

Department of Automatic Control

Classifying Motion Patterns
of Bikes using Machine Learning

Filip Larsson

Pontus Hallqvist

Msc Thesis
TFRT-6192
ISSN 0280-5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2023 by Filip Larsson & Pontus Hallqvist. All rights reserved.
Printed in Sweden by Tryckeriet i E-huset
Lund 2023

Abstract

Electric bikes have become ubiquitous in traffic, and with a growing user base and
expensive prices, a demand for bike protection is increasing. Bike protection appli-
cations could include detecting and notifying the owner if their bike has been stolen
or fallen over. This thesis aims to develop solutions for recognizing and classifying
motion patterns of an electric bike to allow for improvements in bike protection
applications.

Using accelerometer, gyroscope and magnetometer data as input, machine learning
models were developed to perform classification. The data was labeled to six classes
of different motions and then normalized, split into time windows and featurized.
The different machine learning models built and tested were k-nearest neighbors
(KNN), Convolutional neural network (CNN), Long short-term memory (LSTM)
and a combined CNN-LSTM network. Time windows with different lengths and
overlaps were tested and evaluated to achieve the best accuracy possible. Lastly, a
filter was applied to the output to correct misclassifications.

To increase the understanding of how decisions were made by the models, Grad-
CAM was applied to highlight what parts of the information the model found most
crucial. Using the Grad-CAM heatmaps, it was found that the gyroscope data was
the most influential for the model’s decisions.

The model with the best performance was a CNN-LSTM combination network
that uses a time window of 2 seconds and 75% overlap. It performed with an ac-
curacy of 94.65%. When testing the best model with data from other bikes with
different mounting positions, the accuracy was 35.23% indicating that different
sensor placements or orientations changes the data in a way the current model
cannot handle.

3

Acknowledgements

We would like to thank our supervisors Yiannis Karayiannidis, Gustav Träff, Martin
Heyden and Stefan Noll for all their helpful inputs, creative ideas and enthusiasm
during the thesis. We would also like to thank Anders Svensson and the eBike team
for the opportunity to do our thesis at Bosch, and all the support in the meanwhile.
Lastly we would like to thank all people we’ve met during our studies who have
helped to spark our interest for both machine learning as a topic and engineering at
large.

5

Contents

1. Introduction 10
1.1 Motivation . 10
1.2 Related work . 11
1.3 Problem formulation . 12
1.4 Report outline . 13
1.5 Limitations . 13

2. Background 14
2.1 Inertial measurement unit . 14
2.2 Data processing . 15

2.2.1 Data normalization . 15
2.2.2 Time windows . 15
2.2.3 Data features . 16
2.2.4 Discrete Fourier transform 16

2.3 Machine learning . 17
2.3.1 General concepts . 17
2.3.2 KNN Classifier . 20
2.3.3 Neural networks . 20

3. Methodology 33
3.1 Data collection and annotation 33
3.2 Processing . 35

3.2.1 Normalization . 35
3.2.2 Complete event solution 36
3.2.3 Time window creation 36
3.2.4 Training and test set . 37

3.3 Model creation and evaluation 37
3.3.1 Grad-CAM . 39

3.4 Output filtering . 39
4. Results 41

4.1 Model performance . 41
4.1.1 Performance on complete events 41

7

Contents

4.1.2 Performance on time windows 42
4.1.3 Performance on other bikes 46

4.2 Grad-CAM . 47
5. Discussion and conclusions 50

5.1 Model evaluation . 50
5.1.1 Performance interpretation 51
5.1.2 Model comparisons . 52
5.1.3 Model interpretability 53

5.2 Future work . 54
5.2.1 Possible extensions . 54
5.2.2 Possible applications . 56

5.3 Conclusion . 57
Bibliography 59
A. Detailed results 62

A.1 Model performances . 62
A.2 Grad-CAM . 66

B. List of case definitions 72

8

Contents

List of Acronyms

• AI - Artificiell Intelligence

• AR - Activity Recognition

• CNN - Convolutional Neural Network

• DFT - Discrete Fourier Transform

• DTW - Dynamic Time Warping

• eBike - Electric Bike

• Grad-CAM - Gradient-weighted Class Activation Mapping

• IMU - Inertial Measurement Unit

• KNN - K Nearest Neighbours

• LSTM - Long-Short Term Memory

• ML - Machine Learning

• MLP - Multi Layer Perceptron

• MSE - Mean Squared Error

• NN - Neural Network

• RNN - Recurrent Neural Network

• SVM - Support Vector Machine

9

1
Introduction

1.1 Motivation

Artificial intelligence, or AI, is a growing field of research with applications be-
coming present in peoples every day life. Automatic vacuum cleaners and speech
recognition are two examples. However, giving AI a single definition is difficult,
but the mathematician Richard Bellman defines it as "[The automation of] activities
that we associate with human thinking, activities such as decision-making, problem
solving, learning ..." and futurist Ray Kurzweil defines it as “The art of creating
machines that perform functions that require intelligence when performed by peo-
ple.”. In short, AI can be broadly defined as a machine’s ability to think and act like
a human in a rational manner [Russell, 2010].

Machine learning, ML for short, is a sub-category of AI where an agent learns how
to make decisions through training. Learning means that the program improves its
performance on future tasks by observing the outcome and using evaluation metrics
as feedback. Machine learning is dynamic, as ML-models change with experience
and new data [Mitchell and Mitchell, 1997] [Russell, 2010].

ML is a growing field of research due to its broad area of usage, and its major
hurdle of requiring a large amount of processing power is becoming less of an
issue as the technical development increases the availability of powerful compu-
tational resources. Machine learning models have shown to be able to beat world
champions in advanced games such as Poker [Brown and Sandholm, 2018], Dota 2
[OpenAI et al., 2019] and Go [Silver et al., 2016], and is a powerful tool in image
recognition [Chollet, 2021, Chapter 8], natural language processing [Chollet, 2021,
Chapter 11], robotics [Mitsioni et al., 2021][Nguyen-Tuong and Peters, 2011] and
activity recognition [Ramasamy Ramamurthy and Roy, 2018].

Activity recognition, or AR, is the process of identifying actions and their out-
come for one or more agents from a series of observations. Recognizing and
differentiating between actions and behavioral patterns is useful in many different

10

1.2 Related work

areas such as security, elder care, exercise and more. AR is a challenging task as
different actors or agents can do an action in different ways, and some actions or
events can consist of a sequence of smaller actions at once, such as carrying a bike
which contains both a lift and a translation. Due to the complexity this brings, it
can be to difficult to find the necessary patterns which distinguish the actions using
analytical solutions. Therefore machine learning is a common approach to solve
AR-problems due to its strengths in pattern recognition.

Electric bikes are often expensive and owners want ways to ensure that their
bike will not get stolen or damaged. Theft detection with alarms that trigger after a
certain amount of motion is detected is one way to increase the security. However
if a bike is rolled away carefully by thieves, an algorithm which only detects the
motion level could fail to trigger the alarm. If the algorithm had the capability to not
only detect the motion level but also classify which kind of motion just happened,
the algorithm could be more accurate. A motion detection algorithm can also be
used for alerting a user that their bike has fallen over and not been picked back up,
so the user can prevent damages that could happen while the bike is laying down.

1.2 Related work

Tsige Tadesse Alemayoh, Jae Hoon Lee and Shingo Okamoto structured time series
data from an accelerometer and gyroscope as well as Discrete Fourier Transforms
into a virtual image which were fed into a 2-dimensional CNN network to classify
human activities, such as walking, running and jumping. They were able to achieve
an accuracy of 99.5% [Alemayoh et al., 2019]. The paper inspired a use of CNNs
applied on the AR-problem and how to structure the input data in different ways.

Nishkam Ravi, Nikhil Dandekar, Preetham Mysore and Micheal L. Littman cal-
culated a handful of features from accelerometer data and used several base level
classifiers to solve a human activity recognition problem. Multiple machine learn-
ing methods where used in parallel and the final decision was made using a plurality
vote between the different models. They used four different settings for how the
data was collected and used, which showed a large variation in results and indicates
how sensitive models can be for different data [Ravi et al., 2005]. The different
settings inspired the idea of testing the performance of the final model on different
bikes, and the plurality voting inspired the development of an output filter using
majority voting.

Alemayoh et al. were able to solve the human Activity Recognition-problem
with only a CNN using clever input formatting as opposed to Ravi et al. who
solved the human AR-problem using multiple ML-models with a plurality vote
as the deciding factor. Both papers achieved an equal level of accuracy with two

11

Chapter 1. Introduction

different approaches, showing that the AR-problem can be solved in many manners.

Further inspiration was taken from Ben D. Fulcher and Nick S. Jones with their
feature based approach for time series classification. They compared thousands of
different features for 20 different time series datasets, and the most informative
features were selected using greedy forward feature selection. The final features se-
lected was used to provide an understanding of the properties of the dataset [Fulcher
and Jones, 2014].

Rohit J. Kate used distance based methods to classify time series problems. The
article discusses the differences between using feature based methods and distance
based methods. The paper also shows how Dynamic Time Warping, a common
distance method, can be used to create new features which in combination with
standard machine learning algorithms achieves improved results in 37 of 47 bench-
mark datasets [Kate, 2016].

Both the paper by Kate, and the paper by Fulcher and Jones inspired different
methods for how to create suitable features for time series data as input to machine
learning models. Where Fulcher and Jones created many features and tested which
combination of features performed best, Kate focused on a single feature and its
performance in ML-methods.

When doing research about the activity recognition problem, applications outside
human activity recognition were rare and none applied on bikes or other vehicles
were found.

1.3 Problem formulation

This thesis aims to find out if it is possible to detect and classify motions on bikes
using machine learning applied on data collected by sensors.

Different machine learning methods will be tested and compared to each other,
with a focus on different types of neural networks. Focus will also be put on taking
decisions that would work in real-time if implemented on a bike. Therefore the
challenge of not knowing how long an event will be beforehand and also how to
compare events of different lengths will be a theme during the project.

It can be difficult to understand why different models take the decisions they
take and what values or information it bases its decisions on. Therefore a part of
the thesis will be dedicated to model interpretability. If one could understand what
the model finds important in the data, that information could be used to better tune
input values or model parameters to increase the performance.

12

1.4 Report outline

The thesis aims to answer the following questions:

• Is it possible to detect and classify eBike motions with machine learning?

• What type of model performs best for this problem, and what is the perfor-
mance?

• How can the data be presented to the models and how can events of different
lengths be compared?

• Is it possible to understand the model’s decision making?

• What can the solution be used for and what future extensions could be added
to improve the performance?

1.4 Report outline

Chapter 2 Background explains how the relevant data processing works and then
moves on to explain the area of machine learning in detail. Chapter 3 Methodol-
ogy describes how the data was processed, how the machine learning models were
developed and evaluated, and finally how the results were filtered. Next, Chapter
4 Results presents the different model performances with more details in an ap-
pendix. Lastly, in Chapter 5 Discussion the models are discussed and compared to
other AR solutions. Improvement areas and possible applications with be presented
and finally some conclusions will be drawn.

1.5 Limitations

This thesis is limited to finding an optimal solution without regard to any limit in
computational power or memory size. Thus, when talking about performance, the
thesis refers to a model’s ability to correctly classify an event. It will also be limited
to exploring a select few machine learning methods; the K-nearest-neighbours clas-
sifier and different types of neural networks. The thesis will limit itself to only train
the models on data collected from one bike rather than multiple, but event classi-
fication accuracy will be tested on a small dataset with data from other bikes with
different mounting positions.

13

2
Background

In this chapter the sensor for data collection is described. Next, data preprocessing is
discussed. The final part of the chapter will cover machine learning. Some general
concepts will be described followed by a thorough explanation of the algorithms
used in this thesis.

2.1 Inertial measurement unit

An Inertial measurement unit (IMU) is a measurement instrument consisting of an
accelerometer, a gyroscope and a magnetometer. The accelerometer measures the
acceleration, the gyroscope measures the angular velocity and the magnetometer
measures the magnetic field. All three quantities are taken in three orthonormal
directions, resulting in nine degrees of freedom [Madgwick et al., 2011].

The IMU is constantly affected by gravity which creates a downward offset of
about 9.8 ms−2. Since it is likely that the IMU is rotated, the offset will be reflected
on all three components. This can be hard to compensate for when it is constantly
moving, or when the relative mounting position is unknown. However, one possible
solution to remove the offset is to high pass filter the sensor output, and if the IMU
is allowed to stand still when it is started it might be possible to have the IMU
automatically measure and calibrate the offset. The calibration method depends
on whether the IMU is accurate enough to measure the same offset every time,
otherwise small offsets will remain.

Depending on the placement of the IMU, it might be located nearby the drive
unit which creates a magnetic field when the motor is running or the user is pedal-
ing. The induced magnetic field will disturb the magnetometer and is problematic
as it drowns out the magnetic field of the earth. However, it is not only an issue as
the induced magnetic field allows the possibility to differentiate between motions
that are using the pedals and motions that do not.

14

2.2 Data processing

2.2 Data processing

"Garbage in, garbage out" is a phrase in data science describing that the quality
of the output is correlated with the quality of the input. To increase the input data
quality, the data is processed before it is fed into any algorithm. In this part, the
processing methods, data normalization, time window creation, featurization of the
data and discrete Fourier transform are explained.

2.2.1 Data normalization
Whether a value is considered large or not depends on the relation between the
value and all other values in the dataset. Due to this, if the values are observed
without context, it can be hard to interpret the value. Data normalization is the
concept of changing the scale of the data to fit a certain range to make the data more
comparable. Two common methods of scaling data are described below [Patro and
Sahu, 2015].

