
“output” — 2023/3/16 — 13:20 — page 1 — #1

Practical evaluation of chain-like MPC protocols

Hanna Jonson
ha7008jo-s@student.lu.se

Department of Electrical and Information Technology
Lund University

Supervisor: Paul Stankovski Wagner

Supervisor: Elena Pagnin

Examiner: Thomas Johansson

March 16, 2023

“output” — 2023/3/16 — 13:20 — page 2 — #2

© 2023
Printed in Sweden
Tryckeriet i E-huset, Lund

“output” — 2023/3/16 — 13:20 — page i — #3

Abstract

Bottleneck Complexity (BNC) is a fairly new metric for Secure Multi Party Com-
putation (SMPC) protocols. Two protocols with the BNC in mind are examined in
this thesis. One protocol is successfully implemented in the Python programming
language, and the BNC, latency and computational complexity of the protocol
is examined with positive results. The BNC is independent on the number of
parties in the protocol. The latency is linearly increasing with each new party
added, and the computational complexity is linerarly dependent on the bitlength
of the numbers computed on. The second protocol was not implemented because
of the complexity of the Garbled Circuits that would have had to been created
in order to perform encryption and decryption of an Additively Homomorphic
Encryption (AHE) scheme. Instead, a conclusion is drawn that while garbled
circuits serves a good purpose for secure computation in simple settings, compu-
tations that require complicated operations scale up very quickly in the number
of gates needed. A github repository with the code for the first protocol is found
at https://github.com/ha7008/ChainMPC.

i

https://github.com/ha7008/ChainMPC

“output” — 2023/3/16 — 13:20 — page ii — #4

ii

“output” — 2023/3/16 — 13:20 — page iii — #5

Popular Science Summary

Secure Multi-party Computation (SMPC) allows computations where multiple
parties participate, but only the result is revealed in the end. Imagine that you
are a member of an exclusive board, voting for a new member to join. Only a
unanimous decision allows a prospect to join, but it can be sensitive to share who
have voted no. In the analogue case there is someone who counts the votes on
pieces of paper. An electronic alternative is preferable in many situations.

Upgrading from pieces of paper to pieces of data could surely have been made
in the reaping process of Suzanne Collins’ The Hunger Games as well. In choosing
what child is to compete in the Hunger Games, a piece of paper is taken from a
bowl with children’s names, some appearing many times as the poor families can
trade food for their child’s name, increasing the likelihood that the child is chosen.

Both of these scenarios could have been solved electronically with the help of
the two protocols suggested by Orlandi, Ravi and Scholl. The neat thing about
these protocols is that they make the Bottleneck Complexity (BNC) independent
on how many parties there is in the protocol. This means that even if a new party
joins the protocol, the party that is already doing the most communication will
not have to increase how many bits it sends or receives.

A protocol for the first usecase was implemented in the Python programming
language. It makes use of a technique called Garbled Circuits (GC) that enables a
party to perform computations without knowing what numbers are involved, only
the result. The implementation showed that the BNC was in fact independent on
the number of parties in the protocol. The second protocol, which could have been
used in the Hunger Games, was not implemented because of the great complexity
to create GC for this protocol. The GC would be used to perform encryption
and decryption of an Additively Homomorphic Encryption (AHE) scheme. En-
cryption and decryption are two, usually very mathematically complex, algorithms
that takes a message and turns it into a ciphertext, and then transforms it back
into the original message. AHE is a very powerful technique when it comes to
secure computing, allowing addition of the original numbers while keeping them
secret as they are encrypted. Someone can do the computation without actually
knowing the numbers, much like the GC itself.

iii

“output” — 2023/3/16 — 13:20 — page iv — #6

iv

“output” — 2023/3/16 — 13:20 — page v — #7

Table of Contents

1 Introduction 1
1.1 Secure multi-party computation . 2
1.2 Chain-like MPC protocols of Orlandi, Ravi and Scholl 2
1.3 Related work . 7
1.4 Subject of study . 7
1.5 Methodology . 7
1.6 Contributions . 7

2 Cryptographic primitives and other preliminaries 9
2.1 Encryption schemes . 9
2.2 Additively Homomorphic Encryption 10
2.3 Secure multi-party computation . 10
2.4 Garbled Circuits . 13
2.5 Abelian programs . 15
2.6 Selection functions . 15
2.7 Latency . 16
2.8 Computational complexity . 16

3 Implementation considerations 17
3.1 Programming Language . 17
3.2 Additively Homomorphic Encryption algorithm 18
3.3 Garbled circuit scheme . 21
3.4 Testing . 21
3.5 Finalized selection . 21

4 Implementation Explanation 25
4.1 Protocol 1 . 25
4.2 Protocol 2 . 31

5 Tests and Results 33
5.1 BNC tests and results . 33
5.2 Latency tests and results . 36
5.3 Computational complexity measuring and results 37

v

“output” — 2023/3/16 — 13:20 — page vi — #8

6 Discussion and Conclusions 41
6.1 Protocol 1 . 41
6.2 Protocol 2 . 43

7 Concluding remarks 45
7.1 Remarks regarding protocol 1 . 45
7.2 Remarks regarding protocol 2 . 46

vi

“output” — 2023/3/16 — 13:20 — page vii — #9

List of Figures

1.1 Parties in the protocols. Each party communicates only with the next
and the previous party. This is why it is called a "chain". 3

1.2 The first forward pass in the chain. Note that m1 = v1 + r1 and
m2 = v1 + v2 + r1 + r2 . 4

1.3 Backward pass in the chain. Z and the label shares are sent backward.
Note that l3 is the label shares from only P3, and l2 is the label shares
of P2 + l3. 4

1.4 Distribution of the result. 5

2.1 Unrestricted communication, all parties can communicate with each
other. 11

2.2 Directed acyclic graph. There are no cycles in the communication
pattern. 11

2.3 Star communication pattern, all parties communicate with a node in
the middle, creating an appearance of a ”Star”. 12

2.4 At the top: a normal AND-gate. At the bottom: an AND-gate with
respecitve labels. 14

4.1 Parties in the protocol. 25

4.2 First the Algorithm provider sends the circuit and the labels for R, V
and ones (1s) for the NOT-gates to the Evaluator. 26

4.3 Then the Algorithm provider sends the correlated randomnesses and
label shares created for each party. 26

4.4 A one-bit full subtractor that computes Z−R. The circuit takes three
inputs: one bit of Z, one bit of R and a carry in bit. It creates two
outputs: the difference D and the carry out. Notice that some inputs
and outputs are used multiple times in this circuit. 27

4.5 An n-bit subtractor can be created by cascading n one-bit subtractors.
0 is the position of the least significant bit. 28

vii

“output” — 2023/3/16 — 13:20 — page viii — #10

4.6 A 4-bit comparison circuit. Each pair of bits are compared using XOR-
gates. OR-gates are then used to check if the first, or the second, or
the third, or the fourth bit-pair were different. If one or more of the
pairs didn’t match, the last OR-gate will output 1. The NOT-gate in
the end inverts the result, meaning that it will produce a 1 if the two
numbers are the same, and a 0 if they are not. 29

4.7 Phase 1. Note that m1 = v1 + r1 and m2 = v1 + v2 + r1 + r2 . . . 30
4.8 Phase 2. Note that Z is always the same, however with each message

l increases as the shares are getting summed up. 31
4.9 Phase 3. Distribution of the result. 31

5.1 The BNC of the first protocol can be seen above. The maximum
number of bits sent, seen in red, and the maximum number of bits
received, in blue, are both at fairly equal levels, as well as keeping
around 8220 bits, unaffected by the number of parties in the protocol. 34

5.2 The median number of bits sent and received in the protocol can be
seen above in red respective blue. As expected, the median is slightly
lower than the maximum, and still unaffected by the number of parties
in the protocol. 34

5.3 The minimum number of bits sent, in red, and received, in blue, except
the outlier numbers for the first and last party who naturally sends
and receives less than the other parties. This seems to be the only
case where the number of bits sent and received are affected by the
number of parties in the protocol. This is explained by the fact that the
probability of a label share to become smaller increases as the number
of parties increases in the protocol. If a label share is a smaller number,
it naturally requires fewer bits to be sent. 35

5.4 The number of bits sent by the first party, and the number of bits
received by the last party, will be drastically less than for any other
party in the protocol, which is why they are outliers. The reason is
that the first party never sends their 32 different label shares needed to
compute the whole, it already has them. The last party never receives
the 32 label shares from any party as it doesn’t need them. 35

5.5 Latency of the protocol depending on the number of parties. The
orange line represents linear regression based on the latency values,
producing a straight line that fits the data points fairly well. 36

viii

“output” — 2023/3/16 — 13:20 — page ix — #11

List of Tables

2.1 Truth table for regular AND-gate. 14
2.2 Truth table for garbled AND-gate. 14
2.3 Permutation of truth table with garbled values. 15

3.1 Considered programming languages. 17
3.2 Partly Homomorphic Encryption Algorithms from [24] and their fit to

the requitements of the AHE algorithm for the protocol for selection
functions of [34]. 19

5.1 Slope of the line for 10 simulations. This is what each party adds to
the run time on average for each simulation. 37

ix

“output” — 2023/3/16 — 13:20 — page x — #12

x

“output” — 2023/3/16 — 13:20 — page 1 — #13

Chapter 1
Introduction

The field of cryptography is vast and to many people unknown. Perhaps the easiest
entrance into the field is to think about the act of sending a message to someone.
If Alice sends a message to Bob, through any popular messaging app or email ser-
vice today, what guarantees that no one else online can read this message? This
problem is normally tackled by having Alice encrypt the message before sending
it, and Bob decrypting it when he receives it. If completely unfamiliar with this
concept, a good read in Chapter 2 can provide the technical background. Encryp-
tion is good, but how does Bob know that the message actually came from Alice
and not someone pretending to be Alice? Even if Bob knew that the message
originally came from Alice, how does he know that no one tampered with it along
the way? These are the kind of questions a cryptographer asks, and with each
new question, the field of cryptography expands. Recently, a subfield within cryp-
tography called Secure multi-party computation (SMPC) or sometimes just called
multi-party computation (MPC) has grown alongside advances in cloud comput-
ing, mobile computing and distributed systems. The biggest difference now is that
there is no longer only Alice and Bob, instead there could be thousands of par-
ties participating, and they are not only sending messages to each other, they are
performing computations that require inputs from many parties. SMPC is used
for example in an electronic currency called Zcash [16] that has many similarities
with Bitcoin.

Within this thesis, two multi-party computation protocols, for two different types
of computations, are examined from a practical standpoint. One of the proto-
cols was implemented in the Python programming language and one was deemed
too complex to do it within a reasonable time frame. The primary purpose of
the protocols, apart from performing the computations, is that the Bottle Neck
Complexity (BNC) is independent on the number of parties in the protocol. This
means that even if a party is added to the protocol, the party that is doing the
most communication will not see an increase in communication. One of the main
functionalities in these protocols is that no party will know what numbers they are
computing on. Two cryptographic techniques used in order to achive this is Gar-
bled Circuits (GC) and Additively Homomorhipc Encryption (AHE). Both these
techniques enable a party to compute blindfolded in many other settings as well.
Technical details are found in Chapter 2.

