
Department of Electrical and Information Technology
Lund University, Faculty of Engineering

Master’s Thesis

Fuzzing of PKCS#11 Trusted
Application

Authors:
Kevin Zeng, yggdrasel@protonmail.com

Supervisors:
Christian Gehrmann, EIT, christian.gehrmann@eit.lth.se

Patrik Lantz, Axis Communications
Lars Persson, Axis Communications

Examiner:
Thomas Johansson, EIT, thomas.johansson@eit.lth.se

Time span:

Feb 2022 - Oct 2022

Abstract

The main goal of this thesis is to find an effective way to fuzz trusted
applications (TAs) with source code residing in trusted execution environment
(TEE). While fuzzing TAs has been previously done, no work has been found
to utilize the source code of TAs to improve the fuzzing. Utilizing the source
code in fuzzing can lead to an increase in code coverage compared to black-box
fuzzing, and therefore could be more effective in testing critical parts of the
software. This might inspire people to develop similar fuzzing techniques on
TAs running on OP-TEE or other TEEs.

The fuzzing target will be the TA implementation of the Public-Key Cryptog-
raphy Standard 11 (PKCS#11) currently developed by STMicroelectronics
and Linaro [1]. The TA is complex, and no previous documents on any
extensive security testing on the PKCS#11 TA has been found. The TA
source code is also available to the public, which can be utilized by certain
fuzzing techniques to empower the fuzzing process. The focus of the project
will not solely be to fuzz the PKCS#11 TA specifically, but also a method to
fuzz TAs in general.

The following list summarizes the goals of the project:

• Implement a proof of concept on how to fuzz a TA running on OP-TEE
using fuzzing technique that takes advantage of available source code.

• Explore how to build an effective fuzzing harness which bridges the gap
between the fuzzer and target expected input. The harness will also
setup the necessary state of the target.

The solution provided in this thesis uses various external tools and projects to
host, perform fuzz testing and provide insight on the target TA. The fuzzing
process is able to explore deeper into the target and provide information related
to bugs, code coverage and other fuzzing relevant information. However, in
order to have a better fuzzing experience, certain highlighted problems of the
project still needs attention. While the current state of the solution is not
perfect, it is enough to serve as a proof of concept.

1

Popular Science Summary

Highly secure and sensitive tasks of applications in devices such as phones
are often performed in a secure environment separated from normal tasks.
This will provide additional protection making it harder for adversaries to
manipulate or extract information. However, despite running in a protected
environment, the applications are still vulnerable to attacks introduced by
bugs. Therefore, this work will provide a method to security test these
applications inside of such environments to increase the security making it
more difficult for adversaries to abuse the system.

An application is set of instructions and data used to tell a computer to perform
various tasks. However, can an application be trusted to perform the user-
intended tasks? And in safe manner? For example, how can a user know that
the password provided to a login prompt does not get forwarded to another
person? Or if the password stored in the login authenticator can be leaked?
To provide a higher trust- and protection-level, sensitive operations and data
in normal applications can be moved to a trusted execution environment.
This technique is commonly used in the mobile industry. Features such as
mobile payments and fingerprint authentication offers higher security with
the usage of trusted execution environments.

However, despite that the computer is executing the correct application in a
protected environment, it might still be possible for an adversary to abuse.
Gaps and flaws known as bugs can be introduced by the developers when
creating the application, leaving security vulnerabilities that can be manipu-
lated by an adversary to perform unintended or even harmful activities such
as bypassing security features, leaking sensitive information and more.

This thesis focuses on finding bugs of applications designed for trusted exe-
cution environments in an automated way by using a concept called fuzzing.
This is done by running the application in different test cases and monitoring
its behaviours to find bugs. This can allow application vendors and security
researchers to detect faults and patch them up to protect users from attacks.
Certain industries might also require extensive security testing of applica-
tion to provide a higher assurance in the products. The idea of the work
is to inspire others to use similar methods to security test applications and

2

contribute to a safer digital world.

3

Acknowledgement

I would like to express my sincere gratitude to my supervisors and coworkers
at Axis for providing me with help, guidance and discussions over the course
of the thesis and made it a fun workplace. Especially my main supervisor
Patrik who I have been working close with and has given me the opportunity
to do research in this interesting area. I would also like to express my thanks
to my supervisor Christian at the Department of Electrical and Information
Technology at Lund University for a lot of valuable feedback on the thesis.
Finally, I would like to thank my friends and loved ones for not only giving
me feedback and help but also supporting me throughout this journey.

4

Abbreviation

Table 1: Abbreviations

Abbreviation Full Form
AFL American Fuzzy Lop
API Application Programming Interface
ASAN AddressSanitizer
CA Client Application
CoT Chain of Trust
DRM Digital Rights Management
eFuse Electronic Fuse
EL Exception Level
ELF Executable and Linkable Format
eMMC Embedded MultiMediaCard
FEK File Encryption Key
FS File System
GCC GNU Compiler Collection
GDB GNU Debugger
GP GlobalPlatform
HMAC Hash-based Message Authentication Code
HSM Hardware Security Modules
HUK Hardware Unique Key
Intel SGX Intel Software Guard Extensions
IPC Inter-Process Communication
IV Initialisation Vector
I/O Input/Output
LSAN LeakSanitizer
Mbed TLS Mbed Transport Layer Security
MSAN MemorySanitizer
Open-TEE Open-Trusted Execution Environment
OP-TEE Open Portable Trusted Execution Environment
OS Operative System
OTP One-time programmable

Continued on next page

5

Table 1 – continued from previous page
Abbreviation Full Form
PID Process Identifier
PKCS#11 Public-Key Cryptography Standard 11
POSIX Portable Operating System Interface
PRNG Pseudorandom Number Generator
PTA Pseudo Trusted Application
QSEE Qualcomm Secure Execution Environment
REE Rich Execution Environment
ROM Read-only Memory
RoT Root of Trust
RPC Remote Procedure Call
RPMB Replay Protected Memory Block
SAT Boolean Satisfiability
SCC Security Critical Codes
SMT Satisfiability Modulo Theories
SO Security Officer
SoC System-on-Chip
SSK Secure Storage Key
syscall system call
TA Trusted Application
TC Trusted Computing
TC TrustedCore
TEE Trusted Execution Environment
TF-A Trusted Firmware-A
TLV Type-length-value
TOCTOU Time-Of-Check-Time-of-Use
TSK Trusted Application Storage Key
TZ TrustZone
uboot Das U-Boot
UBSAN UndefinedBehaviorSanitizer
UEFI Unified Extensible Firmware Interface
UUID Universally unique identifier

6

Introduction

Modern hardware is designed to be more compact, powerful and efficient,
allowing developers to create more complex systems. Consequently, the
increase in complexity entails a maintainability and updatability challenge
resulting in a larger attack surface [2], thus a higher likelihood of discovering
security vulnerabilities. Meanwhile, running security critical codes (SCCs) on
devices (e.g. secure transactions and critical information handling) is more
common [3]. These issues creates a demand for Trusted Computing (TC),
which is defined to help systems achieve secure computation, privacy and
data protection [4]. The concept of Trusted Execution Environment (TEE) is
later introduced as a way of addressing TC. It is an environment that allows
for secure, isolated and tamper-resistant execution of arbitrary code.

Currently, there are many different implementations of TEE available, such
as:

• Open Portable Trusted Execution Environment (OP-TEE) 1, currently
handled by Linaro.

• Kinibi 2, developed by Trustonic.

• TrustedCore (TC) 3, developed by Huawei. It’s used in Huawei mobile
devices.

• TEEGRIS 4, developed by Samsung. It’s used in Samsung mobile
devices.

• Qualcomm Secure Execution Environment (QSEE) 5, developed by
Qualcomm. It’s used in Android devices.

1https://optee.readthedocs.io/en/latest/general/about.html
2https://www.trustonic.com/technology/
3https://www.usenix.org/system/files/woot20-paper-busch.pdf
4https://developer.samsung.com/teegris/overview.html
5https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/

documents/guard_your_data_with_the_qualcomm_snapdragon_mobile_platform2.

pdf

7

https://optee.readthedocs.io/en/latest/general/about.html
https://www.trustonic.com/technology/
https://www.usenix.org/system/files/woot20-paper-busch.pdf
https://developer.samsung.com/teegris/overview.html
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/guard_your_data_with_the_qualcomm_snapdragon_mobile_platform2.pdf
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/guard_your_data_with_the_qualcomm_snapdragon_mobile_platform2.pdf
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/guard_your_data_with_the_qualcomm_snapdragon_mobile_platform2.pdf

• Intel Software Guard Extensions (Intel SGX) 6, developed by Intel.

• Apple Secure Enclave 7, developed by Apple.

• ZAYA Secure Operative System 8, developed by ZAYA, offers a TEE
for RISC-V architecture.

A TEE can have many different use-cases, such as secure fingerprint func-
tionality for mobile devices, digital rights management (DRM) technologies
for protecting the media content of streaming services or secure storage for
sensitive information in embedded and mobile devices.

Often, the security critical operations performed by most applications are
done in an unsafe environment, also known as a Rich Execution Environment
(REE) (e.g. Linux) that allows adversaries to perform modification or extrac-
tion of the sensitive information. For example, your password manager might
be unlocked using a cryptographic object (e.g. a cryptographic key) which
the adversary can steal from your running process. Therefore, there is a need
to manage sensitive operations (e.g. related to key management) in a Trusted
Application (TA) running on a TEE. An example of a TA implementation
could be the PKCS#11 API [5] that handles the communication to crypto-
graphic security tokens such as smart cards, USB keys, and hardware security
modules (HSM), where the actual cryptographic operations are done. A
PKCS#11 TA can be implemented for a specific TEE. For example, OP-TEE,
a TEE designed as a companion to a non-secure Linux kernel running on
Arm [6, p. 3]. OP-TEE uses TrustZone, hardware capabilities on newer Arm
processors (e.g. Cortex-A) to create two separate execution environments
which they call the “normal world” and the “secure world”.

Many applications (e.g. Mozilla Firefox, OpenSSL and OpenVPN) uses the
PKCS#11 to communicate with security tokens. In the context of OP-TEE,
since the PKCS#11 TA can take input from the REE, any vulnerability in
the TA itself could be a security threat to the massive user base of such
applications. Therefore, it is important to test the PKCS#11 TA for bugs
and vulnerabilities. An effective way to achieve this is by utilizing fuzzing

6https://www.intel.com/content/www/us/en/developer/tools/

software-guard-extensions/overview.html
7https://support.apple.com/guide/security/secure-enclave-sec59b0b31ff/

web
8https://riscv.org/news/2021/09/zaya-now-supports-risc-v-zaya/

8

https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://support.apple.com/guide/security/secure-enclave-sec59b0b31ff/web
https://support.apple.com/guide/security/secure-enclave-sec59b0b31ff/web
https://riscv.org/news/2021/09/zaya-now-supports-risc-v-zaya/

methods [7], [8], a dynamic testing method used for automating software tests
and finding security vulnerabilities in software. In the context of security, the
testing process involves providing a great number of inputs covering a large
area of the application. The goal is to find edge cases that are not tested,
and monitor unexpected events and metrics of the application. These events
often expose implementation and design faults which could lead to security
vulnerabilities that can be abused by adversaries.

This thesis is about finding a method to security test TAs efficiently using
fuzzing techniques that utilizes the source code of such applications to empower
the fuzzing process. This can allow different software vendors to security test
TAs using similar methods.

9

Contents

1 Introduction 7

2 Method 13
2.1 Fuzzing Environment Setup 13
2.2 Fuzzing Target . 13
2.3 Fuzzing Tool Selection . 13
2.4 The Fuzzing Process . 14

3 Background 15
3.1 TrustZone . 15

3.1.1 Separation of Execution Worlds 16
3.1.2 Resource Access Control 17

3.2 Secure Boot . 19
3.2.1 TF-A . 20

3.3 OP-TEE . 22
3.3.1 Architecture . 24
3.3.2 Trusted Storage . 25

3.3.2.1 REE FS and RPMB FS 26
3.3.2.2 Storing TA in Secure Storage 26

3.4 The Open-TEE project . 28
3.4.1 Architecture . 29

3.5 TA . 29
3.5.1 TEE Client and Internal Core API 29
3.5.2 PTA . 32
3.5.3 Inter-TA Communication 34
3.5.4 Threat Model . 34

3.6 Fuzzing . 35
3.6.1 The fuzzing process . 37
3.6.2 Classification of Fuzzers 38
3.6.3 Fuzzing with AFL and Sanitizers 39

3.6.3.1 Architecture 40
3.6.3.2 Mutation . 40
3.6.3.3 Instrumentation 41

10

3.6.3.4 Increase performance 42
3.6.3.5 Utility . 42

3.6.4 Sanitizers for Improved Bug Detection 43
3.7 PKCS#11 . 44

3.7.1 The PKCS#11 Model 44
3.7.2 PKCS#11 in OP-TEE 45
3.7.3 Passing Data to the PKCS#11 TA 47

3.8 Related Work . 47
3.8.1 Android TA Fuzzing 47
3.8.2 Qualcomm TA Fuzzing 49

4 System Design 51
4.1 The Fuzzing Environment . 51

4.1.1 Requirements . 51
4.1.2 Ideas and the Solution 52

4.1.2.1 Fuzzer as a TA 52
4.1.2.2 Fuzzer as a normal world application 52
4.1.2.3 Proxy TA in secure world 55
4.1.2.4 Emulate the GP TEE Interface 55

4.1.3 Porting of PKCS#11 57
4.1.4 Binary Instrumentation 59

4.2 Modern Fuzzing Tool Alternatives 59
4.2.1 Evaluation of Fuzzing Tools 61

4.2.1.1 Magma . 61
4.2.1.2 FuzzBench 62
4.2.1.3 Choosing a Fuzzer 63

4.2.2 AFL Integration . 63
4.3 Fuzzing Harness . 66

4.3.1 Fuzzing Entry Points 66
4.3.2 Targeting the PKCS#11 Serialization Parser 66
4.3.3 Harness Design and Data Collection 67

4.4 Fuzzing in Iterations . 67

5 Result 69
5.1 TA Fuzzing Tool . 69
5.2 Proof of Concept Fuzzing of PKCS#11 TA 69
5.3 The State of the Solution . 70

11

6 Conclusion 72
6.1 Project Achievements . 72
6.2 Future work . 72

6.2.1 Optimization . 73
6.2.2 Generalization . 73
6.2.3 Coverage . 73

12

Method

The method of achieving the goal of the thesis is presented below. The method
will include the evaluation of different approaches, finding the relevant tools
and integrating the environment and tools for a complete solution.

2.1 Fuzzing Environment Setup

An analysis on how to setup an environment that is able to host a TA and
allowing it to be efficiently fuzzed will be performed. The design of the
solution will focus on efficiency and simplicity. The design will provide the
TA to be invoked by a client application (CA) and perform the intended
operation. The environment will also have to support the usage of tools
required by the fuzzing process.

