they diverge Adam
has already achieved the best results thus far.

Figure 6.12: Best performance values (left figure) and confusion matrix (right figure) for Adam—based
on the testing dataset—displaying the accuracy/loss/epoch values related to the top prediction accuracy
result and the normalized prediction accuracy per meditation class, respectively. The Adam algorithm
achieved a top overall accuracy of 83% with a loss of 0.48 at epoch 20. The confusion matrix shows that
the model classified breath, body, gratitude with 72%, 82%, 96% accuracy, respectively. These are the
best overall accuracy scores per meditation and provide further evidence that the network may be able to
successfully distinguish between meditations with high accuracy.

38

6.7 Analysis 7 - AdaMax

Figure 6.13: Accuracy plot (left figure) and loss plot (right figure) for AdaMax displaying learning
trajectories for the training dataset (labelled Train) and the testing dataset (labelled Test) during model
learning over a duration of 50 epochs. The train and test curves converge with one another in both the
accuracy and loss plots. There is a steady improvement in accuracy and loss over the epochs, although the
rate of improvement appears to be slowing near the end. It may be that increasing the number of epochs
would improve the model.

Figure 6.14: Best performance values (left figure) and confusion matrix (right figure) for AdaMax—based
on the testing dataset—displaying the accuracy/loss/epoch values related to the top prediction accuracy
result and the normalized prediction accuracy per meditation class, respectively. The AdaMax algorithm
achieved a top overall accuracy of 78% with a loss of 0.54 at epoch 46. The confusion matrix shows that
the model classified breath, body, gratitude with 81%, 66%, 88% accuracy, respectively. This is the best
result for breath, but body and gratitude do not achieve as high an accuracy as in RMSprop and Adam.

39

6.8 Analysis 8 - Nadam

Figure 6.15: Accuracy plot (left figure) and loss plot (right figure) for Nadam displaying learning
trajectories for the training dataset (labelled Train) and the testing dataset (labelled Test) during model
learning over a duration of 50 epochs. The train and test curves for both accuracy and loss plots begin to
diverge after approximately 15epochs–displaying overfitting of the train set. These plots are very similar
to the plots for RMSprop and Adam and the top overall accuracy and loss values are comparable.

Figure 6.16: Best performance values (left figure) and confusion matrix (right figure) for Nadam—based
on the testing dataset—displaying the accuracy/loss/epoch values related to the top prediction accuracy
result and the normalized prediction accuracy per meditation class, respectively. The Nadam optimizer
achieved a top overall accuracy of 80% with a loss of 0.48 at epoch 23. The confusion matrix shows that
the model classified breath, body, gratitude with 69%, 75%, 97% accuracy, respectively. Once again, these
are comparable to the values of RMSprop and Adam.

40

6.9 Comparison of Optimizers

Figure 6.17: Table depicting best performance values—based on the testing dataset—per optimizer.
Shows the accuracy/loss/epoch values related to the top prediction accuracy result.

The best performing algorithm was Adam with a top accuracy of 83%, a loss of 0.48,
at epoch 20. This is the most widely used and common choice of optimizer throughout
neural network models and so it is not unexpected that it provides the best performance.
As discussed in earlier section 3.3.6, Adam makes use of an adaptive gradient, an adaptive
learning rate, and combines benefits from previous algorithms into a single optimizer.

RMSprop, AdaMax, and Nadam follow close behind in model performance. The first
four algorithms perform surprisingly poorly. However, by re-running the analyses with
recommended and default learning rates for the various optimizers we get significantly
different results.

Figure 6.18: Table depicting best performance values—based on the testing dataset—per optimizer with
specific learning rates. Shows the accuracy/loss/epoch values related to the top prediction accuracy result.

Results improve across all algorithms except for Adam, AdaMax, and Nadam. The first
four algorithms are improved greatly–with classical momentum, AdaGrad, and AdaDelta
now rivalling the top performance of Adam from the previous analyses. Classical momen-
tum improves by 31%, Nesterov Momentum by 24% and AdaGrad by 23%, and AdaDelta
by 48%. Notably, AdaDelta has over doubled in performance. RMSprop is now equivalent
to the top accuracy of Adam at 83% with a small improvement of 3% (thought slightly
higher in loss value). Adam and AdaMax have actually decreased in performance, by 16%
and 15% to become the worst choice of algorithms while Nadam has remained relatively
similar with a decrease of only 1%.