1

“output” — 2023/3/16 — 13:20 — page 2 — #14

2 Introduction

Through the following sections in this chapter one will learn about the concept of
Secure multi-party computation, as well as the domain specific term bottle neck
complexity. There is an overview to the two protocols and a usecase for each that
aims to create an easy understanding for the reader about how the protocols can
be used. Related work and the contribution of the thesis is presented. In the
subsequent chapters, one is introduced to the cryptographic primitives and other
priliminaries needed to understand the theory behind the protocols; the imple-
mentation considerations that have been made; an implementation explaination;
the tests and how they have been performed along with the results; a conclusion;
and last but not least, the discussion.

1.1 Secure multi-party computation

Secure multi-party computation (SMPC) or MPC enables multiple parties to jointy
evaluate a function without any party knowing another party’s input. Additionally,
only the intended parties will know the answer of the computation. Originally
introduced in 1982 by Andrew Chi-Chih Yao [41] his famous Millionaires’ problem
opened up the field for this research. In the Millionaires’ problem there are two
millionaires that jointy compute a function that determines who is richer, without
revealing how much money any of the parties have. Later, this field has expanded
to include many types of functions and problems, as well as more parties in the
protocols. Typically, when there are only two parties it is denoted 2PC, and when
there are three or more parties it is called MPC. A more technical definition of
MPC is found in Section 2.3. Usage areas of MPC today include not only Zcash
[16], but also encrypted databases, which do not only encrypt the data at rest but
also through processing, distributed databases, key management, data analytics
and more [4].

1.1.1 Bottleneck Complexity

Each party in an MPC protocol has a certain communication complexity, i.e. how
many bits it has to send and receive and how it relates to for example how many
other parties that are in the protocol. The party with the largest communication
complexity will be called the bottleneck, and the Bottleneck Complexity (BNC)
for the protocol is equal to the maximum communication complexity [7] of any
party. Minimizing the BNC of a protocol can be of great interest if the protocol is
meant to run on lightweight devices, as for example mobile phones, IoT-devices or
other restricted machines. Technical definitions of BNC is found in Section 2.3.4.

1.2 Chain-like MPC protocols of Orlandi, Ravi and Scholl

In the paper [34] the authors propose two MPC-protocols with BNC that is inde-
pendent on the number of parties taking part in the protocol. This means that
even if more parties join the protocol, the BNC does not increase. Both protocols
includes a setup phase and three active phases. All parties in the protocols are

“output” — 2023/3/16 — 13:20 — page 3 — #15

Introduction 3

ordered in a chain-like manner, meaning that each party does only communicate
with the previous and the next party in the chain.

P1 P2 P3 P4 P5 ... Pn

Figure 1.1: Parties in the protocols. Each party communicates only with the
next and the previous party. This is why it is called a "chain".

1.2.1 Introduction to Protocol 1

The first protocol regards abelian programs, essentially computing a function on
the sum of all the parties inputs. In the implementation, the sum is calculated
and then the function is to check whether the sum is the same as a value V .
Each party’s value can be denoted vi for each index i. This can be described
mathematically as:

result =

{
1 if

∑n
i=1 vi = V

0 else

This is the result of the protocol, and will be shared with each participant. How
to get there is not exactly straight forward, but the process is described below.

Setup phase of Protocol 1

In the setup phase, a Garbled Circuit (GC) is constructed that is used to perform
the actual computation. It is a sort of boolean circuit, and this is given to the first
party P1 and enables it to do the computation without knowing what values are
present in the computation, only the result in the end. Exactly how a GC works is
explained in Section 2.4. However, one needs to know that there will be a number
of labels, essentially random keys, used as inputs to the GC. One label per bit in
the number that is worked with is needed as input. However, as each bit can be
either a 1 or 0, there will be two different labels per bit but only one will be used.
Each label is split into n additive shares, one for each party, meaning that the sum
of all shares constructs the label. Each party gets a share for every label. Each
party will also receive a randomness, a random number, which will be seen used
already during the first forward pass of the chain.

Phase 1 of Protocol 1

During the first forward pass in the chain, each party will send to the next the value
that they choose. They will add this to whatever they have received previously,
meaning that in the end, the last party will have received the sum of all parties’
inputs. This is good but not enough. For example, the second party would know
for certain what the input of the first party was. Each party therefore also adds
a random number ri to their value, masking it and making it impossible to know
what their value is. This is the randomness that they received during the setup
phase.

“output” — 2023/3/16 — 13:20 — page 4 — #16

4 Introduction

P1 P2 P3m1 m2

Figure 1.2: The first forward pass in the chain. Note that m1 = v1+ r1 and
m2 = v1 + v2 + r1 + r2

In the end, the last party will have received the sum of all parties inputs plus the
sum of all randomnesses, this is called Z.

Z =

n∑
i=1

vi + ri

Phase 2 of Protocol 1

In the second phase a backward pass through the chain is performed. Each party
has two label shares for each bit in Z. For each bit, if it is 0 the party will send
the corresponding label share, but if the bit is 1 the party will send the other one.
Each message will therefore be constructed of Z and the sum of all label shares
that has passed the chain so far.

P1 P2 P3Z||l2 Z||l3

Figure 1.3: Backward pass in the chain. Z and the label shares are sent
backward. Note that l3 is the label shares from only P3, and l2 is the
label shares of P2 + l3.

In the end of the backward pass, P1 will have the sum of all label shares for each
bit in Z. This means that P1 has all the complete labels. P1 will then use these
labels as input to the Garbled Circuit which it received during the setup. The GC
has the value R hard coded into it, where R is the sum of all randomnesses. The
GC performs a computation f(Z −R). Mathematically, one can see that:

Z =

n∑
i=1

vi + ri

R =

n∑
i=1

ri

Z −R =

n∑
i=1

vi + ri −
n∑

i=1

ri =

n∑
i=1

vi

As concluded before, Z is the sum of all
parties’ values plus their randomnesses.

R is the sum of all randomnesses.

Z −R is the sum of all parties values.

The function f(Z − R) therefore is a function on the sum of the parties input
values. In the implementation, this is to check whether this is a number V or
not. After having evaluated the GC, P1 has received the result from the function,
which can be either a 0 or a 1.

“output” — 2023/3/16 — 13:20 — page 5 — #17

Introduction 5

Phase 3 of Protocol 1

During the last phase of the protocol, the result is distributed through the chain
with a forward pass.

P1 P2 P3Res Res

Figure 1.4: Distribution of the result.

1.2.2 Use case for Protocol 1

One may ask where protocol 1 could be used in real life. A typical scenario for
an abelian program regards voting. Specifically let’s look at a unanimous decision
regarding electing someone to an exclusive board. Each party can only vote yes
(1) or no (0). In this case the number V is equal to the number of parties n in the
protocol. The function that is computed can then be defined as:

result =

{
1 if

∑n
i=1 vi = n

0 else

1.2.3 Introduction to Protocol 2

The second protocol regards a selection function. The first party will select an
index, and through the protocol learn the value of the party with that index. The
first party’s input is the selection index where q ∈ {2, ..., n}. Mathematically the
function is described:

f(x1 = q, x2, x3, ..., xn) = xq

The interesting thing is that no other party will learn what the selection index
was, and no one will know if their value was chosen or not. In order to achieve
this, the protocol makes use of both Garbled Circuits (GC) and Additively Homo-
morphic Encryption (AHE). Intuitively, AHE allows one to perform addition with
the numbers that are encrypted. The process of the protocol is described below.

Setup phase of Protocol 2

In the setup phase, each party except the first one will receive a Garbled Cir-
cuit that can perform encryption using an encryption scheme that has additively
homomorphic properties. It will check whether two values are the same, and if
they are it encrypts a 1, otherwise it encrypts a 0. The first party is given a GC
that performs decryption using the same scheme. The parties are also given label
shares and labels that can be used as input to the GCs.

Phase 1 of Protocol 2

The protocol begins with a forward pass through the chain, just like protocol 1.
The first party selects an index, and chooses the labels that are corresponding to

“output” — 2023/3/16 — 13:20 — page 6 — #18

6 Introduction

the bits in that number. These labels are then passed to the second party who uses
the received labels along with their own labels as inputs to the Garbled Circuit
for encryption. If the two values match, the party will receive an encryption of
a 1, otherwise an encryption of a 0, but the party will not know which one was
received. The party then performs scalar multiplication with the ciphertext and
their value. This means that if the party’s value was 3 and the encrypted number
was 0, the result will be an encryption of 3 · 0 = 0, but if the encrypted number
was 1, the result will be an encryption of 3 · 1 = 3.

The second party then sends their ciphertext, which is the encrypted number,
to the next party, along with the labels received from the first party that corre-
sponds to the selection index. The third party does the same thing as the second
party, but before sending the ciphertext, uses the additively homomorphic proper-
ties of the encryptions to ”add” them. If the third party received an encryption of a
3 from the second party, naturally it will create an encryption of 0. ”Adding” them
together creates an encryption of 3 + 0 = 3. The exact mathematical operations
to do this depends on the encryption scheme. The same patterns follow along
through the chain, meaning that in the end the last party will have an encryption
of 3+0+0+0+0+0... = 3 if the selection index in this case was 2 and the second
party’s value was 3. No party will of course know that this is the case, only that
there exists a ciphertext, which is an encrypted number, at the last party that
holds the chosen value.

Phase 2 of Protocol 2

The second phase of Protocol 2 is for logical purposes identical to the one of
Protocol 1. Each message will be constructed of the ciphertext and the sum of all
label shares that has passed the chain so far. In the end, the first party has the sum
of all label shares for each bit in the ciphertext and this creates the final labels
used as input to the Garbled Circuit for decryption. The first party evaluates
the GC and receives the decrypted value it selected, and in the example we have
followed so far that value will be 3.

Phase 3 of protocol 2

The last phase of the protocol is identical to the one of the first protocol. The
result is distributed through a forward pass in the chain.

1.2.4 Use case for Protocol 2

To find a good use case for the second protocol one will have to think about a
special feature of the second protocol - multiple parties can have the same value.
This means that if more parties join with the same value, the chances of that
value getting chosen increases, if the first party selects randomly. The avid reader
might recall that this resembles exactly the reaping process in Suzanne Collins’
The Hunger Games [12]. While the book version makes use of of pieces of paper
with names written on them, the new improved version is computerised for an
even more futuristic feel.

