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Abstract

There are methods for inferring whether a pair of people are likely to become
friends or whether two kinds of drugs are likely to interact if consumed simul-
taneously. The methods solve the problem of link prediction, i.e. answer the
question "Is a link (friendship, interaction) likely to form between two particu-
lar nodes (people, drugs)?". Generalizing the problem to graphs translates it to
predicting if particular node pairs are likely to form links. As predicting links
between all possible node pairs is computationally infeasible for larger graphs,
methods for narrowing down the search space are required to efficiently solve
the problem.

We propose a novel algorithm, DAPPR, for resolving this issue and compare
it against an existing solution LinkWaldo, along with breadth first search and a
variant of KNN. The algorithms are evaluated by their ability of finding hidden
edges on on real-world graphs, and it is shown that DAPPR outperforms all
compared algorithms.

Keywords: MSc, Graph, Link Prediciton, Large Scale Link Prediction, Candidate Node
Pairs, Candidate Node Pair Selection, LinkWaldo, Nearest Neighbor Descent, NN-Descent,
Personalized PageRank, Breadth First Search, Graph Machine Learning, DAPPR, Dis-
tributed Approximate Personalized PageRank
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Chapter 1

Introduction

By its simplest definition, a graph is any structure with objects where some pairs of objects
have some relationship. Objects are often interchangeably referred to as nodes or vertices
and relations as edges or links [4]. With this broad definition, it is easy to see how graphs are
a useful representation for many complex systems, such as social networks, energy networks,
routing systems, etc., and that it has many useful mathematical properties for finding e.g.
shortest paths between nodes or identifying central nodes. Although graph theory has been
essential in mathematics for a long time, graphs have been late to the party in the internet
age [21]. With the emergence of efficient and practical graph database technologies such as
Neo4j, the number of applications using graph representation natively has increased dramat-
ically, making it the fastest growing type of database [19][6] and enabled new innovations in
the field to emerge, such as applying Machine Learning on the graph context. One field that
has been of particular interest is link prediction. Link prediction is the task of predicting
new, unseen, edges in a given graph [18]. The problem can be formulated as either:

• Completing an incomplete graph. An example of this would be a graph of drug-to-
drug interactions, where it is obviously incomplete as not all drug combinations have
been tested. Here the aim would be to discover new drug-to-drug interactions that
have not yet been discovered. A 2018 paper by Zitnik, Agrawal and Leskovec did just
this and managed to find documented cases for 5 out of 10 drug-to-drug interactions
made by the prediction model [28].

• Finding future links in a temporal graph. As some graphs can be represented as grow-
ing over time, models can be trained to predict new links at any given time step. One
such application would be predicting future relationships in a social network [16].

7



1. Introduction

1.1 Problem Statement
While much research has been devoted to finding methods that predict the most likely edges
to form (or that should exist already) [18][16] [9] [17] [2], many of these approaches only
run a prediction on the given node-pairs you ask it to predict. To predict all new edges
in any given graph, one would have to run the method on every non-adjacent node pair
possible in the graph, from here on referred to as exhaustive candidate selection. This task
can become cumbersome on larger graphs, as the number of possible node pairs in a graph is
upper bounded by n2 if the edges are directed (where n is the number of nodes) and n2

2 if they
are undirected. Since many real-world graphs are generally sparsely connected, they have
complexity O(n2). As performing n2 operations on very large graphs is technically infeasible,
an approach for selecting which subset of node pairs the prediction model should consider
is necessary.

Mathematically, we formulate the candidate selection problem (similar to Caleb et.al.
[3]) as: Given a graph G = (V,E) and a budget c ≪ n2, return a set of plausible candidate node
pairs P ⊂ V × V of size |P| ≤ c for a link prediction model to make decisions about.

1.1.1 Aim
The aim of this thesis is to evaluate existing and novel efficient algorithms that, given a graph,
return a set of plausible candidate node pairs for a link prediction model to run upon.

1.1.2 Limitations
We limit the scope of this thesis to graphs which

• have only one node type,

• have only one edge type,

• edges are unweighted (a node pair can be linked by up to one edge),

• do not contain self loops,

• represent real world problems (as opposed to synthetic graphs).

1.2 Contribution
While the topic of link prediction has been extensively studied, many of the papers published
on the topic only consider the time complexity of performing link prediction on node pairs
composed of a specific node (query node) in conjunction with each of the remaining nodes
in the graph [18]. Furthermore, they have time complexities of Ω(n) [18] as there are n nodes
to consider linking to the query node, and thus running it on the entire graph (considering
each possible query node) requires an additional multiplication of n, resulting in quadratic
time complexity O(n2). Therefore, considering only one query node at a time falls short
of the problem if one wishes to infer possible edges among all non-adjacent nodes in a large
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1.3 Original Source Code

graph efficiently. This thesis aims to investigate and suggest algorithms for efficiently running
link prediction on large graphs, mainly by reducing the search space and performing link
prediction on only a fraction of the possible node pairs.

Individual contributions to this thesis are listed in appendix C.

1.3 Original Source Code
The original source code of our findings and implementations can be found at https://
github.com/neo4j/dappr.
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Chapter 2

Background

This chapter sets the theoretical framework for graph notation, presents some established
link prediction methods and other tools related to the topic of candidate node pair selection,
concluding with a literature study of previous work on the topic.

2.1 Preliminaries
Let G = (V,E) be a graph consisting of the nodes in the set V and the edges (v, u) ∈ E ⊆
V × V . The neighbors of a node v are denoted N(v) and u ∈ N(v) such that (v, u) ∈ E. The
number of nodes in the graph |V | is referred to as n. The degree of a node v is defined as its
number of neighbors |N(v)|, and d is defined as the average degree of all nodes in the graph
( |E|n ). Furthermore, the distance dist(u, v) between two nodes u and v is considered to be the
number of edges included in the shortest path between the two nodes.

A common way to represent a graph is through its adjacency matrix, which is a |V | × |V |
matrix where each row and column represents a node index, and the elements are 1 (given that
the edges are unweighted) if there is an edge between the two node indices and 0 otherwise.

The major mathematical symbols used throughout this thesis are summarized in appendix
A.1.

2.2 Node Embedding
A node embedding xi is a real valued vector representation of a node vi ∈ V .

The goal of embedding nodes is to project the nodes onto points in a latent feature space
where geometric relations reflect the interactions in the graph [12]. For instance, node em-
beddings can capture structural information about the nodes’ neighborhoods (also called
topological information) and can capture properties of the nodes or edges if those are avail-
able. Downstream, the embeddings are usable as rich inputs to machine learning tasks that

11



2. Background

capture information that would otherwise be lost by only using simple properties such as a
node’s number of neighbors.