The first method is to fit the data, x, based on its distribution using the mean
value, µ , and the standard deviation, σ . xscale, denoting the scaled data, is scaled
according to

xscale =
x−µ

σ
(2.1)

Another common normalization method is to apply a linear transformation to map
the data to the range [0,1] by scaling according to the maximum and minimum
values according to

xscale =
x− xmin

xmax − xmin
(2.2)

2.2.2 Time windows
When an event starts and when it stops can be difficult to define. Different events
can also last for different periods of time. As an example, a person will ride the bike
for a longer period of time than it takes for the bike to be knocked over. This is an
issue when the goal is to detect and classify a motion as the amount of data for each
motion is unknown.

One possible solution is to split the data into equally sized time windows. Time
windows work by gathering a selected amount of data points into a single data
frame. When the data frame has a specific size, the input size is known and the
model can be designed accordingly. Thus, the model can determine which motion
has happened in this time window rather than detecting when a motion starts and
stops, and what type it is.

15

Chapter 2. Background

It is important to find a time window length that is long enough so sufficient
information is included to classify events with confidence. At the same time it has
to be short enough to minimize the risk of multiple events happening within the
same window.

2.2.3 Data features
Features in data are values that express certain characteristics of the data. Having
features is a way to reduce the dimensionality of the data but at the same time high-
light what makes each class unique [Wang et al., 2006]. Featurization is therefore
a way to have information more densely packed and allows for a model to more
easily find patterns.

One important part of feature extraction is the selection of features. For the features
to be useful, their values need to represent crucial characteristics about the data
while excluding irrelevant information. It is thus necessary for the model developer
to have a good understanding of the problem and the data [Wang et al., 2006].

2.2.4 Discrete Fourier transform
The Fourier transform is a way of transforming a time series to the frequency do-
main. It can highlight information that is otherwise hard to notice in the time do-
main. A continuous time signal x(t) can be transformed to its frequency representa-
tion X(Ω) as follows

X(Ω) =
∫

∞

−∞

x(t)e− jΩtdt (2.3)

where Ω = 2π f with f being the frequency in Hz. This however only works in
theory as it is impossible to sample a signal continuously. Instead, the sampling
happens at specific time points with a specific sampling rate. The discrete Fourier
transform (DFT) is a way to transform the sampled signal x(n) to a frequency rep-
resentation approximation X(ω).

X(ω) =
∞

∑
n=−∞

x(n)e− jωn (2.4)

In reality, there is a finite amount of sampled data points N so that the expression
instead becomes

X(ω) =
N−1

∑
n=0

x(n)e− jωn (2.5)

where ω = 2πk
N with k

N = fs as the sampling frequency.

16

2.3 Machine learning

The quality of X(ω) is dependent on the sampling frequency, as a signal’s fre-
quency representation cannot include frequencies more than half the sampling
frequency (fs

2) according to the Nyquist-Shannon sampling theorem [Proakis J. G.,
1996, Chapter 4].

2.3 Machine learning

In this chapter, machine learning as a general concept will be explained. Afterwards,
the K-nearest-neighbours classifier and neural networks will be discussed in more
detail.

2.3.1 General concepts
The idea of classification with machine learning is to develop a model that can
find patterns or solutions in a training dataset and use the information from those
patterns to recognize previously unseen data. Successful models are capable of
correctly classifying similar but unknown data. This is known as generalization
[Goodfellow et al., 2016, Chapter 5]. Since models cannot be fully certain of their
classification due to differences between the training and general data, it is com-
mon that the models use statistical methods to get probabilistic results instead of
deterministic results. Machine learning can be divided into three main categories;
unsupervised learning, supervised learning and reinforcement learning.

Unsupervised learning is a type of learning where the model is trained on a dataset
without labels to find patterns in the data. Unsupervised learning is used in tasks
like clustering, data denoising and generation, and data association [Goodfellow
et al., 2016, Chapter 5].

Supervised learning works by feeding a model with input data and correspond-
ing labels or targets. The idea is to get the model to give labels to new input data
similar to the data the model is trained on. Supervised learning is used in classifica-
tion and regression tasks [Goodfellow et al., 2016, Chapter 5].

Reinforcement learning works by having an agent interacting with an environ-
ment. By following a simple set of rules, known as a policy, it chooses the actions
to take. To make sure the agent has a possibility to try new actions, the policy
allows for a choice of actions through probability rather than forcing a single ac-
tion. The model learns through trial-and-error, and is given feedback by a designed
reward-function which will change the behaviour slightly for the next run. There
needs to be a balance between the agent trying new actions and learning (explo-
ration) and the agent doing the action which is believed to be optimal (exploitation).
Reinforcement learning can be used in use cases where a developer can define the
environment for an agent to act in, a policy to follow, a set of possible actions and

17

Chapter 2. Background

a reward-function. Some examples where reinforcement learning is used include
solving games and controlling robots [Sewak, 2019, Chapter 1].

Having proper ways of evaluating the performance is essential, thus the concept of
cross validation as well as a few common evaluation metrics are explained next.
Another important part of machine learning is the model parameters which will be
described further down.

Cross-validation. Machine learning algorithms usually need large amounts of
data to find reliable patterns and to avoid possible overfitting, which is common
problem that will be described in Chapter 2.3.3. Cross-validation is a useful strategy
to employ to get a more general understanding of how well the model performs. It
works by first splitting the dataset into N subsets. The model is then trained N times
with N − 1 of the subsets and tested on the remaining set with the test set being a
different subset every time. Figure 2.1 shows a visualization of how the training and
test subsets can change over the iterations. Lastly a mean of the evaluation metrics
is used to determine the performance of the model.

x1 x2 x3 x4 ... xn

x1 x2 x3 x4 ... xn

x1 x2 x3 x4 ... xn

Figure 2.1 Visualization of cross validation. The subset of the data which is used for vali-
dation changes over iterations as to get a better understanding of the performance on general
data.

Evaluation metrics. To evaluate the performance of ML models, there are a few
metrics commonly used.

The first and most basic metric is a simple accuracy score. It is measured by
taking the sum of all correct classifications and divide that with the total amount of
classifications made, as per

Accuracy =
True positives

Number of predictions
(2.6)

The main benefit is that it is a score which is easy for anyone to understand, while
the main drawback is that it can give a misleading score depending on how the
dataset is balanced in regards to amount of examples per class. An unbalanced
dataset can give a high accuracy score by classifying everything as the same class,
and an observer will not realize this from only looking at the value.

18

2.3 Machine learning

Another way is a confusion matrix which is a way to display all classifications
by placing the predicted classes on a vertical axis and the true classes on the hori-
zontal axis. Each classified sample is then placed in the matrix. For a model without
misclassifications, only elements on the main diagonal will be non-zero since the
elements on the main diagonal are filled with samples that got correctly classified.
Examples of how confusion matrices may look like can be viewed in Appendix A.

Precision, recall and F1-score are three other common performance measures used
in classification problems [Powers, 2020]. Precision is a measure that gives the
percentage of how many of the positive predictions that are truly positive and is
calculated as

Precision =
True positives

True positives + False positives
(2.7)

Recall gives a percentage of how many positive samples were correctly predicted
as positive and calculated as

Recall =
True positives

True positives + False negatives
(2.8)

The precision and recall scores are used together since they complement each other.
The F1-score is the harmonic mean between recall and precision to give an accuracy
score which performs better on an unbalanced dataset than the ordinary accuracy
score. The F1-score is calculated according to

F1 =
2 ·Precision ·Recall
Precision+Recall

(2.9)

Model parameters. Machine learning models have parameters which determine
the model performance. There are two types of parameters, trainable parameters
and hyperparameters.

Trainable parameters are parameters that changes during training and are usu-
ally initialized with random values as to minimize any possible bias. One example
of trainable parameter are the network weights in neural networks.

Hyperparameters are fixed parameters that are usually initialized by the model
developer. These typically affect the structure of the model and how the model
will train. Some examples include number of neighbours in KNN, nodes per neural
network layer or decision boundary conditions in a Support vector machine (SVM)

19

Chapter 2. Background

[Goodfellow et al., 2016, Chapter 5].

2.3.2 KNN Classifier
Nearest neighbor classification, also known as K-nearest neighbors (KNN), is a sim-
ple algorithm for classification and pattern recognition. It is based on the idea that
the closest patterns to a target pattern x̂ in the data space contain useful information
about the class. To determine the closest patterns, similarity measures are used. In
Rq this commonly is a distance function where the Minkowski metric, also called
p-norm, is a reasonable choice

||x j − x̂||p = (
n

∑
i=1

|xi, j − x̂i|p)1/p (2.10)

where x j is the compared pattern, x̂ is the target pattern, i indicates each element
and p is a real number where p ≥ 1. In this thesis p = 2 was used which gives
the Euclidean distance. KNN then finds the k-nearest patterns and assigns the class
label by majority voting [Hastie et al., 2009, Chapter 13][Kramer, 2013, Chapter 2].

When working with KNNs, the selection of k is what determines the model’s
characteristics. Choosing a small k creates small neighborhoods in regions were
classes are scattered while choosing a larger k gives a more generalized classifica-
tion. These small neighborhoods tend to overfit but a too generalized model ignores
smaller clusters of data. Using a large k in an unbalanced dataset can create issues
as the most common class will be overrepresented, meaning more neighbours will
naturally be of that class. The best k is problem specific and the problem of finding
it is known as model selection. Commonly cross-validation is employed to find the
best model and parameters [Kramer, 2013, Chapter 2].

KNN like many other machine learning algorithms struggle with high dimen-
sional data. It is thus important that the data presented to the model is descriptive
and uniquely represents its class. If an added dimension of data for two classes
contains the same information it only increases the complexity without adding any
benefits [Kramer, 2013, Chapter 2].

2.3.3 Neural networks
A neural network is a network of mathematical nodes, inspired by biological neural
nodes in the brain. Neural networks has shown to be able to classify images, lan-
guage patterns and time series with a high accuracy among other objects [Chollet,
2021, Chapter 1].

The neural node and the base network. The network consists of differently
weighted inputs and a single output. Each node takes K inputs, xk, and calculates a

20

2.3 Machine learning

weighted sum, s based on weights, wk, and a bias b. The sum, also called state is the
input to an activation function f yielding an output h.{

s = ∑
K
k=1 wkxk +b

h = f (s)
=⇒ h = f (

K

∑
k=1

wkxk +b) (2.11)

Commonly chosen activation functions, f , are the hyperbolic tangent function,
tanh(x), the rectified linear unit, ReLU(x) = max(0,x), the logistic sigmoid func-
tion, σ(x) = 1

1+e−x , and the softmax function σ(x)i =
exi

∑ j ex j . A single node is also

called a perceptron [Vieira et al., 2020, Chapter 9][Goodfellow et al., 2016]. A vi-
sual representation of the perceptron is shown in Figure 2.2.

h

Output

f (s)...

xK

wK

b

x2 w2

x1

w1

Inputs

Activation

Figure 2.2 Graph representation of a single neural node, the simple perceptron. The inputs
xk are multiplied by their weights wk and summed together with a bias b and inserted into an
activation function f (s) to create the output h. This is a visual representation of (2.11).

To build a network of neural nodes, the nodes exist in layers where the outputs from
one layer are the inputs to the next layer. Each node in each layer is connected to
all nodes in the next layer, but due to the weights they affect each next node differ-
ently. The outputs from the final layer are values between 0 and 1, and each node in
the final layer represents a class meaning that the node with the highest value from
the final layer will be what the network classifies the inputs as. The first layer is
called the input layer, the final layer the output layer and all layers in between are
called hidden layers as the internal states are concealed. The network developer is
able to choose the amount of layers, which activation function each layer uses and
how many nodes are in the hidden layers. The base network is called a multilayer
perceptron, MLP, as it consists of several layers of perceptron-nodes. The classical
neural network is shown in Figure 2.3

21

Chapter 2. Background

x1

x2

xK

...

h(1)1

h(1)2

h(1)3

h(1)m

...

h(2)1

h(2)2

h(2)3

h(2)m

...

y1

y2

yn

...

Figure 2.3 Example of a MLP-structure. It has K inputs, 2 hidden layers with m nodes each
and n outputs. h(i) denotes that the node belongs to the hidden layer i, x is an input and y is
an output.

Training of a network. Training a network means inserting inputs into the net-
work with a known label and give feedback to the network how well its classifi-
cation for that input went. The weights and biases are changed according to a loss
function so that the outputs match the target labels. The final performance after the
training is affected by the choice of hyperparameters. Hyperparameters are param-
eters defining the structure and function of the network. Certain hyperparameters
can be tuned during training while others are not modified. Examples of hyperpa-
rameters are the size of the network, which activation functions are used, number of
training epochs and the learning rate. To evaluate the difference between the output
from the network with its target output, loss functions are used. One common loss
function used is the mean squared error (MSE),

min
w

L(x,w) =
1
n

n

∑
i=1

(yi − ŷi)
2 (2.12)

where L is the loss, n is the amount of classes, yi is the output and ŷi is the target
output for each output node i with x being the inputs to the nodes and w being the
weights. Since the output nodes are perceptrons, the outputs are restricted to the
range [0,1] [Goodfellow et al., 2016, Chapter 5].

To train the network, backpropagation is used. The model adapts the weights in
the layers to try and minimize the loss function with respect to the weights using
gradient descent. Gradient descent works by taking steps along the negative gradi-
ent of a function which is the fastest route towards a minimum.