“output” — 2023/3/16 — 13:20 — page 7 — #19

Introduction 7

1.3 Related work

The closest related work to this thesis is, of course, the work of Orlandi, Ravi and
Scholl [34] upon which the thesis is built, which is discussed throughout the thesis.
Relating to implementation work of MPC there is a project from Boston University
in collaboration with other organisations [28] creating open source libraries for
MPC [29]. Regarding protocol communication patterns, there is [21] showing
promising results for a chain-like pattern in relation to communication complexity.
For the reader interested in Garbled Circuits, [10] provides an overview of recent
work.

1.4 Subject of study

The purpose of this thesis is to examine the protocols from a practical point of
view. Three areas are investigated, the BNC, latency and computational com-
plexity. These are all metrics that affect the usability of the protocols in real life.
Additionally, effort have been put into seeing where the protocols lack in enough
efficiency for an implementation during the time frame of the thesis work.

1.5 Methodology

The methodology includes creating a program that run simulations upon which
the BNC and latency are measured. The experimental results include data points
that shows practical results, in contrast to estimating a theoretical result. The
gain in getting data points from practical results instead of theoretical estimations
is that it closer represents usage in real life. The program is only run on a single
machine as it eliminates the need for network communication. The computational
complexity is not measured, but estimated through calculating the mathematical
operations that are computed. From the results conclusions are drawn about the
three areas, BNC, latency and computational complexity. Additional insights are
given about the practicality of the protocols after the effort of implementing the
first protocol and seeing where the second protocol lacks in efficiency from an
implementation perspective.

1.6 Contributions

Through this thesis three areas of contribution are achieved.

• Protocol 1 is successfully implemented as a proof of concept for this idea.
The BNC along with latency and computational complexity was examined.

• Protocol 2 was not implemented, but an insightful conclusion is drawn re-
garding the use of Garbled Circuits for complex operations.

• A github repository containing the code for examination can be found at
https://github.com/ha7008/ChainMPC

https://github.com/ha7008/ChainMPC

“output” — 2023/3/16 — 13:20 — page 8 — #20

8 Introduction

Contribution regarding implementation details that had to be created by the au-
thor rather than found in open source are included below.

• Change of data structure for the GC from a binary tree to an array.

• Selection of labels enabled at any level in the circuit.

• Splitting labels into shares and putting them back together.

• Reusability of labels.

For details about this implementation contribution, see Section 3.5.2.

“output” — 2023/3/16 — 13:20 — page 9 — #21

Chapter 2
Cryptographic primitives and other

preliminaries

This chapter introduces the cryptographic primitives that are used in the two pro-
tocols by Orlandi, Ravi and Scholl [34], along with notation and other definitions
needed to be able to read and understand the thesis painlessly. The primitives are
explained individually for any reader that is new to the field of cryptography, or
haven’t learned about each of the primitives yet. After all primitives have been
introduced, their place in the two MPC-protocols will be specified and explained.
In the end of this chapter, latency and computational complexity will be explained
as these are the two metrics that will be the foundation of the evaluation of the
protocols.

2.1 Encryption schemes

Confidential communication can be achieved through encryption of a message,
often called a plaintext, and turns it into a socalled ciphertext. The ciphertext
should appear random, so that no information about the plaintext is revealed by
examining the ciphertext. Together with the plaintext, a key is taken as input
to the encryption algorithm. While having the ciphertext and, depending on the
encryption scheme, the same key or another key, one can use decryption to turn
it back into the correct plaintext.

From [23] one can learn the formal notation for an encryption scheme. The ci-
phertext c can be obtained through running the encryption algorithm Enc using
the key k for the plaintext message m. Formally it is expressed

c = Enck(m)

Decryption is denoted in a similar fashion

m = Deck(c)

Another simpler notation sometimes used when the key is implicit is

c = E(m)

m = D(c)

9

“output” — 2023/3/16 — 13:20 — page 10 — #22

10 Cryptographic primitives and other preliminaries

2.2 Additively Homomorphic Encryption

Through [24] one can learn about partially homomorphic encryption schemes.
Fully homomorphic encryption entails that there exists an operation on two ci-
phertexts that will correspond to the addition of their plaintexts, as well as another
operation that correspond to multiplication. Partially homomorphism means that
not both addition and multiplication are boundlessly possible. In the work [34]
it is stated clearly that only additively homomorphic encryption is needed for the
second protocol, enabling us to focus only on this aspect. Homomorphic encryp-
tion (of any sort) ultimately enables one to do computations on encrypted data.

Mathematically, additively homomorphic encryption can be expressed as:

D(E(m1 +m2)) = D(E(m1)⊞ E(m2))

where ⊞ denotes the operation that can be computed on ciphertexts and returns
an output ciphertext that corresponds to addition of plaintexts. Note that ⊞ need
not be addition itself, however decrypting the result of the operation on the two
ciphertexts will produce the same result as if one had just added the two plaintexts
before encryption. Examples of such encryption schemes include ElGamal [17] and
Paillier [35].

Additionally, fully homomorphic encryption is not considered, as it is stated by
[34] that the protocols are specifically developed under assumption that FHE is
avoided.

2.3 Secure multi-party computation

A short introduction to MPC was given in section 1.1, and therefore this section
will focus more on the technical details and concepts. Through the "IEEE Rec-
ommended Practice for Secure Multi-Party Computation" [1] one can learn about
the concepts for MPC in a comprehensive manner while being relevant to where
this technology is at present.

2.3.1 Adversary model

The adversary is an entity in control of one or more parties taking part in the MPC-
protocol. A malicous adversary may actively try to disrupt the computation or
take any action it wants, a covert adversary can take mallicous actions but will
do so trying not to "get caught", and a semi-honest adversary will follow the
protocol specification while trying to learn as much as possible from the output
[1]. According to [34] the protocols suggested are only safe against semi-honest
adversaries. In other words, an adversary taking another action than what is
specified in the protocols, is not taken into account in the protocol design. For
a more nuanced adversary model, including the adversary’s ability to recruit and
abandon corrupt parties as well as differences in computational power, see [9].

“output” — 2023/3/16 — 13:20 — page 11 — #23

Cryptographic primitives and other preliminaries 11

2.3.2 Security requirements

According to [1] there are two fundamental requirements and three optional re-
quirements for an MPC-protocol. The two fundamental requirements are

• Input Privacy
No party can learn any information beyond the computational result.

• Result Correctness
If the protocol outputs a result, it will be lossless compared to the same
protocol run in a plaintext-manner.

The tree optional requirements are

• Fairness
If an adversary receives the result, so will the honest parties.

• Guaranteed output delivery
An adversary can not prevent honest parties from receiving the result.

• Probability to catch deviation
If a party behaves dishonestly, there is a probability to catch the corrupt
party.

2.3.3 Communication patterns and roles

There are many different communication patterns a protocol can have. The chain-
like communication pattern seen in figure 1.1 is one of them. Other patterns
include, but are not limited to, unrestricted communication, star, and directed
acyclic graph.

P1 P2

P3P4

Figure 2.1: Unrestricted communi-
cation, all parties can communi-
cate with each other.

P1 P2

P3P4

Figure 2.2: Directed acyclic graph.
There are no cycles in the com-
munication pattern.

“output” — 2023/3/16 — 13:20 — page 12 — #24

12 Cryptographic primitives and other preliminaries

P1 P2

P3

P4

P5

Figure 2.3: Star communication pattern, all parties communicate with a
node in the middle, creating an appearance of a ”Star”.

A chain-like communication pattern is favourable for a low communication com-
plexity of an MPC-protocol. For further details look into [21].

Considered in [1], different parties have different roles in an MPC-protocol in
all real life applications. Roles mentioned are Task initiator who is the first party
that will go to the coordinator to initiate the task; Data provider who is a party
in the protocol that will provide data to the computation; Algorithm provider who
is a party that will provide the algorithm that will be run; Coordinator who will
coordinate all the other MPC participants; Computing provider who is a party
that will be doing the computation; and Result obtainer who will be a party that
receives the result. Some of the roles may overlap, however it is recommended
that only one participant takes the role of coordinator as well as only one par-
ticipant taking the role of algorithm provider. For the protocols of this thesis all
participants have fairly equal roles, all being Data providers, Computing providers
and Result obtainers. Who the coordinator is will be an open question for the
discussion in Chapter 7.

2.3.4 Bottleneck complexity

Bottleneck complexity (BNC) was first introduced in the work [7], and is a metric
for the maximum communication complexity of any party in the MPC protocol.
This regards how many bits any party will have to send and receive, and how
that number grows in relation to the number of parties in the protocol or other
affecting variables. Relating to the usecases in this thesis, an affecting variable for
the BNC will naturally be the message size.

Denote the number of parties in the protocol n. If one party communicates with
all other parties, sending or receiving one bit, the BNC would naturally be O(n) -
the BNC is linearly dependent on the number of parties in the protocol. Instead,
in the chain like protocols of Orlandi, Ravi and Scholl [34], the BNC is independent
on the number of parties of the protocol.

“output” — 2023/3/16 — 13:20 — page 13 — #25

Cryptographic primitives and other preliminaries 13

2.3.5 Correlated Randomness

Through [34] we learn that correlated randomness is used in the protocols. The
basic idea is to take a set of random numbers, that are uncorrelated, and deter-
mine a relation between them, which creates a correlation. In this case, it is the
sum of the random numbers that will make the correlation. In the general case it
could be multiplication or another relation. No random number in itself will reveal
anything about the others as they were independently chosen from an agreed upon
distribution.

For the protocols in this thesis, the relation of the correlated randomness is math-
ematically expressed as:

R =

n∑
i=1

ri

where n denotes the number of parties in the protocols in this case, and ri is
representing each of the random numbers.

2.4 Garbled Circuits

The introduction of Garbled Circuits [2] is typically credited to Andrew Chi-Chih
Yao and his paper "How to Generate and Exchange Secrets" [42] from 1986. Al-
though there is no mention of a "garbled circuit", the paper introduces a new
tool for two parties to be able to compute any function in the form of a boolean
circuit while remaining privacy of the parties inputs throughout the computation.
A simpler explaination of the garbled circuit technique can be found in [10] with
information about current improvements. The basic idea is as follows:

“output” — 2023/3/16 — 13:20 — page 14 — #26

14 Cryptographic primitives and other preliminaries

Imagine two parties, Alice and Bob, who want to compute an AND-function of
their private inputs. Alice will be the one constructing the garbled circuit and
Bob will be the one evaluating it.

A B

C

kA0 kA1 kB0 kB1

kC0 kC1

Figure 2.4: At the top: a nor-
mal AND-gate. At the bottom:
an AND-gate with respecitve la-
bels.

A B C Encrypted Value
0 0 0 Unencrypted
1 0 0 Unencrypted
0 1 0 Unencrypted
1 1 1 Unencrypted

Table 2.1: Truth table for regular AND-gate.

A B C Encrypted Value
kA0 kB0 kC0 EkA0

(EkB0
(kC0))

kA1 kB0 kC0 EkA1
(EkB0

(kC0))

kA0 kB1 kC0 EkA0
(EkB1

(kC0))

kA1 kB1 kC1 EkA1
(EkB1

(kC1))

Table 2.2: Truth table for garbled
AND-gate.