2.3 Link Prediction Models
This section describes a selection of common link prediction models composed of proximity
models (PM) and machine learning models.

PMs are used to determine the similarity between two nodes in a graph. These are similar-
ity based scoring functions that measure some form of distance and/or commonality between
two nodes’ neighborhoods. These models do not necessarily predict if a node pair should be
connected by an edge or not, but rather output a score which can then be compared against
other pairs’ scores. Some of these have, however, been demonstrated to be fairly successful
for link prediction [1][18][3]. Machine learning based models, presented lastly, output a pre-
diction for whether a link between a pair of nodes should exist. These models are able to find
less obvious implicit relations in comparison to the PMs, and can therefore be tailored to the
unique attributes of each graph. An example of such relations would be finding similarities
between sub-graphs to learn better link prediction-related properties on those, or finding
the role that strongly connected nodes have in the graph and their role in the link prediction
context.

2.3.1 Common Neighbors
One of the simplest PMs is Common Neighbors (CN), which returns a score based on the
number of common neighbors between two nodes [18].

simCN (u, v) = |N(u) ∩ N(v)| (2.1)

2.3.2 Adamic-Adar
Proposed in a 2003 paper by Adamic and Adar [1], Adamic-Adar (AA) is an extension of
CN in which the value of each common neighbor is scaled against the degree of the common
neighbor. Though a simple function, AA has been proven to be successful in link prediction
in multiple settings [1][18][3].

simAA(u, v) =
∑

z∈N(u)∩N(v)

1
log |N(z)|

(2.2)

2.3.3 Jaccard Similarity
Jaccard Similarity (JS) intuitively extends on CN, taking into account the fraction of u and
v’s neighborhood which are common neighbors [18].

simJS(u, v) =
|N(u) ∩ N(v)|
|N(u) ∪ N(v)|

(2.3)
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2.4 Personalized PageRank

2.3.4 Machine Learning Models
Link prediction can be defined as a machine learning problem. This definition has been
explored with promising results using many different methods, ranging from ensembles of
heuristic methods as the ones mentioned above [17] to more sophisticated models such as
K-Nearest Neighbors, Support Vector Machines, Naive Bayes, Neural Networks and Graph
Neural Networks [18][26]. Many of these approaches leverage topological information in the
graph through the use of embeddings.

An instance of utilizing machine learning models for link prediction was presented by
Lichtenwalter et. al [17], where an ensemble approach was used. Specifically, the approach
made use of a random forest on features used in traditional link prediction methods and in-
cluding some heuristic similarity scores in the ensemble, e.g. node degrees, shortest path, AA
and JS scores. The authors find that it outperforms existing methods (such as AA, CN, Katz,
PropFlow) by more than 30% in AUC. The authors conclude with a strong recommendation
for using supervised methods for being superior in a range of datasets, without requiring any
domain-specific knowledge on the given graph.

2.4 Personalized PageRank
First proposed by Page et. al. in 1999 as the major technology behind the search engine’s
ranking of search results, PageRank is an algorithm for finding the importance of different
nodes in a graph [23]. Although the authors show that the problem can be defined in mul-
tiple ways (e.g. eigenvalue decomposition), they present an equivalent, yet more intuitive
explanation of the algorithm as the probability of a random surfer. This approach explains
PageRank as a random surfer browsing across the graph (the web in this case) and randomly
moving across edges (hyperlinks), with some probability of teleporting to a random node at
any time, while counting the number of visits on each node (website) and finally outputting
a probability distribution of visiting any given node. This method is referred to as random
walk with restarts, where the surfer has some probability 1−α (where α ∈ [0, 1]) of teleport-
ing to any node in the graph during each step. The algorithm proved to be not only useful for
searching the web (laying the foundation of the modern search engine Google) but has been
successfully been applied to e.g. predicting the expression of genes in GeneRank, evaluating
the importance of brain regions, finding root causes in distributed systems and predicting
traffic flows [10].

Extending on an absolute ranking for the entire graph, the authors of PageRank also
mention a special case of PageRank called Personalized PageRank (PPR), where the random
surfer, in the event of a teleportation, always teleports to a given query node. This modifi-
cation could be used for e.g. "personal search engines" [23]. Although the original PageRank
implementation was based on eigenvalue computation, the Random Walk with Restarts, or
random surfer, approach can be used to compute PageRank (or PPR) [27] using the following
iterative definition

πq(t + 1) = αPTπq(t) + (1 − α)eq, (2.4)

where πq(t) is a probability distribution over the nodes in the graph, representing the prob-
ability of a random walker’s location in the graph at time step t with query node q. P (also
called transition matrix) is a |V | × |V | matrix containing the transitional probabilities be-
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2. Background

tween all node pairs. The element at row x and column y is computed as pxy =
axy
|N(x)| where

axy is the corresponding element in the adjacency matrix. The vector eq of dimensions 1×|V |
represents the query node as the element corresponding to the query node has value 1 and all
other elements have value 0 [27].
πq(t) converges to the PPR for q as t → ∞. The stable state πq = πq(t)|t→∞ can be

expressed as
πq = (1 − α)(I − αPT )−1eq (2.5)

where I is the identity matrix.
PageRank and PPR have previously been applied to the link prediction problem with

some success[26][20], however, we have not found any published resources of their use in the
link prediction candidate selection problem.

2.5 Related work
The following section contains a literature study that acts as the foundation for selecting the
candidate selection methods to benchmark.

2.5.1 Nearest Neighbor Descent
In a 2011 paper by Dong et. al., a method called Nearest Neighbor Descent (NN-descent) was
proposed for an efficient approximate implementation of finding the K-Nearest Neighbors
(KNN) of all nodes in a graph, given any similarity measure [7]. While an exact implementa-
tion of KNN with "brute-force has cost O(n2) and is only practical for small datasets", the purpose
was to create an approximate KNN-method that was general, scalable, space efficient, fast
and accurate, and easy to implement. The proposed method called NN-descent is based on
the assumption that "a neighbor of a neighbor is also likely to be a neighbor", and, excluding some
optimizations and variations, can be summarized as:

1. Define the constant k ∈ N+ representing the number of sought nearest neighbors for
each node, and a similarity function sim : V × V → R+.