2.2 Fuzzing Target

The fuzzing target (PKCS#11 TA) will have to be ported to the fuzzing
environment solution. The porting will be focusing on the important and
commonly used features of the target TA.

2.3 Fuzzing Tool Selection

When the environment for the TA and fuzzer is setup, modern source-code-
utilizing fuzzing technology will be reviewed and used for the project. The
selection is based on its performance and other properties (e.g. the nature of
the fuzzing technique and availability etc.).

13

2.4 The Fuzzing Process

After the preparation of the environment and tools to use, a harness will be
designed for the fuzzing target (PKCS#11 TA). This includes providing the
fuzzer with information about the input structure and setting up PKCS#11
TA in states that can be efficiently fuzzed.

14

Background

To design a solution for the thesis problem, some insight of relevant concepts,
tools and projects will allow the reader gain a better understanding of how
some of the core technology works, the core problems and different possible
solutions for them. In this section TrustZone and secure boot, two underlying
technology used by OP-TEE to realize a TEE are introduced to allow the user
to have a better understanding of the TEE concept. A specific implementation
of secure boot, Trusted Firmware-A, which can be used with OP-TEE is
shortly touched upon, to provide the reader with a concrete example. Since
the target TA is designed to be ran in OP-TEE, some architectural information
and tools in OP-TEE are presented to allow the user to better understand
relations and features that a TA running in a TEE might be using or could
be dependent on. The design of Open-TEE engine will be explained as this
will be used as a part of the final solution. Since the target is a TA, the
interface of such applications will be introduced. The target, PKCS#11 TA,
will also be threat modeled to discuss possible attack scenarios on the target.
As fuzzing is the chosen testing method for the target application, the concept
of fuzzing will be introduced. Specific information about the fuzzer of choice
for the solution will be presented together with tools that can be used with
it to improve the fuzzing. Some information on the target, PKCS#11 TA,
will also be introduced. Finally, some other relevant projects on the topic of
fuzzing TAs will be mentioned.

3.1 TrustZone

TEEs such as OP-TEE utilizes the Arm hardware technology, TrustZone, to
perform security checks on a hardware level in order to realize a TEE. The
Arm core is abstracted into two virtual cores (VCPUs), a secure VCPU and
non-secure VCPU [4, p. 61]. Hence, a physical processor with TrustZone
capabilities is able to create a separation of execution worlds: the normal
world (in non-secure mode), where the REE (e.g. Linux) operative system
(OS) resides, and the secure world in secure mode, where the TEE (e.g.

15

OP-TEE) resides [9]. This allows for an isolated safe execution environment
on a separate kernel for authorized TAs.

3.1.1 Separation of Execution Worlds

Although the secure OS is executed alongside the non-secure OS, it is shielded
from it and they are unable to run at the same time. Specifically, there
is a master and slave relationship between the two worlds [10, p. 5]. The
separation of environment is one of the core components of a TEE, and
satisfies the Separation Kernel Protection Profile (SKPP) [4, p. 58]. The
main requirements are:

“

• Data (spatial) separation. Data within one partition cannot be read or
modified by other partitions;

• Sanitization (temporal separation). Shared resources cannot be used to
leak information into other partitions;

• Control of information flow. Communication between partitions cannot
occur unless explicitly permitted;

• Fault isolation. Security breach in one partition cannot spread to other
partitions.

”

The Arm TrustZone extension adds a transitional mode, the monitor mode,
to the existing Arm operation modes (see Table 3.1), which resides only in
the secure world [11, p. 70, 12]. Its purpose is to provide an interface between
the two worlds and manage transitions between the worlds, ensuring that
the state of the world before a transition is properly saved and that the
state of the world after the transition is properly restored [10, pp. 5–6]. As
the secure monitor in monitor mode operates on the privileged instruction
Secure Monitor Call (SMC), any code execution in the secure world must be
requested from an application in the normal world via a SMC and be permitted
by the non-secure OS. This allows access to TAs without exposing secure
resources (e.g. encryption keys) to the normal world. Figure 3.1 depicts a
high level overview of the possible processor modes in the respective exception
levels of an ARMv8-A architecture as well as an example of a normal world

16

Table 3.1: Processor Modes in ARMv8-A architecture

Processor Mode Exception
Level

Security
State

Description

User (USR) EL0 Both The usual ARM program execu-
tion state, and is used for execut-
ing most application programs.

Supervisor
(SVC)

EL1 Both A protected mode for the OS.

System (SYS) EL1 Both A privileged user mode for the OS.
Abort (ABT) EL1 Both Entered after a data abort or

prefetch abort.
Interrupt Re-
quest (IRQ)

EL1 Both Used for general-purpose interrupt
handling.

Fast Interrupt
(FIQ)

EL1 Both Used for handling fast interrupts.

Undefined
(UND)

EL1 Both Entered when an undefined in-
struction exception occurs.

Hypervisor
(HYP)1

EL2 Non-
secure
only

Used by a hypervisor, that con-
trols, and can switch between
Guest Operating Systems that ex-
ecute at EL1.

Monitor (MON)2 EL3 Secure
only

A Secure mode for the TrustZone
Secure Monitor code.

1 Hypervisor is optional.
2 Added with the TrustZone extension.

application making a call to an application in the secure world. Different
ARM architecture can use different terminology and model for the TrustZone.
As OP-TEE can be configured for ARMv7-A and ARMv8-A architecture, the
ARMv8-A conventions will be followed for consistency. The table 3.1 will
consist of the processor modes available in the ARMv8-A architecture.

3.1.2 Resource Access Control

Except for the different processor modes, there is also a Non-secure bit (NS-
bit) set in the Secure Configuration Register (SCR), which is unreachable from
the normal world, to determine the security state of the processor execution

17

[13, p. 39]. An exception is the monitor mode, which the NS-bit has no effect
on, since it always operate in the secure world. The physical address space in
peripherals and memory are divided into a secure and non-secure, accessible
only in the correct security state [10, p. 6]. This is enforced by the core by
setting the NS-bit to 1 during a memory transaction created by the normal
world. Whereas, secure world applications are able to access non-secure
memory regions by setting the NS-bit and NSTable-bit in its translation table
entries. Since secure and non-secure entries can co-exist, any attempt from
the normal world to access secure data will be rejected and cached secure
data will result in a cache miss.

18

Figure 3.1: Overview of how the processor modes relate to the exception
levels. An example of a normal world application invoking an application in
the secure world is shown in the figure.
Red elements belong to the normal world. Green elements belong to the
secure world.

3.2 Secure Boot

To provide protection from attacks being performed during a powered down
state of the system (e.g. tampering with the secure world software image in
flash memory) TrustZone is combined with a secure boot sequence to ensure
platform integrity [13, p. 69]. The secure boot can validate each component
of hardware and software in the normal and secure world using Public-Key-

19

Cryptography Standards (PKCS), generating a chain of trust (CoT) [13, p. 69,
14]. However, it is essential to establish a Root of Trust (RoT) at the beginning
of the CoT, which is a trusted foundational security component that is difficult
to tamper with [15, 13, p. 69]. The RoT integrity must hold, or else the
CoT will be broken. The integrity control of the bootstrap process will start
at the RoT and work its way up the CoT until the full initialization of the
system has been performed. Figure 3.2 [13, pp. 5–5] shows a secure boot
sequence of the secure world, ending the CoT when the secure OS is up and
running. Each module is signed using some private key provided by a trusted
vendor, and the signature is stored in the system [13, pp. 70–71]. At each new
stage before execution, the binaries of the module will be integrity checked
using the corresponding public key of the vendor. If any integrity control fails
during the initialization process, the CoT breaks signifying that the binaries
has been modified and thus differing from the vendor specified ones. As a
result, the bootstrap process is interrupted.

In the OP-TEE project, the RoT is the read-only memory (ROM) system-
on-a-chip (SoC) bootloader [9]. The ROM SoC will start the initialization
of peripherals (e.g. memory controller). It will then boot the OP-TEE OS
(in the secure world) stored in a flash memory. The secure OS will perform
security checks before booting the Linux OS (in the normal world). This will
ensure that the normal world applications does not perform any modifications
prior to the integrity controls.

3.2.1 TF-A

The Trusted Firmware organisation provides reference implementations of the
secure world software (running in S-EL3), for building the foundation to a TEE
[16]. For example, Trusted Firmware-A (TF-A) a reference implementation
for ARMv7-A and ARMv8-A architectures, which is used in Cortex-A and
Neoverse processors. The TF-A provides an implementation of a secure boot
process which can be used with a secure OS as OP-TEE. An overview of
how the CoT is built starting from the RoT is illustrated in figure 3.3 [17,
18].

In TF-A, the initial boot loader in stage BL1, is stored in ROM and is the
first code to be executed in the system [19, p. 47]. The initial boot loader
will prepare to load and authenticate a trusted boot firmware image, of stage
BL2, into RAM. This firmware can be updated allowing for vulnerability

20

Figure 3.2: The figure shows a typical boot sequence of a TrustZone-enabled
processor. The secure boot scheme adds cryptographic checks to each stage
of the secure world boot process. Note that it is also possible to configure
additional integrity checks in the normal world boot stages.

21

patches. The control of execution will be handed over to the trusted boot
firmware.

The trusted boot firmware will prepare, authenticate and load all the EL3
firmware, of stage BL31, into RAM [19, p. 48]. This includes the EL3 secure
monitor run-time firmware. Then the control of execution will be handed
over to the secure monitor.

The secure monitor firmware will now load the S-EL1 payload of stage BL32,
which is often a secure OS. Similarly to the previous stages, initialization
preparation and authentication of the secure OS is performed. Next, the
execution control is handed to the secure OS.

Finally, the secure OS will load a boot loader for the non-secure OS such as
Unified Extensible Firmware Interface (UEFI) or Das U-Boot (uboot) in stage
BL33.

3.3 OP-TEE

The OP-TEE project, is an open source project that started 2014, and
currently maintained by Linaro1 [20]. The Arm technology TrustZone is used
by OP-TEE to make up a complete TEE. The OP-TEE OS operates in a
confined TEE cooperating with a Linux OS in the REE.

To simplify TA development, the OP-TEE offers libraries and example TAs
by default. In addition, several other tools (e.g. GDB), CAs (e.g. xtest) and
TAs (e.g. PKCS#11) can be enabled in a configuration file for the build. The
OP-TEE build can also be configured to include a TA Development Kit to
simplify development and integration of TAs. The kit allows the generation
of signed TAs from their respective source files with the included libraries,
header files and makefile scripts [21]. The design of the OP-TEE adheres to
the widely accepted industry standard set by the GlobalPlatform (GP) [6,
p. 49]. It implements the GP API specifications[20]. ”OP-TEE implements
TEE Internal Core API v1.1.x which is the API exposed to TAs and the TEE
Client API v1.0, which is the API describing how to communicate with a
TEE” [20].

1Linaro’s official website https://www.linaro.org/.

22

https://www.linaro.org/

Figure 3.3: The figure illustrates the verification flow creating the chain of
trust in Trusted Firmware-A starting from the root of trust.

23

3.3.1 Architecture

The major components of OP-TEE are illustrated in figure 3.4 [18].

Figure 3.4: An overview of the OP-TEE architecture.

The main component of OP-TEE is the OP-TEE core which runs in secure
kernel mode. Trusted utility libraries are provided by OP-TEE for TA
development [21]. For example, the GP device TEE internal core API library
that provides standard TA services which allows TAs to call secure services
executing at a higher privilege. It implements the GP TEE internal API and
is an interface for TA communication with the secure OS via system calls
(syscalls). The loading of static and dynamic libraries are also supported.

OP-TEE also implements the GP device TEE client API specification for
Linux based OS in form of a user space library and a Linux kernel TEE driver
[21]. This allows TAs to be invoked via the API from CAs and a way to
access OP-TEE core services from the normal world.

24

The TEE Linux device driver/subsystem (optee linuxdriver) handles the
details needed to communicate with OP-TEE [22]. The Linux subsystem
handles registration of TEE drivers, manages shared memory between Linux
and the TEE and provides a generic API to the TEE. However, it is difficult
for OP-TEE, from the secure world, to perform certain actions in the normal
world (e.g. accessing a non-volatile media device that is controlled in the
normal world or accessing shared resources between the worlds). Therefore,
a TEE supplicant is implemented in the normal world user space to handle
remote services for the OP-TEE core. The TEE supplicant is invoked by the
OP-TEE core via the TEE Linux kernel driver.

3.3.2 Trusted Storage

Objects created and handled by the PKCS#11 TA (e.g. tokens, keys, etc.)
are stored and protected in a secure storage. These objects could be used
for authentication of services or decryption of data and must be secured.
OP-TEE has implemented its secure storage in accordance to the GP TEE
Internal Core API, allowing storage of persistent general-purpose data (e.g.
application-specific data) and key resources with confidentiality and integrity
protection [23]. The secure storage also guarantees that all storage modifying
operations are atomic, meaning that operations either completes in its entirety
or no write operation will be done.

The secure storage, as a part of the GP trusted storage requirement (in the
GP TEE Internal Core API), has to fulfill the following requirement:

“

1. The Trusted Storage may be backed by non-secure resources as long as
suitable cryptographic protection is applied, which MUST be as strong
as the means used to protect the TEE code and data itself.

2. The Trusted Storage MUST be bound to a particular device, which
means that it MUST be accessible or modifiable only by authorized
TAs running in the same TEE and on the same device as when the data
was created.

3. Ability to hide sensitive key material from the TA itself.

4. Each TA has access to its own storage space that is shared among all
the instances of that TA but separated from the other TAs.

25

5. The Trusted Storage must provide a minimum level of protection against
rollback attacks. It is accepted that the actually physical storage may
be in an insecure area and so is vulnerable to actions from outside of
the TEE. Typically, an implementation may rely on the REE for that
purpose (protection level 100) or on hardware assets controlled by the
TEE (protection level 1000).

[6, p. 66] ”

3.3.2.1 REE FS and RPMB FS

There are currently two supported implementations of secure storage in OP-
TEE: a REE file system (FS) in flash memory and a replay protected memory
block (RPMB) FS in embedded MultiMediaCard (eMMC) device. Both modes
can be used simultaneously.

An overview of the secure storage system architecture is illustrated in figure
3.5 [23]. All persistent objects stored in secure storage are integrity protected
and encrypted [6, p. 67]. The process of storing a persistent object in the
secure storage begins with a TA calling a write function provided by the
GP Trusted Storage API. The write function in the GP internal API library
will make a syscall, which is implemented in TEE trusted storage service [6,
p. 66]. The TEE trusted storage service will in turn invoke a series of TEE
file operations to store the data in the TEE FS. The TEE FS is an internal
intermediate FS in the OP-TEE OS (S-EL1). It takes care of encrypting data
and storing the the data in the normal world FS (REE FS or RPMB FS).
The TEE FS will prepare the data to be sent to the normal world FS, by
encrypting the data using the key manager and sending it using some (REE
or RPMB) file operation to the TEE supplicant in EL-0 using a series of
Remote Procedure Call (RPC) messages. A RPC message causes a subroutine
to execute in a different address space. Upon receiving the RPC messages, the
TEE supplicant will store the encrypted data in the normal world FS.

