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Abstract

The protein biomarker expressions in three types of sampled immune IN-
FILTration spatial niches in lung cancer tissue were measured using the new
technology Digital Spatial Profiler (DSP). The three types of immune IN-
FILTration that were observed in lung tumors were STROMA identified as
immune cells separate from tumor cells, Tertiary lymphoid structures (TLS)
identified as dense structures of organized immune cells and finally Infiltrat-
erate where immune cells dispersed among and in direct contact with tumor
cells (INFILT). The pairwise inter and intra-patient correlation between the
protein biomarkers were evaluated using the Bland- Altman methods for
Calculating correlation coefficients with repeated observations. The result
showed that the absolute value of the inter- patient correlation levels were
higher for sample type INFILT compared to STROMA while the absolute
value of the intra- patient correlation levels were slightly higher between the
biomarkers of the sample type STROMA. In order to investigate added value
of sampling multiple regions from individual tumors, the intra- patient het-
erogeneity of the protein markers in the three different spatial niches were
evaluated. To this end, three different estimators were used: standard devi-
ation, median absolute deviation and range. After comparing the results, it
was concluded that standard deviation was the preferred method. Since it
is applied on the complete set of available data and captures the behavior of
the tail of the data which is desirable for our purpose. The mean squared
error in the ANOVA table, with the patients identity as the independent
variable and marker values for each sample type as the dependent variable
was calculated as a measure of heterogeneity of the markers within patients.
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Popular science summary

In cancer treatment, drugs that modulate the immune system to more effec-
tively combat the tumor, known as immunotherapy, have become increasingly
important. The form and level of immune infiltration in tumors vary sub-
stantially within and between tumors. A new technology make it possible
to select certain areas on the tumor tissue samples and measure the amount
of certain proteins in the chosen areas. Analysis of the protein expressions
is then the key to identify proteins that could assist us in tumor subtyping,
determination of prognosis and optimal therapeutic strategy for individual
patients. In this study, Three types of immune infiltration spatial niches in
lung cancer tissue have been sampled and more than 40 proteins have been
measured in the chosen areas of the samples.

We started our analysis of the protein expressions by examining their dis-
tribution in the three sampled regions. This approach could be helpful in
pinpointing potential targets associated with the presence of particular im-
mune niches.

Next, we examined the linear relationship between the measured protein
pairs both between and within patients in the three sampled regions. We
had to take into consideration the fact that some samples came from the
same patients and therefore could not be assumed to be independent samples.
Establishing the strength and direction of this relationship is in particular
important for variable selection in future model building.

Since the samples come from different types of tissue structures, variation
in the measured protein expressions was expected. The challenge was how
to assess the level of variation in the measurements to potentially make use
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of, for instance, in predicting the outcome of a certain treatment. Different
methods were used to estimates of the variability in protein values within
patients.

The result suggested an overall reduction in the magnitude of the within-
patient pairwise linear relationship of the proteins compared to the linear
relationship observed within patients. This could potentially indicate that
the relationship varies in different subgroups of the patients and needs to be
further investigated with more samples.

The result of the estimated variation in protein expressions, suggested
that level of variability varied between spatial immune infiltration niches
and between the different biomarkers. This would highlights the added value
in sampling multiple regions of different types from the same tumor. How-
ever, similarities between the results obtained using different methods could
potentially be worrisome. Further examination of the result indicated that
some of the similar patterns could be, for instance, associated with the vul-
nerability of the estimators to deviation of the distribution of the data from
a normal or symmetric distribution. The measurement of the variability and
its potential predictive value could be further studied in the future by em-
ploying estimators that are less sensitive to the shape of the distribution of
the data.
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Chapter 1

Introduction

1.1 Background

Analysis of protein expression in tumor tissue is important to identify biomark-
ers for subtyping tumors, establish prognosis and suggest optimal therapeutic
strategy for each patient. With immunotherapy, cancer can be treated with
drugs that modulate the immune system to more efficiently combat the tu-
mor.

The level and type of immune infiltration differs substantially between and
within tumors. Tumor tissue have previously been assessed with low plex
imaging (one biomarker at the time) or high plex methods where the spatial
tissue context is not retained and the tumor heterogeneity is not captured.
With recently established spatial omics technologies, we can now combine
staining and tissue imaging with multiplex analysis of specific regions of the
tissue. In this study, three types of immune infiltration spatial niches in lung
cancer tissue have been sampled: infiltrating immune cells in direct or close
contact with tumor cells (INFILT), immune cells present in the surrounding
stroma and not in direct contact with tumor cells (STROMA) and immune
cells present in tertiary lymphoid structures (TLS), which are dense regions
of immune cells located outside the tumors. TLS are only present in a subset
of patients and their role in tumor progression is still largely unknown. Figure
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1.1 shows a visualization of these three regions in a single biopsy.