2. Select k random neighbors for each node v ∈ V , creating KNN[v].

3. For each v ∈ V compute the set KNNnew[v] = {(w, sim(v,w)) | u ∈ KNN[v] ∧ w ∈
KNN[u]}.

4. For each v ∈ V , replace the set KNN[v] with the K elements with highest score in
KNN[v] ∪ KNNnew[v].

5. Repeat step 3-4 until the KNN-sets for all nodes have converged.

The proposed method leverages some techniques to improve efficiency, while proving to not
sacrifice recall significantly. The primary improvements are local joins, sampling and early
termination. Local joins reduce the number of evaluations in half by only evaluating (a, c)
once in the subgraph a−b−c when b is evaluated in the iterative step, rather than evaluating
(a, c) on a’s iterative step and then (c, a) on c’s iterative step, as in the original implementa-
tion. Sampling allows for a further reduction in the number of evaluations by only comparing

14



2.5 Related work

a sampled subset of new, unevaluated nodes in KNN[v] | v ∈ V , using sample rate ρ, rather
than the entire list each time. Finally, NN-descent uses early termination, allowing the user
to set a convergence threshold δ to terminate the algorithm early. When evaluating NN-
descent experimentally, using a fixed k = 20, the authors find empirically a time complexity
of O(n1.14) on a number of datasets, with a scan rate (number of comparisons / n2) that is
lower than 0.05 in most cases, and shrinks as the dataset grows.

In NN-descent a collection KNN[v] of k nodes is kept for each node v. ρk nodes are
sampled at each iteration. These sampled nodes are compared against all other nodes in
KNN[v], corresponding to O(k), where k is set to ⌊ c

n⌋ operations in our experiments. As this
is done for n nodes at each iteration, we conclude that the time complexity of NN-descent is
O(nk2) = O(c2/n).

Since the proposed algorithm can be used for any given similarity measure, it can be
generalized to any problem that seeks to output a set of k node pairs for each node in a graph,
using some function sim : V × V → R+. It is therefore possible to run NN-descent using
some link prediction method as its similarity function. This yields an approximation of the
k most likely new neighbors for each node. A solution based on the same KNN assumptions
is applied to large scale link prediction by Neo4j in the Graph Data Science library [22].

2.5.2 Non-Negative Matrix Factorization with Bag-
ging

One of the earliest attempts to solve the link prediction at scale problem was made by Duan
et. al. in 2017 [9]. The authors proposed a method for splitting the dataset into smaller
chunks using bagging methods in order to reduce the quadratic problem into O((n

b )2), where
b is the number of bags. They then borrow concepts from the problem of missing value
estimation and collaborative filtering (e.g. recommender systems) to predict missing links
within each bag, or subgraph. As collaborative filtering often relies on imputing missing val-
ues in a matrix, these concepts could be applied for finding missing values in an adjacency
matrix (i.e. imputing missing edges). The authors settle on using Non-Negative Matrix Fac-
torization, a type of Latent Factor Model [9] and select the k best pairs. In the experimental
results, the authors conclude that the model scales "nearly linearly with the increase of n". Fi-
nally, they compare the precision of the method against AA, Resource Allocation and Cluster
Affiliation Model for large graphs (using the same bagging method as the proposed method).
Non-Negative Matrix Factorization with bagging is concluded to have the best precision in
2 out of 3 datasets, where it is outperformed by AA in one dataset. Duan et. al. selected
precision as the main evaluation metric, thus implying their target is to output a relatively
small set of final predictions.

2.5.3 LinkWaldo
In 2022, Caleb et.al. proposed one of the first methods for solving the problem of efficiently
finding a subset of all possible node pairs to perform link prediction on [3]. In the paper,
they describe a method called LinkWaldo which leverages node groupings, bayesian statistics
and Locality Sensitive Hashing (LSH), a family of fast approximate KNN algorithms [24]. In
essence, LinkWaldo outputs a collection of node pairs such that a pair of nodes has similar
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2. Background

embeddings and belong to node classes that are strongly connected in the graph.

Figure 2.1: Visual representation of LinkWaldo [3]

The method, with the objective to find c unobserved edges, is summarized as:

1. Generate some node embeddings for each node v ∈ V . Suggested embeddings by the
authors are NetMF and BINE for bipartite graphs [3].

2. Generate subsets of V using some grouping method. Suggested grouping methods are
Log-binned Node Degree (DG), Structural Embedding Clusters (SG), Communities
(CG) [3].

3. Construct a Stochastic Block Model matrix, where each column and row correspond
to a node grouping or combination of node groupings, and each equivalence class Ci j
contains the subset of existing edges that can be found between group i and j, which
is assumed to reflect the bayesian prior for future edges.

4. Iterate over all classes Ci j , perform locality sensitive hashing on all nodes embeddings.
This assigns similar nodes to the same bucket with a high probability. Iterate over all
possible pairs in each bucket, and score them according to some similarity measure
(the authors suggest using the cosine similarity of the node embeddings). Using the
Stochastic Block Model value Ci j to find an expected number of new edges E(|Ci j ∩

εnew|) between i and j, add the closest pairs to a pool P which corresponds to the
algorithm output.

The authors benchmark LinkWaldo against a number of datasets, hiding 20% of the orig-
inal edges which produces a test graph. The number of output candidate pairs is set to c,
where c is manually selected for each individual dataset to be proportional to the number
of hidden edges, roughly 10 times greater than n. Computing the resulting recall is done by
comparing the number of hidden edges against the c outputted candidates. LinkWaldo is
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2.5 Related work

tested against similarity based methods such as AA and CN, but also Non-Negative Matrix
Factorization with Bagging (described in 2.5.2). In their results, LinkWaldo is found to have
the strongest recall in 10 out of 13 datasets, and is only marginally outperformed by AA on
the remaining three.

Empirically analyzing the time complexity of LinkWaldo, the authors conclude that it
"scales linearly on the number of edges, and subquadratically on the number of nodes". More specifi-
cally, the time complexity is given by O(γ+ |E|+nbmax +c), where γ corresponds to the time
complexity of grouping nodes and bmax is the number of times a node is hashed using LSH.

In the comparison between Non-Negative Matrix Factorization with Bagging against
LinkWaldo, it is noteworthy that the authors of LinkWaldo focus on recall rather than pre-
cision, with the motivation that "the returned set of pairs P does not contain final predictions, but
rather pairs for a link prediction method to make final decisions about", unlike a "top-k link prediction,
which attempts to predict a small number of links, but misses a large number of missing links in the
process, suffering from low recall".
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Chapter 3

Distributed Approximate Personalized
PageRank

As there are currently no published resources on applying PPR to the candidate selection
problem, we propose a method for its application. Furthermore, we propose a novel approach
to computing an approximate individual PPR for every node in a graph with linear time
complexity w.r.t. n that we call Distributed Approximate Personalized PageRank (DAPPR).

The algorithm is of the form G × N+ × ω 7→ P ⊂ V × V , taking as input the graph G
and an upper bound of the size c of the output set along with some hyper-parameters ω and
returns a set of node pair candidates P deemed likely to form links.