22

2.3 Machine learning

The gradients are

∂L
∂wi j

=
n

∑
l=1

∂L
∂yl

∂yl

∂wi j
, yi = f (

m

∑
j=1

wi jx j +bi) =⇒

∂L
∂wi j

=
n

∑
l=1

∂L
∂yl

∂
wi j

f (
m

∑
j=1

wl jx j +bl) = (
n

∑
l=1

∂L
∂yl

) f ′(xm)x j (2.13)

with wi j meaning the weight from node j in the layer with m nodes to node i in
the layer with n nodes, f is the chosen activation function, and f ′ is its derivative.
xm is the vector of all inputs to the layer with m nodes [Goodfellow et al., 2016,
Chapter 6][Hastie et al., 2009, Chapter 11].
Taking the MSE-loss as an example, its gradient is

2
n
|yi − ŷi| f ′(xm)x j (2.14)

The weights are updated according to

w(t) = w(t−1)− γ(t)
∂L

∂w(t)
(2.15)

with γ denoting the learning rate, also known as the step size, and the index (t)
denoting the time point t [Hastie et al., 2009, Chapter 10].

The gradient descent performs best on convex functions as that is the only time
that the possibility of reaching a global minimum is guaranteed. Other, non-convex
functions may have any number of local minima. This means that there can be
several regions where the gradient descent believes to have found a solution, but
that is not necessarily an optimal solution. In many cases however, there are func-
tions which have multiple minima with a performance close to the global minimum
performance. An example of a non-convex function can be viewed in Figure 2.4.

23

Chapter 2. Background

−0.5 0.5 1 1.5

1

2

3

4

Figure 2.4 Assume the polynomial f (x) = 2.5x4 − 6x3 + 1.9x2 + x+ 2 with two minima
define a set of weights the gradient descent method shall optimize. Depending on the initial-
ization, the training might fit to the left minimum which yields a worse performance than if
gradient descent was able to reach the global minimum.

The developer can choose the learning rate, also known as gradient step size, γ . Set-
ting an appropriate value for the learning rate is crucial as too large learning rates
will make the training take large steps and risk jumping over a minimum, mak-
ing the network training volatile. A too small learning rate on the other hand will
make the network slow to train and risk not reaching any minima at all or increas-
ing the risk of getting stuck in a local minimum [Deisenroth et al., 2020, Chapter 7].

When all training data has been used once for training using backpropagation,
a single epoch has passed. A part of the dataset reserved for validation is passed
through the network to test the performance on an unknown dataset. This process is
repeated for as many epochs as the developer has defined, but can stop earlier if the
loss is minimized and accuracy is maximized earlier. This is called early stopping.
To further increase the efficacy of the validation, cross validation can be used. In
the very end, after the network is fully trained, the final performance of the network
is tested on previously unseen data, separate from the validation data, called a test
set [Hastie et al., 2009][Vieira et al., 2020, Chapter 2].

Problems of overfitting and ways to handle it. Achieving high accuracy on train-
ing data can many times be misleading due to a common phenomenon known as
overfitting. Overfitting means that the network has adapted to finding exact patterns
in the training data and has found an optimal set of weights for those patterns,
which are often large in magnitude. This can lead to a worse accuracy on new,
unknown data. Large weights neglects small differences in the input and thus yield

24

2.3 Machine learning

the same result every time regardless of input, whereas smaller weights retain some
variance in them. The larger variance with the smaller weights will give the model
a greater chance of not getting stuck in the same path every time and thus have less
bias towards a particular solution [Goodfellow et al., 2016].

Regularization is the concept of limiting the magnitude of the network weights
to avoid overfitting. Regularization works by having a regularization parameter, λ ,
multiplied by the weights added to the loss function. Two common regularization
methods are the lasso and the ridge regression methods. Lasso utilizes the L1-norm
of the weights

min
w

LR1(x,w) = min
w

L(x,w)+λ ||w||1 (2.16)

where as the ridge regression on the other hand uses the L2-norm instead:

min
w

LR2(x,w) = min
w

L(x,w)+λ ||w||22 (2.17)

To minimize the regularization loss, the network has to minimize the chosen loss
function together with the weights at the same time. This will limit the size of the
weights while at the same time still yielding a high-performing solution, as long
as the regularization parameter λ is appropriately chosen [Deisenroth et al., 2020,
Chapter 8] [Hastie et al., 2009, Chapter 11].

Another way to limit overtraining is to have a larger training dataset. With more
data, the variance in the data for each class naturally increases and thus the weights
adapt accordingly. Increasing the training dataset can either be done by collecting
more data or by artificially increasing it during the training, for example by apply-
ing a rotation and white noise to the training data.

A third way of decreasing the risk of overfitting is by using a smaller, less complex
model. A smaller model has less weights and with less weights it becomes more
difficult to adapt precisely to the input. This is however a risky way of handling
overtraining as a simpler model have the risk of performing worse overall regardless
of overfitting or not.

Recurrent neural networks and Long short-term memory. Predicting time-series
and strings of text can be difficult using only inputs because of their dependence of
previous inputs. It is therefore useful to utilize a previous state in the prediction.

A recurrent neural network, often called RNN, works by feeding inputs as well
as previously calculated state values back into the nodes. The feedback effect
comes from having the nodes using both the ordinary input x(t) at time point t and
the node’s previous output h(t−1) to create the output h(t):

h(t) = f (h(t−1),x(t)) (2.18)

25

Chapter 2. Background

This means that each output is dependent on all previous inputs, and the network
has a simple form of memory. The ability to remember previous inputs makes
recurrent networks useful in predicting text and time series, as each data point is
dependant on the previous point. An example of how a recurrent neural net can look
like is shown in Figure 2.5 [Goodfellow et al., 2016, Chapter 10].

x1

x2

xK

...

h(t)1

h(t)2

h(t)3

h(t)m

...

y1

y2

yn

...

Figure 2.5 Example of how a RNN can look like. It has K inputs, a hidden layer with m
nodes and n outputs. h(t) denotes the hidden node at time point t, x is an input and y is an
output. The output h(t−1) is used to create the next output h(t) from each recurrent node.

At a point in the future, the next data point is not dependant on the earliest piece
of information the network has been shown. In that situation, the network needs to
forget the previous state as not to influence the prediction of the next state wrongly.
To do this, the importance of the previous state values needs to be lessened. An-
other problem is that the accumulated gradient can vanish or explode (meaning
the gradient tends to zero or infinity) making any new information in the network
insignificant. For this problem, the solution is to reset the gradient after a certain
time. A gated RNN works by having the ability to reset state values to zero through
so called gates. Gates are parts in a node which can nullify certain inputs to the
node such as inputs and previous state values.

One of the more common and powerful gated RNNs is called a long short-term
memory neural network, LSTM. A node in a LSTM-network is called a cell and
also consists of input, forget and output gates. The gates in a cell are supposed to
have the ability to dampen the effects of certain parts of the node. The input gate
can remove the dependence of the inputs, the forget gate determines how much of
the previous state value shall affect the next state value, and the output gate can

26

2.3 Machine learning

make the output from the cell zero. The internal state of the i :th node in a layer at
time t s(t)i is influenced by the previous value of the state s(t−1)

i , the forget gate f (t)i ,
the input gate g(t)i and the previous output values h(t−1). The sigmoid activation
function is used σ(x) = 1

1+e−x :

s(t)i = f (t)i s(t−1)
i +g(t)i σ(bi +∑

j
Ui, jx

(t)
j +∑

j
Wi, jh

(t−1)
j) (2.19)

where

f (t)i = σ(b f
i +∑

j
U f

i, jx
(t)
j +∑

j
W f

i, jh
(t−1)
j) (2.20)

g(t)i = σ(bg
i +∑

j
Ug

i, jx
(t)
j +∑

j
W g

i, jh
(t−1)
j) (2.21)

q(t)i = σ(bo
i +∑

j
Uo

i, jx
(t)
j +∑

j
W o

i, jh
(t−1)
j) (2.22)

h(t)i = tanh(s(t)i)q(t)i (2.23)

With b being biases, U the input weights and W the recurrent feedback weights.
The indices f , g, o represent the forget gate, external input gate and output gate
respectively. The forget gate and the external input gate will have values between
zero and one, and determine whether the new state value will mostly be affected by
an old state value or the current input to the cell. The output gate is also limited to
a value between zero and one, and can effectively temporarily turn off connections
between nodes and layers, increasing the flexibility of the network. By having the
ability to change the effects of different parts of the node, the LSTM cells are able to
be more flexible in regards to the problems it can solve. It has the ability to perform
well in situations where the memory length can change and when the importance of
the inputs compared to the previous value changes. A model of how the LSTM-cell
looks like is shown in Figure 2.6 [Goodfellow et al., 2016].

27

Chapter 2. Background

xt

Inputs

st−1

State

ht−1

Output

st

State

ht

Output

W f

U f

W g

Ug

W

U

W o

Uo

+

σ

×

tanh

×

+

+

σ

σ

+

×

+

σ

Figure 2.6 Model of the LSTM cell, visualization of equations 2.19-2.23. The biases b are
not shown to save space in the image. The state value and output value at time point t −1 are
used as inputs together with the normal node inputs x at the current time point t.

Convolutional neural networks. A convolutional neural network (CNN) is a net-
work which is powerful at finding patterns in data. It is particularly efficient for
equidistant data such as time-series with a fixed sample rate or images consisting
of pixels in a grid. Equidistant data can be viewed as arrays or matrices and allows
for easy convolutional calculations. CNNs have shown to be able to classify human
motions using data from smartphone sensors [Lee et al., 2017], and correctly clas-
sify and identify objects in images [Cheeseman et al., 2021].

Like the name suggests, a CNN computes outputs using convolutions between
the inputs and smaller sized weight matrices called kernels instead of matrix multi-
plication between a normal weight matrix and the inputs. Each kernel will be able
to detect one feature each, so it is common to use several kernels for an increased
performance. Two important properties that are the result of the use of convolution
are parameter sharing and sparse connectivity which will be discussed later. The
convolutional network can be further enhanced using the pooling technique which
is used to generalize the outputs, this concept will also be expanded upon later
[Goodfellow et al., 2016, Chapter 9].

The convolution between two continuous, time dependent functions f (t) and g(t)
is defined as

(f ∗g)(t) =
∫

∞

−∞

f (τ)g(t − τ)dτ (2.24)

28

2.3 Machine learning

which for discrete data such as an input stream x(t) and a weight kernel w(t), with
all possible sample times denoted i and the resulting state value s(t), becomes

s(t) = (x∗w)(t) = ∑
i

x(i)w(t − i) (2.25)

A two-dimensional CNN has instead the input matrix X(m,n), weight kernel
W (m,n) and state S(m,n) for the grid point at m, n. The convolution is now instead

S(m,n) = (X ∗W)(m,n) = ∑
i

∑
j

X(i, j)W (m− i,n− j) (2.26)

The output from each convolution are features the kernels found with irrelevant
parts nullified. Each kernel can find one feature each, so as to extract as much in-
formation as possible, it is common to use multiple kernels. As the features are fed
forward, each layer will find features in the inputs from the previous layer which
are features for all layers except the first. This means that each layer will contain
more primitive, but essential, features than the previous. In a two-dimensional CNN
detecting facial features this can mean that the first layer detects the shape of an ear
but the following layer detects a vertical edge.

A convolutional layer does not necessarily generate a single value in the [0,1]-
domain, which makes taking the final prediction a difficult task. It is therefore
common for CNNs to have a normal MLP-layer as the final decision-making layer.
One issue is that each kernel in a convolutional layer generates one channel each,
forcing high dimensionality. To get around that, a flattening layer is placed right
before the final MLP-layer. The flattening layer works by simply placing all data in
a single one-dimensional array which is easy for a MLP to use as an input.

All values in the kernel w will go over all values in the input x when creating
outputs regardless of the size of w, meaning the elements in the kernel will be used
more than once. This is called parameter sharing. It differs from a normal network
where each weight in a weight matrix is only connected to a single input. The
parameter sharing allows the kernels to be much smaller than what an equivalent
weight matrix would be while retaining the performance.

When the size of the kernel is smaller than the size of the inputs, each calcu-
lated state value will only be dependent on a subset of the input since the kernel can
only reach parts of the input at the same time. By utilizing sparse connectivity, as it
is called, the amount of calculations required in the network is reduced which low-
ers the memory usage and speeds up the training. Figure 2.7 shows a visualization
of sparse connectivity [Goodfellow et al., 2016, Chapter 9].

29

Chapter 2. Background

The convolution finds features in specific locations, and the network learns the
feature-location pair. This has the drawback that if any part of the data is translated
compared to previously seen examples, the network will miss their patterns. This
can be counteracted by using pooling. Pooling means to take a neighbourhood, a
pool, of outputs of chosen size from the convolution and calculate a common value
for them. The most common type of pooling is the max pooling, which means that
the output from the pooling is the maximum value of the chosen points. The way
to decide how many steps the pooling-window takes before creating the new pool
is called stride. If the pooling has a stride of one, the majority of data points in
the new pool will be the same which makes the output likely to be identical to the
previous output. The output size will be roughly the same size as the input size.
If the stride is larger than one, the output size will be more heavily reduced. For
both cases (many outputs being the same and fewer outputs), the amount of detail
in the data is reduced. The reduction of detail can be thought of as a form of down
sampling. It makes so that the small differences between the same type of data will
get eliminated while crucial information remains. Figure 2.8 shows an example of
how max pooling works [Goodfellow et al., 2016, Chapter 9].

sk−2

sk−1

sk

sk+2

sk+1

xk−2

xk−1

xk

xk+2

xk+1

(a) A sparsely connected network

sk−2

sk−1

sk

sk+2

sk+1

xk−2

xk−1

xk

xk+2

xk+1

(b) A fully connected network

Figure 2.7 On the left, an example of a sparsely connected network where the kernel has
size three. Each input only affects three state values and each state is affected by at most three
inputs. On the right, a normal fully connected network where all inputs affect all state values.