3.3.2.2 Storing TA in Secure Storage

TAs are stored in the normal world FS in Executable and Linkable Format
(ELF) [6, p. 73]. They are identified by their universally unique identifier
(UUID). The normal world FS is considered untrusted and a reason for storing
TAs in normal world FS is due to the large size of TAs. In order to utilize

26

Figure 3.5: The figure shows an overview of the secure storage system
architecture. In this example the TA writes data to a persistent object which
is later stored in the REE FS.

27

the normal world FS for TA storage the ELF files must be ensured to come
from a verified vendor and not altered or corrupted in any way. Therefore,
they are code signed and verified before being loaded into OP-TEE. The TAs
can also be optionally encrypted for increased security [6, p. 73].

When the stored TAs in the REE FS are to be loaded into secure world, the
OP-TEE core sends a series of RPC, via the OP-TEE driver, to the TEE
supplicant, to allocate memory for a payload buffer for the TA [6, pp. 76–77].
The OP-TEE core then registers this payload as shared memory (into the
TA address space) and commands the supplicant to copy the TA into a (non-
secure) shared memory. The TA will then be loaded from shared memory
into secure memory. Lastly, the OP-TEE core will make the supplicant free
the payload it allocated.

Despite that TAs are signed or even encrypted an attacker is still able to load
an outdated genuine TA with possible vulnerabilities to OP-TEE. RPMB
protects against data rollbacks [4, p. 60]. A database file ta ver.db stored in
the OP-TEE core is used for TA version control. It will check for the TA
version and prevent any downgraded TAs from being loaded. However, it will
allow any newer versions of a TA with a version number higher than the one
stored in the database. The upgraded version will replace the version number
in the database.

3.4 The Open-TEE project

The Open-TEE project is a virtual TEE created by the Secure Systems
research group at Aalto University in collaboration with the Intel Collaborative
Research Institute for Secure Computing. It implements functionalities and
components imposed by the GP. The implementation of these functionalities in
Open-TEE might not always fulfill the requirement of GP, e.g. how resources
are released during unexpected crashes of a TA [24, p. 5]. The actual TEE
environment might utilize certain hardware of different characteristics [24,
p. 6]. Hence, Open-TEE should not be used in production as a replacement for
other TEE environments. Open-TEE guarantees that a working TA running
on Open-TEE will also work on any GP-compliant hardware TEE [24, p. 2].
The virtual TEE requires Linux/GNU to run and has been tested on Arm
and x86 architecture [25, 24, p. 6]. A TA developed by Trustsonic using
Open-TEE has been compiled and used in production [26, p. 12].

28

3.4.1 Architecture

Open-TEE runs as a daemon process in the user space, abstracting away
the TEE OS [24, p. 5]. When running a CA binary stored in the user space,
Open-TEE will handle the invocation of TAs and the communication to them.
The architecture of Open-TEE is illustrated in figure 3.6 [24, p. 5]. When
initiating the Open-TEE engine, it will start a base which will then be forked
into a manager and a launcher process. The manager will function as the
secure world software, e.g. managing connections between CAs and TAs,
monitoring the CA process status, provide a secure storage for a TA, handling
shared memory regions for different sessions, and other functionalities imposed
by the GP. The launcher process acts as prototype for new TAs. It allows
a more optimized creation of TA processes, by pre-loading shared libraries
(i.e. the Open-TEE shared library implementations of the GP internal core
and client) and configuration of common components shared by all TAs in
the launcher process. The TA will then be loaded, dynamically, as a shared
library into the cloned launcher process, effectively becoming a TA process of
its own. This process is then re-parented onto the manager process. This will
allow the manager to take control of the TA allowing it to enforce the GP
requirements. Each TA process will have two threads running: the I/O thread
handling inter-process communication (IPC) and the logic thread, which is
the TA working thread. The IPC used in Open-TEE are Unix domain sockets
and inter-process signals to exchange information between the CA and TA
and control the system.

3.5 TA

3.5.1 TEE Client and Internal Core API

TAs and CAs are unable to communicate directly because they execute
in different environments. Instead, they follow the TEE client API and
internal API for communication between the normal and secure world. Each
TA must provide a few entry point functions, collectively called the TA
interface. The entry points are called by the Trusted Core Framework. An
extract of the client and internal core API can be found in table 3.2 and 3.3
respectively.

A CA will associate itself with a TEE in the secure world by creating a

29

Figure 3.6: The figure shows an overview of the Open-TEE architecture. The
orange components are part of the TEE OS while the yellow belong to the
GP API.

30

logical connection called context. This is done by calling the function
TEEC InitializeContext in the CA [9, p. 3]. This will create an instance
of the TA, which then calls TA CreateEntryPoint. It is possible for a CA to
initialize multiple contexts to different TEEs simultaneously.

Only after an initialized context can a session be established. A session is a
logical connection between the CA and a specific TA and is created by the
CA when providing a UUID to the TEEC OpenSession function call. When
a new session is created to a TA instance the TA OpenSessionEntryPoint
function call will be invoked. The UUID is used to differentiate different TAs
since all TAs has unique UUIDs. A CA can establish multiple sessions to
different TAs, however it is only able to have one session opened at a time.
It is possible to have an initial data exchange with the TA and to specify
connection methods (e.g. user authentication in the CA for increased access
to data or functionality) [27, p. 11].

Within a session the CA is able to communicate with the TA using shared
memory [9, p. 3]. Shared memory is a memory block shared between the
normal and secure world and used to exchange data between CAs and TAs [6,
p. 40]. The shared memory infrastructure is necessary because the secure and
normal worlds have separate page tables. Hence, they cannot access common
memory.

After a session is established the CA can communicate with the TA using
the TEEC InvokeCommand and TA InvokeCommandEntryPoint functions
[9, p. 3]. Shared memory is then used to send a numerical value to the TA,
identifying a command to execute by the TA. The commands are mapped to
defined function in the TA. The TA then performs the operation. An optional
operation payload can be included by the CA, passed inside the operation
parameters (which currently limited to 4) [27, p. 12]. When a command
has been invoked, the CA thread is blocked waiting for results from the TA.
However, several CA threads can be created to perform multiple commands
for concurrency.

The operation parameters sent are either memory references or a value
parameters with an associated data flow direction (e.g. input, output or
bidirectional) [27, p. 12]. In case of memory reference, the direction will
affect when the underlying memory buffers need to be synchronized with
the TA. Shared memory buffers are used for data exchange using memory
reference parameters. Meanwhile, value parameters simply exchanges two

31

32-bit integers without sharing nor synchronizing memory. Although, shared
memory can be reused in multiple command invocations and sessions it is only
possible as long the memory still exist within the scope of the TEE context
[27, pp. 13–15]. When the called API function returns, then the bytes that
the memory reference is referencing to is considered no longer alive, meaning
that there is no synchronization and data corruption can occur.

The TA operation parameter received from a CA must be verified by the
TA before usage [6, p. 144]. Expected parameters must be set in the TA.
The type of the received parameters in the TA can be provided using the
TEE PARAM TYPE GET(param types, param index) macro. The index
specified which parameter is checked. To verify that the TA receive correct
parameters, a comparison with macros of the expected parameter can be
compared against the actual received parameter. The verification include the
flow direction of the parameter and its type. This is a security precaution, in
case the CA is compromised and manipulated into sending unexpected data
to the TA.

A memory reference can refer to a (pre-) registered memory, which is a region
within a block of memory created before the operation, and a temporary
memory reference, which is a CA owned memory portion that is immediately
registered with the TEE Client API for the duration of the operation [27,
p. 12]. It is nevertheless more efficient to use registered memory if the memory
buffer will be used in more than one command invocation.

All session and invoke commands receive a return code indicating a successful
operation or an error code of the fault [27, p. 12]. When the TA has finished
performing the operation, the control is transferred back to the CA.

In order to end the communication between CA and TA properly the session
should be closed by the CA and TA calling the TEEC CloseSession and
TA CloseSessionEntryPoint functions. To finalize the context, the CA and TA
calls the TEEC FinalizeContext and TA DestroyEntryPoint functions.

3.5.2 PTA

Pseudo TA (PTA) differ from normal TAs in that they are implemented
directly in the OP-TEE core tree in core/pta. They are built into the OP-
TEE core blob [6, p. 72]. PTAs run in S-EL1, thus with special privilege.
They will have access to the same functions, memory and hardware as the

32

Table 3.2: An extract of GP client API functions

Function Description
TEEC InitializeContext Initializes a new TEE Context, forming a logical

connection between a TEE and CA.
TEEC FinalizeContext Finalizing the TEE context, releasing the logical

connection stored in the context.
TEEC OpenSession Opens a new Session between the CA and the

TA corresponding to the specified UUID.
TEEC InvokeCommand Invokes a command in the TA within the speci-

fied session using a command ID.
TEEC CloseSession Closes a Session by terminating the connection

between the CA and TA stored in the session.

Table 3.3: An extract of GP TEE internal core API functions

Function Description
TA CreateEntryPoint The constructor of the TA, creating a

new instance of the TA. This is called
once and only once in the lifetime of a
TA instance.

TA OpenSessionEntryPoint1 Called when a CA attempts to connect
to a TA instance in the context and
open a new session.

TA InvokeCommandEntryPoint Provides the service (using a com-
mand handler) requested by the CA
during its command invocation using
TEEC InvokeCommand.

TA CloseSessionEntryPoint Called when the CA closes a session and
disconnects from the TA instance.

TA DestroyEntryPoint The destructor of the TA. This is called
by the Trusted Core Framework just
before the TA instance is terminated.

1 The open session request shall result in a new TA instance being created if the
gpd.ta.singleInstance TA property is set to false. If set to true, a single TA instance
is created for all client sessions.

33

OP-TEE core itself. PTAs are OP-TEE firmware services provided to the
TAs running inside of OP-TEE. For example, the PKCS#11 TA utilizes
a pseudorandom number generator (PRNG) PTA to generate additional
seed material to the random number generator used in for example various
cryptographic operations. The GP core internal API will not be available for
PTAs, because the OP-TEE core is not linked to libutee which implements
the TEE internal core API. Instead, they are strictly limited to the OP-TEE
core internal APIs and routines.

3.5.3 Inter-TA Communication

Meanwhile it is not possible to spawn threads from a TA/PTA, it is possible
in OP-TEE to run multiple TAs/PTAs in parallel. This allows them to
communicate through the TA2TA interface [6, p. 165]. In this case a TA/PTA
can act as a client to another TA/PTA. The TEE OpenTASession is used to
open a new session from a TA/PTA to another TA/PTA. The communication
between TAs/PTAs uses the same process as the CA to communicate to
a TA [28, p. 22]. In order to assure that the communication has not been
exposed to the normal world to the receiving TA/PTA, an indicator is
used. This allows the TA/PTA to trust the meta data associated with the
received content (e.g. the caller TA UUID). Any TA/PTA in an external
TEE will be considered a part of the REE, as there is no way to verify their
trustworthiness. Similarly to the CA and TA communication commands are
invoked by the TEE InvokeTACommand and session has to be closed with a
TEE CloseTASession.

3.5.4 Threat Model

In this thesis the following threat model is assumed:

• The PKCS#11 TA running in OP-TEE is targeted. The adversary’s
goal is to extract information from the TA (e.g. from the secure storage).

• Anything running in the normal world is unsafe. This means the
adversary may have user access, or even root access in the REE.

• The adversary is able to plant a malicious TA in the TEE..

• The system is physically protected and hence, physical attacks via debug
interface or side-channel attacks is out of scope.

34

In order to protect a TA and its assets in the secure world security boundaries
has to be enforced to protect the execution, memory, input/output (I/O) (e.g.
peripherals), hardware (e.g. crypto engines).

1. The separation of REE and TEE. The REE must be prevented from
compromising the TEE.

2. The separation of TA and TA. A malicious TA must be prevented from
compromising other TAs in the secure world.

3. The separation of TA and TEE OS. A malicious TA must be prevented
from escalating privileges. This can break the second separation.

In this thesis the implementation of OP-TEE will be excluded as a testing
target, focusing only on the PKCS#11 TA implementation. The adversary is
assumed to be targeting the secret of the PKCS#11 TA and is preparing an
attack from a fully compromised REE. The adversary has access to the full
source code of both the PKCS#11 TA and the OP-TEE project.

A possible attack scenario is to launch an attack from a CA since the adversary
has control over the REE. A CA can be used to communicate with the target
TA running in the TEE. If the TA has any security vulnerabilities, it can be
abused by a malicious CA. A severe vulnerability can allow the attacker to
extract sensitive data stored in for example the secure storage.

The PKCS#11 TA is also susceptible to an attack from another TA. The
adversary might be able to plant a malicious TA in the secure world. In this
case, the malicious TA might try to open a session directly to the PKCS#11
TA through the TA2TA interface, allowing it to test for vulnerabilities in the
target TA.

In this thesis any indirect attack on the PKCS#11 TA, e.g. privilege escala-
tion in OP-TEE or attack on the hardware platform its running on will be
considered out of scope.

3.6 Fuzzing

There are many vulnerability discovering techniques that can be used on
target application; hence, the application under test. Some of the more
traditional techniques include: static analysis, dynamic analysis, symbolic

35

execution and fuzzing.

When targets are analysed without execution it is considered to be static
analysis [29, p. 2]. Analysis could be performed on features related to
lexical, grammar, semantics. Data flow analysis and model checking are
also considered static analysis. Tools can be used to perform the analysis.
However, they are prone to false positives and false negatives, resulting in
low accuracy. In contrast, dynamic analysis requires execution on target
application by either running it in a real or an emulated environment. This
method requires much domain knowledge and involvement from the analyst,
resulting in low efficiency.

A symbolic execution symbolizes inputs to the target, allowing it to build a
set of constraints for each execution path in the target. When the execution is
done, constraint solvers such as boolean satisfiability (SAT) and satisfiability
modulo theories (SMT) solvers will try to solve the constraints by finding
inputs that can exercise the execution path. A common problem that arise
in symbolic execution is the path explosion problem. It is the fact that the
number of execution states increase exponentially to the scale of the target.
Constraints in complex applications, especially with loops and recursions
becomes hard to solve and time consuming. Instead, selective symbolic
execution can be used on larger targets. Another limitation is that the lack
of control of interactions outside the symbolic execution environment (e.g.
syscalls, handling signals, etc.), leading to inconsistent outcomes. Hence, the
main issue is scalability.