3.1 Applying Personalized PageRank on
candidate selection

Computing the stable state PPR for a query node q, as described in section 2.4, yields a
probability distribution πq of randomly walking from q to any node in V . By extracting k
nodes from πq, with the highest probability for each query node q, we can construct the
candidate set P. An approach for selecting k would be defining a static k for all query nodes
as in the KNN problem. This choice of k would imply that all nodes are expected to be part of
equally many unobserved edges. Instead, we assume that the relative degrees of nodes should
be preserved. For instance the assumption is that a dangling node with only a single neighbor
is likely to be included in fewer unobserved links than a central node of high degree. This
Bayesian assumption, similar to the one made in Linkwaldo (see section 2.5.3), entails that the
number of output edges per query node q should not be a constant, but rather some function
k(q) ∝ |N(q)|. We suggest the following function:

k(q) =
⌊
c
n
·
|N(q)|

d

⌋
(3.1)
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3. Distributed Approximate Personalized PageRank

where the first factor represents the average number of candidates to output per node, and
the second factor represents the degree of q in relation to the average degree.

This approach causes some discrepancies in the size of the output set | P | for undirected
graphs. Let u be the most probable node in πv and v be the most probable node in πu, then
the node pairs (u, v) and (v, u) will both be added toP. As the graph is undirected both pairs
are considered equal, effectively resulting in |P| < c. Also, equation 3.1 includes a flooring
function, which further adds to this issue. To tackle this, another step is added to the final
construction of P. When the k(q) most probable node pairs have been added to P for all
q, we continue the set construction by adding the most probable node pairs selected from a
pool consisting of all PPR distributions such that q ∈ V until |P| = c, similar to the approach
used in LinkWaldo.

3.2 Personalized PageRank computation
As a single PPR computation through either eigenvalue decomposition, or that of the random
surfer approach, both described in section 2.4, output n probabilities, running a unique PPR
for each of the n nodes in the graph would require a time complexity of Ω(n2). However,
since such an approach would perform many redundant computations, the time complexity
of generating a unique PPR for each node in the graph could be improved upon significantly.
To illustrate this from the perspective of the random surfer approach, assume that a PPR
for q (i.e. πq) is being computed. In the event that the random surfer transitions from q to
q’s neighbor v ∈ N(q), all following events given that a teleportation does not occur have
the same probability distribution as that of πv. Thus, simulating these events with a random
surfer is redundant if πv has already been computed.

The concept of the PPR of a node being dependent on its neighbors has been formalized
by Widom et. al. in the Decomposition Theorem [14]:

πq = (1 − α)eq + α
1
|N(q)|

∑
v∈N(q)

πv (3.2)

The authors also describe the basic dynamic programming algorithm for calculating πq(t) as
an approximation of πq with a proven error δ(t).

πq(0) = eq

πq(t) = (1 − α)eq + α
1
|N(q)|

∑
v∈N(q)

πv(t − 1)

δ(t) = ||πq − πq(t)||1 = αt

(3.3)

where α is a hyper-parameter in ω in our implementation. By concatenating the results we
obtain the |V | × |V | matrix Πt .

Π(t) :=
[
π0(t) · · · πn(t)

]
. (3.4)

3.3 Approximations
Equations 2.4 and 3.3 offer two different methods for computing the PPR of a node. However,
the latter equation provides opportunities for parallelization and intuitive ways to limit the
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number of operations and space required while introducing approximations.

As scalability is prioritized in DAPPR, the algorithm makes use of equation 3.3 with some
approximations deemed appropriate for a method which aims to output top ranked nodes
in πq. Due to the dependency of each πq(t) on all of its neighbors’ πv(t − 1)|v ∈ N(q), the
max number of non-zero values held in πq(t) is, in the worst case, increased by a multiple
of the maximum node degree for each iteration. This problem can, however, be mitigated
by limiting the number of values that are taken into account from each neighbor by some
constant, approximating the equation by only selecting the highest probability nodes from
each neighbor. In equation 3.5 this operation is represented by the function topβ . In order
to ensure that a sufficient number of node candidate pairs can be constructed from the ap-
proximate PPR π̂q(t), this ranking needs to include a sufficient number of non-zero entries.
Therefore, we suggest using an integer parameter λ ∈ N+ for selecting the β = λk(q) highest
probability nodes from each neighbor in N(q) for the computation of π̂q(t). To further limit
the growth of the amount of non-zero values, we restrict π̂q(t) so that the maximum number
of non-zero values is λk(q).

Using the described modifications of equation 3.3, we formulate the central equations in
DAPPR:

π̂q(0) = eq

π̂q(t) = (1 − α)eq + α
1
|N(q)|

topλ∗k(q)

( ∑
v∈N(q)

topλ∗k(q)(πv(t − 1))
)

Π̂(t) : =
[
π̂0(t) · · · π̂n(t)

]
.

(3.5)

In order to solve Π̂(t) in equation 3.5, the number of iterations is limited to some number
tmax which is encountered when a convergence threshold is reached. tmax is determined as the
largest t such that ||Π̂(t) − Π̂(t − 1)||1 ≤ ϵ , where ϵ is a hyper-parameter in ω.

3.4 Pseudocode

The pseudocode for DAPPR is presented in algorithm 1. In the pseudocode, Πcurr corre-
sponds to Π̂(t) in equation 3.5, and Πprev corresponds to Π̂(t − 1).

Construction ofP is performed according to section 3.1. Note that the for-loop can easily
be parallelized.
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Algorithm 1 DAPPR
Input: V, α, λ, ϵ
Output: Πcurr

Πprev← In //Each column q is initialized as eq.
Πcurr ← 0n,n //Initialized as the zero-matrix.

while true do
for q ∈ V do Parallel

Πcurr[:, q]← (1 − α)eq + α
1
|N(q)| topλ∗k(q)

(∑
v∈N(q) topλ∗k(q)(Πprev[:, v])

)
//Eq. 3.5

end for

δ← ||Πprev − Πcurr ||1
if δ < ϵ then // Convergence check.

return Πcurr
end if

Πcurr ← Πprev
end while

3.5 Complexity Analysis
Running a single iteration of DAPPR will require collecting λk(q) values from d neighbors
over all n nodes, where k(q) averages to c

n (according to equation 3.1). The number of iter-
ations, tmax, is dependent on the rate of convergence and error threshold ϵ . The final time
complexity of DAPPR is O(nd c

n ) = O(dc).
To run DAPPR, Π̂(t) and Π̂(t − 1) must be held in memory, containing n rows and up

to λk(q) values in each row. Assuming sparse matrices are used, the final space complexity
becomes O(n c

n ) = O(c).
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Chapter 4

Method

The following chapter describes the research questions of this work, and the experimental
setup to answer these questions.