Figure 1.1: Three types of immune structures sampled from one biopsy, Red:
tumor cells, green :immune cells, blue: cell nuclei

1.2 Data

Using the Digital Spatial Profiling technology (DSP), tumor tissue biopsies
were stained with antibodies specific for immune- and tumor protein biomark-
ers. Three antibodies were coupled to fluorophores and used to visualize in
a scanner (i) cell nucleus, (ii) tumor cells and (iii) immune cells.. The scan
images were used to select regions of interest (ROIs) in the samples 1.1. The
remaining antibodies were coupled to barcodes specific for each antibody.
The barcodes were cleaved off the antibodies by directing UV-light at each
ROI. For each ROI, we get a direct quantitation of how many barcodes (an-
tibodies) that were present, which is in proportion to the level of the protein
biomarker.
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The data set consisted of 186 samples from three types of immune infiltra-
tion spatial niches in lung cancer tissue from 33 patients. Out of these 186
samples, 126 samples were of type STROMA from 30 patients, 41 samples of
type INFILT from 14 patients and 19 samples of type TLS from 10 patients.

For the purpose of assessment and evaluation of heterogeneity within pa-
tients, we only looked at a subset of patients with at least three ROIs of the
same sample type. Out of the 33 patients in the study, there were 23 patients
with at least three samples of the type STROMA and a total number of 115
samples, 8 patients with at least three samples of the type INFILT and a
combined number of 30 samples and finally 2 patients with more than two
samples of type TLS and a total of 9 samples. It’s worth noting that there
were no patients in the cohort who satisfied this condition with respect to
all three regions.

In order to calculate the pairwise correlation of biomarkers within pa-
tients, a subset of patients with at least two ROIs of the same sample type
were used. Out of the 33 patients in the study, there were 27 patients with at
least two samples of the type STROMA and a total number of 123 samples,
13 patients with at least two samples of the type INFILT and a combined
number of 40 samples and finally 3 patients with more than one sample of
type TLS and a total of 13 samples.

Fourty-four protein markers were measured per ROI (Appendix A). Normal-
ization of data had been done prior to the start of the thesis project, by scal-
ing to positive control proteins, which inherently normalizes differences in cell
numbers, sampled area and non-specific antibody binding (background noise)
(see Appendix B). Data was log2 transformed after normalization. Figure
1.2 shows the boxplot of the marker values from the three ROI type, which
demonstrates that there is substantial patient-dependency in biomarker ex-
pression also after data normalization.

1.3 Objectives

The following questions were defined to be addressed during the course of
this project:
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Figure 1.2: Boxplot of log2-transformed marker values

What is the underlying probability density of the measured biomarker values
for each ROI-type across all patients? Density estimates offer an easily com-
prehensible presentation of the data for examination of the properties and
features of the data [15] and application of appropriate tools for statistical
analysis of the data.

What is the level of intra- and inter- patient pairwise correlation between
the biomarkers for each sample type? The intra-patient pairwise correlations
means the within single patient correlation between the markers while the
intra-patient correlation refers to the between-patients correlation between
the markers. Establishing the degree of pairwise linear relationship between
the variables is in particular important for variable selection in future model
building.
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How beneficial/necessary is sampling multiple regions from individual tu-
mors? This question was concerned with finding a suitable measure of het-
erogeneity in digital spatial profiling (DSP) data of immune infiltration in
lung tumors and examining the added value of sampling multiple regions
from individual tumors by characterizing heterogeneity in the data.
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Chapter 2

Methods

2.1 Kernel Density Estimate

Given a sample of independent, identically distributed observations from a
continuous univariate distribution, the kernel estimator is a nonparametric
approach to estimating the density. It is obtained as the sum of individual
kernels that are placed at each observation. The shape of the individual
kernels is determined by the kernel function and their width is controlled
by the smoothing parameter or bandwidth. Choosing a larger value for the
smoothing parameter creates a smoother density that may hide the impor-
tant details for too large values of the bandwidth while a smaller smoothing
parameter creates more details that turn into spikes at the observations as
the bandwidth approaches zero [15].

A useful method for choosing the bandwidth and shape of the kernel is to
plot out and examine several density curves with different smoothing param-
eters and kernels to get more insight into the data and subsequently choose
a density estimate that is subjectively more satisfactory given one’s prior
ideas about the underlying density of the sample. It’s in particular useful to
present the data in several plots with varying smoothness that may lead to
different explanations when the purpose of the density estimation plots is to
investigate possible models and hypothesis [15].
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2.2 Correlation Levels

2.2.1 Pearson correlation

Pearson product-moment coefficient r is used as a measure of the degree and
direction of the linear relationship between the protein pairs [11]

r =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
√∑

i(yi − ȳ)2

where x and y are sample vectors of length n and x̄ and ȳ represent the
corresponding sample means. The coefficient r tells us about the magnitude
as well as the direction of such relationship. This analysis does not take into
consideration the fact that for each sample type, there are different number
of ROIs from individual patients.