These re-analyses provide an example of the importance of the choice of values for
hyperparameters and the necessity for tuning of these hyperparameters during training.
The model architecture chosen has a decisive impact on model performance and changing
even a single hyperparameter within this architecture can have consequential effects for

41

the results. Therefore, it is necessary to run multiple model configurations on a single
problem in order to find out what the optimal configuration is.

Depending on the number of epochs chosen we may see divergent behaviour between
training and testing datasets—overfitting—or we may see continual convergent behaviour
between them. This is of particular interest in cases where the model is still improving
in performance when the it finishes. Classical momentum, AdaDelta, RMSprop, and
AdaMax (see Fig.6.18) all look promising in this regard as we can see that their best
accuracy occurs near the end of the model (and they have a high accuracy result) so it
is possible that by simply extending the length of training—by increasing the number of
epochs—that better results may be attained.

In this thesis, a standard configuration was chosen to compare and contrast optimiza-
tion algorithms with as many of the hyperparameters as possible held constant. The con-
sequence of this is that the specific implementation of the optmizers may not be optimally
adapted to the problem. In practice, it is necessary to adapt the optimizer individually to
the task at hand, along with the rest of the hyperparameters in the model architecture.

Overall, with further time and computational resources–and an adequate search of the
hyperparameter space–one can hope to further improve model performance.

42

Chapter 7

Conclusion

This thesis has documented the mathematical underpinnings of eight of the most com-
monly used optimisation algorithms in neural networks. These algorithms use a variety of
techniques to improve upon the basic method of gradient descent. As most machine learn-
ing problems have very many parameters with many dimensions over which to optimise,
these algorithms are highly important in the functioning of these networks.

We see how incremental improvements in algorithmic architecture have progressed to
make general optimizers that are successful across a wide range of applications. Beginning
with the decision to implement an exponentially weighted moving average of gradients to
act as a mechanism to prevent excessive oscillation in the loss landscape and the ability
to move more quickly along areas of shallow decline. Methods to adapt the learning rate
to each parameter individually were then developed that allow individualised step sizes
for each dimension in the loss landscape—dividing the learning rate by the square root of
past gradients associated with each individual parameter. This ensures that the different
gradients in different directions are taken into account; movement through the landscape
as a whole is better optimised rather than solely movement along any specific dimension.

This per-dimension learning rate will monotonically decrease over time due to the
division of past gradients and so the concept of exponentially weighted moving averages
is once again implemented—dividing the learning rate by the square root of an EWMA
of past gradients—to ensure that our learning rate does not become too small. We then
have a per-dimensional learning rate that is also better adapted to time.

These improvements along spatial and temporal dimensions of the optimisation process
provide a basis from which further algorithms are and will continue to be developed.

After dealing with the mathematical structure of these optimisation algorithms we
then see how they are practically implemented within a neural network—specifically a
recurrent neural network—in the context of an experimental paradigm.

Recurrent neural networks are networks that can make use of time dependent infor-
mation to better learn patterns in sequential data. We see that those networks have a
cyclical structure that allows information from previous time steps to be learnt in relation
to information from future time steps, thereby allowing the successful learning of patterns
in time series data.

By comparing these algorithms we see that they behave differently from one another
and produce different results, as expected, and that their successful implementation de-

43

pends on an appropriate choosing of hyperparameters for the algorithms, such as their
base learning rate. The place of these algorithms within the larger structure of the neural
network is made evident by the significant difference in results that one algorithm may
have from another. It is also made obvious that these algorithms are only one part of
the whole, and that many other properties of the neural network must be appropriately
chosen to achieve the best results such as the type of network, the number of hidden units,
the number of layers, the number of batches, and more.