4.1 Research Questions
Given the problems statement and aim, stated in 1.1, the thesis will evaluate the following
algorithms:

• Distributed Approximate Personalized PageRank

• Breadth First Search

• LinkWaldo

• Nearest Neighbor Descent

on the following research questions (RQs):

• (RQ1) How well does the time complexity of each algorithm scale with regards to the
number of nodes in the input graph?

• (RQ2) To what extent does the output set P of each algorithm overlap with miss-
ing/future edges in an input graph?

• (RQ3) How do the results of RQ2 depend on the real-world domain of the input data?
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4.2 Methodology
In order to answer the research questions, action research was employed. Action research can
be described as a methodology of two parts; situation assessment and problem intervention
[8]. These two parts are in turn split into sub parts, where the situation assessment consists
of observation and solution, while the problem intervention is made up of evaluation and
reflection [8]. The methodology can be viewed as iterative, as it might be repeated until the
evaluation is deemed adequate.

4.3 Experimental Setup
The candidate selection algorithms are evaluated on their ability to find edges that have been
hidden Ehidden from a graph G. In our experiments Ehidden is the ground truth and consists of
20% of the edges in G. The amount of hidden edges are selected to match the setup used by the
authors of LinkWaldo [3] for comparability. Another 20% of edges in G are put in a validation
set used by the NN-Descent model (described in 4.3.1). RemovingEhidden from G results in the
test graph Gtest = (Vtest,Etest). For static graphs, the edges to hide are selected uniformly at
random. In contrast, for temporal graphs the 20% of edges formed most recently are hidden.
This approach may lead to some nodes becoming disjoint in Gtest , and due to traits shared by
all evaluated algorithms, these nodes will not appear as elements of any resulting candidate
pairs. Therefore, hidden edges that contain one or more disjoint nodes in Gtest are removed
from Ehidden. Consequently, the number of hidden edges is likely to be less than 20% of the
number of original edges |E|.

Since the final output P from each algorithm is not a final link prediction result, but
a set of node pairs to perform link prediction on (except for NN-descent which outputs
actual predictions), the size of the output set should be larger than or equal to | Ehidden |.
We evaluate candidate selection algorithms on output sizes | P | ≤ c = h| Ehidden | where
{h | 1 ≤ h ≤ 10 ∧ h ∈ N}. Each algorithm is run only one time for each value of h.

All experiments are conducted on an Intel(R) Xeon(R) CPU E7-8870 v3, 2.10 GHz with
1056 GB RAM.

4.3.1 Algorithms
In order to reduce the search space of possible edges from O(n2) we consider algorithms of
the form G × N+ × ω 7→ P ⊂ V × V which take a graph G and an upper bound of the
size of the output set c along with some hyper-parameters ω (unique to each algorithm)
as input and return a number of node pair candidates P deemed likely to form links. The
algorithms described below are all implemented in Python 3, using NetworkX [11] for graph
management.

Distributed Approximate Personalized PageRank
DAPPR is implemented according to chapter 3. The selected parameters are: α = 0.8, λ =
20, ϵ = 0.05, as we have found that these parameters generally yield relatively strong results
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on a variety of different graphs. The construction of Πcurr[:, q] is parallelized over all q ∈ V
in our implementation.

Breadth First Search
Breath First Search (BFS) is a simple graph search algorithm [5] that will be used in the bench-
marks as a simpler algorithm to reference the other methods against. Our implementation of
BFS on candidate selection works by iterating over all nodes v ∈ V , then for each v the algo-
rithm constructs up to k node pair candidates (u, v) such that dist(u, v) ≤ l and (u, v) /∈ Etest .
Specifically, BFS iteratively adds node pairs as candidates layerwise, starting at the set of
nodes with the smallest distance to v and continuing with sets of nodes increasingly fur-
ther away from v until k node pairs have been added. The hyper-parameters ω in BFS are
constructed of k and l.

As BFS simply yields k node candidate pairs for each of the n nodes in the graph, where
k = ⌊ c

n⌋, the time complexity of the algorithm is O(n c
n ) = O(c).

LinkWaldo
The original implementation of LinkWaldo (described in section 2.5.3) is used, with the
source code published by the authors. The algorithm settings are chosen to follow the authors’
recommendations [3].

Nearest Neighbor Descent
NN-descent is implemented using the authors’ pseudocode with omitted parallelization. As
a similarity function, we use a simple logistic regression model that takes the embeddings
of two nodes and outputs the score of the node pair (NetMF embeddings are used from
the LinkWaldo original implementation [3]). The model is trained on a set of positive and
negative training edges extracted from the evaluated test graph. Since the performance of
NN-descent is heavily dependent on the similarity function used, the precision of the model
on each dataset against the separate validation data is presented in appendix B.1.

We set the hyper-parameters ω within the authors’ recommendations, with termination
threshold δ is set to 0.001 and a sampling rate is set to ρ = 0.75 for fast runtime yet accurate
results (the authors tested the accurate ρ = 1.0 and the fast ρ = 0.5 and found that the fast
method still yielded accurate results [7]). k is set dynamically for each iteration over c as ⌊ c

n⌋,
which will in most cases yield fewer candidates than requested, due to the flooring function.

4.3.2 Evaluation metric
The evaluation metrics used should reflect the algorithms’ abilities to narrow down the search
space, while still outputting node pairs likely to form edges (as stated in the research ques-
tion). In order to analyze the ability to narrow down the search space, we consider the time
complexities of the algorithms. The quality of the candidate node pairs in the algorithm
output P is evaluated through recall.

Recall =
| P ∩ Ehidden |

| Ehidden |
(4.1)
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We consider recall a representative measure for the performance of a candidate selection algo-
rithm as it reflects the fraction of hidden edges the algorithm is able to find, while remaining
agnostic to the precision. The precision is considered largely irrelevant for these algorithms
as downstream link prediction models are expected to filter out false positives from the result.
Therefore, a link prediction pipeline using a candidate selection algorithm and a link pre-
diction model should yield high precision and recall while consuming a reasonable amount
of computational resources.

4.3.3 Datasets
The algorithms are evaluated on a selection of diverse datasets. The aim is to represent all
algorithms’ abilities on small and large graphs in a range of different domains, with both
static as well as temporal graphs being included. The domains that are selected are biologi-
cal (YEAST, HS-PROTEIN, OGB-DDI), social (FACEBOOK1, FACEBOOK2, DIGG, EPIN-
IONS, MATH OVERFLOW, REDDIT), communication (ENRON), citational (DBLP, ARXIV,
OGB-COLLAB), reviews (AMAZON), infrastructure (US-AIR, POWER, ROUTER, ROAD-
NET-PA). We have chosen a large number of datasets, with large variation, in order to test
the versatility of all algorithms and to possibly illuminate if some algorithms perform par-
ticularly well on some types of graphs (see Research Question 3). Furthermore, the datasets
are collected from a multiple sources in to reduce the risk of overlap or selection bias in the
data.