30

2.3 Machine learning

11 8 7 1

4

14

6 3 15 8

9

11

5 3 8 10

0

3

1 0 9 7

10

8

Max pooling
5

14

11

10

10

15

Figure 2.8 Example of a 2×2 max pool with a 2×2-stride acting on a 6×4-grid. The pool
moves over the grid taking the maximum value of the looked at part and generates an output
of a smaller size than the input. The most important information is retained while the size is
reduced. The gray highlighted part of the input shows the neighbourhood generating the gray
highlighted output.

Interpretability. Today, many networks are so powerful at classification that they
outperform human experts at a fraction of the time. With increasing performances,
the network complexity has increased as well. How a network actually classifies
data can be hard to understand and as the complexity increases, this task becomes
even more difficult. Thus the interest of interpretable neural networks has increased
in recent years, where the network not only gives a classification as an output but
also an insight into how the decisions are made. Increased interpretability can help
understand why a network fails to classify something, notice if parts are redundant
and how a non-machine learning approach can be designed to solve the same prob-
lem [Mitsioni et al., 2021].

In CNNs, the kernels are arrays, matrices or tensors (dependent on the input dimen-
sions). By extracting and visualizing them, it is possible to interpret the kernels to
understand which features they found. For example; A kernel in a one dimensional
CNN is an array with two elements equal in amplitude but opposite in sign, that is

w =
[
−1 1

]
(2.27)

The result is that the kernel will take the difference between two adjacent values,
see (2.25). If the value the first kernel element affects is smaller than the following
value, the output will be positive. If they are identical the output is zero and other-
wise the output will be negative.

31

Chapter 2. Background

A second way to visualize features is to take a white noise input and feed it
through the node whose feature extraction is of interest. The output from that node
is used as input in the same node over and over again until the output of the node is
identical to the previous output (or after a certain number of iterations). Anything
irrelevant to the node will get suppressed by it, and everything of importance will
get amplified. Over time, the output will get optimized to give a maximized output
when fed through the node as the relevant information is highlighted more for each
pass through [Olah et al., 2017].

Gradient-weighted Class Activation Mapping, known as Grad-CAM, is a recent
method for highlighting what parts of an input that was the most important for a
CNN performing its classification using a heat map. It works by feeding the in-
puts as normal through a CNN and getting a classification. The model nullifies all
gradients unrelated to the model prediction and the relevant gets maximized. The
modified gradients are fed back through the convolutional layers, which has been
trained to give large values where the relevant features exists in the original input.
The second output gets transformed into a heat map and is placed on the input so
the locations of the relevant found patterns are highlighted [Selvaraju et al., 2017].

32

3
Methodology

This chapter explains all the key elements of the work done. How the data was
gathered, labeled and processed is explained followed by the process of building
the models and how they were evaluated. The output filtering and how Grad-CAM
was applied is described towards the end.

3.1 Data collection and annotation

The dataset consists of sensor streams from an IMU with accelereometer, gyroscope
and magnetometer data in the x, y and z−directions together with videos of the data
collection to help with labeling. The data was labeled using six different classes

• Stationary

• Bike falling over

• Bike lifted

• Bike rolled

• Bike shaken

• Bike picked up from the ground

Several use cases for each class were defined and can be seen in Table B.1 in Ap-
pendix B. The different scenarios were meant to increase the variation in the data
and reflect the high variance in motions.

The data used was collected on one bike by three different people to mitigate
the inherent biases of how motions are carried out. There were a few exceptions
where data was collected using other bikes, this data was solely used as testing sets
to test the performance on unknown bikes.

33

Chapter 3. Methodology

The data was all manually annotated with the help of synchronized videos recorded
during the data collection. One recording is referred to as a capture and includes all
events between a start time and an end time. Figure 3.1 shows one example of how
the annotation can look like for an event.

For the time windows, a bike standing still between annotated events in a cap-
tion got classified as stationary data. This was mainly done to avoid jumps in the
time series and keep it as close to real-time usage as possible. If the bike was moved
in the downtime between events such as for correcting the bike’s position, that part
of the data got an ignore-label. The ignore label was used to make sure that the
stationary class does not include other motions. In rare cases it was also to make
sure corrupted data was not included. An example of a capture with multiple events
with included ’Ignore’-labels can be viewed in Figure 3.2.

Figure 3.1 Example of an annotation on one split capture of a bike falling over.

34

3.2 Processing

Figure 3.2 Example of a capture with multiple annotated events, highlighted with red. Un-
wanted parts between the events got the label ’Ignore’, highlighted with gray. Unlabeled
parts, shown in white, got classified as "Stationary". The data shows multiple rides on the
bike.

3.2 Processing

The processing was done using two different methods. In the first method all the
data annotated for each event were used. For this method, features were calculated
to be used as inputs. In the second method, time windows were used. For the time
windows, both features and normalized raw data were used as inputs.

3.2.1 Normalization
A linear transformation of the data was used to normalize the input. The normaliza-
tion is based on all input values, to guarantee a clear distinction between large and
small movements even if they look similar. Each dimension was normalized sepa-
rately, the values for the x−, y− and z−directions for each sensor were normalized
by themselves. When features were created and used, each feature was normalized
individually.

35

Chapter 3. Methodology

3.2.2 Complete event solution
In the complete event solution method, all events that were annotated were ex-
tracted and stored as separate data frames. The frames contained all sample values
for each sensor in all orientations for each event and they varied in length depending
on the duration of the annotated event. Features were calculated for each frame,
normalized and then stored together with the name and class label for easy access.
A total of 70 different features were developed, each being one value describing a
characteristic of the time series given by the sensors.

This first method was used early on to find out if the classes were separable and
to identify features that were descriptive. In a real-time scenario, a processing unit
running the model on the bike will need to know when an event begins and ends if
this method is to be used. Adding a method to determine starts and stops of events
adds a layer of possible errors, and would put a lot of focus on event detection and
less on event classification. It would also increase the power consumption in a real
case scenario where battery is limited. A decision was therefore made to continue
with method using time windows.

3.2.3 Time window creation
Time windows were defined as the second method. A frame moves over the cap-
tures, storing a specified part of the data in time windows. The frame moves to
the next part of the data and repeats until all data has been put into windows. All
created time windows are the same length. The class label assigned to the window
was set as the majority of what the time window covers. To find an optimal window
length, frames between 0.5 seconds long to 4 seconds were tested. The motivation
is that a too short window would lose information about the event. By classifying
the window by the most common label of the included data, shorter events risk
representing only a minority of the labeled data if the window length is too long
and thus miss the event.

Since the windows were labeled by what the majority of the window includes,
there can exist cases where an event starts in the second half of the window and
the event will stop during the first half of the next window which makes the model
completely miss the event despite it existing in two windows. To decrease the risk
of missing an event by having the windows poorly placed over the time series,
overlaps between the windows were introduced. An example of what that can look
like is shown in Figure 3.3. In this thesis, overlaps between 0% and 75% were used.

The features used were calculated on the data in the windows, similar to how
the features were calculated for the complete events.

36

3.3 Model creation and evaluation

tsk sk+50
tsk+25 sk+75

Figure 3.3 Example of how two time windows can be generated. The first window starts by
including sample k and every sample up to sample k+50. The second window has the same
length, but starts at sample k+25 meaning there is a 50% overlap between the windows. This
generation repeats over the entire capture.

3.2.4 Training and test set
The complete event frames were shuffled and split into a training set and test set
where the training consisted of 80 percent of the events and test set 20 percent. For
the time windows the distribution was different. Since some of the networks tested
contained LSTM layers, it was reasonable to feed the network with frames in a
time continuous order. Thus the recorded captures, rather than the windows, were
shuffled and split into a 80/20 percent training and test split.

3.3 Model creation and evaluation

Once all the data was annotated, structured and stored the model creation and eval-
uation began.

Early tests on feature based KNN showed that there were no large difference
between sizes of 1 and 2 seconds and overlaps between 25 and 75 percent. Shorter
and longer windows performed worse. To reduce the number of input variations, it
was decided to start time windows with an initial value of 1.5 seconds and having a
50 percent overlap during the process of finding an optimal model type. Rigorous
evaluation of the different window sizes and overlaps was postponed to after an
optimal model type was found.

The KNN-model was the first type of model used on the processed data. Each
event was represented with a feature vector and evaluated with 5-fold cross vali-
dation. Different combinations of features were tested and for each combination,
models with values of k between 1 and 20 were used. Having a total feature count of
70 made it impractical if not impossible to try every combination. However, since
most of the features were calculated separately for each sensor and direction which

37

Chapter 3. Methodology

lowers the total number of feature combinations to try.

The best k found for the features was used to build a model with all training
data and evaluated on a test set. After finding the best feature combination, the
same algorithm was applied on the time windows data. KNN was not tested using
raw normalized input data because each data frame with raw normalized data can
be seen as a very high dimensional point as every value in the data will be taken
into account, and KNN performs poorly on higher dimensional data due to the curse
of dimensionality [Kouiroukidis and Evangelidis, 2011]. Furthermore, using (2.10)
on windows of the same class but where the events are not placed similarly within
the window, will give poor results. The equation calculates the distance between
values from each sample, and thus the distance will be large between windows that
captured the beginning end ending of the same event.

The neural networks were built using the Keras library in Python [Chollet et al.,
2015], and all networks were tested using different number of layers, nodes/kernels
per layer and levels of regularization to find the optimal structure for that network
type. The output layer was always a perceptron layer with an equal amount of nodes
as the amount of classes.

When training the neural networks the data was given in two ways, both as
normalized raw sensor data and as features. When using raw normalized data,
the input was two dimensional with size (Number of samples per window) ×
(Number of sensor streams) for all networks. For the 1-dimensional CNN, the
kernels were 1-dimensional arrays that only moved in the time-dimension. The
different sensor input streams, which could be seen as a second dimension in the
data, got treated as different channels by the model.

For the features, two different input structures were used. For the LSTM net-
work the input was a vector of size 1 × (Number of total features). For the 2-
dimensional CNN, the features were placed as if they were an image, where
each feature value represents a pixel. The features were placed as an array of
size (Number of feature types)× 3. Each row represented a feature type and the
columns were the x, y and z value of that feature type.

To find the optimal hyperparameters for each model 5-fold cross-validation was
performed on the training data. The model of each type that performed best was
then trained with the complete training set and evaluated on the test set. The models
tested were CNN, LSTM and CNN followed by LSTM.

The combination network with both CNN and LSTM parts had the inputs first
going into convolutional layers, and their output acted as inputs to the LSTM lay-
ers. The idea was to get both the pattern recognition from the convolutional layers

38

3.4 Output filtering

in combination with the memory from the recurrent LSTM layers. As each network
type was tested with two different inputs, including the two KNNs, it gave eight
total models to compare.

Once an optimal model type and parameters were found the model was trained
on different combinations of window sizes and overlaps. Since different window
sizes means a different sized input in the cases where normalized raw data was used,
the input layer naturally varied in size. However, all the hyperparameters remained
the same.

Lastly, to see the model’s performance in a different setting it was tested on a
dataset collected on bikes that were not used in the training.

3.3.1 Grad-CAM
To understand how the models take their decisions, Grad-CAM was used to visu-
alize what information in the inputs was found to be the most crucial. Grad-CAM
creates a heatmap which is placed on the input time windows to highlight parts
of the data. A more intense red color means the model finds the data point more
important for the decision, and a more white color indicates that the information is
taken less into account.

Grad-CAM was only applied on models with CNN-layers as it is developed for
CNNs [Selvaraju et al., 2017]. It was also only applied on the first CNN-layer as to
not have any information distorted by kernels or lost due to pooling.

3.4 Output filtering

With a non-perfect classification, there will be an amount of windows which will
get wrongly classified. If the windows are classified in order as they happen, such
as in a real life scenario, one can try to reduce the amount of wrong classifications.
By using a filtering method which takes into account the neighbouring windows’
classes and the confidence of the model, the final output classification can for some
outliers be corrected. If the model classifies a long window sequence as the same
class, classifies one window as another class, and then continues classifying the fol-
lowing windows as the first class it is not unlikely that the window with an unique
class was misclassified.

A filter inspired by the paper by Ravi et al. as described in Chapter 1.2 was
developed for this thesis with the aim to reduce the misclassifications by looking
at the model confidence and a majority vote of neighbouring windows. The filter
walks through a string of time windows classified by the model one at the time. If
the classification confidence is above a set confidence level of 90%, the output will

39

Chapter 3. Methodology

be kept else it will look at the given classifications of windows in a neighbourhood
around it. The window focused on will be re-classified as the majority label of the
neighbours. It looks at two windows behind and two windows ahead for a total
length of five windows. A filter length longer than five could risk filtering out short
events and smaller than five could risk not filtering wrongly classified windows
on transitions between events. After the filter has gone through all windows in a
selected time frame, all windows are re-classified together as not to affect windows
that have yet to be filtered. Figure 3.4 is showing an example of how the filter
works.

0 0 1 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 0 0

0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0

Figure 3.4 An example of how the filter works. There is a string of class 0 followed by
a run of class 1 and in the end a return to class 0. The bolded 1 and 0 represent classified
windows with low confidence and the boxes represent which windows the filter is looking
at in that moment. Due to the neighbourhoods around the low confidence windows, they get
changed once the filter has run a lap through.

40

4
Results

This chapter will focus on giving an overview of the results, and present the best
performing models in more detail. For the performance of every model type, see Ap-
pendix A. First, the KNN result for the full event solution will be shown. Secondly,
an overview of the models’ performance will be presented together with more de-
tails about the best performing model. Afterwards, a test of what window size and
overlap that gives the best performance is listed. Lastly, the result of adding the
output filter and examples of the Grad-CAM are shown.