Overall, the algorithms are core components of neural networks and are essential for
succeeding in the broad range of tasks that these networks can be applied to. In this case,
allowing for successful classification between different classes of information, specifically,
distinguishing between different meditative states recorded by EEG. This shows how the
mathematical formalism underlying the design of algorithms eventually leads to their
practical implementation in a diverse range of applications and scientific experiments,
shown here through the the classification of conscious states.

44

Appendix A

Data Collection

In this Appendix A you will find information relating to data collection. There are two
sections covering:

1) Electroencephalogram (EEG) apparatus and the process of physically setting up
the apparatus for recording.

2) Emotiv Pro software used to record the data.

A.1 Electroencephalogram (EEG)

An electroencephalogram (EEG) is a brain-machine-interface device that is used to record
electrical signalling between neurons in the neocortex. Electrodes are placed on the scalp
where they record changes in voltage that are representative of electrical activity that has
passed through the skull. EEGs tend to have very good temporal resolution (on the order
of milliseconds), although the spatial resolution is not as precise.

The particular EEG device used in this study is an Emotiv Epoc Flex Headset with
34 Ag/AgCl (silver-silver chloride) electrodes (32 recording electrodes and 2 reference
electrodes). This device has a sample rate of 128 SPS (samples per second) at a frequency
range of 0.16–43 Hz. Further detailed information about this device can be found on the
company’s website - https://www.emotiv.com.

To set up the EEG it is necessary to connect the headset to the Emotiv Pro recording
software. There is a control box that receives signals from the electrodes and transmits
them wirelessly to a USB receiver connected to a computer. The software allows you to
see whether the electrodes are recording the appropriate voltage information. Electrodes
are placed according to the International 10-20 system.

An electroconductive gel, EasyCap Abralyt HiCl, is used to improve conductivity.
The area of the scalp beneath each electrode is cleaned with disinfectant alcohol before
application of the gel. This is done to remove any dead skin cells or grease, which may
disrupt the recording signal. The gel is then placed on the scalp beneath each electrode
by using a small syringe and spread evenly with a cotton bud. Once the electrodes are
conducting the voltage appropriately then the recording session is ready to begin.

45

Figure A.1: Emotiv Epoc Flex gel sensor kit with 32 Ag/AgCl (silver-silver chloride) electrodes. This
device has a sample rate of 128 SPS (samples per second) at a frequency range of 0.16–43 Hz. The
electrodes and wires are individually thread through the cap and positioned according to the International
10-20 system. There is a control box that receives signals from the electrodes and transmits them wirelessly
to a USB receiver connected to a computer.

Figure A.2: The Emotiv Epoc Flex EEG assembled and placed on the head in preparation for recording.

A.2 Emotiv Software

The Emotiv Pro software is a custom built application by the Emotiv company for interac-
tion with their devices. It allows the data to be transmitted wirelessly from the EEG to the
USB receiver to the Emotiv Pro platform. Wave forms from each electrode can be viewed
in real time and activity can be recorded and stored on the platform for later exporting.
Data is then exported as CSV files for analysis with other tools. Further information
about the software can be found on the company’s website - https://www.emotiv.com.

46

Appendix B

Meditation

In this Appendix B the reader will find information relating to meditation practices. It will
provide brief summaries of each mediation practice that was engaged in: the instructions
for each meditation and an account of why these meditative practices are experientially
different. There are four sections covering four different meditation practices:

1) Breath Focus
2) Body Scan
3) Gratitude
4) Loving-kindness
These practices are, for the most part, based on Buddhist meditation practices but

may also be found in other religious and contemplative disciplines.
It is common for different lineages and schools of Buddhism to use different terminology

to refer to a similar practice, and the same terminology to refer to different practices. For
this reason, it could be misleading to use the Pali, Sanskrit, Tibetan etc. terminology
to define the practices engaged with during the study. There are Buddhist teachings
that are aligned with the described practices below, such as Anapanasati (mindfulness of
breathing), Kayagatsati (mindfulness of the body), Metta (benevolence, loving-kindness,
friendliness, good will) but for the sake of clarity we will not say that the summaries below
are a definition of such terminology; to define such terminology precisely may require much
more detailed accounts of Buddhist philosophy.