An overview of the datasets is presented in table 4.1.

Name |V | |E| Temporal Description
US-AIR [26] 332 2,126 US Air lines
YEAST [3] 2,375 11,693 Proteins in a species of YEAST
FACEBOOK1 [3] 4,039 88,234 Friendships among users
OGB-DDI [13] 4,267 1,334,889 Drug to drug interactions
POWER [26] 4,941 6,594 Electrical grid of western US
ROUTER [26] 5,022 6,258 Router internet
HS-PROTEIN [3] 6,329 147,548 Heat shock protein in humans
DBLP [3] 12,595 49,638 Citation network
ARXIV [3] 18,772 198,110 Co-authorship network of astrophysicists
MATH OVERFLOW [3] 24,818 199,973 ✓ Answers to questions on a math forum
FACEBOOK2 [3] 63,731 817,035 ✓ Friendships among users
REDDIT [3] 67,180 309,667 ✓ Links between forum boards (subreddits)
EPINIONS [3] 75,879 405,740 Users trusting each other’s opinions
ENRON [3] 87,273 299,220 ✓ Citation network
OGB-COLLAB [13] 235,868 1,024,434 Author collaboration network
DIGG [3] 279,374 1,546,540 ✓ Friendships among users
AMAZON [15] 334,863 925,872 Product co-purchasing
ROADNET-PA [15] 1,088,092 1,541,898 Road network of Pennsylvania

Table 4.1: Overview of datasets.
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Chapter 5

Results

The following section presents the results of running all benchmarks described in chapter 4.
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5.1 Recall

Figure 5.1: Recall for benchmarked algorithms over different output
sizes h (where h|Ehidden| = c) of a selection of all evaluated datasets
(complete results are available in appendix B).

Figure 5.1 shows the recall of the evaluated algorithms for a selection of datasets with different
size outputs. The results for all datasets are available in appendix B.

Table 5.1 summarizes the average recall across all output sizes and shows that DAPPR
outperforms all other evaluated algorithms in recall in most considered datasets. However, as
seen in figure 5.1, DAPPR yields only slightly better recall than LinkWaldo on most datasets
and h-values. Finally, BFS does not provide any competitive results.

5.2 Time Complexities
Table 5.2 summarizes the time complexities of the evaluated algorithms. The presented time
complexities are motivated in sections 3.3, 4.3.1, 2.5.3 and 2.5.1. The run times for the algo-
rithms on each dataset for two values of h (1 and 10) are presented in appendix B.3.
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Dataset DAPPR BFS LinkWaldo NN-Descent
US_AIR 0.79 0.05 0.74 0.39
YEAST 0.77 0.05 0.67 0.24
MOVIE_LENS 0.12 0.00 0.01 0.07
FACEBOOK1 0.83 0.05 0.81 0.70
OGB_DDI 0.80 0.00 0.89 0.76
POWER 0.11 0.01 0.12 0.00
ROUTER 0.30 0.00 0.21 0.00
HS_PROTEIN 0.95 0.04 0.89 0.61
DBLP 0.37 0.01 0.30 0.07
ARXIV 0.83 0.05 0.71 0.32
MATH_OVERFLOW 0.28 0.00 0.26 0.28
FACEBOOK2 0.33 0.03 0.23 0.31
REDDIT 0.21 0.00 0.20 0.01
EPINIONS 0.30 0.01 0.28 0.03
ENRON 0.10 0.00 0.11 0.01
OGB-COLLAB 0.21 0.00 0.26 0.00
DIGG 0.06 0.00 0.07 0.01
AMAZON 0.50 0.05 0.45 0.00
ROADNET_PA 0.07 0.05 0.01 0.00

Table 5.1: Average recall over all output sizes (from figure B.2) per
algorithm and per dataset. The best result for each dataset is written
in bold text.

Algorithm Time complexity
DAPPR O(dc)
BFS O(c)
LinkWaldo O(γ + |E| + nbmax + c)
NN-descent O(c2/n)

Table 5.2: Time complexities of the evaluated algorithms.
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Chapter 6

Discussion & Conclusion

In this chapter we discuss the results and their implications with regards to the research
questions, some limitations of our experiments, and finally suggest recommendations for
future work.

6.1 Distributed Approximate Personalized
PageRank

RQ1: The time complexity of DAPPR is O(dc), which is significantly lower than that of the
exhaustive approach (O(n2)) for many real world graphs where d ≪ n. While computing
the complete PPR for each node would yield a time complexity of O(n2), DAPPR is able
to perform better as only the top ranking nodes in the PPR are considered. Thus, the ap-
proximations utilized in DAPPR (as described in section 3.3) result in the algorithm being a
considerably efficient method for performing large scale link prediction. With its distributed
approach, it is easy to see how DAPPR can be completely parallelized by the number of nodes
in the graph, which is a useful property for reducing run time. Finally, it can be concluded
that DAPPR is a relatively simple algorithm to implement.

RQ2: Looking at the results in table 5.1, we argue that DAPPR is the best candidate selec-
tion algorithm among those evaluated. DAPPR provides the best results on the majority
of datasets (13 out of 19 datasets) and is not far from the top performing algorithm in the
remaining datasets. Although DAPPR is built on a heuristic approach, it proves to be a ver-
satile method for finding candidate node pairs for link prediction, as it generalizes well to
many different types of graphs.

RQ3: Looking at the recall of DAPPR in each dataset, we cannot conclude that its perfor-
mance is increased or decreased depending on the underlying domain of the dataset.
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6.2 Breadth First Search
RQ1: BFS achieves a constant time complexity of O(c) and is thus by far fastest run time of
the tested algorithm.

RQ2: With its very simple use of heuristics, BFS is unable to perform at a level that is com-
parable with the other algorithms on any dataset and it is therefore not possible to conclude
that it is a useful algorithm given the results of the experiments.

RQ3: Given the poor overall performance of BFS it is impossible to conclude anything about
its domain-specific performance.

6.3 LinkWaldo
RQ1: LinkWaldo presents a sub-quadratic time complexity, with some terms that are depen-
dent on user choices such as grouping method and number of LSH buckets. While LinkWaldo
requires the availability of node embeddings, we do not include node embedding generation
in the presented time complexity in table 5.2. The reason being that node embeddings are
possible to use in later stages of a link prediction pipeline, and therefore node embedding
generation might not add to the total amount of computations required in a link prediction
pipeline. Assuming simple embeddings and groupings are used, Linkwaldo’s can be consid-
ered efficient.