Illustrated in Figure 2.4 are two boolean circuits computing an AND-function.
The top one represents a "normal" AND-gate, where the input can be either 0
or 1 on both A and B. If both A and B are 1, the output C will be 1 as well,
otherwise 0. The bottom circuit represents a garbled circuit where, instead of 0
or 1, all inputs and outputs will be replaced with a randomly sampled key called
a label. Both input labels (one for A and one for B) will be used to encrypt the
corresponding output label of the gate, in a socalled double encryption. Note that
the encryption scheme is symmetric, meaning that the same key is used both for
encryption and decryption. The corresponding truth tables can be seen in table
2.1 for the normal AND-gate and table 2.2 for the garbled AND-gate.

Alice has constructed the garbled truth table and will send it to Bob. However, in
order to preserve privacy of Alice’s input, the encrypted values will be permuted,
the order of them will be changed, before Alice sends the table. Also note that
Alice will not send the input values, only the encrypted output values, after having
permuted them.

“output” — 2023/3/16 — 13:20 — page 15 — #27

Cryptographic primitives and other preliminaries 15

A B C Encrypted Value
kA0 kB0 kC0 EkA0

(EkB0
(kC0))

kA1 kB0 kC0 EkA1
(EkB0

(kC0))

kA0 kB1 kC0 EkA0
(EkB1

(kC0))

kA1 kB1 kC1 EkA1
(EkB1

(kC1))

−→

Encrypted Value
EkA0

(EkB1
(kC0))

EkA1
(EkB1

(kC1))

EkA0
(EkB0

(kC0))

EkA1
(EkB0

(kC0))

Table 2.3: Permutation of truth table with garbled values.

Alice will also send the key labeled with her secret input value to Bob, i.e kA0 or
kA1 , but to Bob this will only look like a random value (which it technically is so
far). Additionally, Bob will need his key, kB0 or kB1 in order to decrypt the correct
value in the table. He needs to get it from Alice, but if he tells Alice which key
he wants his privacy will not be preserved. Therefore they will run a 1-out-of-2
Oblivious Transfer (OT) protocol in order for Bob to get his key without Alice
knowing which one he chooses. In this way, Bob will only get the one key he chose,
and not both. If he had gotten both he could have derived information about what
Alice’s input was as he could correctly decrypt two of the ciphertexts.

In this example, Bob will of course know that Alice chose 1 if he also chose 1
and the output was 1. It is easy to derive information from a circuit this simple.
However, more complex circuits can be built in a layered approach, having great
potential for more complex MPC-protocols.

In the case of the protocols [34] of this thesis, no OT is needed as the choice
of labels isn’t secret. Instead, in order to prevent the evaluator of the circuit from
being able to evaluate the circuit many times with different results, only one label
out of the two possible per bit can be constructed from the label shares.

2.5 Abelian programs

Abelian programs are well explained in [34] as ”functions on the sum of the parties’
inputs over an abelian group”. The end result should become either false or true,
a 0 or a 1. Mathematically this is notated

f : G −→ {0, 1}

2.6 Selection functions

A selection function is essentially taking as input an index and a set of values,
and outputs the value that is at the index selected. Mathematically it follows
the notation f(x1 = q, x2, x3...xn) = xq through the paper [34]. Naturally, the
index can not be 1 as that is the index of the selecting variable, and the maximum
allowed value of q is n.

“output” — 2023/3/16 — 13:20 — page 16 — #28

16 Cryptographic primitives and other preliminaries

2.7 Latency

Latency describes how much time it takes for information to go from one place to
another. Low latency is often considered better than greater latency. In the case
of protocols like these, the total latency can be described as the time it takes to
run the protocol from start to finish, from when the first packet of data is sent
until the last one is received.

2.8 Computational complexity

Computational complexity describes how resource usage increases depending on a
variable. Usually it is denoted O(n) for a linear relationship. However, what is
more important than the exact coefficient, is what type of relationship is prevalent.
For example one is usually looking for if the complexity is O(n), O(n2), O(logn)
or in some cases O(1) where the 1 denotes that there is no relationship between
the computation and the variable, usually because the computation is at a stable
level regardless of the variable fluctuation.

“output” — 2023/3/16 — 13:20 — page 17 — #29

Chapter 3
Implementation considerations

There are many things to consider for the implementation process. One of the most
impactful choices is what programming language to use, while which libraries to
use for Additively Homomorphic Encryption (AHE) and Garbled Circuits (GC)
are also significant. Below is described things that are good and bad with different
choices, and in the end the finalized selection is presented.

3.1 Programming Language

The most important thing to consider when choosing a programming language
regards the availability of libraries needed for the implementation. Only languages
that had any available libraries for AHE and/or GC open source were considered,
however, some language specific features are considered as well.

Considered programming languages
Language Performance Virtual

compartmentalisation
Ease of use and
understanding

Python Slow No Very Easy
Java Medium Yes Easy
C++ Fast No Hard
Go Fast No Easy
JavaScript Fast No Easy

Table 3.1: Considered programming languages.

The considered programming languages were, as can be seen in table 3.1, Python,
Java, C++, Go and JavaScript. Cryptography-wise it is usually desirable that
the language is ”fast”, practically meaning that an implementation of an algorithm
will run fast enough for us to be able to be able to produce simulation results.
This is because the numbers are usually very large and depending on how certain
mathematical operations are implemented in that language, it can take a lot of
time to run the algorithm, or not.

17

“output” — 2023/3/16 — 13:20 — page 18 — #30

18 Implementation considerations

Another desirable trait is that the language can compartmentalise so that dif-
ferent parts of the code can not reach one another. This is the case with for
example Java where a virtual machine makes sure that attributes declared as pri-
vate are actually private. In contrast, with for example Python nothing can be
seen as private in that sense. If a function or variable has been declared it can be
reached. This can be of importance when the whole system can not be trusted,
however the goal of this thesis is not to produce a fully secure implementation.

More importantly than the performance or the compartmentalisation is however
the ease of implementation for this thesis. In this aspect there is one language
that outperforms the other candidates greatly. Python is not only known as a
very beginner friendly language, but it also requires very little set up and has a
very easy installation process for new libraries. Additionally, while it is in many
aspects slower than the other candidates, it performs fast enough for simulations
to be made.

3.2 Additively Homomorphic Encryption algorithm

The chosen Additively Homomorphic Encryption algorithm mentioned in the pa-
per [34] needs to satisfy the following conditions.

• Should be a public key encryption algorithm, in other words asymmetric.

• Needs to support additive homomorphism.

– Have a function for addition of two ciphertexts, ex c1 + c2.

– Have a function for scalar multiplication, ex c1 × 3 (which is the same
as c1 + c1 + c1).

• Works over the ring of integers modulo M, (ZM ,+).
Note: this is an assumption rather than a requirement as it is stated in the
paper [34] that it would be possible to use small integer plaintexts rather
than ZM .

Through [24] one can learn about a number of partially homomorphic encryp-
tion algorithms, which are listed below together with their respective fit to the
requirements.

“output” — 2023/3/16 — 13:20 — page 19 — #31

Implementation considerations 19

Partly Homomorphic Encryption Algorithms from [24]
Algorithm AsymmetricAddition of

ciphertexts
Scalar mul-
tiplication

(ZM ,+) Comments

RSA Yes No Yes Yes Widely avail-
able

Goldwasser-
Micali
(GM)

Yes Yes Yes Yes Large over-
head

ElGamal Yes Yes Yes Yes Additively
homomorphic
if modified

Benaloh Yes Yes Yes Yes Generalisation
of GM

Naccache-
Stern (NS)

Yes Yes Yes Yes Generalisation
of Benaloh

Okamoto-
Uchiyama

Yes Yes Yes Yes

Paillier Yes Yes Yes Yes
Damgård-
Jurik

Yes Yes Yes Yes Generalisation
of Paillier

Boneh-
Goh-Nissim
(BGN)

Yes Yes Yes Enough See below for
explaination

Sander-
Young-
Yung

Yes No No No

Table 3.2: Partly Homomorphic Encryption Algorithms from [24]
and their fit to the requitements of the AHE algorithm for the
protocol for selection functions of [34].

From the table above one can conclude that among the examined algorithms,
there are 8 of which could possibly fit into the protocol. Each of these will briefly
be discussed below. An emphasis is placed on the ratio between the lengths of
the plaintext and the ciphertext (sometimes called expansion rate or expansion
factor). A ratio of 1 means that the ciphertext is as long as the plaintext, while
a ratio of 2 means that the ciphertext is twice as long as the plaintext. A smaller
ratio is therefore desireable as the purpose of the protocols subject in this thesis
([34]) is detatching the BNC from the number of parties of the protocol. That
should reasonably not also imply an increase of any communication complexity,
which would be the case if the ciphertext has a greater length than necessary. Only
implementations enabling use of the homomorphic properties of the algorithms are
considered, in other words there have to exist functions or methods for addition of

“output” — 2023/3/16 — 13:20 — page 20 — #32

20 Implementation considerations

ciphertexts as well as scalar multiplication that are readily available and usable.

• GM
Proposed in 1982 [20], the Goldwasser-Micali cryptosystem offers a probab-
listic encryption scheme. However, as noted by [24], the ciphertext is many
times longer than the plaintext, making it an inefficient algorithm in our
application.
GM is implemented in Java [3].

• ElGamal
In 1985 the ElGamal cryptosystem was introduced [17], which is also a prob-
abalistic encryption scheme, with the ciphertext expected to be twice the
length of the plaintext. Originally, ElGamal is a multiplicatively homomor-
phic encryption scheme, however, with slight modification it can become
additively homomorphic [24], and therefore fit the requirements.
ElGamal is implemented in Java [3].

• Benaloh
The Benaloh encryption scheme [11] introduced in 1994 is an improvement
on the GM scheme where efficiency is drastically improved. Unlike GM,
Benaloh can encrypt more than one bit at once using the same length ran-
domness.

• NS
In 1998 the NS cryptosystem was introduced [31], which offers one determin-
istic and one probabilistic version. According to [24] NS can be viewed as a
generalisation of the GM and Benaloh algorithms while improving the ex-
pansion rate, in other words the ratio between the plaintext and ciphertext,
making it more efficient than both the GM and Benaloh algorithms.

• Okamoto-Uchiyama
In 1998, another probabalistic encryption scheme was introduced by Okamoto
and Uchiyama [33]. The size of the ciphertext is three times the size of the
plaintext.

• Paillier
Pascal Paillier introduced a probabalistic encryption scheme in 1999 [35],
with a ciphertext size twice the plaintext size.
Paillier is implemented in Python [15] [25], Java [3], Go [38], C++ [43].