4.1 Model performance

4.1.1 Performance on complete events
When testing different k values for the KNN model it was found that for the full
events data, meaning when the start and stop of an event is known and the complete
event was included without splits, k = 4 gave the best average accuracy of 0.9584%
from the cross-validation. Using that k value for a complete model with all training
data gave the result presented in Table 4.1 and Figure 4.1.

The performance from the KNN on the full events had the best performance of
all variations. Considering the complete information about each event is available,
it is not surprising that it outperforms the versions where only limited information
is available in each window. However, as mentioned in Chapter 3.2.2, using full
events adds problems regarding how a solution would be implemented in a real-
time scenario. It would have to include methods to determine when an event starts
and stops. With the events being of different lengths, raw data streams cannot be
used as inputs as KNN requires data of equal dimensions and the input would be
limited to calculated features. Scaling or padding the data can be applied to increase
the length of short inputs, however those methods were quickly discarded since it
includes a time dependency which could heavily influence the model’s decisions
based on the time length. Even though the method was not extended further, the test
fulfilled its purpose to show that the classes were separable.

41

Chapter 4. Results

Table 4.1 Performance table for the KNN model on features calculated from the data of
full events

Class Precision Recall F1-score Accuracy
Stationary (0) 1.0 1.0 1.0
Fallen over (1) 0.9796 1.0 0.9897

Lifted (2) 0.9787 0.9787 0.9787
Rolling (3) 0.9333 0.9655 0.9491
Shaken (4) 1.0 1.0 1.0

Picked up from ground (5) 1.0 0.9375 0.9677
Global average 0.9819 0.9803 0.9809 0.9816

Weighted average 0.9820 0.9816 0.9816 0.9803

0 1 2 3 4 5
Predicted label

0

1

2

3

4

5

Tr
ue

 la
be

l

34 0 0 0 0 0

0 48 0 0 0 0

0 0 46 1 0 0

0 0 1 28 0 0

0 0 0 0 27 0

0 1 0 1 0 30

0 1 2 3 4 5
Predicted label

0

1

2

3

4

5

Tr
ue

 la
be

l

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0.98 0.021 0 0

0 0 0.034 0.97 0 0

0 0 0 0 1 0

0 0.031 0 0.031 0 0.94

Figure 4.1 Confusion matrices showing the performance for the KNN model on full events.
The left matrix shows the amount of classified windows while the right shows the recall
percentages.

4.1.2 Performance on time windows
After building and testing all the models with time windows as input and comparing
the best achieved performance it was found that the "Lifted" class was more difficult
to classify than the rest. In fact the each model’s accuracy was correlated to how well
it classified "Lifted". In Table 4.2 are the model accuracies and the F1-scores of the
"Lifted" class presented.

42

4.1 Model performance

Table 4.2 The global accuracy and F1-score for all models using time windows as input

Model Global accuracy F1-score "Lifted"
KNN (features) 0.9003 0.5762
CNN (features) 0.9210 0.7324

LSTM (features) 0.9116 0.7427
CNN + LSTM (features) 0.9182 0.7338

CNN 0.9299 0.7841
LSTM 0.8843 0.5388

CNN + LSTM 0.9356 0.8302

The models struggle with the "Lifted" class due to the sensor data for some of the
use cases looking similar to either the "Stationary" or "Rolling" class, see Appendix
B for a table of the use cases. If the bike is lifted and held in the air for a few
seconds and then put down again, a majority of the sensor data, when the bike is
held in air, would give the same output as if it stood still on the ground. Using the
same reasoning, if the bike is lifted and carried away, the model might interpret the
motion as the bike rolling as a large portion of the data is similar to the bike rolling.
The sensors experience similar movement, speed and noise-wise, as if it would be
rolled slowly.

As seen in Table 4.2, the best performing model is the CNN followed by LSTM
network when using normalized raw data as input. The performance is shown in
Table 4.3 and Figure 4.2.

Table 4.3 Performance table for CNN-LSTM hybrid network on normalized raw data

Class Precision Recall F1-Score Accuracy
Stationary (0) 0.8867 0.9302 0.9079
Fallen over (1) 0.9115 0.9004 0.9059

Lifted (2) 0.8943 0.7746 0.8302
Rolling (3) 0.9535 0.9700 0.9617
Shaken (4) 0.9724 0.9543 0.9633

Picked up from ground (5) 0.8898 0.9051 0.8974
Global average 0.9202 0.9063 0.9124 0.9356

Weighted average 0.9357 0.9356 0.9352 0.9063

43

Chapter 4. Results

0 1 2 3 4 5
Predicted label

0

1

2

3

4

5

Tr
ue

 la
be

l

493 6 5 2 15 9

9 103 1 0 0 1

20 1 110 9 0 2

14 0 3 615 1 1

8 0 1 18 564 0

4 3 3 1 0 105

0 1 2 3 4 5
Predicted label

0

1

2

3

4

5

Tr
ue

 la
be

l

0.93 0.011 0.0094 0.0038 0.028 0.017

0.079 0.9 0.0088 0 0 0.0088

0.14 0.007 0.77 0.063 0 0.014

0.022 0 0.0047 0.97 0.0016 0.0016

0.014 0 0.0017 0.03 0.95 0

0.034 0.026 0.026 0.0086 0 0.91

Figure 4.2 Confusion matrices showing the performance for the CNN-LSTM network on
normalized raw data. The left matrix shows the amount of classified windows while the right
shows the recall percentages.

In general, using normalized raw data over features for the time windows results
in a better performance. If this is because features scale down the complexity
substantially or if the features chosen in this thesis are not descriptive enough is
difficult to say without further research. The feature combination used was derived
from experimenting with KNN models, and thus there is no guarantee that they are
optimal features for a neural network. Furthermore, for the 2-dimensional CNNs,
the position of the features is relevant due to the kernel movement. The positions
are not necessarily optimal and a better positional combination could exist.

The results from trying to find the optimal window size and overlap combina-
tion on the best performing model, CNN-LSTM network, can be seen in Table 4.4.

Table 4.4 Global accuracy for the different window sizes and overlaps on the CNN-LSTM
network on normalized raw data.

0.5s 1s 1.5s 2s 3s 4s
0% 0.8883 0.8930 0.9064 0.9001 0.8671 0.8128

25% 0.8971 0.9137 0.9266 0.9176 0.8814 0.8160
50% 0.8968 0.9142 0.9356 0.9287 0.8908 0.8282
75% 0.8975 0.9098 0.9340 0.9396 0.8963 0.8425

It shows that a slightly better performance was achieved with a 2 second window
and 75% overlap. Exactly how well each model performs can vary slightly between
each training and therefore one should be careful to confidently say that this would
be optimal in a real-time scenario. However, looking at the table, it seems to be
preferable to use a window length between 1.5 and 2 seconds. It also seems to be
preferable to use more overlap than less. This could be a result of the LSTM layers
memory giving a beneficial effect. However, in reality this is likely an effect of
having more training data since having more overlap increases the number of win-

44

4.1 Model performance

dows generated from the time series. Lastly, the performance drop for the 4 second
windows was expected. For the "Falling over" and "Pick up from ground" classes, a
lot of the events are only about 2 seconds long. Having a 4 second window in those
cases includes a lot of samples that does not represent those events and thus a lot of
misleading information is included in the classification.

It was also investigated how applying the output filter to the best performing model
could improve the performance. The results are shown in Figure 4.3 and Table 4.5.

Table 4.5 Performance table for the final CNN-LSTM hybrid network on normalized raw
data with 2 second time windows and 75% overlap after applying an output filter

Class Precision Recall F1-Score Accuracy
Stationary (0) 0.9311 0.9102 0.9205
Fallen over (1) 0.9074 0.9545 0.9304

Lifted (2) 0.8842 0.8077 0.8442
Rolling (3) 0.9535 0.9872 0.9701
Shaken (4) 0.9713 0.9658 0.9685

Picked up from ground (5) 0.9497 0.9379 0.9438
Global average 0.9329 0.9272 0.9296 0.9465

Weighted average 0.9461 0.9465 0.9460 0.9272

0 1 2 3 4 5
Predicted label

0

1

2

3

4

5

Tr
ue

 la
be

l

649 14 11 10 24 5

6 147 1 0 0 0

28 0 168 11 0 1

7 0 3 923 0 2

3 1 3 23 846 0

4 0 4 1 1 151

0 1 2 3 4 5
Predicted label

0

1

2

3

4

5

Tr
ue

 la
be

l

0.91 0.02 0.015 0.014 0.034 0.007

0.039 0.95 0.0065 0 0 0

0.13 0 0.81 0.053 0 0.0048

0.0075 0 0.0032 0.99 0 0.0021

0.0034 0.0011 0.0034 0.026 0.97 0

0.025 0 0.025 0.0062 0.0062 0.94

Figure 4.3 Confusion matrices showing the final performance CNN-LSTM network after
applying the output filter. The left matrix shows the amount of classified windows while the
right shows the recall percentages.

45

Chapter 4. Results

4.1.3 Performance on other bikes
Lastly, results from the tests on data from other bikes that the model has not been
trained on can be seen in Table 4.6 and Figure 4.4.

Table 4.6 Performance table for the data on other bikes tested on the final model

Class Precision Recall F1-Score Accuracy
Stationary (0) 0.8457 0.2338 0.3698
Fallen over (1) 0.1194 0.1101 0.1146

Lifted (2) 0.1601 0.2995 0.2087
Rolling (3) 0.4213 0.7931 0.5503
Shaken (4) 0.9855 0.0842 0.1551

Picked up from ground (5) 0.0994 0.5852 0.1699
Global average 0.4386 0.3510 0.2608 0.3523

Weighted average 0.6525 0.3523 0.3314 0.3510

0 1 2 3 4 5
Predicted label

0

1

2

3

4

5

Tr
ue

 la
be

l

285 14 128 568 0 224

48 24 112 13 0 21

0 2 65 126 0 24

0 0 49 709 0 136

1 158 7 263 68 311

3 3 45 4 1 79

0 1 2 3 4 5
Predicted label

0

1

2

3

4

5

Tr
ue

 la
be

l

0.23 0.011 0.11 0.47 0 0.18

0.22 0.11 0.51 0.06 0 0.096

0 0.0092 0.3 0.58 0 0.11

0 0 0.055 0.79 0 0.15

0.0012 0.2 0.0087 0.33 0.084 0.38

0.022 0.022 0.33 0.03 0.0074 0.59

Figure 4.4 Confusion matrices showing performance on data from other bikes tested on the
final model. The left matrix shows the amount of classified windows while the right shows
the recall percentages.

The performance is significantly worse. Considering the bikes are of different sizes,
shapes and weights, it is possible that the sensors measure other accelerations and
angle velocities. Naturally this could affect the model’s ability to classify other bikes
correctly when it has not been trained on them. However, the extreme difference in
performance is likely a result of the IMU having a different placement. Suppose
the sensor is rotated in any way, then the output would look completely different.
A theoretical example is if the IMU is positioned such that the x axis is directly in
line with the front of the bike and y being straight up in the air for the original bike
trained on. If the new bike’s IMU is positioned such that the y axis is in front and the
x axis is in the air, a motion moving forward on the new bike would for the model
look like it is going up in the air. Thus it is a reasonable result considering that the

46

4.2 Grad-CAM

rotational position of the IMU is unknown. Ideas of how to potentially solve this
problem is discussed in Chapter 5.2.1

4.2 Grad-CAM

Grad-CAM plots were created to highlight the information found to be most im-
portant for decision making in the models. It was only applied on the CNN-models
and only the first layer is visualized. The plots show accelerometer data on top and
gyroscope data on the bottom with the same heatmap placed on both. A data point
with a more red part in the heatmap is what the model found more important.

In Figure 4.5 it appears as if the model thinks that the point where the gyro reaches
a peak value and then quickly declines is the point of most importance. It is un-
derstandable that the reasoning could be that the angle of the bike was changing
rapidly until it suddenly stopped which could be a bike falling until it hit the ground.

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
1e 5

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
1e 5

Figure 4.5 Accelereometer data on top, gyroscope data on bottom. The data shows one
time window of the bike falling, which it correctly predicted with 99% confidence.

In Figure 4.6, the motion was "Lifted" but it got classified as "Rolling". The win-
dow showing the class "Rolling" in Figure 4.7 is not dissimilar from the "Lifted"
window in Figure 4.6 so it is understandable why the model predicted wrong. Why
the samples around sample 30 and sample 50 in the wrongly predicted window
shown in Figure 4.6 are the most important for the model prediction is hard to see
as there are no clear changes in the data there.

47

Chapter 4. Results

0 20 40 60 80 100

0.40

0.42

0.44

0.46

0.48

0.50

0.000

0.001

0.002

0.003

0.004

0 20 40 60 80 100
0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.000

0.001

0.002

0.003

0.004

Figure 4.6 Accelereometer data on top, gyroscope data on bottom. The data shows one time
window of the bike getting lifted, however it predicted it to be rolling with 52% confidence.
The model gave the probability 38% of the window showing a lift, the correct class.

0 20 40 60 80 100

0.40

0.45

0.50

0.55

0.000000
0.000025
0.000050
0.000075
0.000100
0.000125
0.000150
0.000175

0 20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

0.000000
0.000025
0.000050
0.000075
0.000100
0.000125
0.000150
0.000175

Figure 4.7 Accelereometer data on top, gyroscope data on bottom. The data shows one
time window of the bike rolling, which it correctly predicted with 98% confidence.

Figure 4.8 shows a correctly predicted window of the class "Shaken". In the span of
samples 30−40 seems to be where the model finds the points of most importance,
and the single most important point happens where all accelerometer data axes has
the roughly same value which is a pattern that can be seen to repeat.