2.2.2 Intra-Patient correlation

As mentioned earlier, the data set consists of different number of ROIs of
the same sample type from each patient. Therefore, it may be misleading
to calculate the pairwise correlation coefficients of the biomarkers for each
sample type as if they were independent random samples. Bland and Altman
introduced a technique [3] that can be used to calculate the pairwise intra-
patient (within-patient) correlation coefficients when there are more than one
ROIs of the same sample type from the patients.

The Bland- Altman approach means that in order to assess the intra-patient
correlation between two biomarkers, we need to remove the inter- patient
(between-patients) differences and look at the intra- patient variability. The
one-way analysis of covariance (one-way ANCOVA) is used to partition the
total intra- patient variation in a biomarker into two components: the varia-
tion that can be explained by the linear relationship between the two biomark-
ers and the unexplained variability. One-way ANCOVA can be viewed as an
extension of one- way analysis of variance (one-way ANOVA) and the main
ideas related to ANCOVA that are utilized in Bland and Altman analysis
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can be demonstrated with an example [16] [1]. Suppose that we wish to as-
sess the relative effectiveness of p different treatments on score of a test by
conducting a p-group experiment. N participants are randomly assigned to
the p treatments and the test scores are collected after the completion of the
treatment process. In the framework of one-way ANOVA, the observed test
scores can be written in the following fixed-effect model form:

yij = µ+ aj + eij

Where yij is the test score from the ith participant in treatment j, µ is
the grand mean, aj is the effect of treatment j and eij is the random error
associated with yij. The total variability in the test scores, defined as the
total sum of squares, is split into two components: the variation between the
groups and the variation within the groups:

SSTotal = SSbetween + SSWithin

The total sum of squares is calculated as the sum of the squared differences
of the test scores from the grand mean. The total sum of square is divided
into the within treatment sum of squares which is given by the of sum of the
squared deviation of the test scores from the group mean and the between
treatments sum of squares which is given by the difference between the total
and within treatment sum of squares.

Lets suppose that we’re aware of the fact that the test score is correlated with
patient age (the covariate) and that there are considerable age differences
between patients within the treatment groups. Thus, part of the variation
within treatment in the ANOVA model can be explained and accounted for
by the linear relationship between test score and age. In this situation one-
way ANCOVA is used to evaluate the relative effectiveness of the treatments
while controlling the effect of the covariate (age). This is done by separating
the relationship between the test score and age from the effect of treatments
[10]. Assuming the equality of the slopes of the regression between the test
score (the dependent variable) and covariate within the groups, parallel lines

Yj = ȳj + b ∗ (x− x̄j)

are fitted for each treatment group, where Yj is the test score predicted by
the regression line in group j, x̄j is the mean of covariate values in group j
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and b is the common slope given by [1] :

b =

∑
j Sxyj∑
j Sxxj

where Sxxj =
∑nj

i (xij− x̄j)
2 is the sum of squared deviations of the covariate

values about the treatment mean in group j, Sxyj =
∑nj

i (xij − x̄j)(yij − ȳj)
represents the sum of the products of deviations of the test score (dependent
variable) and the covariate about their corresponding jth treatment mean
and nj stands for the number of participants in treatment group j.
In the one-way ANCOVA model, the observed test scores can be written in
the following fixed-effect model from [10]:

yij = µ+ aj + b(xij − x̄) + eij

where yij is the test score of ith participant in group j, µ is the grand mean of
test scores, aj is the jth treatment effect, b is the common regression slope,
xij is the covariate value for ith participant in group j and x̄ is the grand
mean of covariate values. The total sum of squares in ANCOVA contains
variability in the test scores due to different sources: variation due to dif-
ferences between treatments that is independent of the covariate, variability
that can be predicted from the linear relationship between the test score and
the covariate and finally the unexplained variation (i.e. error). The Ancova
summary table contains the sum of squares due to treatment differences in-
dependent from the covariate, the within treatment sum of squares resulting
from the relationship between the test score and the covariate. And finally
subtracting the within treatment sum of squares predictable from the covari-
ate (within group regression sum of squares) from the total within group sum
of squares, we obtain the within group residual sum of squares (error sum of
squares). The main difference between ANOVA and ANCOVA is that the
error term in ANOVA is based on the variation of the test scores around the
treatment mean in each group while in ANCOVA the unexplained variation
is calculated based on the deviation of the test scores from the regression line
in each group [16].