The currently more favored technique is fuzzing. A fuzzer starts by generating
a large amount of inputs, including normal and abnormal ones, and feed them
to the target application. The fuzzer will then monitor the execution states,
trying to detect for exceptions or memory leak. Fuzzing techniques suffer
from low efficiency and code coverage. However, it compromises by providing
good scalability, accuracy and requires little knowledge of the inner workings
of the target.

Fuzzing techniques are widely used in the security community. For instance,
over 18,000 bugs in Google Chrome, over 11,000 bugs in the Linux kernel
and over 1,800 bugs in Microsoft Office [30], have been discovered by various
fuzzing tools. Windows regularly use white-box fuzzing techniques to find
vulnerabilities for which they patch every month for their users.

36

3.6.1 The fuzzing process

The approaches and implementations of different fuzzers might variate greatly.
However, the phases of a fuzzing process are the same and can be divided
into 6 phases [31, pp. 27–28]:

1. identification of target

2. identification of inputs

3. generation of fuzzed data

4. execution of fuzzed data

5. monitoring of fault

6. determination of exploitability.

Identification of target. The first step, before deciding on a fuzzing tool or
technique, is to choose a target. It could for example be an application, or
a specific library or function within that application. Certain components
might be shared across applications, indicating there is a bigger user base.
If the target has not been previously extensively tested or if its vendor is
known to leave many vulnerabilities in their products it could indicate possible
vulnerabilities in the target, making it an interesting target.

Identification of inputs. Most application vulnerabilities are caused by user
inputs [31, p. 28]. Therefore, locating the input vector (input locations) is
vital; or else, the test case produced in the fuzzing process can be very limited.
These inputs are potential fuzz variables.

Generation of fuzzed data. After identifying the input vector, test cases for
the target need to be generated. This can take very different approaches and
will be investigated in 3.6.2.

Execution of fuzzed data. When a test case is prepared, it is used to test
the target by performing an execution (e.g. launching a target process with
an input). In order to provide the target with test cases, an integration of
the fuzzer and the target has to be manually performed. This is often done
by bridging the two using a custom interface, often known as the fuzzing
harness.

Monitoring of fault. Fuzzing a target with a fault monitoring process will allow

37

the fuzzer to trace test cases that produced a bug (e.g. a crash, exception,
etc.).

Determination of exploitability. From a security perspective, finding out
what inputs can cause instability issues or bugs on the target is not enough.
Triaging the bug in order to determine whether the bug can be exploited
and turn into a security vulnerability is the utmost goal. This often requires
domain knowledge. Certain tools (e.g. a debugger) can be used to assist the
triaging. However, it usually requires much manual work.

3.6.2 Classification of Fuzzers

Fuzzing often falls into three categories: black-box, grey-box and white-box
fuzzing [31, p. 3]. All three approaches require control of the input that
goes into the target as well as the ability to observe resulting output. The
first case treats the program as a black-box, lacking information about the
target (e.g. the internal structure) [32]. The second case performs light-
weight instrumentation on the target to gain information about the target.
Meanwhile, the third case leverages program analysis and constraint solving
to explore the target. The use case of these three can depend on the available
resource at hand or the type of application. It is possible to achieve better
fuzzing results by combining approaches.

There are two widely used methods for fuzzers to generate test cases: mutation-
based and generation-based (also known as generator-based or grammar-based)
[33, p. 1202].

A mutation-based fuzzers are typically general purpose fuzzers [34, p. 137]. A
mutation-based method requires a well-formed baseline (e.g. a single or corpus
of seeds) as base to mutate and produce inputs [33, p. 1202]. The mutation
can be performed using a variety of methods (e.g. randomly or predefined
mutation strategies which can be adjusted based on gathered information
related to the target during run-time). The efficiency of the fuzzing is reliant
on the quality of the baseline. A good corpus must be generated in some way,
especially for more complex targets. Since a mutation-based fuzzer does not
understand the underlying format it is working with, another challenge arise
when, for example, dealing with blocking components such as checksum checks,
encryption/decryption, authentication, etc. If not handled correctly, they
often result in an exception, and the fuzzer is unable to exercise the code after

38

it. Often these can be solved by manually stubbing these components.

On the contrary, generation-based fuzzers are often specialized fuzzers for a
specific target (e.g. application, protocol, etc.) [34, p. 137]. The generation-
based method does not require a seed or corpus [33, p. 1202]. Instead, it
generates inputs from scratch by modeling the target protocol or file format
when provided a specification (e.g. formal grammars, file formats, network
protocols, etc.) of the target. This approach requires much manual work on
defining the specification of the target for the fuzzer.

There is not clearly superior method to fuzz. It depends greatly on the
resources at hand and the nature of the application. For example, when using
a mutation-based method, it is possible to fuzz without having a specification
of how a protocol works, or an API description of a certain function. It is able
to fuzz many different type of applications, with little to no knowledge about
it. Sometimes, seed modifications at a lower level can lead to the finding of
different bugs, which testing with a well-defined input model cannot find. In
contrast, generation-based fuzzing can often provide fully valid test cases to
blocking components in the target. The fuzzing can more easily exercise all
parts of the target.

The fuzzing can sometimes be considered as ”smart” and ”dumb” [34, p. 144].
A smart fuzzer has information about the target and utilizes this in a way
that improves the fuzzing efficiency, unlike a dumb fuzzer. For example,
a mutation-based fuzzer might modify seeds randomly. However, it might
receive information regarding code or path coverage and utilizes this to keep
modified test cases that exercise new uncovered areas of the target, keeping
them as references for further modification. This mutation-based fuzzer can
be considered smart. While, in the case of a generation-based fuzzer, it might
understand the input model. However, it might just blindly send test cases
without considering any feedback information to improve the fuzzing process.
This can be regarded as dumb fuzzing.

3.6.3 Fuzzing with AFL and Sanitizers

American fuzzy lop (AFL) is a well known open source fuzzer which will be
used in this project to perform security testing of TAs [35]. The AFL project
is not a proof of concept, but rather a bunch of hacks. AFL is a coverage
guided evolutionary fuzzer. It supports both grey-box and black-box fuzzing.

39

The initial AFL project in Google’s repository has been relatively inactive,
leading to a fork of the initial project named AFLplusplus. This is project is
community-maintained and includes new features and speedups [36, 37].

3.6.3.1 Architecture

The architecture of AFL is illustrated in figure 3.7 [38, p. 242]. The main
component of AFL is fuzzer, which performs the actual fuzzing. The fuzzer
will start by loading initial inputs provided by the user into the seed queue
[39, p. 2]. If the forkserver mode is enabled, a forkserver will be used to
spawn new instances of the fuzzing target [36]. Input from the queue will
be used at each run of the target. During a run, feedback information will
be sent back to the fuzzer. This information will provide the fuzzer with
coverage and crash information allowing the fuzzer to generate new input
through mutation for the adjacent runs and allowing it to store useful inputs
(e.g. covering new execution paths) back into the queue [39, p. 2].

Figure 3.7: Overview of the AFL architecture.

3.6.3.2 Mutation

Different fuzzing strategies are used by AFL to generate new inputs to the
target. Some of these strategies are more expensive than other[40]. The

40

strategies are divided into deterministic and non-deterministic [39, p. 37].
The fuzzer mutates the inputs using the different strategies in a specific order,
starting from the deterministic strategies as they tend to produce simple and
compact test cases and smaller differences between a crash and non-crash
yielding input. An exception to this is if the fuzzer notices that the initial
deterministic strategies on a region of the input do not have an effect on the
execution path checksum it will skip the remaining deterministic strategies
and start mutating inputs using non-deterministic strategies instead. The
deterministic strategies include walking bit flips, walking byte flips, simple
arithmetics and known integers [40]. The non-deterministic strategies include
stacked tweaks and test case splicing.

3.6.3.3 Instrumentation

Finding test cases that can attain a full coverage on a relative large and
complex program is usually unfeasible. Instead, tracking the progression
of fuzzing and make use of it in the fuzzing process can be a substantially
important factor in efficient fuzzing. AFL do this by measuring code coverage.
Specifically, AFL captures branches (edges) and counts coarsely the number
of times they have been exercised by the target application during execution
[39, p. 33]. This is done by performing instrumentation on a low level (binary).
This can be performed, assuming the source code is available, by inserting
the instrumentation (additional assembly instructions) during compilation of
the target application at smart locations such as before if cases and function
calls. When these instruction are executed, routines are called to collect
process information for the fuzzer. AFL utilizes tools such as clang or GNU
compiler collection (GCC) for injecting instrumentation into the target [39,
p. 3]. This instrumentation is light weighted and has a moderate performance
impact.

Another possible approach, assuming the binaries are available, is to perform
the instrumentation during emulation of the target application. In the
AFL case, there is a user emulation mode that uses a customized QEMU,
an open source full-system emulator, to emulate the target and to receive
instrumentation information from the emulation. Basic blocks are continuous
instructions without branches except for its entry and exit point. QEMU
uses basic blocks of the target as translation units

41

3.6.3.4 Increase performance

The fuzzing efficiency is increased in AFL by injecting a shim, a small piece
of code, into the target during the instrumentation [41]. The shim acts as
forkserver and will be used to bypass initialization of the target such as the
linker. The forkserver will be signaled by the fuzzer to fork the target process,
creating a copy of the already initialized process. Hence, saving time. This
will allow faster fuzzing throughput, since a new process is created for every
new input file. At minimum, an increase in performance is made already
by starting the shim at the main method. This can give a performance
gain between 1.5-2 times faster [39, p. 38]. The injection point can also be
manually controlled to bypass target specific initialization. This is referred to
as deferred mode. However, it should be inserted before the input vector to
be tested, and before pipes, character devices, sockets. etc. since they are
I/O that cannot be reset. In some target, performance can increase over 10
times.

In AFL there is persistent mode specifically designed for stateless API targets
[42]. The requirement is that the target must be able to reset its state
completely between function calls to avoid resource leaks, as any prior runs
will not impact the latter. This mode allows a single process of the target to
be reused, instead of having OS overhead from forking it. It is also possible
to utilize shared memory for further increase in performance. Instead of
receiving input test cases via stdin or files it can be delivered to the target
via shared memory.

3.6.3.5 Utility

Utility tools are included in AFL. For example, AFL takes an input file (seed)
or a corpus before the fuzzing begins. These are examples of actual input data
to the target. In a corpus, there can be inputs that exercise same functionality.
A tool afl-cmin can be used to generate a subset of the corpus with input
files that exercise different code paths.

Another useful AFL utility tool is afl-cov [43]. It will display coverage
information in a human-readable format e.g. which code lines have been
reached and the number of executions performed on a certain line, allowing
the user to evaluate the fuzzing harness and input seeds. afl-cov uses gcov
instrumentation to generate the profiling information of the target [44]. It

42

then uses lcov to generate a front-end presentation of the gathered profiling
information in form of a navigatable website [45].

3.6.4 Sanitizers for Improved Bug Detection

Sanitizers are used for run-time detection of behaviour in an application.
There are different sanitizers are available in the LLVM and GCC toolchain.
When used in a fuzzing context, sanitizers are able to improve detection
capabilities of bugs, but will have an impact on the performance of the
fuzzing. They are often used in fuzzing contexts. Despite the compromise in
speed, enabling sanitizers often results in better fuzzing results. A variety of
sanitizers can be used with fuzzers.

The AddressSanitizer (ASAN) allocates big regions of virtual memory for
bookkeeping [39, p. 23]. Unless the virtual memory is accessed, the OS will
not allocate physical memory. This can allow fuzzers e.g. AFL to detect if
the target runs off rail. ASAN is a powerful tool, and is able to detect a
variety of problems [46]:

• Use after free (dangling pointer dereference)

• Heap buffer overflow.

• Stack buffer overflow.

• Global buffer overflow.

• Use after return.

• Use after scope.

• Initialization order bugs.

• Memory leaks.

Other sanitizers can also be useful to find faults in a target. For example,
LeakSanitizer (LSAN) can be used to detect memory leaks [47]. This is
used by default when ASAN is enabled. However, it does not require ASAN
instrumentation and can be used in stand-alone mode.

MemorySanitizer (MSAN), which detects uninitialized memory reads per-
formed by the target [48]. This happens when a memory in the stack or heap

43

has been read before written. MSAN is used to detect such behaviour and
generates a crash if it affects the program execution.

Sanitizers (e.g. ASAN, MSAN, etc.) causes incompatibility issues with the
QEMU user emulation. Consequently, AFL in user emulation mode is unable
to run with sanitizers that utilizes such technique, meaning that sanitizers
work only if compile-time instrumentation is an available option.

Another sanitizer, UndefinedBehaviorSanitizer (UBSAN), detects undefined
behaviours of an application [49]. It is able to detect:

• Array subscript out of bounds, where the bounds can be statically
determined.

• Bitwise shifts that are out of bounds for their data type

• Dereferencing misaligned or null pointers.

• Signed integer overflow.

• Conversion to, from, or between floating-point types which would over-
flow the destination.

There are many more sanitizers available. Factors such as target architecture,
the fuzzer and available resource will determine if they can be used.

3.7 PKCS#11

The PKCS#11 TA running in OP-TEE is a relatively complex application
and implements a widely used standard. It can therefore potentially be
used with many devices. Hence, it makes a good target to test for potential
vulnerabilities. An implementation of it can be enabled and used in OP-
TEE.

3.7.1 The PKCS#11 Model

PKCS#11 is an API (sometimes referred to as Cryptoki) that handles the
communication to cryptographic devices known as security tokens or just
tokens [50]. Figure 3.8 illustrates how an application uses the Cryptoki
interface to send a request to a token [50]. These tokens can represent a
logical view of devices that perform cryptographic operations and store objects.

44

Examples of what a token could represent is a smart card, USB key, HSM, etc.
Tokens are contained in a slot. A slot represents a physical device interface
or a logical reader. This could be, for example, a smart card reader.

There can be multiple slots and each slot can contain multiple tokens, per-
forming various cryptographic operations with those. It is even possible to
share common tokens between slots. Objects stored in a token are generally
divided in four classes:

• Data objects. These are objects defined by an application.

• Certificate objects. These are digital certificates such as X.5092.

• Key objects. These can be private, public or secret cryptographic keys.

• Vendor-defined objects. These are general objects, whose representation
are decided by the vendor.

An object can be a token object or a session object. A token object can be
accessed by any application with the required access permission. These tokens
are persistent and destroyed only when a token has been specified to do so.
In contrast, a session object is specific to a session. They are created when
a connection is made from an application (e.g. a CA) to the token. The
connection is referred to as a session. Session objects are created upon the
opening of a session and destroyed when the session is closed. The created
session objects can only be viewed by the application that created it.