Although not mentioned by the authors and not implemented in the source code pro-
vided by the authors, parts of LinkWaldo can be parallelized, such as creating groupings,
embeddings and applying LSH. Out of the tested methods, LinkWaldo is the most techni-
cally demanding algorithm to implement.

RQ2: Based on the resulting recall and time complexity, we consider LinkWaldo to be the
second best algorithm across datasets (performing the best in 5 out of 19 datasets). When
studying the recall plots in appendix B.2, one can see that LinkWaldo performs generally well,
with a recall only slightly lower than that of DAPPR. The plots also show that LinkWaldo
follows a similar pattern of recall with different output sizes as DAPPR. With the recom-
mended settings of the authors, LinkWaldo is run with NetMF embeddings on non-bipartite
graphs, a type of node embedding that relies on random walks. This, combined with the
bayesian prior applied on the Stochastic Block Model which is partially based on log-binned
node degrees, may explain some of the similar behavior between DAPPR and LinkWaldo’s
results.

RQ3: It is not possible to conclude that LinkWaldo’s performance is affected by the domain
of the datasets.

6.4 Nearest Neighbor Descent
RQ1: The time complexity of NN-Descent presented is sub-quadratic. Although the method
is quadratic in relation to c, this number is chosen by the user and is generally significantly
smaller than n. Furthermore, the choice of similarity function or link prediction model in
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the algorithm might have a large impact on the time complexity. NN-Descent can easily be
parallelized, as suggested by the authors.

RQ2: While the recall of NN-Descent is not impressive when compared to DAPPR and
LinkWaldo in table 5.1, it achieves strong results on some datasets (with the best recall in
1 out of 19 datasets). Although the underlying assumption of "a neighbor of a neighbor is also
likely to be a neighbor" could be expected to work particularly well on social graphs (such as
the FACEBOOK datasets), it is not obviously superior in any specific category of datasets.

Looking at the plots in figure B.2, it can be observed that NN-Descent performs sig-
nificantly better with larger output sets. We speculate that the reason for this is that the
probability of a node finding a local optimum with a small k is high, and that the probabil-
ity of replacing the local optima with stronger candidates rises quickly with larger values of
k. With this information, it is possible that NN-Descent would have better results for even
larger output sets.

Since NN-Descent requires some similarity function to be chosen, our choice and im-
plementation of link prediction model is only one implementation of NN-Descent for this
problem. Although the method could behave differently with other similarity functions, our
choice of NetMF embeddings on a Logistic Regression model gave high precision scores for
the link prediction task (see table B.1).

RQ3: It is not possible to conclude that NN-Descent’s performance is affected by the domain
of the datasets.

6.5 Limitations and Future Work
Although this thesis explores existing and novel ideas for selecting candidate node pairs for
large scale link prediction, the tests were limited to simple graphs with a single node type
and edge type. Real world graphs are rarely so simple, and there might be much to gain by
taking into account the information of each node’s unique attributes and/or being able to
utilize edge types. Future work may focus on extending the evaluated algorithms to both
take features into account (e.g. NN-Descent’s similarity model and LinkWaldo could include
these in their embeddings), as well as for predicting types of links. Furthermore, the analysis
of the results in this thesis did not take into account structural information of the graphs
such as their connectivity.

In the process of developing DAPPR, we observed that the use of a dynamic k largely
improved the result. Specifically, k was set according to the bayesian assumption stating that
a high degree node is more likely to be part of unobserved edges than a low degree node. We
speculate that the same assumption has potential to improve the NN-descent algorithm, and
could be investigated in the future. Other than investigating the use of a dynamic k, NN-
descent might benefit from alternative initialization methods, such as random walk based
initialization as opposed to uniformly random as described in [22]. Furthermore, there are
other algorithms for solving the KNN graph problem which could be applied to the node
candidate selection problem, such as the ones discussed by Wang et. al. [25].

As the discussion above suggests, there may be some overlap in the process of extract-
ing candidate pairs between DAPPR and LinkWaldo, particularly the random walk. Both
of these algorithms perform very well, however, their results differ significantly in compari-
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son with those of NN-descent. The results show that the random walk aided algorithms are
sometimes outperformed by NN-descent, indicating that the different types of algorithms
might have different strengths. In order to try combining the strengths of DAPPR and NN-
descent, it might be relevant to include the dependency of a trained link prediction model
in DAPPR. Specifically, it could be used in the top function used in equation 3.5, with the
goal of utilizing the information provided by the link prediction model in order to deter-
mine what entries top should return. Thus, the link prediction model would influence the
approximations of DAPPR, possibly improving the results of the algorithm.

6.6 Conclusion
In this thesis, we focus on the problem of mitigating the issue of a large search space in the
link prediction task for large graphs. A novel algorithm for the task, DAPPR, is presented
and evaluated in terms of performance along with three different algorithms across a wide
range of datasets.

We conclude that DAPPR is the best performing algorithm among those evaluated and
simultaneously has a relatively simple implementation. DAPPR generalizes well across differ-
ent types of graphs including social, communication, and biological graphs. The algorithm
is closely followed in terms of performance and generalization by LinkWaldo. While NN-
descent is many times outperformed by both DAPPR and LinkWaldo, it presents strengths
on social graphs and is especially strong when the output set is large. Finally, results show
that a simple BFS algorithm is not sufficient to solve the problem of node candidate selection
for link prediction.
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Appendix A

Notation

A.1 Mathematical Symbols

Notation Description
G = (V,E) Graph, Nodes, Edges
|V | = n Number of nodes
N(v) The set of neighboring nodes of node v
d The average degree of all nodes in the graph
dist(u, v) Length of the shortest path between the nodes u and v
A Adjacency matrix
α Non-teleportation probability
k Number of output candidate pairs per node
P The set of candidate pairs
ω Individual hyper-parameters for a given algorithm

Table A.1: List of major mathematical symbols.
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B. Complete Results

B.1 Nearest Neighbor Descent Classifier Pre-
cision

Dataset Model Precision
US_Air 0.75
YEAST 0.94
Movie_Lens 0.80
FACEBOOK1 0.94
OGB_DDI 0.78
Power 0.99
Router 0.95
HS_Protein 0.96
DBLP 0.94
ARXIV 0.95
MATH_Overflow 0.80
FACEBOOK2 0.91
REDDIT 0.81
EPINIONS 0.82
ENRON 0.91
OGB-COLLAB 0.97
DIGG 0.82
AMAZON 0.97
ROADNET_PA 0.99

Table B.1: Precision on validation set for the Logistic Regression
model used in NN-Descent for each dataset
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B.2 Recall

B.2 Recall

Figure B.1: Recall for benchmarked algorithms over different h
(where Ehidden ∗ h = c)
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B. Complete Results