For this reason, the meditations used during the experiment are described explicitly
and act as the definitions for what was recorded. It is all too common that the words
‘meditation’ and ‘mindfulness’ are used in studies without appropriate definition. This
can lead to confusion as to what the participant was actually doing during the recording
sessions.

B.1 Breath Focus

The process of this meditation is very simple; become aware of the movement of breath. In
some traditions people may focus on the abdomen or the chest, in this case the focus is on
the nostrils. Pay attention to the movement of the breath inwards through the nostrils and
the movement of the breath outwards through the nostrils. Attempt to pay attention for
the full duration of the breath, noticing the transition between breathing in and breathing

47

out and vice versa. Do not attempt to control the breath, rather allow oneself to breath
naturally while paying attention to it.

During this process one’s mind will continuously wander, thoughts arising and falling.
Remain with the breath and do not be carried away by any thoughts. If one notices
that they have been distracted by some train of thought then calmly bring attention back
to the breath and begin focusing on its movement again. It is completely normal to be
consistently distracted by a thought and then return to the breath; in many ways this
is the point of the meditation—to be become aware when one is lost in non purposeful
thought and to then bring one’s attention back to the present.

Over time it becomes easier to remain with the breath and become less distracted
by thoughts appearing in one’s mind—they simply arise and fall like the beating of the
heart with a decreased capacity to grab one’s attention. Eventually one may experience
moments where it feels like there are barely any thoughts at all and it is very quiet and
still. A primary purpose of this meditation is to build and increase one’s concentration.

B.2 Body Scan

The process of this meditation is also quite simple; become aware of the sensations occur-
ring on and in one’s body. One can normally start at the top of the head, paying attention
to any sensations on one’s scalp whether that be a light tingling or heat or anything that
one becomes aware of—there is no need for any strong preconceptions of what one will feel,
just an attempt to become aware of any sensations that are occurring. One then moves
down through the entirety of the body body, going to forehead, brows, eyes, cheeks, lips,
chin, ears, neck, throat, shoulders, arms, elbows, wrists, hands, fingers, chest, nipples,
abdomen, belly, upper back, lower back, bum, crouch, thighs, knees, calves, ankles, feet,
toes. Turning attention to all parts of the body and becoming aware of any sensations
occurring. One repeats this process moving from toes to scalp and continuously repeats,
up and down through the body.

Occasionally one may feel strong sensations in specific regions of the body at which
point they may turn attention specifically to this region. Once they have paid attention
and stayed with these sensations for a while they may return to moving through the body
in sequence. The purpose of paying attention to all parts of the body in sequence is to
ensure that one does not end up being continuously captured by a specific region and
ignoring others. Of course, it is normal that one may begin to feel strong sensations in
certain areas, for instance pain in one’s bum from sitting, so it is okay to pay specific
attention to these sensations when they occurs but one should then try and return to
other regions of the body when they can.

Over time one may begin to feel more sensations on the body, or settle into feeling
sensations more readily—forming a tactile granularity that gives discrepancy between
different sensations. Also, at the beginning one is mainly focused on sensations on the skin,
eventually one may begin to pay attention and become more aware of internal sensations
such as the beating of the heart and other physiological processes.

A primary purpose of this meditation is to become aware that one is constantly ex-
periencing sensations all over and through one’s body that they are often reacting to un-
aware—the sensations are shaping thought and the thoughts are shaping sensations—by

48

becoming aware of this constant process the labels we associate with specific sensations
can change and we can relate differently to them. For instance, what is the sensation of
physical pain? Is it hot, cold, sharp, blunt, throbbing, tingling; does it stay in the same
place or is it constantly moving? Over time one becomes aware that what we broadly refer
to as pain is composed of a variety of different sensations, some of which individually do
not directly cause us pain, and which are actually arising and falling continuously, much
like our thoughts, and that often what is causing us to suffer is the thoughts that are
related to these sensations rather then the sensations themselves.

In this way we become more adept at noticing the boundaries, or lack thereof, between
mind and body, and learn how to be more aware of what it is we are physically feeling
and how this effects our thoughts and vice versa.