The access to objects are controlled by their visibility level. Public object are
visible to all applications, meanwhile private objects are only visible to the
application, if the user is logged into the token. There are two types of users:
a security officer (SO) and normal users. The SO has an administrator role.
A SO performs only two things: initialization of tokens and configuration of
normal user PINs.

3.7.2 PKCS#11 in OP-TEE

As tokens contain security sensitive information and operations the interface
to them must be proper and protected adversaries. Hence, the PKCS#11 is
implemented in the form of a TA protected in the secure world.

2A standard defining the format of public key certificates https://datatracker.ietf.
org/doc/html/rfc5280.

45

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5280

Figure 3.8: The figure illustrates the general PKCS#11 model

46

In OP-TEE, the PKCS#11 API is implemented with the libckteec client
library and the PKCS#11 TA as shown in figure 3.9 [23]. The libckteec
reside in the normal world and implements the PKCS#11 API on top of
the TEE client API implemented in form of the client library libteec. The
libteec library is used by a CA to communicate to the secure world TA. Every
PKCS#11 operation is mapped to a command ID and implemented as a
single command invocation using the four parameter provided in the TEE
client API. Additional parameters or data can be provided to the PKCS#11
TA using shared memory and serialization. On the secure side an in-tree TA
is implemented to act instead of a HSM to perform secure operations (e.g.
cryptographic operations, key management, secure storage, etc.). It resides in
the optee os source tree. PKCS#11 can be included in OP-TEE by setting
the CFG PKCS11 TA=y before build.

3.7.3 Passing Data to the PKCS#11 TA

Serialization are performed on Cryptoki objects before passing them to the TA
using shared memory in order to circumvent the limited number of memory
references allowed to be passed by the GP API. The serialize ck attributes
function is used by the CA to serialize the data, storing the data in a shared
memory buffer which will be passed to the TA. And if the TA returns
updated serialized data, the CA calls the deserialize ck attributes function
to deserialize the returned data via shared memory allocated by the CA.
The deserialization uses the CA provided input arguments to determine the
serialized buffer structure, and in combination with the actual returned buffer
the function is able to decode the value, size and type of the returned data.
Such objects can be CK keys, certificates, mechanism parameters, etc.

3.8 Related Work

3.8.1 Android TA Fuzzing

There is paper that introduces a new fuzzing framework, TEEzz, which
enables fuzzing on TAs on commercial Android devices [51]. The target
TA is essentially a black-box with exposed API, whose input format and
states are unknown. TEEzz performs on-device fuzzing based on AFL++ by
injecting inputs via the driver interface. As black-box model targets only

47

Figure 3.9: The figure shows an overview of how PKCS#11 is implemented
in OP-TEE. The yellow components are the implementation of PKCS#11
in OP-TEE while the orange components are the implementation of the GP
API.

48

reveal the binary, type- and state-aware fuzzers cannot be leveraged without
access to the source code or some form of logging. Instead, to improve the
number of valid fuzzing data that passes the SMC interface and reaches
the TA, TEEzz uses automatic data type deduction by combining dynamic
binary instrumentation, multi-interface interaction recording, and semantic
deduction. To have a stateful fuzzing, dynamic binary instrumentation is used
to record the interaction between the CA and TA to attain data dependencies
which can be used to build a model of the different call sequences for the
TA and the corresponding input data. This can then be used to infer the
API model of the TA to efficiently fuzz it in different states. TEEzz then
tries to combine the information to find value dependencies between different
interactions in order to produce useful seeds for the fuzzer. Finally, it passes
the seeds to a CA specific mutator to fuzz the target.

The fuzzing framework focuses on on-device fuzzing of TAs in commercial-off-
the-shelf Android devices in a black-box fashion by gathering information by
recording the interactions of binaries and then tries to deduce useful informa-
tion for fuzzing. In contrast to the TEEzz project, this thesis will rehost the
TA through emulation and not be dependant on specific hardware. All the
source code is also assumed to be available which allows more sophisticated
fuzzing techniques and assisting tools. An advantage of grey-box/white-box
fuzzing over black-fuzzing is the increase code coverage and the possibility
to fuzz any particular parts of the code (e.g. critical parts) without resolv-
ing to any reverse engineering or semantic deduction. A difference to note,
is that grey-box/white-box fuzzing might be disadvantageous in a certain
aspect in comparison to black-box fuzzers, even though the source code of
the application is available, the grey-box/white-box fuzzers require lots of
extensive research into the application’s source code, which is written in a
specific programming languages, which makes it harder to adapt to other
applications. In comparison, black-box fuzzers are more adaptable across
applications as they are input/output problems usually without dependency
on the application’s specific programming language [52].

3.8.2 Qualcomm TA Fuzzing

Another work focuses on fuzzing TAs running in Qualcomm’s Secure Execution
Environment by building a feedback-based fuzzing platform [53]. The target
is considered a black-box, similarly to the case of the Android TA fuzzing

49

case. The idea here is to use a loader to receive data- and code segmentation
dumps and virtual addresses of the target TA in the secure world to execute
the TA in the normal world. Syscalls in the normal world TA is handled by
redirection, using QEMU syscall handler, to the TA in secure world. In the
secure world, the signed target TA needs to be patched. As the TEE used
comes with a secure boot that cannot be disabled in a legitimate way, two
known exploits is chained to break the verification mechanism in order to
load a patched TA into the TEE. The actual fuzzing of the emulated TA
command handler is performed by using AFL++ in user emulation mode
that is able to produce coverage metrics using the QEMU emulator.

The solution focuses solely on the Qualcomm environment and relies heavily
on existing vulnerabilities of the target system. Therefore, similar solution
cannot easily be produced for other TEEs and TAs. The solution also has a
big performance overhead due to the QEMU emulation, context switching
between the two worlds, additional operations performed by the loader and
handling of syscalls. Using the AFL++ in user emulation mode also has other
limitations such as the usage of sanitizers for enhanced bug detection.

50

System Design

In order to implement a proof of concept of TA fuzzing with source code,
different design decisions had to be made. This includes what environment
to run the TA in during the fuzzing; how the migration of the TA to the new
environment will be done; deciding on tools to use for the fuzzing; how to
design the harness for the target. These will be motivated in this section.

4.1 The Fuzzing Environment

There are requirements for running an effective fuzzing session. The solution
for the project will include designing an environment able to fulfill these
conditions. The core requirements identified will be presented and some ideas
and the final solution will be discussed below.

4.1.1 Requirements

A TA is normally ran inside a TEE on a hardware e.g. an embedded system.
However, it is possible to emulate a native TEE and hardware in form of
software. This allows for a flexible solution independent of specific hardware
and can be used for development purposes. In order to fuzz a TA running
inside a TEE in such an environment, certain criteria imposed by effective
source-code-utilizing fuzzing techniques should be met:

• The fuzzer is able to run alongside the TA.

• The fuzzer is able to invoke and relay input data (e.g. generated or
mutated from the fuzzer) to the TA process.

• Some TA process related information (e.g. branch/edge information,
code coverage information, process information, etc.) has to be conveyed
to the fuzzer.

• The TA source code is available and the TA binary can be built.

51

4.1.2 Ideas and the Solution

Four ideas of possible solutions that came up in the brainstorming session
are presented here. The main problem of each solution will be shortly
discussed.

4.1.2.1 Fuzzer as a TA

A TEE is designed for certain architectures. In the case of OP-TEE it is
designed for ARM architecture and would normally work with an ARM
processors with the TrustZone security extension. However, QEMU can
emulate the native environment, creating a normal and secure world separation
allowing OP-TEE to function properly on other architecture than ARM (e.g.
x86). In this approach the fuzzer will be built as a TA running in OP-TEE
in the secure user space (S-EL0) as depicted in figure 4.1.

The idea is that the fuzzer relay inputs to the target TA via the GP TEE
internal API using the TA2TA interface. This interface allows for inter-TA
communication directly in the secure world. The main problem of this solution
is that the fuzzer would have to rely on functionality offered by the OP-TEE
core. Common fuzzer solutions are often dependent on a variety of common
REE syscalls such as fork, execve and open that are not implemented in OP-
TEE. Any calls to those will result in a TEE ERROR NOT IMPLEMENTED
error being emitted. To use this approach, these missing syscalls would have
to be implemented rendering this approach ineffective.

4.1.2.2 Fuzzer as a normal world application

To avoid the problem of missing syscalls in the previous solution, the fuzzer
will instead be built as a normal user space application in the normal world
(EL-0) in a QEMU emulation as depicted in figure 4.2. This will allow
the fuzzer to perform common syscalls. As OP-TEE is designed for Arm
architectures, the fuzzer would also have to be built for Arm. The idea is
that the fuzzer relay will use a harness (CA) which will invoke the TA with
the test cases. The fuzzer will then need coverage and process information
of the target TA for efficient fuzzing. In OP-TEE, TAs can be instrumented
with gprof instrumentation to generate profiling information. Gprof is used
for performance analysis and can collect coverage information to generate
call graphs and display the number of executions that has been performed in

52

Figure 4.1: Running fuzzer as a TA in secure world.

53

specific areas of a binary [54]. This information could perhaps be transformed
into a format used by the fuzzer. To provide the fuzzer with additional
information of application misbehaviour, sanitizers will be used. This is often
achieved with sanitizers i.e. ASAN which can detect memory corruption,
dangling pointer, etc. The main problem of this solution is that in OP-TEE
only the core can be built with ASAN, however this feature is absent for TAs.
Without the usage of ASAN, the fuzzer’s ability to detect misbehavior of the
target would be limited. This information is essential for fuzzers to detect
many different types of bugs in the target

Figure 4.2: Running fuzzer as a normal world application.

54

4.1.2.3 Proxy TA in secure world

This hybrid solution combines the idea of the previous two solutions. A
QEMU emulation will be assumed. The fuzzer and target TA will be running
as user space applications in the normal world (EL-0). Any OP-TEE specific
syscalls will be handled by a TA running in the secure world user space
(S-EL0) as depicted in figure 4.3. This will allow the target TA in the normal
world to be built with coverage and sanitizer instrumentation providing the
fuzzer with the necessary information for an effective fuzzing session. The
pitfall of this solution is that any OP-TEE syscall turn into a library call to
the GP API that will have to go through the TEE driver, secure monitor and
OP-TEE core before it can invoke the TA to perform the syscall. The result
of the syscall will have to be returned back to the TA running in normal world.
This is a major performance overhead and will affect the fuzzing performance,
which will in turn lower the efficiency of the fuzzing.

4.1.2.4 Emulate the GP TEE Interface

This idea will not be based on any QEMU emulation and there will not be any
world separation (REE/TEE) as in the previous solutions. Instead, the target
TA will be running directly on the host OS using a virtual TEE emulator that
is implemented using conventional OS features on common architectures. The
virtual TEE needs to be able to handle all the TEE specific syscalls, providing
the necessary GP APIs and other functionalities the TA is dependent on. The
context switching between the normal and secure world will be replaced by
IPC via the TEE emulator as depicted in figure 4.4.

To realize this, a project Open-TEE will be used. Open-TEE is an open source
hardware-independent TEE implemented in software [55]. It is designed to run
in the GNU/Linux environment and relies on technologies and services offered
by these mainstream OSes [25, 24, p. 6]. The Open-TEE framework also uses
open-source software e.g. the Mbed TLS (Mbed Transport Layer Security)
crypto library for crypto operations and the GNU tool suite. The goal of the
project is to simplify the development process of TAs for more developers,
allowing them to develop and test TAs using familiar tools and environment
[24, p. 1]. Open-TEE allows a TA to be ran on a x86 architecture and can
benefit from higher performance with more powerful hardware, less overhead
and higher CPU utilization. Many fuzzer are designed for mainstream OS such
as GNU/Linux and is therefore able to operate alongside the TA. Instead, the

55

Figure 4.3: Running the target TA in normal and secure world to handle
syscalls.

56

challenge has shifted to porting the PKCS#11 TA to this new environment.
This feasible approach will provide a more generic solution than the previous
ideas as the engine is designed to emulate a generic GP conforming TEE. It
also allows the usage of common tools of a mainstream OS and can be ran
on architectures such as Arm and x86, allowing the usage of more powerful
hardware to accelerate the fuzzing process. As this solution is not based on a
TA native or near native TEE, the target TA behaviour might deviate and
any TEE specific feature dependencies will also have to be resolved. The
Open-TEE project claims to have fully implemented the GP internal core,
but having a 80% cryptographic algorithm coverage as the libraries in use
lack support for the remaining algorithms [24, p. 6].

This approach trades accuracy for genericness (not TEE specific and compati-
ble with more fuzzers), with additional benefits of performance and flexibility
(more tools available). For the many benefits of the approach, this will be
used in the final solution.

4.1.3 Porting of PKCS#11

Now that it is decided on how the target TA will be hosted, the PKCS#11 TA
have to be ported from OP-TEE to this new environment. TAs are designed
to conform with the GP internal core specification, meaning they should
not be bound to any specific TEE implementation that is GP compliant.
The PKCS#11 TA is designed to communicate with a CA using Cryptoki,
the PKCS#11 API library, in OP-TEE as shown in figure 3.9. A similar
implementation of PKCS#11 is provided in the Open-TEE project and could
possibly be used to simplify the the porting of the target. Upon reviewing the
TA and library provided by Open-TEE, some major differences are identified.
The TA was found to be lacking in functionality compared to OP-TEEs
implementation, and the PKCS#11 internal serialization logic implementation
differed in how the data in the allocated shared memory buffer are prepared
before passing the GP API. Serialization and deserialization is performed in
both the Cryptoki library and the PKCS#11 TA for many of the available
TA invocation. As the two implementation of PKCS#11 are incompatible,
the Open-TEE implementation is not used. Instead, both the PKCS#11 TA
and Cryptoki library found in OP-TEE has to be ported to function as it
was intended. It was also found that OP-TEE provide extensions to the GP
internal core API which the PKCS#11 TA is reliant on [6, p. 51]. Therefore,

57

Figure 4.4: Running the target TA directly on host OS.

58

additional functionality needs to be ported while other less important feature
can be stubbed out in order for the TA to work with the Open-TEE engine.
The Cryptoki library (libckteec in OP-TEE) will be built on top of libtee,
Open-TEE’s implementation of the GP client API and the PKCS#11 TA will
have to use functionalities provided in libInternalApi, the GP internal core
API provided by Open-TEE. Finally, the GP version that is implemented
in OP-TEE and Open-TEE differs and not fully compatible. The mismatch
in the API assumed by the OP-TEE ported code and the provided API in
Open-TEE resulted in some bugs that is solved by adjustments to the API
for consistency.

4.1.4 Binary Instrumentation

Different instrumentation will be performed on binaries during the compilation
phase. The CA and TA binary will be instrumented with AFL instrumentation
to spawn the forkserver during a fuzzing session and to enable a feedback based
fuzzing process. Additional gcov instrumentation for coverage information
and ASAN instrumentation for enhanced bug detection will be performed on
the TA binary. The ASAN is configure in the TA to dump any crash report
to a file on the file system for later analysis. The gcov instrumentation will
provide the user with additional coverage information to the user.