48

4.2 Grad-CAM

0 20 40 60 80 100

0.40

0.45

0.50

0.55

1

2

3

4

5
1e 7

0 20 40 60 80 100
0.20

0.25

0.30

0.35

0.40

0.45

0.50

1

2

3

4

5
1e 7

Figure 4.8 Accelereometer data on top, gyroscope data on bottom. The data shows one
time window of the bike shaking, which it correctly predicted with 99% confidence.

Figure 4.9 shows the beginning of the bike falling over, but the model classified the
time window as stationary. It is understandable why the model classifies the bike as
stationary since a large part of the window has sensor values which seems to only
change within noise levels. The gyroscope starts changing from around sample 45,
where the Grad-CAM says the most important information is but the accelerometer
does not seem to change until later which is likely why the classification differs
from the ground truth.

0 20 40 60 80 100

0.42

0.44

0.46

0.48

0.50

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0 20 40 60 80 100
0.0

0.1

0.2

0.3

0.4

0.5

0.000

0.001

0.002

0.003

0.004

0.005

0.006

Figure 4.9 Accelereometer data on top, gyroscope data on bottom. The data shows one
time window of the bike falling, which it predicted as stationary with 76% confidence.

49

5
Discussion and conclusions

In this chapter, it will be discussed how the event classification could be better
than the window classification by looking at groups of windows. The performance
will then be compared to performances from other papers on ML solutions to the
AR problem. Thirdly the interpretation of the Grad-CAM will be discussed more
thoroughly. Lastly, future improvements and application areas will be mentioned
followed by some final conclusions.

5.1 Model evaluation

The KNN model in the full event solution reached an accuracy of 98.16%. With-
out context this performance is close to perfect and the few misclassifications are
spread between 3 classes. However, as mentioned previously, this solution would
be difficult to implement without a highly accurate event detection method already
implemented.

The model in the time window solution achieved an accuracy of 94.65%. This
accuracy is relatively high as well and most classes achieves high precision and
recall scores. The "Lifted" class is the class which is the most difficult to classify.
Apart from the class "Lifted" the most common misclassifications is between "Sta-
tionary" and each respective class. The reason for this could be that at the beginning
and end of each event, unless the window is perfectly placed, data representing that
event and stationary data will be included in the same window. The windows were
labeled as the majority of what the data points in the windows were annotated as.
However, if the annotated data is close to an equal split between the classes in the
window, it is not surprising if the model has a difficult time deciding between the
classes. Figure 4.9 illustrates an example of one of these occurrences. The window
is labeled as "Falling over" and looking at the right side of the plot one can see the
beginning of the fall which seems to start right before sample 50. It takes about 20
more samples until all axes of the sensors are displaying a change in output. Thus a
large portion of the output looks stationary in this window and it is not surprising

50

5.1 Model evaluation

that the model predicts it that way. Errors like these are the most common of the
misclassifications and thus the accuracy does not perfectly reflect over the model’s
ability classify each event.

5.1.1 Performance interpretation
The final model is able to accurately classify the windows of most classes correctly.
However, the goal of the thesis was to detect occurrences of events and what that
event was rather than correctly classifying each single window. Consider the fol-
lowing two real examples of the model’s output.

Output

0 5 5 5 5 5 2 5 2 5 0
Ground truth

0 5 5 5 5 5 5 5 5 5 0

Figure 5.1 An example from the model’s filtered output and the ground truth. The numbers
represent the class of each window

Looking at the output in Figure 5.1, without considering the ground truth, it is more
likely that the two "2"s have been wrongly classified than the seven "5"s. One can
confidently say from looking at the output that the bike has been picked up from the
ground. In this case the ground truth confirms this.

Output

0 0 2 2 2 0 1 1 1
Ground truth

0 2 2 2 2 0 1 1 1

Figure 5.2 An example from the model’s filtered output and the ground truth. The numbers
represent the class of each window

In Figure 5.2 it seems as if the bike has been lifted in the air, and later fallen over.
Once again the ground truth confirms this even though the model wrongly classified
the first window in the event of lifting the bike. These examples are two of many
in the output that experience similar window errors. The applied output filter was
meant to correct misclassified windows like in these examples, but clearly failed
to do so. This indicates that a better post-processing method could be one way to
improve the performance further. Developing a better output filter less reliant on
model confidence would be one way to do it.

To better understand the model’s ability to classify events instead of windows a

51

Chapter 5. Discussion and conclusions

different evaluation method could be used. If all windows in each event for the
ground truth are grouped together and then compared to the majority of the win-
dows in the same grouping from the output, an accuracy for each event would be
achieved. In the second of the examples above it would result in the first "0" being
compared, then the four "2"s would be compared to the majority of "0" and the three
"2"s, and so on. This method would in the two examples above give 100% accuracy,
and correctly so, for event classification. This evaluation was never implemented
due to time constraints.

5.1.2 Model comparisons
The models developed for this thesis are able to achieve an accuracy of 98.16%
and 94.65% for the full event and time window solutions respectively. This perfor-
mance does not reach the level of accuracy found in the literature solving the human
activity recognition problem. Most papers had versions of time windows as input
and thus the most suitable model to compare is the 1-dimensional CNN followed
by LSTM network reaching 94.65%. A few examples include Filip Malawski and
Bogdan Kwolek who achieved a 98.18% accuracy classifying footwork motions
in fencing [Malawski and Kwolek, 2016], Tsige Tadesse Alemayoh, Jae Hoon Lee
and Shingo Okamoto who reached an accuracy of 99.5% classifying different cat-
egories of human movement [Alemayoh et al., 2019], and lastly Nishkam Ravi,
Nikhil Dandekar, Preetham Mysore and Micheal L. Littman with an accuracy of
99.57% classifying daily activities [Ravi et al., 2005]. These papers, including
this thesis, had similar data settings in regards that the training and test data was
collected using the same subjects. The solutions reaching these performances were
using Dynamic time warping, 2-dimensional CNN or plurality voting between
several base level classifiers such as KNN and SVM. The multitude of different
methods reaching high performances indicates that AR problems can be solved in
several ways.

When comparing model performances between data settings, it becomes evident
that the models all have a problem with classification when the test data and the
training data come from different subjects. The model in this thesis dropped from
94.65% accuracy to 35.23% when trained on the data from one bike and tested
on data from other bikes. The same phenomenon was found in two of the papers
referred to above. Malawski et al. had similar problems as the performance dropped
from 98.18% to 56.75%. They however achieved a better performance of 70.71%
using an SVM classifier instead of Dynamic time Warping on data from different
subjects. Although, it is still far lower than the performance achieved on the same
subjects. Ravi et al. had their performance drop from 99.57% accuracy to 65.33%.
This is a problem that is of high importance in classification problems considering
most, if not all, application areas involves more subjects than those available to
train on.

52

5.1 Model evaluation

5.1.3 Model interpretability
The Grad-CAM figures 4.5-4.9 and A.7-A.12 are to a varying level understandable.
The important values are more evident in some of the examples, such as Figure
4.5 and Figure 4.8. In both figures, the heatmap highlights the values when the
gyroscope is at its peak. In Figure 4.8 the important values also seem to align with
change of directions in the accelerometer values. Some Grad-CAM heatmaps looks
to be striped such as figures 4.5 and 4.7 where some points are more highlighted
followed by others with less which could indicate some repeating hidden pattern.
In examples like Figure 4.6 and Figure 4.7, what values the model found important
are more scattered and does not necessarily seem to coincide with any maximal or
minimal value, nor any change of direction.

The Grad-CAM heatmap is dependent on the kernels, absolute values and value
changes on all six input sensor streams. However, the heatmap output on each
sample is only 1-dimensional. A combination of values from the different input
stream can both amplify and nullify the heatmap output. Thus it can be difficult to
confidently say why certain samples are of more importance and find the correlation
between the heatmap and sensor streams.

When considering all Grad-CAM examples, it seems as the important values from
the heatmap coincide with the maximal values of the gyroscope in a lot of the cases
which indicates that the gyroscope data has a large impact on the model’s decisions.
Another conclusion that can be drawn is that the heatmap is less interpretable for
motions where the data is interchangeable within the event, such as "Stationary"
and "Rolling". The data in these motions looks very similar regardless of how the
windows are placed in the event and it is difficult to understand why certain samples
are more important. For motions like "Falling over" and "Shaken", there are clear
parts of the data where something different has happened. In those examples it is
more obvious that a rapid change in acceleration and angular velocity means that
the bike is for example falling, and that model correlates these increased values
with the "Falling over" class.

Grad-CAM does increase the model interpretability, however, not to the degree
that anyone could look at an arbitrary time window and understand the decision.
The interpretability could be improved further by using other methods in addition
such as plotting the trained kernels or finding an LSTM-based method of visualizing
the decision making. The paper "Increasing the Interpretability of Recurrent Neu-
ral Networks Using Hidden Markov Models" proposed a usage of hidden Markov
models for visualization of RNNs in their paper from 2016 [Krakovna and Doshi-
Velez, 2016]. Interpretability of the KNN classifier could be made by plotting a
2-dimensional projection of the data points with markings to differentiate between
classes.

53

Chapter 5. Discussion and conclusions

With improved interpretability the final performance of the models could be in-
creased by tuning the models to the dataset by using better suited features or
structuring the models differently. Considering that the gyroscope values seems to
be of high importance, developing better features for the gyroscope data could be
a way to increase the performance. An understanding of the decisions made for
classifications can also help inspire solutions to the problems without the use of
ML.

5.2 Future work

In this part, different ways the thesis could be expanded upon are described followed
by some possible use cases.

5.2.1 Possible extensions
More motion patterns to detect. Currently the models are rather easy to expand
to include more motions. Classes that could be added are for example parking the
bike and crashing with the bike. Certain current motion patterns could be separated
for more detail. "Rolling" could be separated into "Rolling" and "Riding the bike",
and "Lifted" could be separated into "Lifted" and "Carrying".

KNN does not contain an inner structure in need of a change as the amount of
labels it can classify depend only on the amount of labels present in the training
data. There could exist a need to tune the k-value, however testing would be needed
to verify this.

Neural networks can classify as many classes as there are output nodes, so one
apparent change required is to include more nodes in the final layer. Adding more
classes increases the complexity of the problem so there might exist a need to
change the inner structure. The current networks could however be powerful enough
to handle additional classes without needing a change of the inner structure.

Test other machine learning methods. To evaluate which machine learning
method is best suited for the problem of activity recognition on bikes more gener-
ally, there is a need to study different methods as well. Some other methods which
could be evaluated are support vector machine, decision trees, logistic regression
and random forests. All these methods have shown previously to solve the activity
recognition problem with accuracies in level with or higher than achieved in this
thesis [Minarno et al., 2020].

Split network. Different motions can vary wildly in duration so having one single
network to detect all motions is not necessarily the best option. Since the network
needs to be general enough to catch both long and short motions, there might exist

54

5.2 Future work

compromises in parameters such as window length and the final network weights.

The longer motions are often time invariant, meaning that it is possible to clas-
sify the motion regardless of when the input to the model starts. Some examples
include the "Rolling" class and the "Stationary" class. Shorter motions on the other
hand are often event based, meaning different things happen during different parts
of the motion and missing parts can lead to a wrong classification. Motions like the
bike falling over and the bike getting picked up are some examples.

A model consisting of three networks does not have to compromise its parameters
to the same degree as each network can specialize into detecting different things.
The first network will only detect if the motion is time invariant or event based and
then depending on the class, feed the input into one of two following networks. The
first of these networks should be trained on only time invariant motions and will be
able to classify which type of time invariant motion it is. The second will similarly
be fed the raw input but instead classify the event based motions. Each network
will then be specialized to each particular type and the model performance could be
higher. Figure 5.3 shows a flowchart of the model idea.

Input

Network detecting if the motion
is time invariant or event based

Classify time
invariant motion

Classify event
based motion

Output classification

Figure 5.3 Model consisting of three networks. The first detects if the motion is time invari-
ant or event based. Depending on what it detects, the input is fed into one of two networks.
One network should be trained to classify time invariant motions only and the other should
be trained on event based motions only.

55

Chapter 5. Discussion and conclusions

Real-time implementation on the bike. To get the model to run live on the bike,
it needs to be efficient considering it has access to fewer resources in terms of
processing power and battery usage. It is therefore crucial to convert the model and
data processing from Python code to a more memory and computational efficient
language like C or C++. The code can either be re-written by hand or use compilers
to compile and optimize the code [Chen et al., 2018]. It would also be important
to reduce the size of the model as well to decrease complexity, hopefully without a
large cost in terms of model accuracy.

With a live implementation on the bike, the model should collect several win-
dows before running the filter as to have the filter working properly. The filter
should then run at the same speed as the window creation to have as small delay
between data collection and final decision as possible.

Generalization. As mentioned, the model seems to have problems classifying
motions on any bike for which it has not been trained on. This is believed to be an
effect of the IMU orientation being different on different bikes. One possible way
to solve this would be to have a lot of data from a large amount of different bikes
with the IMU being placed in various locations. Hopefully the model would then
be able to learn that the data for the same motion can look different between bikes
and it would be able to find new patterns in the data that would still distinguish
each class. There is a risk that the problem would be too complex if the orientation
could be anywhere in space. However, increasing the amount of data is often a way
to improve any machine learning algorithm.

Another solution that was discussed during the process of this thesis was to ro-
tate the data to a fixed orientation. In theory this would probably be very effective,
however it is difficult to implement without knowing the original position of the
sensors. If two vectors of the sensors were known one could calculate the third, but
the only one that could be known is the gravitational vector. With calibrated sensors
positioned in fixed orientations a better result could be achieved. The possibility to
try this requires more time and resources then was available during this thesis.