Following Bland-Altman’s technique, the proportion of the variation in one
biomarker that is predictable from the variation in the other biomarker is
given by the ratio between the within patient regression sum of squares and
the total within patient sum of squares. The square root of this value, which
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is always between 0 and 1, gives us the magnitude of the intra-patient cor-
relation coefficient (ie. the linear relationship between the two biomarkers)
and the sign of the correlation coefficient is determined by the overall regres-
sion slope. To compute the correlation coefficient of two markers using this
technique, we can use multiple regression where we may choose one of the
markers to be the outcome variable and the other marker and the patient’s
identity to be the predictor variables. [3].

It should be noted that although homogeneity of the regression slopes is an
assumption in the ANCOVA model, it is not an assumption in the technique
that we use in order to calculate the correlation coefficients. As mentioned
before, the within patient residual sum of squares is the sum of the squared
deviations of the observations in each group from the regression line. An
increase in the heterogeneity of the slopes will therefore result in a larger
intra- patient (within-patient) residual sum of squares and hence a smaller
correlation coefficient in absolute value. A close to zero correlation coefficient
indicates that there is a large variation in the linear relationship between the
two biomarkers across the patients [2]. The magnitude of the correlation
coefficient can also be affected by the presence of outliers as they can lead to
heterogeneity of regression slope.

To assess the pairwise intra-patient correlation coefficient of the biomarkers,
only patients with at least two ROIs of the same sample type were included
in the calculations.

2.2.3 Inter-Patient Correlation

Taking into account the fact that the data set contains more than one sample
of the same sample type from some patients, the pairwise inter-patient (i.e.
between- patient) correlation coefficients of the biomarkers can be calculated
as the correlation between the patient means [4]. This approach can be
viewed as an assessment of the linear association between the averages of a
pair of biomarkers in patients.

The number of ROIs from each sample type vary a lot among the patients
(between 1 to 6 ROIs for sample types INFILT and TLS and from 1 to 12
ROIs for sample type STROMA). Therefore the weighted correlation coeffi-
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cients are given by the formula:

r =

∑N
i=1wi(x̄i-mx̄)(ȳi-mȳ)√∑N

1=1wi(x̄i-mx̄)2
∑N

i=1wi(ȳi-mȳi)
2

where the weight wi denotes the number of ROIs for patient i for i = 1, ..., N ,

x̄i and ȳi represent the biomarker means for patient i and mx̄ =
∑N

i=1 wix̄i∑N
i=1 wi

,

mȳ =
∑N

i=1 wiȳi∑N
i=1 wi

stand for the weighted means.

2.3 Heterogeneity

2.3.1 Evaluating intra-patient variability in markers

Scale estimators are used to measure the amount of variation in a sample. A
nonnegative-valued function of the sample such that it is location invariant
and scale equivariant qualifies as a scale estimator [8]. Standard deviation
(SD), median absolute deviation from the sample median (MAD) and range
are three such estimators. Standard deviation is the most widely used esti-
mator of dispersion of the observations and is the minimum variance unbiased
estimator of the variance for Gaussian data

SD =

√∑n
i=1(xi − x̄)2

n− 1

where x is a vector of observations of size n and x̄ represents the sample
mean.The sample standard deviation is not a robust estimator as its value is
greatly influenced by the outlying values in the sample. The median absolute
deviation from the sample median is a robust estimator of scale defined as

MAD = C.median
i

| xi −M |

where M is the sample median and C a scale factor equal to 1.4826 for
normally distributed Xi to ensure that MAD is a consistent estimator of the
standard deviation.
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Range defined as the difference between the maximum and minimum value
of the sample is another scale estimator that is sensitive to outliers. The
value of the range is determined by the two extreme values in the sample
and as such, the specific values of the rest of the sample between those two
extremes do not affect its value.

In order to assess the intra-patient (i.e. within-patient) variation of the
marker expressions for the specific ROI types, patients with at least three
observations in the corresponding region were selected. The amount of vari-
ability was subsequently calculated separately for each marker as the SD ,
MAD and range of the biomarker measurements for each patient.

2.3.2 A measure of intra-patient marker heterogeneity

As explained earlier in 2.2, the total variability is partitioned into variability
within groups and variability between groups in the framework of one-way
ANOVA

N∑
i

(Yij − Ȳ )2 =

p∑
j=1

nj(Ȳi − Ȳ )2 +

p∑
j=1

(nj − 1)s2j

where s2j is the scores estimated variance in the jth group.

Dividing the sum of squares in the formula above by their corresponding
degrees of freedom results in three variances [16]: one related to the total
variability , one associated with the variation between the groups MSB =
SSbetween

p−1
and finally the one associated with the variability within groups

MSE = SSwithin

N−p
. One-way ANOVA assumes that the populations all have

the same variance. The mean squared error (MSE) is the pooled variance
that produces an unbiased estimate of the variance within each group.