• Damgård-Jurik
In 2001 Damgård and Jurik proposed a generalisation of the Paillier cryp-
tosystem [14], where the expansion factor is decreased from 2 to almost 1.
Damgård-Jurik is implemented in Go [26], Python [13], C++ [22].

• BGN
In 2005 the BGN algorithm was proposed [6], and enables additive homo-
morphism for a smaller plaintext space than ZM , as the decryption relies
on computing the discrete logarithm. However, it is supposedly big enough
for the intended application of this thesis.
The BGN algorithm is implemented in C++ [36].

“output” — 2023/3/16 — 13:20 — page 21 — #33

Implementation considerations 21

3.3 Garbled circuit scheme

A special requirement for the garbled circuit scheme for the protocol regarding
selection functions that is mentioned in the article [34], is that it should be able
to take as a input the labels of the garbled circuit. Another consideration is that
the garbling scheme should be usable for multiple parties, in contrast to only 2PC.
This limits the number of libraries available as many have been implemented for
2PC only. In these cases the functions needed for garbling and ungarbling the
circuit were located logically within a pre-defined party. In order for this to work
well in a more complex setting, the circuit has to be abstracted in a way in which
it can be used without that pre-defined party. This is because the parties in the
protocols of [34] will have other functionality as well, meaning that they cannot
work well in the narrow context that is provided in many naive open source li-
braries.

Current libraries available are in C++ [18] [39] [19] [37], Java [8] [40], JavaScript
[30], Python [32], Go [5]

3.4 Testing

A testing framework is used in order to evaluate the latency of the protocols.
Simple time measurements are enough for basic tests and functionality exists in
most languages. A more fine grained framework for multiple purposes has been
found available in Java [27], though other frameworks seem to test latency of
specific applications.

3.5 Finalized selection

The finalized selection of programming languages and libraries consists of

• Programming language: Python 3.8.1

• Garbled circuit library: gabes [32]

• Additively homomorphic encryption scheme library: never chosen

3.5.1 Python

The main advantage of Python, compared to for example Java or C++ who were
other strong candidates in the selection process, is that there is very little prepa-
ration, configuration or installation needed to run programs with Python. It is
very simple to run something, to run anything, and to run everything. It is a
fairly simple programming language that fits many beginner programmers, mean-
ing that most academics within technical fields will be able to examine the code
fairly easily, while also being able to test and run it themselves without too much
effort.

Libraries for both Java and C++ were failed to install and use easily. For Java the

“output” — 2023/3/16 — 13:20 — page 22 — #34

22 Implementation considerations

problem was that the two libraries chosen for AHE and GC were using different
Java versions. For C++ the problem was that it is was not fit for the specific
architecture of the intended machine.

Another great benefit of the Python programming language is that it is very easy
to extend or alter someone else’s code - as has been necessary in this project. With
for example Java programs one is usually given binares that can be run, but hardly
altered.

Considering the pros and cons of the Python programming language it was the
best fit for this project. The project is neither about creating a perfectly secure so-
lution, nor creating the best (fastest) solution, it is about creating something that
works, that can be cross-checked by other academics and that proves a concept,
all within a very limited time frame.

3.5.2 gabes

Checking the different libraries for garbled circuits, there was nothing that was
”perfect”, meaning that not all the functionality desired was provided. This in-
cludes the ability to create arbitrary circuits easily, to create shares of labels, to
program predefined values into the circuit or handle label selection in a well fash-
ioned manner.

gabes [32] provides easily extendable classes with many selections for the gar-
bling and ungarbling mechanisms. Originally, the mechanism that constructs the
circuit takes as input a file of instructions that need to correspond to a sort of
balanced binary tree. This is practical for simple circuits and demonstration pur-
poses, such as for example using a small circuit with a few AND-gates or such,
but it is not very good for more complex circuits such as a regular subtraction
circuit. Depending on the size, it includes hundreds of gates that have to be or-
dered in specific ways. Also, in a subtraction circuit, the inputs and outputs of
a gate has to be usable many times, which is not the case if the circuit has to
be built like a balanced binary tree. Some other libraries can provide other data
structures for the circuit, but lacks in usability with limitations such as only al-
lowing three layers in the circuit. Hence, there was no perfect library, but gabes
proved to be easily extendable and provide much of the base functionallity needed.

Extensions that were made to the library were

• The binary tree structure of the circuit was omitted, and an array-like struc-
ture with an arbitrary number of layers was implemented. Each subpart of
the circuit could be defined on its own and reused. A specific circuit needed
to be predefined and could not be built on the go, however, technically any
circuit could be constructed with limited effort. The order of garbling and
ungarbling of the gates could be different for each circuit part, meaning that
there was no uniform way of doing it, unlike the binary tree structure where
it follows the leaf-to-root direction.

“output” — 2023/3/16 — 13:20 — page 23 — #35

Implementation considerations 23

• Label selection could be at an arbitrary level, and provided as a built in
function or taken as a parameter. Originally, only labels that were at the
leaf levels could be chosen, and no predefined values could be used.

• Labels could be split into many shares, and the shares could be put back
together into a usable label.

• Labels (and wires) could be reused for more complex circuits where inputs
and outputs should be used more than once.

“output” — 2023/3/16 — 13:20 — page 24 — #36

24 Implementation considerations

“output” — 2023/3/16 — 13:20 — page 25 — #37

Chapter 4
Implementation Explanation

For the interested reader, this chapter will aim to provide a closer explanation to
how the code works and what it does.

4.1 Protocol 1

First introduced in Section 1.2.1, the first protocol computes the function f(Z−R),
where f denotes a function comparing the input to a fixed value V . Let there be
n participants. In this explanation the case is when n = 3. The first party is the
Evaluator party and the two other parties are normal parties. In addition, there
is also an entity that is the Algorithm provider. This could potentially be one of
the parties, however for simplicity it’s not one of the parties. More on this topic
will be covered in the discussion.

P1

Evaluator

P2 P3

A

Algorithm provider

Figure 4.1: Parties in the protocol.

Each party can communicate with the
previous and the next party in the chain.
Notice that the first and last parties are
not communicating with each other. The
Algorithm provider can, however, send
information to all parties during the setup
phase. This chain could be extended to
include an arbitrary number of parties.
The first party is always the Evaluator
party.

4.1.1 Setup phase

During the setup phase there are a few things that are happening.

• The Algorithm provider creates the garbled circuit that computes f(Z−R),
and sends it to the Evaluator.

25

“output” — 2023/3/16 — 13:20 — page 26 — #38

26 Implementation Explanation

• The Algorithm provider also sends the labels needed to the Evaluator. These
are labels corresponding to the predefined value V that will be checked in the
circuit, the labels for the total randomness R, as well as labels corresponding
to 1, in order to create NOT-gates out of XOR-gates.

• The Algorithm provider creates correlated randomnesses that add up to R,
as well as shares of input labels, and sends each party their shares.

P1

Evaluator

P2 P3

A

Algorithm provider

Circuit + labels

Figure 4.2: First the Algorithm
provider sends the circuit and
the labels for R, V and ones (1s)
for the NOT-gates to the Eval-
uator.

P1

Evaluator

P2 P3

A

Algorithm provider

Shares Shares Shares

Figure 4.3: Then the Algorithm
provider sends the correlated
randomnesses and label shares
created for each party.

The circuit

The circuit is comprised of two circuit parts, sub-circuits if one will. The first
part is a subtraction circuit that will compute Z − R and the second part is a
comparision circuit that will decide if the result of Z − R is equal to a value V .
Both R and V are chosen before the circuit is sent to the Evaluator. The way that
these values are practically chosen for the circuit is that the labels corresponding
to the bits in these numbers are sent to the Evaluator and will be used together
with the other input labels that the chain will produce. Therefore they are not
per se ”hard coded” into the circuit, instead they are taken as parameters, just as
a suggestion in the paper [34].

The subtraction circuit is created just like a normal hardware subtraction circuit.
Each bit of Z will be compared to the corresponding bit of R and the difference
and carry out will be returned. A one-bit full subtractor is made out of seven
gates. However, instead of using NOT-gates, as they are unavailable in the gabes
library, XOR-gates are used that take as input the regular input and a one (1).

“output” — 2023/3/16 — 13:20 — page 27 — #39

Implementation Explanation 27

xor

xor

not
and

not
and

or

Z
D

R
Cin

Cout

Figure 4.4: A one-bit full subtractor that computes Z−R. The circuit takes
three inputs: one bit of Z, one bit of R and a carry in bit. It creates two
outputs: the difference D and the carry out. Notice that some inputs
and outputs are used multiple times in this circuit.

The figure above shows subtraction of only one bit. In order to compute subtrac-
tion with numbers of a greater bit length, one will have to cascade many one-bit
subtractors. The carry out of a subtractor will be used as the carry in for the
next. However, the carry in of the first subtractor is naturally zero, and the carry
out of the last subtractor will tell if the number R could be subtracted from , i.e.
the final carry out will be 1 if R was greater than Z.

“output” — 2023/3/16 — 13:20 — page 28 — #40

28 Implementation Explanation

subtraction circuit 0

subtraction circuit 1

subtraction circuit 2

subtraction circuit 3

...

subtraction circuit n

D0

D1

D2

D3

Dn

Cout

Z0 R0 Cin0

Z1 R1

Z2 R2

Z3 R3

Zn Rn

Cout0

Cout1

Cout2

Figure 4.5: An n-bit subtractor can be created by cascading n one-bit sub-
tractors. 0 is the position of the least significant bit.

An n-bit subtractor is the first circuit part of the whole circuit. It is realised by
putting all the seven gates of each one-bit subtractor in an array and garble and
ungarble them in the correct order. The inputs and outputs for each gate are
located just as they are shown in the figures above, however remember that these
are not physical attributes such as a metal wire, rather they are object attributes
in the code.

The second circuit part is a comparison circuit. Each bit of the difference from the
n-bit subtraction circuit will be compared to the corresponding bit in the value V
that we want to compare against.

“output” — 2023/3/16 — 13:20 — page 29 — #41

Implementation Explanation 29

xor

xor

xor

xor

D0

V0

D1

V1

D2

V2

D3

V3

or

or

or not result

Figure 4.6: A 4-bit comparison circuit. Each pair of bits are compared using
XOR-gates. OR-gates are then used to check if the first, or the second,
or the third, or the fourth bit-pair were different. If one or more of the
pairs didn’t match, the last OR-gate will output 1. The NOT-gate in
the end inverts the result, meaning that it will produce a 1 if the two
numbers are the same, and a 0 if they are not.

This might be a good time to remind the reader that while in the figures above,
and for all logical purposes, there are ones and zeroes passed through the system,
this never happens in the code. Instead, labels are used as keys to decrypt only one
possible combination that has already been calculated by the Algorithm provider.
The garbled truth table of the encrypted output labels of each gate have been sent
to the Evaluator, and while there are 4 possible options for each gate, only one is
decryptable with the two input labels that the Evaluator gains for each gate. It is
important to ungarble in the right order, as the Evaluator will only gain access to
the label it will need for decryption of a gate by decrypting it at a previous gate.
However, remember that the labels needed to start this process has also been sent
to the Evaluator in the setup phase. The Evaluator will have access to the labels
needed for R, V and the ones (1s) for the NOT-gates, but as it does not have
access to the labels corresponding to the bits in Z it can not sucessfully ungarble
the circuit until it receives them as well.