Gravity will induce a DC offset in the accelerometer data which will vary be-
tween the x, y, and z-components depending on the rotation of the sensor. This
means that if the data is high pass filtered such that zero-frequency data is removed,
the model should be more robust against differently rotated sensors. This would be
a third possible way to increase the performance on general data.

5.2.2 Possible applications
Improved eBike alarm. One use case for a motion detecting algorithm on eBikes
is an improved theft detection alarm. A current common alarm algorithm works
by detecting the motion level of the bike, and if it is higher than a threshold for a

56

5.3 Conclusion

time the alarm triggers. If the bike is moving violently because of a fall the alarm
should not trigger, where as the bike getting carefully and slowly rolled away by
someone should trigger despite low motion levels. Additional feedback from which
type of motion is happening can therefore help to trigger an alarm quicker for certain
motions and later for other motions.

Inform user of bike fallen over. Another possible application of interest for bike
owners is to inform the owner if their bike has fallen over. Suppose someone places
their bike in a public place where others also place their bikes. Most people can
probably recognize seeing bikes lying on the ground due to reckless behavior from
others or from strong winds. While on the ground the bike is more exposed to suffer
damages. Thus informing the owner could help prevent the bike from being dam-
aged.

Applying method on similar topics. The results for this thesis shows that it is
possible to perform activity recognition on bikes. However, nothing indicates that
the approach is limited to bikes. Thus it should be possible to use the approach in
any activity recognition problem, with respect to features, models and parameters
likely being problem specific.

5.3 Conclusion

This thesis shows that machine learning is a suitable tool to solve the problem of
classifying eBike motion patterns. The final filtered output accuracy rate of 94.65%
is almost at a level where bike owners can trust the output, especially when con-
sidering mainly event detection rather than correctly classifying all time windows
as discussed in Chapter 5.1.1. The lowest performance of all developed models is
88.43% indicating that all tested machine learning methods are suitable for motion
pattern classification, with the most suitable being a combined CNN-LSTM neural
network. The performance of the model developed for this thesis is not at the level
of other solutions to the AR problem brought up in Chapter 5.1.2.

Testing the model performance on data collected using other bikes with a dif-
ferent IMU placement showed that the models does not generalize to a level where
it could be applied to any bike. A solution would be to either train the models
using a much larger dataset with data collected on many bikes with different IMU
orientations or have a method which makes the data spatially independent. Putting
effort into solving the problem on an arbitrary bike would allow for future applica-
tions that include but is not limited to improved eBike theft detection and a warning
to owners that their bike has been laying on the ground for a while, risking damages.

To handle the problem of events being of different lengths, the data was placed
in equally sized time windows with overlaps. The best performing time window

57

Chapter 5. Discussion and conclusions

was 2s long and had an overlap of 75%, however a time window combination with
a length of 1.5s and 50% overlap performed with almost the same accuracy. The
third and fourth best performing time windows had a 1.5s length with 75% overlap
and a 2s length with 50% overlap respectively. The small difference in performance
indicates that the optimal time window has a length and overlap in those ranges.

A filter was developed to reduce misclassifications. It reclassified windows with
low model confidence according to the majority label of its neighbouring time
windows, and was able to increase the performance of the best performing model
from 93.96% accuracy to 94.65%. The filter was simple and increased the accuracy
only slightly, indicating room for improvements. An improved filter should create
complete events by grouping classified windows together and use an evaluation
based around classifying complete events, to align more with the final goal of event
detection.

The use of Grad-CAM increases the interpretability of the developed CNN based
models by highlighting what parts of the input is considered most crucial when
the model takes its decision. The generated heatmaps seems to indicate that the
gyroscope data is most crucial for the models as the most highlighted points often
coincide with maximal or changing gyroscope values. The knowledge that the gyro-
scope data was important can be used to develop better features, and that a non-ML
algorithm should utilize the gyroscope data to a large degree. A large portion of the
heatmaps are difficult to understand, suggesting the models take complex decisions.
With Grad-CAM only applicable on CNN based models, another method for in-
creasing the interpretability of the other ML models is needed for a more complete
understanding of the decision making process.

58

Bibliography

Alemayoh, T. T., J. H. Lee, and S. Okamoto (2019). “Deep learning based real-time
daily human activity recognition and its implementation in a smartphone”. In:
2019 16th international conference on ubiquitous robots (UR). IEEE, pp. 179–
182.

Brown, N. and T. Sandholm (2018). “Superhuman ai for heads-up no-limit poker:
libratus beats top professionals”. Science 359:6374, pp. 418–424.

Cheeseman, Southerland, and Park (2021). “Advanced image recognition: a fully
automated, high-accuracy photo-identification matching system for humpback
whales”. Mammalian Biology.

Chen, T., T. Moreau, Z. Jiang, L. Zheng, E. Yan, M. Cowan, H. Shen, L. Wang,
Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy (2018). Tvm: an automated
end-to-end optimizing compiler for deep learning. DOI: 10.48550/ARXIV.
1802.04799. URL: https://arxiv.org/abs/1802.04799.

Chollet, F. et al. (2015). Keras. https://keras.io.
Chollet, F. (2021). Deep learning with Python. Simon and Schuster.
Deisenroth, M. P., A. A. Faisal, and C. S. Ong (2020). Mathematics for machine

learning. Cambridge University Press. ISBN: 9781108679930. URL: https:
//mml-book.com.

Fulcher, B. D. and N. S. Jones (2014). “Highly comparative feature-based time-
series classification”. IEEE Transactions on Knowledge and Data Engineering
26:12, pp. 3026–3037.

Goodfellow, I., Y. Bengio, and A. Courville (2016). Deep Learning. http://www.
deeplearningbook.org. MIT Press.

Hastie, T., R. Tibshirani, J. H. Friedman, and J. H. Friedman (2009). The elements
of statistical learning: data mining, inference, and prediction. Vol. 2. Springer.

Kate, R. J. (2016). “Using dynamic time warping distances as features for im-
proved time series classification”. Data Mining and Knowledge Discovery 30:2,
pp. 283–312.

59

Bibliography

Kouiroukidis, N. and G. Evangelidis (2011). “The effects of dimensionality curse
in high dimensional knn search”. In: 2011 15th Panhellenic Conference on In-
formatics. IEEE, pp. 41–45.

Krakovna, V. and F. Doshi-Velez (2016). “Increasing the interpretability of
recurrent neural networks using hidden markov models”. arXiv preprint
arXiv:1606.05320.

Kramer, O. (2013). “K-nearest neighbors”. In: Dimensionality Reduction with Un-
supervised Nearest Neighbors. Springer Berlin Heidelberg. ISBN: 978-3-642-
38652-7. DOI: 10.1007/978-3-642-38652-7_2. URL: https://doi.org/
10.1007/978-3-642-38652-7_2.

Lee, S.-M., S. M. Yoon, and H. Cho (2017). “Human activity recognition from
accelerometer data using convolutional neural network”. In: 2017 ieee interna-
tional conference on big data and smart computing (bigcomp). IEEE, pp. 131–
134.

Madgwick, S. O. H., A. J. L. Harrison, and R. Vaidyanathan (2011). “Estimation of
imu and marg orientation using a gradient descent algorithm”. In: 2011 IEEE
International Conference on Rehabilitation Robotics, pp. 1–7. DOI: 10.1109/
ICORR.2011.5975346.

Malawski, F. and B. Kwolek (2016). “Classification of basic footwork in fencing
using accelerometer”. In: 2016 Signal Processing: Algorithms, Architectures,
Arrangements, and Applications (SPA). IEEE, pp. 51–55.

Minarno, A. E., W. A. Kusuma, and H. Wibowo (2020). “Performance compar-
isson activity recognition using logistic regression and support vector ma-
chine”. In: 2020 3rd International Conference on Intelligent Autonomous Sys-
tems (ICoIAS). IEEE, pp. 19–24.

Mitchell, T. M. and T. M. Mitchell (1997). Machine learning. McGraw-hill New
York. ISBN: 0070428077.

Mitsioni, I., J. Mänttäri, Y. Karayiannidis, J. Folkesson, and D. Kragic (2021). “In-
terpretability in contact-rich manipulation via kinodynamic images”. In: 2021
IEEE International Conference on Robotics and Automation (ICRA). IEEE,
pp. 10175–10181.

Nguyen-Tuong, D. and J. Peters (2011). “Model learning for robot control: a sur-
vey”. Cognitive processing 12:4, pp. 319–340.

Olah, C., A. Mordvintsev, and L. Schubert (2017). “Feature visualization”. Distill
2:11, e7.

OpenAI, C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dębiak, C. Dennison, D.
Farhi, Q. Fischer, S. Hashme, C. Hesse, R. Józefowicz, S. Gray, C. Olsson, J.
Pachocki, M. Petrov, H. P. de Oliveira Pinto, J. Raiman, T. Salimans, J. Schlat-
ter, J. Schneider, S. Sidor, I. Sutskever, J. Tang, F. Wolski, and S. Zhang (2019).
“Dota 2 with large scale deep reinforcement learning”. arXiv: 1912.06680.
URL: https://arxiv.org/abs/1912.06680.

60

Bibliography

Patro, S. and K. K. Sahu (2015). “Normalization: a preprocessing stage”. arXiv
preprint arXiv:1503.06462.

Powers, D. M. (2020). “Evaluation: from precision, recall and f-measure to roc,
informedness, markedness and correlation”. arXiv preprint arXiv:2010.16061.

Proakis J. G., M. D. G. (1996). Digital Signal Processing: Principles, Algo-
rithms, and Application (Third edition). Prentice-Hall International. ISBN: 978-
0133737622.

Ramasamy Ramamurthy, S. and N. Roy (2018). “Recent trends in machine learn-
ing for human activity recognition—a survey”. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery 8:4, e1254.

Ravi, N., N. Dandekar, P. Mysore, and M. L. Littman (2005). “Activity recognition
from accelerometer data”. In: Aaai. Vol. 5. 2005. Pittsburgh, PA, pp. 1541–1546.

Russell, S. J. (2010). Artificial intelligence a modern approach. Pearson Education,
Inc.

Selvaraju, R. R., M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra (2017).
“Grad-cam: visual explanations from deep networks via gradient-based local-
ization”. In: Proceedings of the IEEE international conference on computer vi-
sion, pp. 618–626.

Sewak, M. (2019). Deep reinforcement learning. Springer.
Silver, D., A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,

J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. (2016).
“Mastering the game of go with deep neural networks and tree search”. nature
529:7587, pp. 484–489.

Vieira, S., W. H. Lopez Pinaya, R. Garcia-Dias, and A. Mechelli (2020). “Ma-
chine learning”. In: Mechelli, A. et al. (Eds.). Academic Press. ISBN: 978-0-
12-815739-8.

Wang, X., K. Smith, and R. Hyndman (2006). “Characteristic-based clustering for
time series data”. Data mining and knowledge Discovery 13:3, pp. 335–364.

61

A
Detailed results

Appendix containing the performance tables, confusion matrices and Grad-CAM
figures not presented in the article.

A.1 Model performances

The best k found during the cross-validation of the time windows data was k =
7 which gave an average accuracy of 0.8690%. The detailed performance when
trained with all training data and tested on the test set is shown in Table A.1 and
Figure A.1.

Table A.1 Performance table for the KNN model on features calculated from time window
data

Class Precision Recall F1-score Accuracy
Stationary (0) 0.9116 0.8754 0.8931
Fallen over (1) 0.8727 0.8421 0.8571

Lifted (2) 0.6931 0.4930 0.5762
Rolling (3) 0.8839 0.9842 0.9314
Shaken (4) 0.9479 0.9543 0.9511

Picked up from ground (5) 0.9151 0.8362 0.8739
Global average 0.8707 0.8309 0.8471 0.9003

Weighted average 0.8969 0.9003 0.8965 0.8309

62

A.1 Model performances

0 1 2 3 4 5
Predicted label

0

1

2

3

4

5

Tr
ue

 la
be

l

464 13 14 9 23 7

11 96 5 2 0 0

17 0 70 49 4 2

7 0 2 624 1 0

1 0 7 19 564 0

9 1 3 3 3 97

0 1 2 3 4 5
Predicted label

0

1

2

3

4

5

Tr
ue

 la
be

l

0.88 0.025 0.026 0.017 0.043 0.013

0.096 0.84 0.044 0.018 0 0

0.12 0 0.49 0.35 0.028 0.014

0.011 0 0.0032 0.98 0.0016 0

0.0017 0 0.012 0.032 0.95 0

0.078 0.0086 0.026 0.026 0.026 0.84

Figure A.1 Confusion matrices showing the performance for the KNN model on time win-
dows. The left matrix shows the amount of classified windows while the right shows the
recall percentages.

Table A.2 Performance table for LSTM model on normalized raw data

Class Precision Recall F1-score Accuracy
Stationary (0) 0.8447 0.9340 0.8871
Fallen over (1) 0.9326 0.7281 0.8178

Lifted (2) 0.7662 0.4155 0.5388
Rolling (3) 0.8699 0.9495 0.9080
Shaken (4) 0.9560 0.9205 0.9379

Picked up from ground (5) 0.8596 0.8448 0.8521
Global average 0.8715 0.7987 0.8236 0.8843

Weighted average 0.8834 0.8843 0.8786 0.7987

0 1 2 3 4 5
Predicted label

0

1

2

3

4

5

Tr
ue

 la
be

l

495 3 2 11 9 10

20 83 5 0 1 5

29 0 59 50 3 1

22 0 2 602 8 0

15 0 4 28 544 0

5 3 5 1 4 98

0 1 2 3 4 5
Predicted label

0

1

2

3

4

5

Tr
ue

 la
be

l

0.93 0.0057 0.0038 0.021 0.017 0.019

0.18 0.73 0.044 0 0.0088 0.044

0.2 0 0.42 0.35 0.021 0.007

0.035 0 0.0032 0.95 0.013 0

0.025 0 0.0068 0.047 0.92 0

0.043 0.026 0.043 0.0086 0.034 0.84

Figure A.2 Confusion matrices showing the performance for the LSTM network on nor-
malizedraw data. The left matrix shows the amount of classified windows while the right
shows the recall percentages.