The mean squared error in the ANOVA table, with the patients identity as
the independent variable (i.e. the groups) and biomarker values for each
sample type as the dependent variable is used as a measure of heterogeneity
of the markers within patients [12].

It should be noted that only patients with more than three ROIs of the same
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sample type were included in the calculations concerning the evaluation and
measurement of heterogeneity within patients.
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Chapter 3

Result

3.1 Density Estimation

The kernel density estimates were plotted separately for each biomarker and
ROI-type across all patients with varying smoothing parameter and a Gaus-
sian kernel. Figure 3.1 and Figure 3.2 show two sets of examples of such
estimates for two biomarkers. Figure 3.1 shows that the estimated density
curves with various smoothing parameters suggest different explanations of
the data. Either a bimodal or multimodal distribution in all three sampling
regions or approximately normal curves. In the case of CD27, Figure 3.2
indicates that although the distribution in INFILT and STROMA regions
may roughly be described by a normal curve, the distribution in TLS region
is better described by a bimodal curve indicating a combination of two popu-
lations. Drawing any conclusions about the population based on the density
estimations, one must also recognize the limitations imposed by the small
number of ROIs of type TLS and the high patient dependency demonstrated
in Figure 3.3 and figure 3.4.
The density plots of CD3 and CD27 (Figure 3.1 and Figure 3.2), also reveal
higher levels of e.g. T-cells in TLS compared to STROMA and INFILT,
and a general higher level of CD27 positive cells. CD27 is a co-stimulatory
marker and a potential target for immunotherapy. This type of results indi-
cates that we can use this approach to identify tentative targets in relation to
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presence of specific immune niches. The high patient dependency that needs
to be taken into account can be addressed by using linear mixed models to
establish biomarker signatures while allowing for patient dependency [5]

The estimated kernel density plots suggested that the underlying distribution
of most biomarker values are approximately normal. In order to further assess
the normality of the marker values, we examined the normal Q-Q plots.

3.1.1 Normality assessment

the data had been apriori log2 transformed. Protein expression is heavily
skewed in a linear scale. Log transformation makes the data symmetri-
cal/normally distributed, which is appropriate when comparing expression
ratios between different groups of samples. Normal Q-Q plots were used
in order to asses the normality of the log2-transformed data. Since pro-
tein expression is heavily skewed in a linear scale, log transformation makes
the distribution of the data closer to symmetrical (normal). Looking at each
biomarker across all three sample types and within each region separately in-
dicated that most samples were reasonably normal. Marker CD66b was one
of the biomarkers that showed deviation from normality in all three regions
(Figure 3.5).
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3.2 Correlation levels

3.2.1 Pearson correlation coefficients

The between-patient pairwise scatterplots of the proteins ,across all sample
types as well as within individual sample types, suggest that there is a linear
relationship between the biomarker pairs and that the direction of this rela-
tionship is positive in a majority of biomarker pairs. Although the strength
varies markedly among them. Figure 3.6 shows exemplary inter-patient pair-
wise scatterplots of six biomarkers across all sample types as well as each
individual ROI type separately.

The inter-patient Pearson correlation coefficients of the biomarkers across all
ROIs are presented in Figure 3.7a. Figures 3.7b, 3.7c and 3.7d show the pair-
wise correlations of the proteins for each ROI type. The boxplot in Figure
3.8 demonstrates a comparison between the absolute values of the correlation
coefficients. These results show that the correlation level is highest among
the biomarkers for ROI type TLS and lowest for ROI type STROMA. The
absolute value of the correlation levels seem to have an approximately sym-
metric distribution in all three sample types. Highest interquartile range of
the values is observed in sample type TLS, while the lowest interquartile
range of the values is associated with sample type STROMA. It should be
noted that this analysis is hampered by lower number of patients in the TLS
group.
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3.2.2 Weighted inter-patient correlation coefficients

The results of the computation of the weighted correlation coefficients of
the biomarker pairs for each sample type as well as across all types are pre-
sented in figure 3.9. The boxplot in Figure 3.10 demonstrates a comparison
between the magnitude of the correlation coefficients in the three groups.
The boxplot shows that the median of the magnitude of inter-patient (i.e.
between-patient) weighted correlation coefficients of biomarkers is highest in
sample type TLS and lowest in sample type STROMA. The distribution of
the values appear to be almost symmetric in all three sample types. The in-
terquartile range of the magnitude of correlations is highest in sample types
INFILT and TLS. The lower number of patients in TLS group should again
be taken into account when drawing conclusions based on this result.
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3.2.3 Inra-patient correlation coefficients