B.3 Gratitude

The process of this meditation involves more directly cultivating a specific state of mind,
in comparison to the process of paying attention to one’s present condition from which
specific states can then arise. One uses phrases that they repeat, changing the focus or ob-
ject of the phrase, and giving reasons for that object’s particular importance—a reminder
of why feelings of gratitude are an appropriate response. These phrases are said silently
in one’s mind and have this general structure: ”May I be grateful for ——.” Followed by
reasons or reminders if deemed necessary. To give some examples:

1) May I be grateful for my physical health. That I am fit and healthy and free of
disease or illness. That I can move easily and without pain.

2) May I be grateful for my eyes. That they give vision and allow me to see.
3) May I grateful for safety. That I do not need to constantly worry about being hurt

on the street or for bombs to fall for the sky or for war to break out in the city.
4) May I grateful for food. That I have food in my home, that I do not have to go

hungry, that I have the fortune to eat when needed.
5) May I be grateful for farmers around the world. That they labour to grow crops and

foods that I can then purchase and eat.

As seen from the above examples, the focus of one’s gratitude is broad, it can be:
something about oneself, something one owns, something that one has access to, something
about the society one finds themselves in, someone or some people that one may not even
know, objects or skills that one is in possession of, the appreciation that someone else has
found happiness, and so on. Regardless of the focus or object, the purpose is to cultivate
and feel this sense of gratitude and to sit in this state and become more comfortable and
practiced at it.

Sometimes one may repeat the same mantra at the beginning and end:

1)* May I be grateful for for my physical health. That I am fit and healthy and free
of disease or illness. That I can move easily and without pain. May I be grateful for my
physical health.

49

One may remind themselves of the suffering of others and the great fortune that they
themselves are free of such suffering:

1)** May I grateful for my physical health. Many others in this world are burdened
with difficult physical disabilities, hardships, and pain, yet I am fortunate to be free of these.

It is important in instances like this that one does not become overwhelmed or overly
focused on feelings of empathy towards others to an extent that they themselves become
sad or upset; this is something that one can meditate on in different practices but the
purpose here is to cultivate feelings of gratitude, so while one can become aware of the
unfortunate position others find themselves in, one uses this as a catalyst for gratitude
rather than emotional contagion.

It is not always necessary to directly state reasons after choosing what one is grateful
for, sometimes simply stating the focus of one’s gratitude is enough to give rise to all the
reasons and feelings without stating them explicitly. What is important is the experience
of this sense of gratitude; one becomes cognitively aware that these different things are
worthy of gratitude and this cognitive awareness can transform to a felt experience of
gratitude. One can then also be aware that sense of gratitude is generally positive and
gives rise to a more peaceful mind—something else to be grateful for.

The overall purpose of this meditation is to get more in touch with the actual felt
experience of gratitude and to improve one’s ability to feel it.

B.4 Loving-Kindess

The process of this meditation also involves more directly cultivating a specific state of
mind. In this case the state of mind is one of love towards other beings. It could also
be stated as goodwill, kindness, well wishing, etc. as these are often easier states to first
engage with but the end goal is to feel genuine love towards the person or persons of your
focus.

The general phrasing used can remain the same, but the person the phrase is focused
on changes. The changing of person is where a major difficulty lies; while it may be easy
to cultivate feelings of love towards a specific individual it may be much more difficult
to hold similar feelings for a different individual. Similarly we may find ourselves more
readily able to cultivate feelings of love towards certain groups over others.

By engaging in the practice one becomes aware of how it feels to be truly loving
towards someone else and how this feeling of love is a positive experience. The cognitive
awareness of this is once again an important recognition. Throughout the process one may
run into the difficulty of feeling love towards certain individuals—this is perfectly normal
and a purpose of the meditation is to become more aware of these difficulties and their
character; by gaining more awareness of what it feels like to truly wish another person
well we can then also notice when we do not feel this way. One may wish to return to
someone for whom the feeling of love comes easy if one gets stuck on a specific individual
before returning and trying again.

The sequence of this practice often moves from individuals for whom it is easy to feel
love towards, to strangers, to difficult people, to people whom you really dislike, then

50

outwards to larger groups, and eventually everyone and all sentient beings. One can also
focus on oneself; this may be even more difficult and so is important to include.