4.2 Modern Fuzzing Tool Alternatives

Next, a fuzzing tool must be chosen to perform the actual fuzzing. There is a
plethora of fuzzing tools, each designed for different purpose in mind. Some
may be very specialized tools for a certain environment e.g. kernel, web etc.
while other are designed for general purpose fuzzing. There are even fuzzing
frameworks for designing a tailored fuzzer for a specific task. An extract of
well-known fuzzers are presented in table 4.1 [8, 56, 57, 35, 58, 58, 59, 60,
61].

59

Table 4.1: Well-Known Fuzzers

Name Targets Key Technique Platforms Availability

SAGE

Large
Windows
applica-
tions

White-box generation
fuzzing

Windows
Microsoft
internal

Syzkaller OS kernels
Coverage-guided

grey-box mutation and
generation fuzzing

Linux Open source

vUSB
USB
drivers

Input knowledge based
black-box generation

fuzzing
Linux Open source

AFL
General
Purpose

Coverage-guided
grey-box fuzzing,
genetic algorithms

Linux,
OpenBSD,
FreeBSD,
NetBSD,

MacOS, Solaris

Open source

FairFuzz
General
purpose

Coverage-guided
grey-box mutational

fuzzing

Linux,
OpenBSD,
FreeBSD,
NetBSD,

MacOS, Solaris

Open source

honggfuzz
General
purpose

Evolutionary,
feedback-driven

fuzzing based on code
coverage

GNU/Linux,
FreeBSD,
MacOS,
Android

Open source

libFuzzer
General
purpose

In-process,
coverage-guided,

evolutionary fuzzing

Linux, MacOS,
Windows

Open source

Peach
General
purpose

Black-box mutation
and generation fuzzing

Linux,
Windows,
MacOS

Open source

60

4.2.1 Evaluation of Fuzzing Tools

Each fuzzer is designed with different use case and has both pros and cons in
different fuzzing scenarios, making it difficult to grade a fuzzing tool. The
result could greatly vary depending on the application domain, input structure,
the actual operation performed etc. In most cases they are exercised in
different benchmark tests with known or unknown bugs. Common evaluation
metrics used in these benchmarks are the percentage of code/branch coverage,
number of crash triggered and the number of bugs found [62, p. 1].

Externally performed fuzzer benchmarks will be used to decide on a fuzzing
tool to perform the fuzzing on the PKCS#11 TA for the aforementioned
reasons. Bug detection capability and code coverage based tests will be
prioritized to be used in our evaluation. Only fuzzers that uses source-code-
utilizing fuzzing technique from the benchmark results will be considered a
candidate. Below two external results from testing different fuzzers using two
different benchmark tools for fuzzers. The first benchmark tool will focus on
the most important metric of a fuzzer: the number of bugs it finds. However,
the project also focuses on utilizing the source code of the target to achieve
better fuzzing. The additional information provided to the fuzzer can allow
the fuzzer to increase the fuzzing coverage of the target, allowing more bugs
to be found. In the second benchmark tool, the coverage exercised in the
fuzzing targets will be used as a metric in the results, providing a better
evaluation of the fuzzers.

4.2.1.1 Magma

Magma, a fuzzer benchmark focused on using ground truth bugs, was used
in [62] on the following set of widely used mutation based fuzzing tools
for evaluation: AFL, AFLFast, AFL++, FairFuzz, MOpt-AFL, honggfuzz,
and SymCC-AFL. The different fuzzing tools were exercised over 200,000
CPU-hours using the same set of seeds on applications with bugs and were
evaluated based on the number of bugs reached, triggered and detected. The
test targets used in Magma are seven applications with widespread use in
real-world environment containing diverse and varied security bugs that have
been reported throughout their lifetimes. A total of 118 bugs are reintroduced
in the test targets for benchmark purpose and are accompanied by an oracle
that is able to report if the bug was reached or triggered by the fuzzer. In
the benchmark tests AFL++ was found to score the highest mean bug count

61

in comparison to the other fuzzers and that this difference is statistically
significant [62, p. 16]. However, other fuzzer were shown to perform better
on certain test targets.

4.2.1.2 FuzzBench

FuzzBench, is a benchmarking service for fuzzers, an alternative to Magma
[63]. The projects focuses on simple and fast test integration for fuzzers, and
claims to be integrable with around 100 lines of code. It utilizes Google’s
computer resources for benchmark runs [63, p. 1394]. Unlike Magma, which
focuses on measuring the number of bugs found in its evaluation, FuzzBench
can use code coverage and bug discovery. If focusing solely on bug discovery
without code coverage in the evaluation, the result can be misleading and
biased as real-world bugs are often many and sparse in a big code base [63,
p. 1395].

In order to use the service, the user will have to integrate a fuzzer, which they
want to benchmark, with the FuzzBench API to allow the fuzzer to build
and fuzz FuzzBench benchmarks e.g. any OSS-Fuzz target. After deploying
the tests, FuzzBench will produce reports comparing the performance of
the fuzzer in test to other popular fuzzers. The reports will also include
statistical confidence intervals which can be used for further analysis. This
service is popular among fuzzer developers and is frequently used to improve
fuzzers e.g. honggfuzz, libFuzzer and AFL++ [63, p. 1397]. An evaluation
of 11 fuzzers were conducted in [63] using FuzzBench. This benchmark
included the following fuzzers: AFL, AFLFast AFL++, AFLSmart, Eclipser,
Entropic, FairFuzz, honggfuzz, libFuzzer, MOpt-AFL and lafinte. They
were benchmarked against 22 different open source project from the OSS-
Fuzz default benchmark set. The targets represented a wide range of user
space program, taking a variety of input formats e.g. XML, JPEG and
ELF. Some tests are provided seed and dictionaries, while other are not, to
better reflect real world scenarios as these might be absent. The total run-
time of approximately 111 320 CPU hours was performed. The benchmark
resulted in AFL++ having the highest average rank, followed by Honggfuzz,
Entropic, and Eclipser [63, p. 1397]. The report also showed that there
were no statistically significant difference between the seven highest ranking
fuzzers.

62

4.2.1.3 Choosing a Fuzzer

As previously mentioned, it is a difficult task to evaluate and find the optimal
fuzzing tool for a specific task at hand. Due to time limitations of the project,
it will not be possible modify existing fuzzers for optimization or to craft a
specialized custom fuzzer using a fuzzer framework. Specialized fuzzers for
other specific tasks are excluded in our evaluation since they are designed
for other use-cases in mind. The PKCS#11 TA, is a fairly big and complex
application in itself, which will require heavy manual specification of the input
model for a generation-based fuzzer. For this reason smart mutation-based
fuzzers are preferred over generation-based. Another preference is for the
fuzzing tool to be open source as modifications to the tool could be required
to enable fuzzing with the environment setup.

After reviewing the result of the two different fuzzer benchmark tools tested
on multiple popular general purpose fuzzers, AFL++ was found being the
strongest competitor among the evaluated fuzzers when prioritizing the av-
erage bugs discovered and coverage covered in a target. In the Magma
benchmark AFL++ was able to discover the most ground truth bugs in
average among the mutation based fuzzers, and in the Fuzzbench benchmark
it scored the highest considering both the number of bugs found and coverage
covered. While many fuzzers can perform better on certain targets, AFL++
is performing well in a variety of different targets in both bug discovery and
coverage making it a safe choice. In addition, AFL++ is mutation based,
ready to use fuzzing tool, allowing for easy deployment. AFL++ is often
mentioned in many papers and conferences related to fuzzing and has an active
community driving its development. It also uses grey-box fuzzing technique
allowing the utilization of TA source code and documentation available. For
the aforementioned reasons, AFL++ has been chosen to perform the fuzzing
on the PKCS#11 TA. Any mentions of AFL will be a reference to AFL++
in the remaining parts of this thesis.

4.2.2 AFL Integration

After porting the PKCS#11 TA to Open-TEE, and AFL has been selected as
the fuzzing tool to use, the fuzzer has to be integrated to work with the setup.
The AFL model, as shown in figure 3.7, expects to instrument and spawn the
target binary. In the case of GP compliant TEE, the CA always initiates the
TA making it the target to be forked by the instrumented forkserver. However,

63

the fuzzing target is instead the TA that it invokes and communicates with.
Due to the deviations in the AFL model and the CA-TA relation, modification
has to be performed in AFL. In order to make AFL use edge information
generated from the instrumented TA, it has to receive the process identifier
(PID) and process status information of the TA instance. The PID is used by
afl fuzz to monitor the target process and detect when a crash has occurred.
Hence, the PID and status of the TA has to be relayed to afl fuzz. This can
be done using inter-process communication (IPC), to reflect how the process
information is normally relayed from a target to AFL. In order for AFL to
receive TA process related information, modifications to Open-TEE and AFL
is made. The communication between them uses a named pipe. This is a
design choice made to be similar to anonymous pipe, what AFL natively
uses to handle communication. AFL receives the TA PID from the launcher
process in Open-TEE during TA process creation, and status update from
the manager process when either the TA raises a SIGCHLD signal or exits
successfully. An overview of the relationship between AFL, Open-TEE and
the target TA is shown in table 4.5.

The CA will be used to create the harness to the target. AFL persistent mode
is used on the CA for performance benefits, allowing the CA process to be
reused to avoid reinitializing the process and reloading libraries again. A new
TA will however be created after a command invocation followed by closing
session and finalizing context. The Open-TEE engine is ran as a daemon
process in the user space and must be ready to accept TA invocations from
CAs. However, the implementation of the Open-TEE is rather unstable. It
is possible for the engine to end up in a non-responsive state, halting the
fuzzing process. Since unknown problems could arise in the engine and the
target is not the Open-TEE engine itself, less effort is spent on discovering
and fixing bugs in it. To overcome this, the CA and engine is restarted by
AFL after a timeout. This could possibly affect certain test cases on the TA
as the engine might become non-responsive before the TA has processed the
mutated data. However, such cases are rare and will therefore not have a
great impact on the fuzzing. Finally, AFL needs to be able to reproduce a test
case by providing the same input. The content of the secure storage used by
the PKCS#11 TA to store cryptographic tokens can affect the outcome of the
test case. Therefore, after each new fuzzer created test case executed on the
target, the PKCS#11 state will be reset by cleaning the secure storage.

64

Figure 4.5: Overview of the modified AFL and Open-TEE in the final solution.

65

4.3 Fuzzing Harness

4.3.1 Fuzzing Entry Points

Now that AFL is modified into working with Open-TEE and able to retain
a fuzzing session, a harness will be implemented. The harness will be a CA
that handles AFL mutated data and extract the command ID and data that
it prepare and send to the target TA.

The PKCS#11 TA takes input normally from a CA via the GP API. This
is the most likely input vector that an attacker can take control over which
makes it an excellent fuzzing entry point. Another possible input vector to
the PKCS#11 TA is via the TA2TA interface. PKCS#11 uses this interface
to communicate with an OP-TEE firmware service to attain additional seed
material to the PRNG. However, the PKCS#11 TA will connect to this specific
TA using its unique UUID. Hence, this approach requires the attacker to
have taken control of the OP-TEE provided pseudo trusted application (PTA)
itself. This is considered to be outside the scope of this project. Another
source of input to the PKCS#11 are the persistent objects stored in OP-TEEs
secure storage. All objects are encrypted and integrity protected in the secure
storage. Therefore, this approach will be considered unfeasible.

4.3.2 Targeting the PKCS#11 Serialization Parser

PKCS#11 TA offers a variety of commands often requiring multiple parame-
ters, e.g. shared memory for commands arguments and a TA output buffer,
and command ID for the TA invocation. For certain command invocations,
the CA will perform serialization on the input data transforming the data
into a type-length-value format. This data will then be deserialized when it
reaches the TA. However, since the serialization is performed in the normal
world, an adversary would have control over it and is able to send unserialized
data. This allows the fuzzing to be performed with and without serialization
(as a binary blob), creating two different fuzzing scenarios. With serialization
enabled, the input space will be limited, as the input might be rejected if it
is not well-formed during the serialization process before it reaches the TA.
Disabling serialization can further exercise the TA handling of unexpected
inputs. In the fuzzing sessions the focus will be on command invocations that
sends serialized data to the TA, as the deserialization parsing on the TA side

66

is complex and can often be a pitfall for vulnerabilities. This will require
building a harness that will support different command invocation that uses
serialization.

4.3.3 Harness Design and Data Collection

The harness in the CA is made easily expandable. The CA will read the
command ID of the AFL test case and choose the correct setup required for
this. This can include creating shared memory allocations, performing initial
invocations to set the PKCS#11 TA some state and finally performing the
command invocation with the fuzzing data. The setup used will be based on
the command ID extracted from the AFL test case.

The baseline provided to AFL has to be a valid input. In order to provide
AFL with more learning material, the xtest application in OP-TEE together
with its PKCS#11 test suite is ported to Open-TEE. The test cases in
xtest will be used for building the AFL corpus. The control buffer provided
to TA via the GP API will be recorded during run-time when performing
the OP-TEE test suite and dumped to the file system. The dumped data
consists of valid serialized data. It is written in binary format together
with the command ID it is related to. The binary format is in the form
[command id]∥[serialized data]. The input is then read by AFL and split
by the harness into two fields which is then passed to the TA via the GP
API using shared memory prepared by the harness. AFL is smart enough to
learn that command IDs are always of the same length by measuring coverage
generated by different mutated inputs. By providing additional initial inputs
with the same command ID, but different data, AFL will be able to notice
characteristics of the input format with more ease.

4.4 Fuzzing in Iterations

When starting a fuzzing instance on a target with AFL and gcov instru-
mentation, information about the fuzzing session will be provided to the
user. The gcov information from the TA will provide the user with addi-
tional information to complement the AFL coverage information. The AFL
instrumentation will write to a bitmap telling the fuzzer if any new unique
edges has been found and the hit count of each found edge. However, the
edges cannot be related back to the original source code. This is possible

67

with the additional coverage information from gcov. It is used with lcov, the
graphical interface front-end for gcov, to present the code lines exercised in
the target as well the hit count in the form of a navigable website. The results
provide information that can help the user to discover problems of the fuzzing
process. For example, if the harness or target needs to be adjusted to bypass
a certain condition, or if additional learning material needs to be provided
to the fuzzer to reach deeper parts of the target. The AFL status screen
displays information about the fuzzing instance e.g. the number of unique
edges exercised in the target, the current fuzzing strategy used to create new
test cases, the number of crashes recorded, lapsed time since last new finding
(e.g. edge, crash, timeout) and other statistical information. This information
can be used in every new fuzzing iteration to determine how long to run the
ongoing fuzzing session, if the fuzzing session needs to be stopped due to
crash detection that needs to be patched to not disturb the fuzzing process,
or ran until the target is determined to be safe enough.