The results of the calculations of the intra-patient (i.e. within-patients) cor-
relation coefficients, across all sample types and for the individual sample
types, are shown in the correlation matrices in figure 3.11. The boxplot
in figure 3.12 provides a visual comparison of the absolute values of the
within-patient correlation coefficients for the three sample types. The box-
plot shows that the median of the magnitude of intra-patient correlations is
only slightly higher in sample type STROMA than sample type INFILT while
the highest median of the correlation magnitudes is associated with sample
type TLS. The range and the interquartile range of the values appear to be
approximately equal for INFILT and STROMA groups while both range and
interquartile range are higher for sample type TLS compared to the other
two groups. Comparing this result to those obtained in 3.2.2 shows that the
range of the magnitude of the inter-patient correlations is larger compared
to the magnitude of the inter-patient correlations in sample types INFILT
and STROMA. The median of the the magnitude of the inter-patient corre-
lations are also higher than the magnitude of the intra-patient correlations
in all three sample groups.
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3.3 Heterogeneity

3.3.1 Assessing intra-patient biomarker variability

The boxplots of the variability estimates for each sample type, obtained by
computing the standard deviation of the biomarker values calculated indi-
vidually for patients with at least three ROIs of the same sample type, are
presented in figure 3.13. The figure shows that markers CD66b, VISTA,
SMA and FOXP3 in sample type INFILT and markers CD66b and STING
in sample type STROMA have a higher interquartile range compared to the
other biomarkers. The highest median values belong to biomarker CD66b in
INFILT group and to CD66b and STING in STROMA group. In the sample
type TLS, the largest median value is observed for marker PD.L1 and largest
interquartile range for Fibronectin.

Figure 3.14 shows the box plots of the variability measures, estimated by the
median absolute deviation from the sample median (MAD) of the biomarker
values for individual patients for each sample type. The figure shows that the
variability in the heterogeneity measures assessed by the interquartile range
of the value is highest for markers CD66b, VISTA and FOXP3 in INFILT
group and for CD66b and STING in STROMA group. The largest median
values of the heterogeneity measures are associated with marker CD66b in
sample type INFILT and CD66b and STING in sample type STROMA.
With respect to the sample type TLS, the largest median value is observed
for marker PD.L1 and largest interquartile range for CD163.

The variability in the biomarker values, estimated by the range of the biomarker
measurements for individual patients and for each sample type are shown in
figure 3.15. Markers FOXP3 and SMA have the largest interquartile range
in sample type INFILT and marker CD66b in sample type STROMA. The
highest median values belong to CD66b in both sample types INFILT and
STROMA. With respect to the sample type TLS, the largest median value is
observed for marker PD.L1 and largest interquartile range for Fibronectin.
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3.3.2 Intra-patient heterogeneity measure

The mean square errors (MSEs) as a measure of within- patient heterogeneity
were calculated separately for each marker and each sample type. The result
of the computations are shown in Figure 3.16 and Appendix C. The highest
values in the Figure 3.16 are associated with marker CD66b in sample types
INFILT and STROMA. In sample type INFILT, the highest values belong
to markers CD66b and SMA and in STROMA group to markers CD66b and
STING. The lowest values are observed in TLS and the largest values in
INFILT group.
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(a) CD3 Kernel Density Estimation (Default)

(b) CD3 Kernel Density Estimation (with decreased smoothness)

(c) CD3 Kernel Density Estimation (with increased smoothness)

Figure 3.1: CD3 Kernel Density Estimations
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(a) CD27 Kernel Density Estimation (Default)

(b) CD27 Kernel Density Estimation (with decreased smoothness)

(c) CD27 Kernel Density Estimation (with increased smoothness)

Figure 3.2: CD27 Kernel Density Estimations
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Figure 3.3: CD3 Scatterplot across all Patients

Figure 3.4: CD27 Scatterplot across all Patients
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(a) Across all ROI-types

(b) ROI-type STROMA
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(c) ROI-type INFILT

(d) ROI-type TLS

Figure 3.5: Normal Q-Q plots of CD66b: Marker CD66b is one of the markers
that shows deviation from normality in all three regions.
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(a) Across all sample types

(b) Sample type STROMA

32



(c) Sample type INFILT

(d) Sample type TLS

Figure 3.6: Inter-patient pairwise scatterplots of six biomarkers
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(a) Upper triangle of the Pearson correlation matrix across all sample types

(b) Upper triangle of the Pearson correlation matrix for sample type STROMA
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(c) Upper triangle of the Pearson correlation matrix for sample type INFILT

(d) Upper triangle of the Pearson correlation matrix for sample type TLS

Figure 3.7: —Upper triangles of inter-patient Pearson correlation matrices
of biomarkers
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Figure 3.8: Boxplot of Absolute Pearson Correlation coefficients for
STROMA, INFILT and TLS sample types: The figure indicates that the
strength of biomarker correlations is highest in sample type TLS and low-
est in STROMA. The absolute value of the correlation levels seem to have
an approximately symmetric distribution in all three sample types. High-
est interquartile range of the values is observed in sample type TLS, while
the lowest interquartile range of the values is associated with sample type
STROMA.
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(a) Upper triangle of weighted inter-patient correlation matrix across all sample types