Correlated randomness and label shares

Both the randomness R and the labels corresponding to each bit in Z are cut up
into pieces that are called shares. There are different ways of creating shares, but
in this case additive shares are created. For example the number 100 could be
made into three shares with values 50, 30, 20. Without all three shares no one
would know what the total number is, in this way they are correlated. One way of
doing this is to start with random numbers that are the shares and then add them

“output” — 2023/3/16 — 13:20 — page 30 — #42

30 Implementation Explanation

together to create the total number, however this proved unpractical in code. The
reason is that the numbers need to be of a fixed bit length, as the circuit is created
before any calculations are made. For example, if one would like the total to be a
random 32-bit number, just adding n random 32-bit numbers together would with
an increasing probability create a total number of a greater bit length than 32. In
order to avoid this situation, that proved to be quite prevalent while developing
the code, a different tactic was used. A random 32-bit number N was created.
Then n random and unique numbers within the interval 0-N are picked, and they
are ordered in a list. The difference between the adjacent numbers in the list then
becomes the shares. With some probability multiple shares could have the same
value, however that is not a problem as they do not reveal anything about any
other number.

4.1.2 Phase 1

In phase 1 of the protocol, each party sends to the next their value + their corre-
lated randomness, along with what they received from the previous party. This is
masking of the value vi so that it is impossible to know what their actual value is.
The algorithm provider does nothing in this phase.

P1

Evaluator

P2 P3

A

Algorithm provider

m1 m2

Figure 4.7: Phase 1. Note that m1 = v1 + r1 and m2 = v1 + v2 + r1 + r2

4.1.3 Phase 2

In phase 2 the last party in the chain computes the finalised Z that is the sum
of each party’s value + the total randomness R. This is then sent in a backward
pass through the chain where each time the label shares are added together. Each
party has shares of both the True (1) and False (0) labels for each bit in the
number Z. The label share that is chosen depends on the finalised bits in Z. If for
example Z = [0, 1, 0, 1], the label shares that are sent will be chosen accordingly
by each party, as it is no secret if the share represents 0 or 1. Again, the Algorithm
provider does nothing.

“output” — 2023/3/16 — 13:20 — page 31 — #43

Implementation Explanation 31

P1

Evaluator

P2 P3

A

Algorithm provider

Z||l2 Z||l3

Figure 4.8: Phase 2. Note that Z is always the same, however with each
message l increases as the shares are getting summed up.

In the end of Phase 2, the first party, the Evaluator, has both the number Z and
all the complete labels corresponding to each bit in the number Z. The Evaluator
now ungarbles the circuit which reveals the result.

4.1.4 Phase 3

In the last phase of the protocol, the result is passed through the chain. The
Algorithm provider remains passive.

P1

Evaluator

P2 P3

A

Algorithm provider

Res Res

Figure 4.9: Phase 3. Distribution of the result.

4.2 Protocol 2

Protocol 2 was not implemented because of reasons discussed in chapter 7.

“output” — 2023/3/16 — 13:20 — page 32 — #44

32 Implementation Explanation

“output” — 2023/3/16 — 13:20 — page 33 — #45

Chapter 5
Tests and Results

The three things that are tested are the BNC, latency and computational com-
plexity of the protocols. All tests are performed for the number of parties ranging
from 3 to 1000. The size of the numbers used in the protocol are 32 bits - the
regular size of an unsigned integer in many programming languages. This regards
the numbers Z, R, V . The labels and their shares are however of a size up to 32
bytes.

5.1 BNC tests and results

The purpose of testing the BNC is to verify that it is independent of the numbers
of parties in the protocols. As explained in [34], the BNC regarded is for the
messages sent through phases 1 to 3. A reminder is that the BNC is defined in
Section 2.3.4 as the maximum number of bits any party in the protocol sends or
receives.

The BNC of the online phase of the protocol, namely phases 1-3, is tested through
intercepting each message sent to and from each party in the chain. The sum of
the number of bits of all messages sent to each party is recorded, as well as the
sum of bits of all messages sent from each party. From this information a number
of metrics can be derived such as the median, minimum and maximum number
of bits sent to and from any party in the protocol. The maximum is the BNC,
however it takes little additional effort to derive the other information.

In each graph below, the red line shows bits sent and the blue line shows bits
received. The BNC is defined as the maximum number of bits sent or received by
any party in the protocol. The maximum number of bits is all that is required
to know the BNC of the protocol, however, while at it, there is very little effort
into deriving some other metrics from the tests and they can give some interesting
insights.

33

“output” — 2023/3/16 — 13:20 — page 34 — #46

34 Tests and Results

Figure 5.1: The BNC of the first protocol can be seen above. The
maximum number of bits sent, seen in red, and the maximum
number of bits received, in blue, are both at fairly equal levels,
as well as keeping around 8220 bits, unaffected by the number
of parties in the protocol.

Figure 5.2: The median number of bits sent and received in the
protocol can be seen above in red respective blue. As expected,
the median is slightly lower than the maximum, and still unaf-
fected by the number of parties in the protocol.

“output” — 2023/3/16 — 13:20 — page 35 — #47

Tests and Results 35

Figure 5.3: The minimum number of bits sent, in red, and received, in blue, except the outlier
numbers for the first and last party who naturally sends and receives less than the other
parties. This seems to be the only case where the number of bits sent and received are
affected by the number of parties in the protocol. This is explained by the fact that the
probability of a label share to become smaller increases as the number of parties increases
in the protocol. If a label share is a smaller number, it naturally requires fewer bits to be
sent.

Figure 5.4: The number of bits sent by the first party, and the number of bits received by the
last party, will be drastically less than for any other party in the protocol, which is why
they are outliers. The reason is that the first party never sends their 32 different label
shares needed to compute the whole, it already has them. The last party never receives
the 32 label shares from any party as it doesn’t need them.

“output” — 2023/3/16 — 13:20 — page 36 — #48

36 Tests and Results

5.2 Latency tests and results

The purpose of latency testing is to see in what way the latency is behaving as
more parties are added to the protocol. Naturally one would assume that with
more parties, the total latency would increase. However, finding what kind of
relation links the number of parties to the latency is of importance to understand
the overall behaviour of the protocol in real life.

Latency is tested through measuring the overall time it takes for the protocol
to run in the online phase. The results can be seen in the graph below.

Figure 5.5: Latency of the protocol depending on the number of
parties. The orange line represents linear regression based on
the latency values, producing a straight line that fits the data
points fairly well.

“output” — 2023/3/16 — 13:20 — page 37 — #49

Tests and Results 37

While there are some outlier values of
the latency measurements, most values
seem to fit in quite well into a linear
equation. A standard linear regression
function was used to create the line that
shows the best fitting line for a func-
tion of the first degree. The slope of the
line tells us how much the addition of
one party to the protocol adds to the
latency. Each run of the simulation will
have varying results as the run time can
be affected by what other things the com-
puter has to do at that time, and there-
fore 10 runs were performed to get a
sense of what variation there could be.

nr simulation Slope of line
1 9.103425288495664e-05
2 8.372617713488851e-05
3 6.488357822920954e-05
4 6.504099920718382e-05
5 7.235784405534714e-05
6 7.437294606410753e-05
7 6.541773334639031e-05
8 6.668103578013845e-05
9 6.430970086696766e-05
10 6.54645806888198e-05

Table 5.1: Slope of the line for 10
simulations. This is what each
party adds to the run time on
average for each simulation.

5.3 Computational complexity measuring and results

The purpose of measuring computational complexity is to better understand how
the workload increases depending on variables such as the number of parties in the
protocol as well as the size of the numbers used. In this protocol, the first party
will bear the biggest burden as it is ungarbling the circuit.

Computational complexity is calculated through computing what operations each
party has to perform through the protocol, and seeing in what fashion the number
of computations would increase and what it depends on.

There are three different cases in the protocol regarding the computational com-
plexity. The first case is regarding the first party, which naturally has a higher
workload than the other parties, as it does the ungarbling of the circuit. The
second case is the last party, who will do the least computation. The last case
regards all the other parties in the protocol, the middle parties.

“output” — 2023/3/16 — 13:20 — page 38 — #50

38 Tests and Results

5.3.1 The first party

The first party bears the heaviest burden. Below on the left, the process is ex-
plained in words, and on the right an expression for the computational complexity
is built.

Starting off, it computes one addition,
in order to be able to send v1+r1 to the
second party.

As it receives the result of the second
chain pass, it computes one addition per
label, meaning one addition per bit in
the number Z. In this case it is 32 ad-
ditions. let b denote the number of bits.

The ungarbling process depends on the
encryption scheme and garbling scheme.
Using standard ungarbling, the party will
try to decrypt each entry in the gar-
bled truth table until it succeeds. In
the worst case it will have to try four
decryptions per gate. Let g denote the
number of gates.

The number of gates is dependent on
the number of bits in the numbers Z and
V . The subtraction circuit is comprised
of seven gates per bit. The comparison
circuit is made of 2b gates. In total the
circuit includes 9b gates.

1 Add

+

b Add

+

(4g)Dec

where

g = 9b

The additions that are done in the beginning are of minor importance compared
to the decryption process. In the worst case, decryption is performed 36 times per
bit in the number Z. The result is that the computational complexity does not
depend on n - the number of parties in the protocol - instead it could be described
as O(36b) in terms of numbers of decryptions made that depends on the number
of bits in Z. This is a linear case making it possible to exclude the constant term
and describe it as just

O(b)

The number Z and the number of bits b is not dependent on the number of parties
n either, though logically it is reasonable to assume that Z > n for it to be possible
for each party to cast a vote with the value 0 or 1. Luckily, b does not have to be
larger than n, but it should hold that 2b > (n + R). In our case it is true that
232 > (1000+R), where we use 32 bits, up to 1000 parties in the tests and a total
randomness R.

“output” — 2023/3/16 — 13:20 — page 39 — #51

Tests and Results 39

5.3.2 The last party

The last party only handles 2 additions after it receives the result from the first
pass in the chain, in order to compute Z. This computational complexity can be
described as O(1) as it will always be the same.

5.3.3 The middle parties

The middle parties performs 2 additions during the first pass of the chain in order
to compute z + v + r. In the second pass it performs b additions, one for each
label share. The result is (2+ b) additions. This computational complexity is also
linearly dependent on the number of bits b and is notated O(b).

“output” — 2023/3/16 — 13:20 — page 40 — #52

40 Tests and Results

“output” — 2023/3/16 — 13:20 — page 41 — #53

Chapter 6
Discussion and Conclusions

The two protocols are discussed separately below. First, the results regarding the
first protocol are discussed. Then, the second protocol and the shortcomings that
led to it not being implemented is discussed.