B.3 Time

Dataset DAPPR BFS LinkWaldo NN-Descent
h = 1 h = 10 h = 1 h = 10 h = 1 h = 10 h = 1 h = 10

US_AIR 0.4 1.1 0.0 0.0 1.5 1.1 0.5 1.2
YEAST 3.8 7.8 0.0 0.0 17.4 7.0 0.6 7.1
MOVIE_LENS 2.0 13.7 0.0 0.1 13.7 17.9 7.1 42.2
FACEBOOK1 12.6 20.7 0.1 0.4 54.8 48.2 10.4 62.7
OGB_DDI 123.4 324.5 0.8 8.8 507.8 764.3 188.8 3360.9
POWER 11.7 8.9 0.0 0.0 22.4 10.0 0.6 6.4
ROUTER 15.2 15.9 0.0 0.0 25.4 9.3 0.8 5.5
HS_PROTEIN 19.6 43.0 0.1 0.5 90.4 37.2 21.7 126.0
DBLP 11.8 19.1 0.1 0.2 45.5 47.1 11.2 45.9
ARXIV 26.0 70.5 0.2 0.7 88.8 105.3 58.8 189.5
MATH_OVERFLOW 18.0 50.1 1.3 1.1 60.1 61.2 87.2 1027.1
FACEBOOK2 47.5 266.4 1.7 5.8 746.0 710.3 401.2 1001.9
REDDIT 28.8 135.2 1.2 8.7 788.4 819.2 258.3 501.9
EPINIONS 90.6 538.0 2.2 5.0 645.3 678.3 773.4 1037.4
ENRON 16.4 64.1 4.2 4.3 491.1 479.8 322.0 631.4
OGB_COLLAB 28.5 70.9 3.6 3.9 10859.4 10546.3 1245.8 6277.7
DIGG 75.2 410.6 6.0 39.6 6090.0 5537.4 4936.7 5830.4
AMAZON 247.4 1112.8 4.9 11.3 3084.5 3409.2 6200.3 12856.5
ROADNET_PA 382.3 1066.5 11.6 24.6 10583.3 7137.2 33698.3 119546.6

Table B.2: Time in seconds for running algorithms on respective
datasets, with h equal to 1 and 10 of a single run. DAPPR and BFS
were run with parallelization, while NN-Descent and LinkWaldo
were not. The run times should not be compared between algo-
rithms, however can be used for analyzing how an individual method
scales.
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Appendix C

Individual Author Contributions

This thesis and the work behind it has been done mainly in a highly collaborative manner.
However, the largest ownership of each section of the thesis is specified in table C.1.

The implementation work was somewhat divided, as Mahir Hambiralovic mainly owned
the running and monitoring of the benchmarks along with the implementations of the spe-
cific candidate selection algorithms. Meanwhile, Filip Kalkan owned the implementation of
the benchmarking framework and data processing.
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C. Individual Author Contributions

Section Author
Problem Statement Mahir Hambiralovic
Contribution Mahir Hambiralovic
Preliminaries Filip Kalkan
Node Embedding Filip Kalkan
Link Prediction Models Mahir Hambiralovic
Locality Sensitive Hashing Filip Kalkan
Personalized PageRank Mahir Hambiralovic
Related Work Mahir Hambiralovic
Applying Personalized Pager-
ank on Candidate Selection

Filip Kalkan

Personalized PageRank Com-
putation

Filip Kalkan

Approximations Filip Kalkan
Pseudocode Filip Kalkan
Complexity Analysis Mahir Hambiralovic
Setup Mahir Hambiralovic
Algorithms Filip Kalkan
Evaluation Metric Mahir Hambiralovic
Datasets Mahir Hambiralovic
Recall Mahir Hambiralovic
Time Complexities Filip Kalkan
DAPPR Mahir Hambiralovic
Breadth First Search Mahir Hambiralovic
LinkWaldo Filip Kalkan
NN-descent Filip Kalkan
Limitations and Future Work Mahir Hambiralovic
Conclusion Filip Kalkan

Table C.1: Individual contributions.
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Länkförslag i Enorma Nätverk

POPULÄRVETENSKAPLIG SAMMANFATTNING Filip Kalkan, Mahir Hambiralovic

Att få förslag för personer man kanske känner, filmer man skulle kunna tycka om
eller produkter man kanske är intresserad av är ingen ovanlig företeelse idag. Men att
dessa rekommendationer ofta blir dåliga ganska fort är inte heller ovanligt och visar
på behovet av avancerade lösningar för att hitta dolda länkar i ett hav av information.

I vår masteruppsats har vi undersökt problemet
med att hitta lämpliga nodpar för länkpredik-
tion. Med andra ord behandlar vår uppsats frå-
gan "Om vi bara får utvärdera ett begränsat an-
tal nodpar, vilka nodpar bör vi utvärdera för att
se om de borde vara sammanlänkade eller inte?".
Detta är en viktig fråga inom områden som so-
ciala medier och rekommendationssystem, då det
kan hjälpa till för att tillämpa länkprediktion på
enorma grafer där det hade tagit för lång tid att
utvädera alla möjliga nodpar, och således leda till
mer relevanta rekommendationer.

Vi har utvecklat en ny algoritm, baserad på
teknik som används i Googles sökmotor, för att
lösa detta problem, som vi kallar Distributed
Approximate Personalized PageRank (DAPPR).
I vår uppsats har vi jämfört DAPPR med an-
dra algoritmer genom att använda olika mät-
metoder och testdata, och resultaten visar tydligt
att DAPPR presterar bättre än de andra algorit-
merna.

Så hur fungerar DAPPR? I grunden använder
algoritmen nätverksstruktur för att avgöra vilka
noder som är viktiga för varandra. Mer specifikt
kollar algoritmen på varje nod (utgångsnod), och
tar reda på vilka andra noder som är viktigast för
utgångsnoden. Detta görs genom att konceptuellt
vandra runt i grafen, från nod till nod via länkar,
och samtidigt se till att besöka utgångsnoden ofta.

När många vandringssteg har utförts, kollar al-
goritmen på vilka noder som oftast besöktes un-
der vandringen, och utser dessa till viktiga noder
i relation till utgångsnoden. Algoritmen rekom-
menderar sedan att undersöka huruvida ett antal
par av noder, bestående av utgångsnoder och de-
ras viktigaste noder, bör vara sammanlänkade.

Vi har undersökt möjligheterna att använda
DAPPR i olika typer av nätverk, och resultaten
visar att algoritment är flexibel och välfungerande
i många olika sammanhang. Flexibiliteten tillsam-
mans med de starka resultaten indikerar att al-
goritmen har potential att bli ett viktigt verktyg
för att möjliggöra bra rekommendationer i enorma
nätverk.
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