There is generally a specific phrase or multiple sentences that are repeated. This phrase
can be altered to best suit the practitioner, however it is often something akin to:

May —— be free from danger. May —— have mental happiness. May —— have
physical happiness. May —— have ease of well being.

The phrase can act as an anchor from which the feelings can stem so its repetition
allows one to focus on the feelings that it evokes. The forms given below are what are
used most commonly in this study.

Loving-Kindness 1 (directed towards oneself)

The below phrase is repeated.

May I feel love, happiness, kindness, and peace. May my suffering, concerns, and ego
disappear. May I feel excitement, adventure, dreams, and boundless love.

One puts the focus of the practice on oneself. This can often feel strange, uncomfort-
able, silly, selfish, etc. For many people this is the most difficult focus for the practice.
One will likely become aware of many different types of resistance and retorts in one’s
own mind—reasons and insults for why one should not be feeling such love for oneself.
This can give a greater understanding of the difficulties we have regarding our own self
image. Once again, a cognitive understanding that having love for oneself is normally
more beneficial both for oneself and others is an important recognition. One can become
aware that wishing oneself well is deeply intertwined with wishing others well.

Loving-Kindness 2 (directed towards other individuals)

The below phrase is repeated with new individuals being inserted after a number of repe-
titions on a specific person.

May —— feel love, happiness, kindness, and peace. May —— suffering, concerns, and
ego disappear. May —— feel excitement, adventure, dreams, and boundless love.

One normally beings with someone who it is easy to have feelings of love towards; a
person, perhaps a family member or friend, for whom you have an uncomplicated rela-
tionship and with whom feelings of love and goodwill come readily. By beginning with
this person we come in contact with the feeling we are attempting to cultivate and gain
more understanding and awareness of this state.

Then one moves onto a stranger or an acquaintance, someone they have only seen or
someone they know very little and so do not have any strong feelings towards them either
way. It may be a cashier at the supermarket, someone you saw on the street earlier, some
member of a shared community, etc.

51

Then one can move onto someone whom they are having a difficult relationship with;
this may be a friend, a partner, a workmate, a boss, etc. It is normally good to start with
someone with whom the difficulty is not too great in order for progress to be made more
readily.

One can then move onto a person for whom they have feelings of more extreme dislike.
This may be someone in your day to day life or even a public figure such as a politician
who causes strong feelings feelings of dislike to arise.

Throughout the process the purpose is to cultivate feelings of love. Therefore if one
is struggling on a specific individual or type of individual they can feel free to return to
someone for whom it is easier before trying again.

Loving-Kindness 3 (directed towards groups)

The below phrase is repeated with new groups being inserted after a number of repetitions
on a specific group.

May —— feel love, happiness, kindness, and peace. May —— suffering, concerns, and
ego disappear. May —— feel excitement, adventure, dreams, and boundless love.

One can do this practice geographically; beginning with their local town/city, then the
country they live in, and then onwards throughout the continents of the world. Moving
from one continent to the next, or even from one country to the next. Repeating the
phrase and cultivating the sense towards people of different nationality and cultures. One
moves through all the areas of the world, eventually encompassing the entire planet and
wishing love towards all people.

Or instead of using geographical groups may one wish to mention groups by some other
categorisation that is often present in one’s mind (or in the media) for instance towards
women, men, rightwing, leftwing, protestors, bankers, artists, politicians, etc. This can
be an interesting way of discovering differences in feelings towards groups that one was
unaware of before. Eventually one wishes to encompass all groups within this same frame
of loving kindness and wish all of them well.

52

Appendix C

Data Analysis

In this Appendix C you will find information relating to the analysis of data. A python
script was used to clean the data, transform the data into the correct structure for input
into the neural network, define the neural network, run the training process to create a
model, and provide readable output of the results. Tensorflow, an open source machine
learning library developed at Google, allows for easy access to neural network network
functionality and was the library used in this study.