6.1 Protocol 1

The first protocol was implemented and test results could be obtained. For each of
the three results for BNC-testing, latency-testing and computational complexity
testing, a standalone discussion is presented, after which a complete conclusion is
drawn.

6.1.1 BNC

The experimental results show that the BNC of protocol 1 is independent of the
number of parties in the protocol and remains at a fairly stable level through
the simulations. The slight variation seen in Figure 5.1 is explained by the fact
that not all label shares are always the exact same amount of bits, meaning that
two different runs can produce different results as the labels and label shares are
sampled at random. The median number of bits sent and received is as well
independent of the number of parties in the protocol, and remains slightly lower
than the BNC - the maximum number of bits sent or recieved. In addition, the
minimum bits sent and received, excluding the outlier cases, seems to drop as more
parties are added to the protocol. This is explained by the fact that with more
parties and label shares the probability of a share to become smaller increases.
This is good if one is only regarding the cost of communication. For security
purposes this feature is however debatable. Figure 5.4 shows the two cases where
the minimum bits sent and received includes the outlier cases. The last party in
the protocol will receive less bits than any other party as it does not have to receive
any label shares. The first party will similarly not have to send any label shares.
These shares evidently make up the most of the communication happening. Using
label shares like this enables the the avoidance of Oblivious Transfer, which would
have served the same purpose but added to the BNC.

41

“output” — 2023/3/16 — 13:20 — page 42 — #54

42 Discussion and Conclusions

6.1.2 Latency

The latency of the protocol is linearly increasing with each party added to the
protocol, which is expected. A linear regression was used to find a slope that
would represent how much each new party added to the total latency on average.
This turned out to be around 64-91 micro seconds, deriving this information from
10 simulations. The total latency stayed under half a second for all simulations.
These results show that the protocol does not inherently increase the latency out of
proportion as more parties are added. However, running this protocol on multiple
machines across the world could have produced different results as in that case the
latency would also depend on the physical distance between the machines and the
network speed with which it is operating. With bad luck the adjacent parties in
the chain could be located physically very far from each other.

6.1.3 Computational complexity

Both the first party and the middle parties has a computational complexity of
O(b), while it is apparent that the first party does bear a bigger burden. The
interesting part is that the complexity is linearly increasing, and dependent on the
number of bits handled, unaware of the number of parties in the protocol. The
linearity is good news and the dependancy on the number of bits is expected. The
last party has a computational complexity of O(1) however, which opens up for
possible usages of this particular feature. The computational complexity of the
protocol is better for the last party than for the others, however all has a linear or
constant relation to the number of bits b in the number Z and no relation to the
number of parties n in the protocol.

6.1.4 Threats to validity

The randomness in the tests regarding the BNC and latency are possible threats
to the validity of the tests. The BNC is fluctuating slightly, and while this could be
mitigated by for example zero padding the messages sent, it is deemed unnecessary
as it is something that is taken care of by most communication protocols that are
used in online settings. Additionally, there is no benefit in zero padding from a
security perspective, while it would increase the communication. In the simulations
for latency some randomness is seen as the computer running the simulations
will have other tasks to perform at the same time. In order to minimise this
problem the simulations were run with as little interference from other programs
and tasks as possible, as well as creating the linear regression that would show
how the simulation performed typically, taking into account the small differences
that there can be between runs. For the computational complexity there was no
tests performed, only mathematical estimations.

6.1.5 Final conclusions

All three aspects that have been examined have produce expected results where
the BNC, latency and computational complexity has either stayed on stable levels
or increased linearly. The chain-like communication pattern was successful in

“output” — 2023/3/16 — 13:20 — page 43 — #55

Discussion and Conclusions 43

its main purpose to make the BNC independent of the number of parties in the
protocol.

6.2 Protocol 2

The second protocol was deemed to complicated and inefficient for a reasonable
implementation. The problem regarded the fact that garbled circuits were to be
used for both encryption and decryption, meaning that boolean circuits perform-
ing these mathematical operations had to be constructed. This might not seem to
be a big issue at first, but there are several reasons why this is not very simple.

First, let’s look at the purpose of garbled circuits and some expectations on the
technique. A garbled circuit can not reveal any partial results. If it did, it would
not be fit for MPC as only the ouput of the computation is to be learned. An
example where this is problematic is during the encryption process in the sec-
ond protocol. There are several additively homomorphic encryption schemes that
could be implemented, see Table 3.2, but arguably the easiest ones would be El
Gamal or Paillier. The GC is supposed to encrypt a 1 if the index of the party is
the same as the one that was chosen, and 0 otherwise. The index is represented
by labels used by the GC, thereby preserving privacy of the actual value, and can
be easily compared to the party’s index through the same circuit part as was used
in protocol 1. However, when the chosen index and the party index have been
compared, the problems begin. Let’s look at the encryption process of Paillier

c = gm · rn mod n2

In this case, m would be either 0 or 1. Exponentiation rules states that

g0 = 1

g1 = g

This is technically an if-statement, the computation will look different depending
on what the input is. There will be a label used instead of a number, but how
can you know if it is representing a 1 or a 0? Hopefully, you can’t. If you could,
this would reveal the information the protocol is trying to preserve, namely what
index is chosen. Therefore, this label will have to go down two different paths
from now on. There will be one computation for g0 and one for g1, and both will
have to be performed. Maybe there could be a way to select only one of them, but
then that would reveal which path the computation is taking and thereby reveal
this partial result which is very clearly in the need to be secret. The computation
has been split into two paths, and because no gate can be used twice, even if the
computations are the same from here on, they have to be replicated in each path.
This is only the beginning of the problem.

Imagine now that a modular operation has to be performed. What does this
look like in a boolean circuit? Most likely, the easiest solution is to check whether
the value is above the threshold n2, for Paillier, and in that case subtract n2 from

“output” — 2023/3/16 — 13:20 — page 44 — #56

44 Discussion and Conclusions

the value. Then a new check has to be performed in order to see whether the
result is still over the threshold or not, and repeat the process as necessary. With
each check, a new path will have to be created and from there on the process has
to be replicated for each path.

Let’s look at exponentiation. The most straight forward way to construct a boolean
circuit for his operation is to set a number of multiplication circuits in series. Then
of course you have to know how many you need, as they can’t be used twice, and
if the exponent is secret, this is a bad idea. During the decryption process of both
Paillier and El Gamal the secret key for decryption is used as an exponent.

Decryption with Paillier, where λ and µ makes the secret key:

m = L(cλ mod n2) · µ mod n

More efficient ways of constructing a exponentiation circuits are possible, but this
still entails that one has to know beforehand how many multiplications has to be
performed or create new paths for each if-statement in the algorithm. A way of
battling this is to create a circuit that computes all possible combinations. This
would be extremely inefficient and costly, both computationally and memory-wise,
as one can imagine. If one were to do this, however, when all paths are taken and
everything is done, how will one know which one is the result? Also, the results
of all these computations will reveal too much information, one could probably
derive the secret key for example from the sheer amount of information that has
been computed. A way of tackling this problem would be to multiply the result of
each path with either a 0 or 1 depending on if it is the correct result or not, and
take the sum of all these products. The end result would then only be the cor-
rect result and there would be no other partial results that can provide any excess
information. This is, funnily enough, the functionality of the second protocol itself.

Clearly, creating garbled circuits with these functionalities are, while not tech-
nically impossible, quite difficult. A straight forward approach is not efficient
enough for an implementation to be created within the time frame of this thesis
work.

“output” — 2023/3/16 — 13:20 — page 45 — #57

Chapter 7
Concluding remarks

There are a few concluding remarks for both of the protocols. For the first protocol
they can mainly pose as inspiration for future work, while for the second protocol
it is a note on a design choice.

7.1 Remarks regarding protocol 1

The security of the protocol is something that could be examined and considered
for improvement in future work. As theoretically proved, the protocol is secure
against passive adversaries, however there is no way of verifying that any party
sends information that is acceptable. The current implementation accepts for ex-
ample inputs that are many bits long, while perhaps it was only sought after that
each party submits only one bit as their value. In the use case presented in the in-
troduction, each party can only vote yes (1) or no (0), but how is this supposed to
be verified? How the protocol should handle numbers that exceed a certain limit,
perhaps through modulo operations, is not considered. In any case, verifying that
what has been received is acceptable is not possible in the current proposal. An
adversary could, while following the protocol specification, mess things up. In
future work regarding this protocol, this is an aspect to work on.

Another aspect to examine is the setup phase of the protocol. In the paper [34]
there is no clear place for the entity that garbles and sends the circuit, making it
external to the protocol as of now. This raises the question whether the garbler
should be a party within the chain of the protocol, or not. The setup phase is
neither taken into account during the tests as it is not addressed as such within the
paper. A reason to not have the garbler be an actual party in the protocol is that
it gives too much power to that party. As all labels ever needed and used in the
circuit are created through the process of garbling the circuit, the party that does
the garbling can just save any information about them. Even though the complete
labels are not shared with anyone except the first party, a garbling party could
have saved them and perform calculations with them based on the knowledge of
Z. Partial information such as what the sum of all parties input is can be derived.
Relating to the IEEE recommended practice for SMPC [1] there should be a bit
more thought about the different roles of the parties in the protocol before going
towards practical use.

45

“output” — 2023/3/16 — 13:20 — page 46 — #58

46 Concluding remarks

On the note of different roles for parties in the protocol, there is one crucial
role missing. Who is the Task initiator and Coordinator? In the implementation
this question is answered by having a simple object keeping track of other objects
that are the parties in the protocol, and making sure that they communicate the
correct messages in the right order. However, in real life there would have to be
an additional step in the protocol in which parties decide to join the protocol and
get some kind of position in the chain. This process could also have an effect on
the latency of the protocol.

7.2 Remarks regarding protocol 2

Described in [34] there are two ways to provide the parties with the encryption
of 0 or 1 that they need. Either a table with an encryption per party could be
given to and stored by each party, or the garbled circuit approach can be used.
The garbled circuit is opted for by the authors, however this is probably not the
best approach in many cases. The reason is that the garbled circuit that has to be
constructed in order to perform the encryption will contain a very large number of
gates, and each gate will technically just be a table of 4 ciphertexts. In order for
this to be more efficient than a lookup table of encryptions, there will have to be
a larger number of parties participating in the protocol than 4 times the number
of gates, plus some for all the labels and additional information needed in order
to know in what order the gates should be ungarbled.

“output” — 2023/3/16 — 13:20 — page 47 — #59

References

[1] Ieee recommended practice for secure multi-party computation. IEEE Std
2842-2021, pages 1–30, 2021. doi: 10.1109/IEEESTD.2021.9604029.

[2] Garbled circuit, 2022. URL https://en.wikipedia.org/wiki/Garbled_
circuit.