(b) Upper triangle of weighted inter-patient correlation matrix for sample type STROMA

37



(c) Upper triangle of weighted inter-patient correlation matrix for sample type INFILT

(d) Upper triangle of weighted inter-patient correlation matrix for sample type TLS

Figure 3.9: —Upper triangles of weighted inter-patient correlation matrices
of biomarkers
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Figure 3.10: Boxplot of absolute weighted correlation coefficients for three
sample types: The boxplot indicates that the median of the magnitude of
inter-patient weighted correlations of biomarkers is highest in sample type
TLS and lowest in sample type STROMA. The distribution of the values
seem to be almost symmetric in all three sample types. The interquartile
range of the magnitude of correlations is highest in sample types INFILT
and TLS.
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(a) Upper triangle of intra-patient correlation matrix across all sample types

(b) Upper triangle of intra-patient correlation matrix for sample type STROMA
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(c) Upper triangle of intra-patient correlation matrix for sample type INFILT

(d) Upper triangle of intra-patient correlation matrix for sample type TLS

Figure 3.11: Upper triangle of intra-patient correlation matrices of biomark-
ers
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Figure 3.12: Boxplot of absolute intra-patient biomarker correlation coeffi-
cients for the three sample types: The boxplot suggests that the median of
the magnitude of intra-patient correlations is only slightly higher in sample
type STROMA than sample type INFILT while the highest median of the
correlation magnitudes is associated with sample type TLS. The range and
the interquartile range of the values appear to be approximately equal for
INFILT and STROMA groups while both range and interquartile range are
higher for sample type TLS compared to the other two groups.
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Figure 3.13: Intra-patient biomarker heterogeneity measured as the SD of
marker values for individual patients: Markers CD66b, VISTA, SMA and
FOXP3 have the largest interquartile range in INFILT group and markers
CD66b and STING in sample type STROMA. The highest median values
belongs to CD66b in INFILT and to CD66b and STING in sample type
STROMA. In the sample type TLS, the largest median value is observed for
marker PD.L1 and largest interquartile range for Fibronectin.
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Figure 3.14: Intra-patient biomarker heterogeneity measured as the MAD of
marker values for individual patients: Markers CD66b, VISTA and FOXP3
have the largest interquartile range in INFILT group and markers CD66b
and STING in sample type STROMA. The highest median values belongs
to CD66b in INFILT and to CD66b and STING in sample type STROMA.
With respect to the sample type TLS, the largest median value is observed
for marker PD.L1 and largest interquartile range for CD163.
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Figure 3.15: Intra-patient biomarker heterogeneity measured as the range of
marker values for individual patients: Markers FOXP3 and SMA have the
largest interquartile range in INFILT group and marker CD66b in sample
type STROMA. The highest median values belongs to CD66b in INFILT
and in sample type STROMA. With respect to the sample type TLS, the
largest median value is observed for marker PD.L1 and largest interquartile
range for Fibronectin.
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Figure 3.16: Intra-patient heterogeneity measured as MSE: The highest val-
ues in the plot are associated with marker CD66b in sample types INFILT
and STROMA. In sample type INFILT, the highest values belong to markers
CD66b and SMA and in STROMA group to markers CD66b and STING.
The lowest values are observed in TLS and the largest values in INFILT
group.
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Chapter 4

Discussion and future work

Comparison the results of the inter-patient (i.e. between- patient) correla-
tion coefficients to the intra-patient (within-patient) correlations coefficients
in 3.2 showed that while the median of absolute value of the inter-patient
correlation coefficients is higher among the biomarkers for ROI type INFILT
compared to ROI type STROMA, the intra-patient median of the absolute
value of correlation coefficients is higher for sample type STROMA than for
sample type INFILT. In both case the median of the magnitude of correlation
coefficients in sample type TLS was the largest compared to the other two
sample types. We can also observe an overall reduction in the strength of
the pairwise intra-patient correlations between the markers compared to the
inter-patient correlations in 3.2. This difference may be due to the fact that
we are dealing with heterogeneous subsamples. This point can be demon-
strated with an example [7] [9]. Assessing the relationship between height
and weight, using combined data from male and female participants, shows
a strong linear relationship between the two variables. The strength of this
relationship is substantially reduced if the correlation coefficient is calculated
separately for the men and women in the sample. This result is explained
by the fact that men are on average taller and heavier than women. By
pooling the observations from two group with different means and different
variation about the mean, the relationship between the two variables is en-
hanced compared to the within groups estimates due to the presence of a
hidden variable which is sex in this example. In our analyses, differences in
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age and stage of the decease between the patients for example, may give rise
to heterogeneous subsamples. Calculating the correlation coefficients based
on the pooled data may consequently lead to misleading results due to the
presence of those neglected hidden variables. This may still be the case even
if the correlation between two variables is the same within the subsamples
[7]. The impact of the subgroups can be further examined in the future with
a larger data set.