A summary of the steps taken for data analysis is as follows:
1) Export raw data from Emotiv Pro software as a CSV file.
2) Clean CSV file by removing rows and columns that are not related to analysis

or that for some reason (e.g. momentary error in recording) have empty cells. Only
time-series information related to the voltage change over the electrodes is necessary (file
initially includes extraneous columns with information related to motion, contact quality,
eeg quality, etc.)

3) Label the rows of data the appropriate class, normalize the values, structure the
data for use in the neural network, decide on hyperparameters for the network, define the
neural network (in this case a recurrent neural network), run the training process to create
a model, test the model, provide readable output of the results.

The following pages provide images of the main script used in the final step.

53

54

55

56

57

58

59

Bibliography

[1] Alexander Amini. Mit 6.s191: Recurrent neural networks. YouTube, Feb 2021.
https://www.youtube.com/watch?v=5tvmMX8r_OM&list=PLtBw6njQRU-rwp5_

_7C0oIVt26ZgjG9NI&index=3.

[2] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio.
On the properties of neural machine translation: Encoder-decoder approaches. arXiv
preprint arXiv:1409.1259, 2014.

[3] George B Dantzig. Linear programming. History of mathematical programming, pages
19–31, 1991.

[4] Pierre de Fermat. Pierre de fermats abhandlungen über maxima und minima (1629).
Akademische verlagsgesellschaft mbh, (238), 1934.

[5] Timothy Dozat. Incorporating nesterov momentum into adam. Open Review, 2016.

[6] Ding-Zhu Du, Panos M. Pardalos, and Weili Wu. History of optimization. Encyclo-
pedia of optimization, 2008.

[7] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for
online learning and stochastic optimization. Journal of machine learning research,
12(7), 2011.

[8] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[9] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine
learning lecture 6a overview of mini-batch gradient descent. 2012. https://www.cs.
toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.

[10] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-
tation, 9(8):1735–1780, 1997.

[11] Raimi Karim. 10 gradient descent optimisation algorithms.
Medium, May 2020. https://towardsdatascience.com/

10-gradient-descent-optimisation-algorithms-86989510b5e9.

[12] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

https://www.youtube.com/watch?v=5tvmMX8r_OM&list=PLtBw6njQRU-rwp5__7C0oIVt26ZgjG9NI&index=3
https://www.youtube.com/watch?v=5tvmMX8r_OM&list=PLtBw6njQRU-rwp5__7C0oIVt26ZgjG9NI&index=3
http://www.deeplearningbook.org
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://towardsdatascience.com/10-gradient-descent-optimisation-algorithms-86989510b5e9
https://towardsdatascience.com/10-gradient-descent-optimisation-algorithms-86989510b5e9

60

[13] Kiprono Elijah Koech. Cross-entropy loss function. Medium, Nov 2021. https:

//towardsdatascience.com/cross-entropy-loss-function-f38c4ec8643e.

[14] Merriam-Webster. Optimum vs optimal. Merriam-Webster, 2022. https://www.

merriam-webster.com/words-at-play/optimum-vs-optimal,.

[15] Andrew Ng. Gradient descent with momentum (c2w2l06). 2017. https://www.

youtube.com/watch?v=k8fTYJPd3_I.

[16] Christopher Olah. Understanding lstm networks. Understanding LSTM
Networks – colah’s blog, Aug 2015. https://colah.github.io/posts/

2015-08-Understanding-LSTMs/.

[17] Boris T Polyak. Some methods of speeding up the convergence of iteration methods.
Ussr computational mathematics and mathematical physics, 4(5):1–17, 1964.

[18] Ning Qian. On the momentum term in gradient descent learning algorithms. Neural
networks, 12(1):145–151, 1999.

[19] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747, 2016.

[20] Robin M Schmidt. Recurrent neural networks (rnns): A gentle introduction and
overview. arXiv preprint arXiv:1912.05911, 2019.

[21] Claude Elwood Shannon. A mathematical theory of communication. The Bell system
technical journal, 27(3):379–423, 1948.

[22] Bismark Singh and Mark Eisner. A brief history of optimization and mathemati-
cal programming. Informs. https://www.informs.org/Explore/History-of-O.R.
-Excellence/O.R.-Methodologies/Optimization-Mathematical-Programming.