[3] AndrewQuijano. Homomorphicencryption · github. https://github.com/
AndrewQuijano/Homomorphic_Encryption.

[4] D. Archer, D. Bogdanov, Y. Lindell, L. Kamm, K. Nielsen, J. Pagter,
N. Smart, and R. Wright. From keys to databases—real-world applications of
secure multi-party computation. Computer Journal, 61:1749–1771, 12 2018.
doi: 10.1093/comjnl/bxy090.

[5] J. Auterson. go-garbled. https://github.com/JoelOtter/go-garbled,
2015.

[6] D. Boneh, E.-J. Goh, and K. Nissim. Evaluating 2-dnf formulas on cipher-
texts. In J. Kilian, editor, Theory of Cryptography, pages 325–341, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg. ISBN 978-3-540-30576-7.

[7] E. Boyle, A. Jain, M. Prabhakaran, and C.-H. Yu. The Bottleneck Com-
plexity of Secure Multiparty Computation. In I. Chatzigiannakis, C. Kak-
lamanis, D. Marx, and D. Sannella, editors, 45th International Colloquium
on Automata, Languages, and Programming (ICALP 2018), volume 107
of Leibniz International Proceedings in Informatics (LIPIcs), pages 24:1–
24:16, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik. ISBN 978-3-95977-076-7. doi: 10.4230/LIPIcs.ICALP.2018.24. URL
http://drops.dagstuhl.de/opus/volltexte/2018/9028.

[8] M. Brenner. yao. https://github.com/hcrypt-project/yao, 2013.

[9] R. Canetti. Security and composition of multiparty cryptographic protocols.
Journal of Cryptology, 13(1):143–202, Jan 2000. ISSN 1432-1378. doi: 10.
1007/s001459910006. URL https://doi.org/10.1007/s001459910006.

47

https://en.wikipedia.org/wiki/Garbled_circuit
https://en.wikipedia.org/wiki/Garbled_circuit
https://github.com/AndrewQuijano/Homomorphic_Encryption
https://github.com/AndrewQuijano/Homomorphic_Encryption
https://github.com/JoelOtter/go-garbled
http://drops.dagstuhl.de/opus/volltexte/2018/9028
https://github.com/hcrypt-project/yao
https://doi.org/10.1007/s001459910006

“output” — 2023/3/16 — 13:20 — page 48 — #60

48 REFERENCES

[10] Z. Cao, C. Huang, and Y. Li. A study on the improvement of computation,
communication and security in garbled circuits. In 2021 6th International
Conference on Intelligent Computing and Signal Processing (ICSP), pages
609–617, 2021. doi: 10.1109/ICSP51882.2021.9408745.

[11] J. B. Clarkson. Dense probabilistic encryption. In In Proceedings of the
Workshop on Selected Areas of Cryptography, pages 120–128, 1994.

[12] S. Collins. The hunger games trilogy. Scholastic, New York, NY, 2014. ISBN
9780545670319.

[13] Cryptovote. Damgard-jurik. https://github.com/cryptovoting/
damgard-jurik, 2019.

[14] I. Damgård and M. Jurik. A generalisation, a simplification and some appli-
cations of paillier’s probabilistic public-key system. In K. Kim, editor, Public
Key Cryptography, pages 119–136, Berlin, Heidelberg, 2001. Springer Berlin
Heidelberg. ISBN 978-3-540-44586-9.

[15] C. Data61. Python paillier library. https://github.com/data61/
python-paillier, 2013.

[16] ELECTRIC COIN COMPANY. Zcash. URL https://z.cash/.

[17] T. Elgamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Transactions on Information Theory, 31(4):469–
472, 1985. doi: 10.1109/TIT.1985.1057074.

[18] emp toolkit. emp-tool. https://github.com/emp-toolkit/emp-tool, 2022.

[19] ENCRYPTO. Motion. https://github.com/encryptogroup/MOTION, 2020.

[20] S. Goldwasser and S. Micali. Probabilistic encryption amp; how to play
mental poker keeping secret all partial information. In Proceedings of the
Fourteenth Annual ACM Symposium on Theory of Computing, STOC ’82,
page 365–377, New York, NY, USA, 1982. Association for Computing Ma-
chinery. ISBN 0897910702. doi: 10.1145/800070.802212. URL https:
//doi.org/10.1145/800070.802212.

[21] S. Halevi, Y. Ishai, A. Jain, E. Kushilevitz, and T. Rabin. Secure mul-
tiparty computation with general interaction patterns. In Proceedings of
the 2016 ACM Conference on Innovations in Theoretical Computer Science,
ITCS ’16, page 157–168, New York, NY, USA, 2016. Association for Comput-
ing Machinery. ISBN 9781450340571. doi: 10.1145/2840728.2840760. URL
https://doi.org/10.1145/2840728.2840760.

[22] jianyu m. damgardjurik. https://github.com/jianyu-m/damgard_jurik,
2017.

[23] J. Katz and Y. Lindell. Introduction to Modern Cryptography, Second Edition.
Chapman Hall/CRC, 2nd edition, 2014. ISBN 1466570261.

https://github.com/cryptovoting/damgard-jurik
https://github.com/cryptovoting/damgard-jurik
https://github.com/data61/python-paillier
https://github.com/data61/python-paillier
https://z.cash/
https://github.com/emp-toolkit/emp-tool
https://github.com/encryptogroup/MOTION
https://doi.org/10.1145/800070.802212
https://doi.org/10.1145/800070.802212
https://doi.org/10.1145/2840728.2840760
https://github.com/jianyu-m/damgard_jurik

“output” — 2023/3/16 — 13:20 — page 49 — #61

REFERENCES 49

[24] K. Koç, F. Özdemir, and Z. Ödemiş Özger. Partially Homomor-
phic Encryption. Springer International Publishing, 2021. ISBN
9783030876289. URL https://ludwig.lub.lu.se/login?url=https:
//search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&
db=cat02271a&AN=atoz.ebs29868464e&site=eds-live&scope=site.

[25] T. M. Lab. encryptionschemes.paillier. https://github.com/TNO-MPC/
encryption_schemes.paillier, 2022.

[26] N. C. R. Labs. Paillier threshold encryption scheme implementation. https:
//github.com/niclabs/tcpaillier, 2020.

[27] LatencyUtils. glatencyutils. https://github.com/LatencyUtils/
LatencyUtils, 2021.

[28] multiparty. Accessible and scalablesecure multi-party computation, . URL
https://multiparty.org/.

[29] multiparty. multiparty · github. https://github.com/multiparty, .

[30] multiparty. jigg. https://github.com/multiparty/jigg, 2021.

[31] D. Naccache and J. Stern. A new public key cryptosystem based on higher
residues. In Proceedings of the 5th ACM Conference on Computer and Com-
munications Security, CCS ’98, page 59–66, New York, NY, USA, 1998. As-
sociation for Computing Machinery. ISBN 1581130074. doi: 10.1145/288090.
288106. URL https://doi.org/10.1145/288090.288106.

[32] N. Navarro. gabes. https://github.com/nachonavarro/gabes, 2018.

[33] T. Okamoto and S. Uchiyama. A new public-key cryptosystem as secure as
factoring. In K. Nyberg, editor, Advances in Cryptology — EUROCRYPT’98,
pages 308–318, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg. ISBN
978-3-540-69795-4.

[34] C. Orlandi, D. Ravi, and P. Scholl. On the bottleneck complexity of mpc
with correlated randomness. In G. Hanaoka, J. Shikata, and Y. Watanabe,
editors, Public-Key Cryptography – PKC 2022, pages 194–220, Cham, 2022.
Springer International Publishing. ISBN 978-3-030-97121-2.

[35] P. Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In J. Stern, editor, Advances in Cryptology — EUROCRYPT ’99,
pages 223–238, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg. ISBN
978-3-540-48910-8.

[36] A. Poon. Bgn. https://github.com/anna138/BGN, 2019.

[37] P. Rindal. Ivory-runtime. https://github.com/ladnir/Ivory-Runtime,
2019.

https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=cat02271a&AN=atoz.ebs29868464e&site=eds-live&scope=site
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=cat02271a&AN=atoz.ebs29868464e&site=eds-live&scope=site
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=cat02271a&AN=atoz.ebs29868464e&site=eds-live&scope=site
https://github.com/TNO-MPC/encryption_schemes.paillier
https://github.com/TNO-MPC/encryption_schemes.paillier
https://github.com/niclabs/tcpaillier
https://github.com/niclabs/tcpaillier
https://github.com/LatencyUtils/LatencyUtils
https://github.com/LatencyUtils/LatencyUtils
https://multiparty.org/
https://github.com/multiparty
https://github.com/multiparty/jigg
https://doi.org/10.1145/288090.288106
https://github.com/nachonavarro/gabes
https://github.com/anna138/BGN
https://github.com/ladnir/Ivory-Runtime

“output” — 2023/3/16 — 13:20 — page 50 — #62

50 REFERENCES

[38] S. Servan-Schreiber. paillier. https://github.com/sachaservan/paillier,
2020.

[39] E. Songhori. Tinygarble. https://github.com/esonghori/TinyGarble,
2019.

[40] X. Wang. Flexsc. https://github.com/wangxiao1254/FlexSC, 2018.

[41] A. C. Yao. Protocols for secure computations. In 23rd Annual Symposium
on Foundations of Computer Science (sfcs 1982), pages 160–164, 1982. doi:
10.1109/SFCS.1982.38.

[42] A. C.-C. Yao. How to generate and exchange secrets. 27th Annual Symposium
on Foundations of Computer Science (sfcs 1986), pages 162–167, 1986.

[43] ziyao002. Threshold-paillier-with-zkp. https://github.com/ziyao002/
Threshold-Paillier-without-Trust-Dealer, 2019.

https://github.com/sachaservan/paillier
https://github.com/esonghori/TinyGarble
https://github.com/wangxiao1254/FlexSC
https://github.com/ziyao002/Threshold-Paillier-without-Trust-Dealer
https://github.com/ziyao002/Threshold-Paillier-without-Trust-Dealer

	Introduction
	Secure multi-party computation
	Chain-like MPC protocols of Orlandi, Ravi and Scholl
	Related work
	Subject of study
	Methodology
	Contributions

	Cryptographic primitives and other preliminaries
	Encryption schemes
	Additively Homomorphic Encryption
	Secure multi-party computation
	Garbled Circuits
	Abelian programs
	Selection functions
	Latency
	Computational complexity

	Implementation considerations
	Programming Language
	Additively Homomorphic Encryption algorithm
	Garbled circuit scheme
	Testing
	Finalized selection

	Implementation Explanation
	Protocol 1
	Protocol 2

	Tests and Results
	BNC tests and results
	Latency tests and results
	Computational complexity measuring and results

	Discussion and Conclusions
	Protocol 1
	Protocol 2

	Concluding remarks
	Remarks regarding protocol 1
	Remarks regarding protocol 2