68

Result

This section will present the main results of the thesis. Firstly, the core part
of the solution will be presented. Secondly, a use case of the solution will
be articulated. Finally, the current status of the solution will be unfolded,
including the tests performed on it and the evaluation of the outcome; some
limitations of the project will be discussed as well.

5.1 TA Fuzzing Tool

The solution is a tool that can be used to fuzz any GP compliant TA that is
ported to the Open-TEE environment using the AFL fuzzer. It can provide
memory leak, bug detection and other features provided by different sanitizers.
The solution also overcomes any possible hangs by using a timer to restart a
new test case. Coverage and fuzzing related information is provided to the
user to security evaluate the target and debug the fuzzing process. Using
this solution also allow the usage of existing tools for mainstream OSes.
For example, GNU Debugger (GDB) can be used to perform a root cause
analysis upon finding bugs, or simply for troubleshooting purposes. The
solution is independent from any TEE specifics and can be used to fuzz TA
inside of different TEEs. The tool has currently only been tested on Debian
GNU/Linux 10 (Buster) 64-bit, and the modifications are based on AFL++
version ++4.03a (dev), Open-TEE latest release as of 2022 and mbedtls
3.1.0.

5.2 Proof of Concept Fuzzing of PKCS#11

TA

To test the TA fuzzing tool and to demonstrate the usage of it, the PKCS#11
TA in OP-TEE has been used. An example port of the TA Open-TEE has
been performed. A simple harness is implemented with the focus on fuzzing
the serialization logic inside of the PKCS#11 TA. This will serve as a template

69

for how the harness can be designed. The xtest PKCS#11 test suite is also
used to demonstrate how data collection can be performed to build a corpus
baseline for AFL. Any existing logging functionalities in the PKCS#11 TA
has been modified to write to syslog. This will allow already existing log
messages to be displayed during run-time.

5.3 The State of the Solution

Tests have been conducted on the solution using the example PKCS#11 TA
port, harness and corpus generated from the xtest test suite. Some tests ran
for multiple days without any interruption of the fuzzing process. During
these runs, the fuzzer was stably able to detect new edges in the PKCS#11
TA. Deliberate bugs has been added to the ported TA to test ASAN and
LSAN. Both programming faults and memory leaks could be detected by
AFL. Reports of the coverage information can also be generated after ending
a fuzzing session. An intractable interface can be used to browse the source
code files, to display the exercised lines and hit count. After running the test
suite, on the ported PKCS#11 TA, some tests have failed. Most of them are
related to cryptographic operations for specific algorithms, where the output
resulted in invalid mechanism error. This indicates that either the porting or
the implementation of GP internal core API in Open-TEE can be improved.
Another possible reason could be that features are missing in Mbed TLS. This
can affect the fuzzing as the fuzzer might not be able to bypass conditions or
states that are dependent on these operations. Due to time constraints, the
issue has not been further investigated. Certain problems have been found
with Open-TEE engine when testing the solution. Any problem causing a
major impact on the fuzzing process has been patched. For example, a file
descriptor leak is found causing the file descriptors to be used up due to the
persistent mode in use. The fuzzing is able to run uninterrupted, however,
during longer fuzzing sessions it is possible for the Open-TEE engine to hang
and result in a lost test case. The test cases in these hangs are also written to
the file system. When testing the test cases from hangs individually they have
been executed normally. This indicates that the Open-TEE might transit
into a bad state after longer runs. However, this is not a frequent event in the
context of fuzzing. A short fuzzing session with an instrumented Open-TEE
has also been tested before. A use-after-free error is detected by ASAN,
however, no review is performed since Open-TEE is not the fuzzing target

70

and the limited time for the project.

71

Conclusion

There is currently, to the best of our knowledge, no implementation of source-
code-utilizing TA fuzzing. The thesis addresses this gap by providing a
proof of concept solution to this problem. The achievements of the thesis
are summarized in this section. The section will also consist of ideas of
improvements to the project.

6.1 Project Achievements

The goal of the thesis is to investigate how TAs can be fuzzed effectively
with the use of source code and test it on the fuzzing target PKCS#11 TA
in the OP-TEE project. After analyzing the nature of TAs and the relevant
technology, different approaches to the thesis problem are proposed. The
benefits and challenges of multiple proposed fuzzing environment are discussed.
Additionally, some available fuzzing techniques, tools and features available
are motivated and used to achieve more efficient fuzzing. Then a proof of
concept is implemented to demonstrate and review the effectiveness of the
solution. This includes TA hosting, source code powered fuzzing, techniques
and features that can improve the fuzzing efficiency, monitoring capabilities
for bug detection, extended debugging information, an example porting of
the fuzzing target from its native environment to the fuzzing environment,
fuzzing harness for the fuzzing target to showcase how the solution can be
used. The baseline for the target is also formed by extracting data from an
existing PKCS#11 TA test suite, creating a corpus in the data format that is
compatible with fuzzing harness. All these combined allows for a flexible TA
fuzzing solution that is not bound to TEE specific TAs, and can easily be
extended with additional tools and features.

6.2 Future work

Some possible improvements to known problems in the project and additional
new features are discussed here.

72

6.2.1 Optimization

In the current state of the project, existing bugs in the Open-TEE engine can
hang and trigger a timeout procedure, after a user specified time. The time
impact relatively insignificant as it happens infrequently. However, patching
the root of existing bugs will allow smoother runs. The fuzzing process is
currently only utilizing a single core. AFL supports multi core utilization,
however Open-TEE is designed to only allow a single instance of the engine.
For now, it’s only possible to run multiple instances of the project in isolated
environments. A rework in Open-TEE will allow more CPU utilization.

6.2.2 Generalization

Open-TEE is currently missing features offered by other TEEs such as crypto
features, GP API extensions, implementation of PTAs. If the project can
extend and cover these features of targeted TEEs a generalized TEE port can
be achieved resulting in more seamless porting of custom TAs.

6.2.3 Coverage

The fuzzing in the project can be improved using white-box fuzzing techniques.
For example, concolic fuzzing uses symbolic execution and constraint solvers
to complement the coverage-guided fuzzing [64]. Fuzzing is fast and is good
at finding test cases that solves loose edge conditions. On the contrary,
symbolic execution is slow and good at discovering test cases that solves
complex edges with tight conditions. This will allow better coverage in the
expense of performance. The provided harness serves as a reference, but can
be improved by expanding the type of TA invocations it covers. The harness
also only focuses on exercising the code related to serialization logic. However,
evaluation on other parts of the PKCS#11 TA are of interest as well from a
security perspective. Improving the corpus will also have a great impact on
the discovery of new paths. For example, additional PKCS#11 example data
can be gathered and the current data can be optimized by removing similar
test cases and test cases that are intended to fail. This will provide AFL with
a better baseline, speeding up the coverage discovery.

73

Bibliography

[1] E. Carriere. “Pkcs11,” Linaro. (), [Online]. Available: https://github.
com/OP-TEE/optee_os/tree/master/ta/pkcs11. (accessed: 9.14.2022).

[2] M. Alenezi and M. Zarour, “On the relationship between software
complexity and security,” arXiv preprint arXiv:2002.07135, 2020.

[3] Y. Cho, J. Shin, D. Kwon, M. Ham, Y. Kim, and Y. Paek, “{Hardware-
assisted}{on-demand} hypervisor activation for efficient security critical
code execution on mobile devices,” in 2016 USENIX Annual Technical
Conference (USENIX ATC 16), 2016, pp. 565–578.

[4] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted execution en-
vironment: What it is, and what it is not,” in 2015 IEEE Trust-
com/BigDataSE/ISPA, IEEE, vol. 1, 2015, pp. 57–64.

[5] Pkcs #11 cryptographic token interface base specification version 2.40,
English, version 2.40, OASIS, 2015, 149 pp. [Online]. Available: https:
//docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-

base-v2.40-os.pdf.
[6] Op-tee documentation, English, version 3.9.0, Trusted Firmware, 2020,

165 pp. [Online]. Available: https://optee.readthedocs.io/_/
downloads/en/3.9.0/pdf/.

[7] C. Carabas and M. Carabas, “Fuzzing the linux kernel,” in 2017 Com-
puting Conference, IEEE, 2017, pp. 839–843.

[8] P. Godefroid, M. Y. Levin, and D. Molnar, “Sage: Whitebox fuzzing
for security testing: Sage has had a remarkable impact at microsoft.,”
Queue, vol. 10, no. 1, pp. 20–27, Jan. 2012, issn: 1542-7730. doi:
10.1145/2090147.2094081. [Online]. Available: https://doi.org/
10.1145/2090147.2094081.

[9] H. Yang and M. Lee, “Demystifying arm trustzone tee client api using
op-tee,” in The 9th International Conference on Smart Media and
Applications, 2020, pp. 325–328.

[10] Security in an armv8 system, English, version 1.0, Arm, 2017, 12 pp.
[Online]. Available: https://developer.arm.com/documentation/
100935/0100/Security-in-ARMv8-A-systems-.

74

https://github.com/OP-TEE/optee_os/tree/master/ta/pkcs11
https://github.com/OP-TEE/optee_os/tree/master/ta/pkcs11
https://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.pdf
https://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.pdf
https://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.pdf
https://optee.readthedocs.io/_/downloads/en/3.9.0/pdf/
https://optee.readthedocs.io/_/downloads/en/3.9.0/pdf/
https://doi.org/10.1145/2090147.2094081
https://doi.org/10.1145/2090147.2094081
https://doi.org/10.1145/2090147.2094081
https://developer.arm.com/documentation/100935/0100/Security-in-ARMv8-A-systems-
https://developer.arm.com/documentation/100935/0100/Security-in-ARMv8-A-systems-

[11] Cortex-a8 technical reference manual, English, version r1p1, Arm, 2006,
730 pp. [Online]. Available: https://developer.arm.com/documentation/
ddi0344/b?lang=en.

[12] X. Ge, H. Vijayakumar, and T. Jaeger, “Sprobes: Enforcing kernel code
integrity on the trustzone architecture,” arXiv preprint arXiv:1410.7747,
2014. [Online]. Available: https://arxiv.org/ftp/arxiv/papers/
1410/1410.7747.pdf.

[13] Arm security technology building a secure system using trustzone®
technology, English, Arm, 2005, 108 pp. [Online]. Available: https:
//developer.arm.com/documentation/PRD29- GENC- 009492/c/

preface?lang=en.
[14] “Trusted board boot,” Arm. (), [Online]. Available: https://github.

com/ARM-software/arm-trusted-firmware/blob/master/docs/

design/trusted-board-boot.rst. (accessed: 25.02.2022).
[15] “What is root of trust?” Thales. (), [Online]. Available: https://cpl.

thalesgroup.com/faq/hardware-security-modules/what-root-

trust. (accessed: 24.02.2022).
[16] “About,” Trusted Firmware. (), [Online]. Available: https://www.

trustedfirmware.org/about/. (accessed: 13.03.2022).
[17] “Technical overview of trusted firmware-a embedded linux conference,”

Arm. (), [Online]. Available: https://elinux.org/images/0/05/Elc-
tfa.pdf. (accessed: 15.06.2022).

[18] “Op-tee, open-source security for the mass-market,” Linaro. (), [Online].
Available: https://www.linaro.org/blog/op-tee-open-source-
security-mass-market. (accessed: 25.02.2022).

[19] Trusted firmware-a, English, version 2.6, Trusted Firmware, 2021, 632 pp.
[Online]. Available: https://trustedfirmware-a.readthedocs.io/
_/downloads/en/v2.6/pdf/.

[20] “Open portable trusted execution environment,” Linaro. (), [Online].
Available: https://www.op-tee.org/. (accessed: 22.02.2022).

[21] “Op-tee overview,” STMicroelectronics. (), [Online]. Available: https:
//wiki.st.com/stm32mpu/wiki/OP- TEE_overview#cite_note-

optee.org-1. (accessed: 25.02.2022).
[22] “Tee subsystem,” The kernel development community. (), [Online].

Available: https://www.kernel.org/doc/html/latest/staging/
tee.html. (accessed: 25.02.2022).

75

https://developer.arm.com/documentation/ddi0344/b?lang=en
https://developer.arm.com/documentation/ddi0344/b?lang=en
https://arxiv.org/ftp/arxiv/papers/1410/1410.7747.pdf
https://arxiv.org/ftp/arxiv/papers/1410/1410.7747.pdf
https://developer.arm.com/documentation/PRD29-GENC-009492/c/preface?lang=en
https://developer.arm.com/documentation/PRD29-GENC-009492/c/preface?lang=en
https://developer.arm.com/documentation/PRD29-GENC-009492/c/preface?lang=en
https://github.com/ARM-software/arm-trusted-firmware/blob/master/docs/design/trusted-board-boot.rst
https://github.com/ARM-software/arm-trusted-firmware/blob/master/docs/design/trusted-board-boot.rst
https://github.com/ARM-software/arm-trusted-firmware/blob/master/docs/design/trusted-board-boot.rst
https://cpl.thalesgroup.com/faq/hardware-security-modules/what-root-trust
https://cpl.thalesgroup.com/faq/hardware-security-modules/what-root-trust
https://cpl.thalesgroup.com/faq/hardware-security-modules/what-root-trust
https://www.trustedfirmware.org/about/
https://www.trustedfirmware.org/about/
https://elinux.org/images/0/05/Elc-tfa.pdf
https://elinux.org/images/0/05/Elc-tfa.pdf
https://www.linaro.org/blog/op-tee-open-source-security-mass-market
https://www.linaro.org/blog/op-tee-open-source-security-mass-market
https://trustedfirmware-a.readthedocs.io/_/downloads/en/v2.6/pdf/
https://trustedfirmware-a.readthedocs.io/_/downloads/en/v2.6/pdf/
https://www.op-tee.org/
https://wiki.st.com/stm32mpu/wiki/OP-TEE_overview#cite_note-optee.org-1
https://wiki.st.com/stm32mpu/wiki/OP-TEE_overview#cite_note-optee.org-1
https://wiki.st.com/stm32mpu/wiki/OP-TEE_overview#cite_note-optee.org-1
https://www.kernel.org/doc/html/latest/staging/tee.html
https://www.kernel.org/doc/html/latest/staging/tee.html

[23] “Secure storage,” Trusted Firmware. (), [Online]. Available: https:
/ / optee . readthedocs . io / en / latest / architecture / secure _

storage.html. (accessed: 25.02.2022).
[24] B. McGillion, T. Dettenborn, T. Nyman, and N. Asokan, “Open-TEE

– an open virtual trusted execution environment,” Aalto University,
Tech. Rep., 2015. eprint: {\ttarXiv:1506.07367[cs.CR]}. [Online].
Available: http://arxiv.org/abs/1506.07367.