63

Appendix A. Detailed results

Table A.3 Performance table for LSTM network on features

Class Precision Recall F1-score Accuracy
Stationary (0) 0.9100 0.8774 0.8934
Fallen over (1) 0.8667 0.7982 0.8310

Lifted (2) 0.7769 0.7113 0.7427
Rolling (3) 0.9331 0.9685 0.9505
Shaken (4) 0.9435 0.9612 0.9523

Picked up from ground (5) 0.9009 0.8621 0.8812
Global average 0.8862 0.8631 0.8739 0.9116

Weighted average 0.9103 0.9116 0.9105 0.8631

0 1 2 3 4 5
Predicted label

0

1

2

3

4

5

Tr
ue

 la
be

l

465 11 14 14 20 6

17 91 2 0 1 3

10 0 101 21 8 2

9 0 7 614 4 0

4 0 1 18 568 0

6 3 5 1 1 100

0 1 2 3 4 5
Predicted label

0

1

2

3

4

5

Tr
ue

 la
be

l

0.88 0.021 0.026 0.026 0.038 0.011

0.15 0.8 0.018 0 0.0088 0.026

0.07 0 0.71 0.15 0.056 0.014

0.014 0 0.011 0.97 0.0063 0

0.0068 0 0.0017 0.03 0.96 0

0.052 0.026 0.043 0.0086 0.0086 0.86

Figure A.3 Confusion matrices showing the performance for the LSTM network on fea-
tures. The left matrix shows the amount of classified windows while the right shows the recall
percentages.

Table A.4 Performance table for CNN model on normalized raw data

Class Precision Recall F1-Score Accuracy
Stationary (0) 0.9056 0.9226 0.9140
Fallen over (1) 0.9266 0.8860 0.9058

Lifted (2) 0.8015 0.7676 0.7841
Rolling (3) 0.9517 0.9637 0.9577
Shaken (4) 0.9693 0.9611 0.9652

Picked up from ground (5) 0.8772 0.8621 0.8696
Global average 0.9053 0.8938 0.8994 0.9299

Weighted average 0.9297 0.9299 0.9297 0.8938

64

A.1 Model performances

0 1 2 3 4 5
Predicted label

0

1

2

3

4

5

Tr
ue

 la
be

l

489 6 9 4 15 7

8 101 2 0 2 1

17 0 109 13 0 3

11 0 10 611 1 1

6 1 2 12 568 2

9 1 4 2 0 100

0 1 2 3 4 5
Predicted label

0

1

2

3

4

5

Tr
ue

 la
be

l

0.92 0.011 0.017 0.0075 0.028 0.013

0.07 0.89 0.018 0 0.018 0.0088

0.12 0 0.77 0.092 0 0.021

0.017 0 0.016 0.96 0.0016 0.0016

0.01 0.0017 0.0034 0.02 0.96 0.0034

0.078 0.0086 0.034 0.017 0 0.86

Figure A.4 Confusion matrices showing the performance for the CNN network on normal-
ized raw data. The left matrix shows the amount of classified windows while the right shows
the recall percentages.

Table A.5 Performance table for CNN model on features

Class Precision Recall F1-score Accuracy
Stationary (0) 0.9109 0.8868 0.8978
Fallen over (1) 0.8803 0.9035 0.8917

Lifted (2) 0.7324 0.7324 0.7324
Rolling (3) 0.9381 0.9795 0.9584
Shaken (4) 0.9741 0.9560 0.9650

Picked up from ground (5) 0.8727 0.8276 0.8496
Global average 0.8848 0.8810 0.8826 0.9210

Weighted average 0.9209 0.9210 0.9207 0.8810

0 1 2 3 4 5
Predicted label

0

1

2

3

4

5

Tr
ue

 la
be

l

470 10 21 8 13 8

7 103 1 0 1 2

16 1 104 17 0 4

7 0 5 621 1 0

6 0 4 16 565 0

10 3 7 0 0 96

0 1 2 3 4 5
Predicted label

0

1

2

3

4

5

Tr
ue

 la
be

l

0.89 0.019 0.04 0.015 0.025 0.015

0.061 0.9 0.0088 0 0.0088 0.018

0.11 0.007 0.73 0.12 0 0.028

0.011 0 0.0079 0.98 0.0016 0

0.01 0 0.0068 0.027 0.96 0

0.086 0.026 0.06 0 0 0.83

Figure A.5 Confusion matrices showing the performance for the CNN network on features.
The left matrix shows the amount of classified windows while the right shows the recall
percentages.

65

Appendix A. Detailed results

Table A.6 Performance table for CNN-LSTM hybrid network on features

Class Precision Recall F1-Score Accuracy
Stationary (0) 0.9408 0.8396 0.8873
Fallen over (1) 0.8548 0.9298 0.8907

Lifted (2) 0.6807 0.7958 0.7338
Rolling (3) 0.9258 0.9842 0.9541
Shaken (4) 0.9775 0.9560 0.9666

Picked up from ground (5) 0.8929 0.8621 0.8772
Global average 0.8788 0.8946 0.8850 0.9182

Weighted average 0.9219 0.9182 0.9187 0.8946

0 1 2 3 4 5
Predicted label

0

1

2

3

4

5

Tr
ue

 la
be

l

445 14 38 17 8 8

4 106 2 1 0 1

12 0 113 13 1 3

2 0 7 624 1 0

5 0 2 19 565 0

5 4 4 0 3 100

0 1 2 3 4 5
Predicted label

0

1

2

3

4

5

Tr
ue

 la
be

l

0.84 0.026 0.072 0.032 0.015 0.015

0.035 0.93 0.018 0.0088 0 0.0088

0.085 0 0.8 0.092 0.007 0.021

0.0032 0 0.011 0.98 0.0016 0

0.0085 0 0.0034 0.032 0.96 0

0.043 0.034 0.034 0 0.026 0.86

Figure A.6 Confusion matrices showing the performance of the CNN-LSTM network on
features. The left matrix shows the amount of classified windows while the right shows the
recall percentages.

A.2 Grad-CAM

In this section of the appendix, more examples of created Grad-CAM heatmaps are
shown to give a more complete image of how the model interpreted its inputs.

Figure A.7 shows a window of the bike falling like in Figure 4.5. The striped
behaviour hinting at a hidden pattern of the data, discussed in Chapter 5.1.3, is
clearly visible between samples 20 and 50.

Figure A.8 shows one window of the bike getting lifted. The most important
data points occur towards the end, where both the accelerometer and the gyroscope
has its maximum values. This is where the motion seems to start, indicating that the
window is the first depicting the entire event.

66

A.2 Grad-CAM

0 20 40 60 80 100

0.2

0.4

0.6

0.8

0.0

0.5

1.0

1.5

2.0

2.5

3.0
1e 8

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0
1e 8

Figure A.7 Accelereometer data on top, gyroscope data on bottom. The data shows one
time window of the bike falling, which it correctly predicted with 99% confidence.

0 20 40 60 80 100

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.000

0.002

0.004

0.006

0.008

0 20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

0.000

0.002

0.004

0.006

0.008

Figure A.8 Accelereometer data on top, gyroscope data on bottom. The data shows one
time window of the bike getting lifted, which it correctly predicted with 64% confidence.

Figure A.9 shows one window of the bike getting lifted. The most important data
points happen around two thirds into the data, where both the accelerometer and
the gyroscope has its maximum values. It depicts the same event as A.8 but slightly
later on meaning the windows overlap. Notice that the model seems to find the peak
in the data in both windows, and use it to correctly classify the event, despite the
peak being positioned differently in the two windows.

67

Appendix A. Detailed results

0 20 40 60 80 100

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.0000

0.0005

0.0010

0.0015

0.0020

0 20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

0.0000

0.0005

0.0010

0.0015

0.0020

Figure A.9 Accelereometer data on top, gyroscope data on bottom. The data shows one
time window of the bike getting lifted, which it correctly predicted with 93% confidence.

0 20 40 60 80 100

0.35

0.40

0.45

0.50

0.000000

0.000025

0.000050

0.000075

0.000100

0.000125

0.000150

0.000175

0 20 40 60 80 100

0.2

0.3

0.4

0.5

0.000000

0.000025

0.000050

0.000075

0.000100

0.000125

0.000150

0.000175

Figure A.10 Accelereometer data on top, gyroscope data on bottom. The data shows one
time window of the bike rolling, which it correctly predicted with 99% confidence.

Figure A.10 shows one window of the bike rolling. Here it seems as if many data
points are of importance, especially in the first half, but is hard to interpret why. It
supports the conclusion that it is more difficult to comprehend the decisions for the
interchangeable motions.

68

A.2 Grad-CAM

0 20 40 60 80 100

0.400

0.425

0.450

0.475

0.500

0.525

0.550

0.000

0.001

0.002

0.003

0.004

0.005

0 20 40 60 80 100

0.25

0.30

0.35

0.40

0.45

0.50

0.000

0.001

0.002

0.003

0.004

0.005

Figure A.11 Accelereometer data on top, gyroscope data on bottom. The data shows one
time window of the bike shaking, which it predicted as rolling with 40% confidence.

Figure A.11 shows one window of the bike shaking, but the model was not confi-
dent of any motion. The class with the largest confidence, "Rolling", had still only
a confidence of 40%. With the conclusion that the model seems to base much of its
decision on the gyroscope gives a hint why the model is uncertain. The gyroscope
changes only within noise levels.

Figure A.12 shows one window of the bike shaking. There is a lot of motion in
the accelerometer in the second half, but the model seems to ignore it. The neigh-
bourhood with the most important points happen where the accelerometer has few
changes but the gyroscope has its maximal values.

69

Appendix A. Detailed results

0 20 40 60 80 100

0.40

0.45

0.50

0.55

0

1

2

3

4

5

6

7

1e 5

0 20 40 60 80 100

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0

1

2

3

4

5

6

7

1e 5

Figure A.12 Accelereometer data on top, gyroscope data on bottom. The data shows one
time window of the bike shaking, which it correctly predicted with 97% confidence.

70

71

Appendix B. List of case definitions

B
List of case definitions

Table B.1 Table showing all the use cases for the data. The stationary cases were only
used in full event solution. When the time windows were used all data that was not already
annotated as something, were used as the stationary class. All cases except the ones for rolling
were performed with both locked and unlocked bikes.

Class Case
Stationary (0) Bike stationary on kickstand

Bike stationary in bike rack
Bike stationary while held by user

Bike stationary while lying on ground
Bike stationary in bike rack with "accidental" contact

Fallen over (1) Bike released by user from standing
Bike released by user from low position

Bike sliding down from wall/tree
Bike falling from standing up to halfway down

Lifted (2) Bike carried a distance
Bike lifted and rotated 180 degrees

Bike lifted in place for a longer time
Bike lifted and placed on higher ground

Bike lifted and dropped instantly
Rolling (3) Bike rolled by user slowly

Bike rolled by user quickly
Bike rolled on uneven ground

Bike rolled downhill
Bike rolled uphill

Bike rolled in a circle
Bike ridden by user slowly
Bike ridden by user quickly

Bike ridden on uneven ground
Bike ridden downhill

Bike ridden uphill
Bike ridden in a circle

Shaken (4) Bike shaken sideways
Bike shaken back and forth

Bike shaken in bike rack
Picked up from ground (5) Bike picked up from ground72

Lund University
Department of Automatic Control
Box 118
SE-221 00 Lund Sweden

Document name
MASTER’S THESIS
Date of issue
March 2023
Document Number
TFRT-6192

Author(s)

Filip Larsson
Pontus Hallqvist

Supervisor
Anders Svensson, Robert Bosch AB, Sweden
Yiannis Karayiannidis, Dept. of Automatic Control,
Lund University, Sweden
Pontus Giselsson, Dept. of Automatic Control, Lund
University, Sweden (examiner)

Title and subtitle

Classifying Motion Patterns of Bikes using Machine Learning

Abstract

Electric bikes have become ubiquitous in traffic, and with a growing user base and expensive prices, a
demand for bike protection is increasing. Bike protection applications could include detecting and
notifying the owner if their bike has been stolen or fallen over. This thesis aims to develop solutions
for recognizing and classifying motion patterns of an electric bike to allow for improvements in bike
protection applications.
Using accelerometer, gyroscope and magnetometer data as input, machine learning models were
developed to perform classification. The data was labeled to six classes of different motions and then
normalized, split into time windows and featurized. The different machine learning models built and
tested were k-nearest neighbors (KNN), Convolutional neural network (CNN), Long short-term
memory (LSTM) and a combined CNN-LSTM network. Time windows with different lengths and
overlaps were tested and evaluated to achieve the best accuracy possible. Lastly, a filter was applied
to the output to correct misclassifications.
To increase the understanding of how decisions were made by the models, Grad-CAM was applied to
highlight what parts of the information the model found most crucial. Using the Grad-CAM
heatmaps, it was found that the gyroscope data was the most influential for the model’s decisions.
The model with the best performance was a CNN-LSTM combination network that uses a time
window of 2 seconds and 75% overlap. It performed with an accuracy of 94.65%. When testing the
best model with data from other bikes with different mounting positions, the accuracy was 35.23%
indicating that different sensor placements or orientations changes the data in a way the current model
cannot handle.
Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
1-72

Recipient’s notes

Security classification

http://www.control.lth.se/publications/