[23] Ava Soleimany. Mit 6.s191: Recurrent neural networks. YouTube, Feb 2021.
https://www.youtube.com/watch?v=qjrad0V0uJE&list=PLtBw6njQRU-rwp5_

_7C0oIVt26ZgjG9NI&index=2.

[24] Ilya Sutskever. Training recurrent neural networks. 2013. https://www.cs.

utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.pdf.

[25] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance
of initialization and momentum in deep learning. International conference on machine
learning, pages 1139–1147, 2013.

[26] Greg Van Houdt, Carlos Mosquera, and Gonzalo Nápoles. A review on the long
short-term memory model. Artificial Intelligence Review, 53(8):5929–5955, 2020.

[27] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

[28] Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. Dive into deep
learning. arXiv preprint arXiv:2106.11342, 2021.

https://towardsdatascience.com/cross-entropy-loss-function-f38c4ec8643e
https://towardsdatascience.com/cross-entropy-loss-function-f38c4ec8643e
https://www.merriam-webster.com/words-at-play/optimum-vs-optimal
https://www.merriam-webster.com/words-at-play/optimum-vs-optimal
https://www.youtube.com/watch?v=k8fTYJPd3_I
https://www.youtube.com/watch?v=k8fTYJPd3_I
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://www.informs.org/Explore/History-of-O.R.-Excellence/O.R.-Methodologies/Optimization-Mathematical-Programming
https://www.informs.org/Explore/History-of-O.R.-Excellence/O.R.-Methodologies/Optimization-Mathematical-Programming
https://www.youtube.com/watch?v=qjrad0V0uJE&list=PLtBw6njQRU-rwp5__7C0oIVt26ZgjG9NI&index=2
https://www.youtube.com/watch?v=qjrad0V0uJE&list=PLtBw6njQRU-rwp5__7C0oIVt26ZgjG9NI&index=2
https://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.pdf
https://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.pdf

61

[29] Tehseen Zia and Usman Zahid. Long short-term memory recurrent neural network
architectures for urdu acoustic modeling. International Journal of Speech Technology,
22(1):21–30, 2019.

	List of Figures
	Introduction
	Optimization
	Neural Networks
	Biological Neural Networks
	Comparison to Biological Neural Network
	Basic Artificial Neural Network Structure

	Activation Functions & Loss Functions
	Activation Functions
	Rectified Linear Unit
	Sigmoid (logistic sigmoid)
	Tanh (hyperbolic tangent)
	Softmax

	Loss Functions
	Cross-Entropy Loss
	Binary Cross-Entropy Loss
	Multi-Class Cross-Entropy Loss
	Note on nomenclature

	Optimization Algorithms
	Gradient Descent
	Regular Gradient Descent
	Stochastic Gradient Descent
	Mini Batch Gradient Descent
	Version of Gradient Descent Used in Algorithms

	Background for Optimization Algorithms
	Exponentially Weighted Moving Averages
	Bias Correction
	Learning Rate

	Optimization Algorithms
	Classical Momentum
	Nesterov Momentum
	AdaGrad
	AdaDelta
	RMSprop
	Adam
	AdaMax
	Nadam

	Recurrent Neural Network
	Recurrent Neural Network (RNN)
	Deep Recurrent Neural Networks (DRNNs)

	Experiment
	Electroencephalography (EEG)
	Meditation
	Recording
	Data
	Recorded Data
	Exported Data

	Preprocessing
	Train, Validation, Test Sets
	Model Architecture

	Results
	Analysis 1 - Classical Momentum
	Analysis 2 - Nesterov Momentum
	Analysis 3 - AdaGrad
	Analysis 4 - AdaDelta
	Analysis 5 - RMSprop
	Analysis 6 - Adam
	Analysis 7 - AdaMax
	Analysis 8 - Nadam
	Comparison of Optimizers

	Conclusion
	Data Collection
	Electroencephalogram (EEG)
	Emotiv Software

	Meditation
	Breath Focus
	Body Scan
	Gratitude
	Loving-Kindess

	Data Analysis
	Bibliography