[25] J. E. Brian McGillion et al. “Open-tee.” (), [Online]. Available: https:
//open-tee.github.io/faq/. (accessed: 21.06.2022).

[26] “Trustcom2015 open-tee,” Intel. (), [Online]. Available: https : / /

github.com/Open-TEE/Open-Tee.github.io/raw/master/documents/

TrustCom2015_OpenTEE.odp. (accessed: 21.06.2022).
[27] Tee client api specification, English, version 1.0, GlobalPlatform, 2010,

58 pp. [Online]. Available: https://globalplatform.org/wp-content/
uploads/2010/07/TEE_Client_API_Specification-V1.0.pdf.

[28] Tee system architecture, English, version 1.1, GlobalPlatform, 2017,
43 pp. [Online]. Available: https://globalplatform.org/wp-content/
uploads/2017/01/GPD_TEE_SystemArch_v1.1_Public_Release.

pdf.
[29] J. Li, B. Zhao, and C. Zhang, “Fuzzing: A survey,” Cybersecurity, 2018.

doi: https://doi.org/10.1186/s42400-018-0002-y.
[30] J. Reimer. “5 cves found with feedback-based fuzzing.” (), [Online].

Available: https://www.code-intelligence.com/blog/5-cves-
found-with-feedback-based-fuzzing. (accessed: 16.11.2021).

[31] M. Sutton, A. Greene, and P. Amini, Fuzzing: brute force vulnerability
discovery. Pearson Education, 2007.

[32] V.-T. Pham, M. Böhme, A. E. Santosa, A. R. Căciulescu, and A. Roy-
choudhury, “Smart greybox fuzzing,” IEEE Transactions on Software
Engineering, vol. 47, no. 9, pp. 1980–1997, 2019.

[33] H. Liang, X. Pei, X. Jia, W. Shen, and J. Zhang, “Fuzzing: State of the
art,” IEEE Transactions on Reliability, vol. 67, no. 3, pp. 1199–1218,
2018.

[34] A. Takanen, J. D. Demott, C. Miller, and A. Kettunen, Fuzzing for
software security testing and quality assurance. Artech House, 2018.

[35] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “AFL++ : Combining
incremental steps of fuzzing research,” in 14th USENIX Workshop on
Offensive Technologies (WOOT 20), USENIX Association, Aug. 2020.

76

https://optee.readthedocs.io/en/latest/architecture/secure_storage.html
https://optee.readthedocs.io/en/latest/architecture/secure_storage.html
https://optee.readthedocs.io/en/latest/architecture/secure_storage.html
{\tt arXiv:1506.07367 [cs.CR]}
http://arxiv.org/abs/1506.07367
https://open-tee.github.io/faq/
https://open-tee.github.io/faq/
https://github.com/Open-TEE/Open-Tee.github.io/raw/master/documents/TrustCom2015_OpenTEE.odp
https://github.com/Open-TEE/Open-Tee.github.io/raw/master/documents/TrustCom2015_OpenTEE.odp
https://github.com/Open-TEE/Open-Tee.github.io/raw/master/documents/TrustCom2015_OpenTEE.odp
https://globalplatform.org/wp-content/uploads/2010/07/TEE_Client_API_Specification-V1.0.pdf
https://globalplatform.org/wp-content/uploads/2010/07/TEE_Client_API_Specification-V1.0.pdf
https://globalplatform.org/wp-content/uploads/2017/01/GPD_TEE_SystemArch_v1.1_Public_Release.pdf
https://globalplatform.org/wp-content/uploads/2017/01/GPD_TEE_SystemArch_v1.1_Public_Release.pdf
https://globalplatform.org/wp-content/uploads/2017/01/GPD_TEE_SystemArch_v1.1_Public_Release.pdf
https://doi.org/https://doi.org/10.1186/s42400-018-0002-y
https://www.code-intelligence.com/blog/5-cves-found-with-feedback-based-fuzzing
https://www.code-intelligence.com/blog/5-cves-found-with-feedback-based-fuzzing

[Online]. Available: https://www.usenix.org/conference/woot20/
presentation/fioraldi.

[36] h. vanhauser-thc hexcoder- et al. “Aflplusplus.” (), [Online]. Avail-
able: https://github.com/AFLplusplus/AFLplusplus. (accessed:
19.06.2022).

[37] “Aflplusplus,” AFL community. (), [Online]. Available: https : / /

aflplus.plus/. (accessed: 19.06.2022).
[38] R. Fan, J. Pan, and S. Huang, “Arm-afl: Coverage-guided fuzzing

framework for arm-based iot devices,” in International Conference on
Applied Cryptography and Network Security, Springer, 2020, pp. 239–
254.

[39] M. Zalewski, Afl documentation, English, version 2.53b, 2019, 87 pp.
[Online]. Available: https://afl-1.readthedocs.io/_/downloads/
en/latest/pdf/.

[40] ——, “Binary fuzzing strategies: What works, what doesn’t.” (), [On-
line]. Available: https://lcamtuf.blogspot.com/2014/08/binary-
fuzzing-strategies-what-works.html. (accessed: 19.06.2022).

[41] ——, “Fuzzing random programs without execve().” (), [Online]. Avail-
able: https://lcamtuf.blogspot.com/2014/10/fuzzing-binaries-
without-execve.html. (accessed: 14.03.2022).

[42] l. vanhauser-thc llzmb et al. “Llvm mode persistent mode.” (), [Online].
Available: https://github.com/AFLplusplus/AFLplusplus/blob/
stable/instrumentation/README.persistent_mode.md. (accessed:
14.03.2022).

[43] M. Rash. “Afl-cov - afl fuzzing code coverage.” (), [Online]. Available:
https://github.com/mrash/afl-cov. (accessed: 20.06.2022).

[44] “Introduction to gcov,” Free Software Foundation. (), [Online]. Available:
https://gcc.gnu.org/onlinedocs/gcc/Gcov-Intro.html#Gcov-

Intro. (accessed: 20.06.2022).
[45] oberpar. “Readme file for the ltp gcov extension (lcov).” (), [Online].

Available: https://github.com/linux-test-project/lcov. (ac-
cessed: 20.06.2022).

[46] “Addresssanitizer,” Google. (), [Online]. Available: https://github.
com/google/sanitizers/wiki/AddressSanitizer. (accessed: 14.03.2022).

[47] “Addresssanitizer,” Google. (), [Online]. Available: https://github.
com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer.
(accessed: 14.03.2022).

77

https://www.usenix.org/conference/woot20/presentation/fioraldi
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://github.com/AFLplusplus/AFLplusplus
https://aflplus.plus/
https://aflplus.plus/
https://afl-1.readthedocs.io/_/downloads/en/latest/pdf/
https://afl-1.readthedocs.io/_/downloads/en/latest/pdf/
https://lcamtuf.blogspot.com/2014/08/binary-fuzzing-strategies-what-works.html
https://lcamtuf.blogspot.com/2014/08/binary-fuzzing-strategies-what-works.html
https://lcamtuf.blogspot.com/2014/10/fuzzing-binaries-without-execve.html
https://lcamtuf.blogspot.com/2014/10/fuzzing-binaries-without-execve.html
https://github.com/AFLplusplus/AFLplusplus/blob/stable/instrumentation/README.persistent_mode.md
https://github.com/AFLplusplus/AFLplusplus/blob/stable/instrumentation/README.persistent_mode.md
https://github.com/mrash/afl-cov
https://gcc.gnu.org/onlinedocs/gcc/Gcov-Intro.html#Gcov-Intro
https://gcc.gnu.org/onlinedocs/gcc/Gcov-Intro.html#Gcov-Intro
https://github.com/linux-test-project/lcov
https://github.com/google/sanitizers/wiki/AddressSanitizer
https://github.com/google/sanitizers/wiki/AddressSanitizer
https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer
https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer

[48] “Memorysanitizer,” Google. (), [Online]. Available: https://github.
com/google/sanitizers/wiki/MemorySanitizer. (accessed: 14.03.2022).

[49] “Undefinedbehaviorsanitizer,” Clang. (), [Online]. Available: https:
//clang.llvm.org/docs/UndefinedBehaviorSanitizer.html. (ac-
cessed: 14.03.2022).

[50] “An introduction to pkcs#11,” Thales Group. (), [Online]. Available:
https://thalesdocs.com/gphsm/ptk/5.9/docs/Content/PTK-

C_Program/intro_PKCS11.htm. (accessed: 14.03.2022).
[51] M. Busch, A. Machiry, C. Spensky, G. Vigna, C. Kruegel, and M.

Payer, “Teezz: Fuzzing trusted applications on cots android devices,” in
2023 IEEE Symposium on Security and Privacy (SP), IEEE Computer
Society, 2022, pp. 220–235.

[52] M. Ghasemisharif, “State of the fuzz: An analysis of black-box vul-
nerability testing,” [Online]. Available: https://github.com/galli-
leo/emmutaler/blob/master/docs/thesis.pdf.

[53] S. Makkaveev. “The road to qualcomm trustzone apps fuzzing.” (),
[Online]. Available: https : / / research . checkpoint . com / 2019 /

the - road - to - qualcomm - trustzone - apps - fuzzing/. (accessed:
20.08.2022).

[54] J. Fenlason and R. Stallman, “Gnu gprof,” GNU Binutils. Available
online: http://www.gnu.org/software/binutils (accessed on 4 October
2022), 1988.

[55] J. E. Brian McGillion et al. “Open-tee.” (), [Online]. Available: https:
//github.com/Open-TEE. (accessed: 21.06.2022).

[56] C. Carabas and M. Carabas, “Fuzzing the linux kernel,” in 2017 Comput-
ing Conference, 2017, pp. 839–843. doi: 10.1109/SAI.2017.8252193.

[57] S. Schumilo, R. Spenneberg, and H. Schwartke, “Don’t trust your usb!
how to find bugs in usb device drivers,” Blackhat Europe, 2014.

[58] C. Lemieux and K. Sen, “Fairfuzz: A targeted mutation strategy for
increasing greybox fuzz testing coverage,” in Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineer-
ing, ser. ASE 2018, Montpellier, France: Association for Computing
Machinery, 2018, pp. 475–485, isbn: 9781450359375. doi: 10.1145/
3238147.3238176. [Online]. Available: https://doi.org/10.1145/
3238147.3238176.

[59] R. Swiecki. “Honggfuzz,” Google. (), [Online]. Available: http://code.
google.com/p/honggfuzz. (accessed: 10.4.2022).

78

https://github.com/google/sanitizers/wiki/MemorySanitizer
https://github.com/google/sanitizers/wiki/MemorySanitizer
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://thalesdocs.com/gphsm/ptk/5.9/docs/Content/PTK-C_Program/intro_PKCS11.htm
https://thalesdocs.com/gphsm/ptk/5.9/docs/Content/PTK-C_Program/intro_PKCS11.htm
https://github.com/galli-leo/emmutaler/blob/master/docs/thesis.pdf
https://github.com/galli-leo/emmutaler/blob/master/docs/thesis.pdf
https://research.checkpoint.com/2019/the-road-to-qualcomm-trustzone-apps-fuzzing/
https://research.checkpoint.com/2019/the-road-to-qualcomm-trustzone-apps-fuzzing/
https://github.com/Open-TEE
https://github.com/Open-TEE
https://doi.org/10.1109/SAI.2017.8252193
https://doi.org/10.1145/3238147.3238176
https://doi.org/10.1145/3238147.3238176
https://doi.org/10.1145/3238147.3238176
https://doi.org/10.1145/3238147.3238176
http://code.google.com/p/honggfuzz
http://code.google.com/p/honggfuzz

[60] “Libfuzzer – a library for coverage-guided fuzz testing.,” LLVM Project.
(), [Online]. Available: https://llvm.org/docs/LibFuzzer.html.
(accessed: 10.4.2022).

[61] C. D. Sylvestre Ledru. “Peach,” Mozilla. (), [Online]. Available: https:
//github.com/MozillaSecurity/peach. (accessed: 10.4.2022).

[62] A. Hazimeh, A. Herrera, and M. Payer, “Magma: A ground-truth fuzzing
benchmark,” Proceedings of the ACM on Measurement and Analysis of
Computing Systems, vol. 4, no. 3, pp. 1–29, 2020. [Online]. Available:
https://hexhive.epfl.ch/publications/files/21SIGMETRICS.

pdf.
[63] J. Metzman, L. Szekeres, L. Simon, R. Sprabery, and A. Arya, “Fuzzbench:

An open fuzzer benchmarking platform and service,” in Proceedings of
the 29th ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering,
2021, pp. 1393–1403.

[64] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “{Qsym}: A practical
concolic execution engine tailored for hybrid fuzzing,” in 27th USENIX
Security Symposium (USENIX Security 18), 2018, pp. 745–761.

79

https://llvm.org/docs/LibFuzzer.html
https://github.com/MozillaSecurity/peach
https://github.com/MozillaSecurity/peach
https://hexhive.epfl.ch/publications/files/21SIGMETRICS.pdf
https://hexhive.epfl.ch/publications/files/21SIGMETRICS.pdf

	Introduction
	Method
	Fuzzing Environment Setup
	Fuzzing Target
	Fuzzing Tool Selection
	The Fuzzing Process

	Background
	TrustZone
	Separation of Execution Worlds
	Resource Access Control

	Secure Boot
	TF-A

	OP-TEE
	Architecture
	Trusted Storage
	REE FS and RPMB FS
	Storing TA in Secure Storage

	The Open-TEE project
	Architecture

	TA
	TEE Client and Internal Core API
	PTA
	Inter-TA Communication
	Threat Model

	Fuzzing
	The fuzzing process
	Classification of Fuzzers
	Fuzzing with AFL and Sanitizers
	Architecture
	Mutation
	Instrumentation
	Increase performance
	Utility

	Sanitizers for Improved Bug Detection

	PKCS#11
	The PKCS#11 Model
	PKCS#11 in OP-TEE
	Passing Data to the PKCS#11 TA

	Related Work
	Android TA Fuzzing
	Qualcomm TA Fuzzing

	System Design
	The Fuzzing Environment
	Requirements
	Ideas and the Solution
	Fuzzer as a TA
	Fuzzer as a normal world application
	Proxy TA in secure world
	Emulate the GP TEE Interface

	Porting of PKCS#11
	Binary Instrumentation

	Modern Fuzzing Tool Alternatives
	Evaluation of Fuzzing Tools
	Magma
	FuzzBench
	Choosing a Fuzzer

	AFL Integration

	Fuzzing Harness
	Fuzzing Entry Points
	Targeting the PKCS#11 Serialization Parser
	Harness Design and Data Collection

	Fuzzing in Iterations

	Result
	TA Fuzzing Tool
	Proof of Concept Fuzzing of PKCS#11 TA
	The State of the Solution

	Conclusion
	Project Achievements
	Future work
	Optimization
	Generalization
	Coverage