Although a thorough investigation of the differences between the strength of
the pairwise correlation of the biomarkers was outside the scope and aim of
this project, the following points should be noted. Firstly, using significance
and insignificance as a criterion for comparison of effect estimates is inappro-
priate [6]. The fact that the correlation between a pair of biomarkers may
be statistically insignificant in one sample type while it is significant with
respect to another sample type, does not in itself imply that the correlations
are different. Furthermore, the number of samples from sample type TLS was
small compared to ROI types INFILT and STROMA and there are three pa-
tients with at least two samples of type TLS compared to 27 and 13 patients
in STROMA group and INFILT group respectively. This suggests that the
result obtained for sample type TLS is highly patient dependent and should
be further investigated in future studies based on a larger sample size. Also,
when investigating the difference between the pairwise correlation coefficients
in sample types STROMA and INFILT, it must be noted that some patients
have samples from both sample types and therefore it can be misleading to
view the samples and the correlation coefficients as independent.

The intra-patient variability in protein markers was assessed using three dif-
ferent estimators, standard deviation, median absolute deviation from me-
dian and range. Figures 3.13, 3.14 and 3.15 all indicate that the level of
heterogeneity varies between spatial immune infiltration niches and between
the different biomarkers. This highlights the added value in sampling mul-
tiple regions of different types from the same tumor. Range seems to be a
wasteful approach as it restricts the data to its maximum and minimum val-
ues. One of the purposes of the efforts to quantify biomarker heterogeneity
is to explore the predictive value of variation such as predicting clinical out-
come [see 12]. Although the robustness of MAD in the presence of outlying
values is often viewed as an advantage, reducing the influence of the outliers
and downweighting of the tail is likely not beneficial for our purpose as the
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tails contain most of the information that is of interest to us. This of course
does not imply that higher heterogeneity is associated with higher predictive
power. It should also be noted that some of the patients have only 3 samples
of a specific sample type. For a sample of size 3 it is impossible to have a
outlier-robust scale estimator as we can not at the same time protect against
both the estimator becoming arbitrarily large (explosion) and becoming ar-
bitrarily close to zero (implosion) [14]. Rousseeuw & Verboven (2002) [14]
suggest to use average distance to the median if implosion is to be avoided
and to use MAD if we are protecting against explosion. For small samples
of size n ≥ 4, they recommend to use MAD and more advanced robust scale
estimators that use MAD and median in their construction.

There are similarities between the result obtained by using standard de-
viation and median absolute deviation presented in Figures 3.13 and 3.14.
However, the similarities can be viewed as alarming. For instance high levels
of heterogeneity and variability in heterogeneity are associated with marker
CD66b in sample type INFILT. Although it is not possible to estimate the
density of the biomarkers at the individual patient level, an examination of
the kernel density estimate for the data across all patients shows a skewed
estimated density for this biomarker in sample type INFILT (Appendix D).
For sample type STROMA, high levels of heterogeneity and variability in
heterogeneity measures are associated with markers CD66b and STING ac-
cording to both MAD and SD estimates. The estimated kernel density plots
and normal Q-Q plots (see Appendix D and 3.5b) show skewed estimated
distributions of these biomarkers and suggest deviation from normality. As
noted in 3.1.1, biomarker CD66b was one of the markers that in all sam-
ple types showed most deviation from normality compared to other markers.
Using MAD as well as sample SD as a measure of variability is suitable for
symmetric distributions in the view of the fact that in their calculation, neg-
ative and positive deviations from a central position (median vs. mean) are
treated as equally important. Therefore, although MAD is a more robust
estimator of scale in the presence of outliers compared to SD, it is not an
appropriate measure of scale when the distribution is highly skewed [13]. It is
therefore possible that part of the results obtained here are due to use of scale
estimators that are sensitive to the skewness of the distribution. Rousseeuw
& Croux (1993) [13] propose alternatives to the MAD that are not sensitive to
asymmetric distributions. In future studies, comparing the result obtained
here to those obtained by using such robust scale estimators that are not
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sensitive to asymmetric distributions can be enlightening to determine the
degree to which the result is affected by the skewness of the distributions.

In conclusion, this work is a preliminary analysis of this type of data. The
predictive value of heterogeneity measures discussed in this work can be
further investigated in the future studies and their predictive power can be
compared.
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Appendix A

Biomarkers

GZMB CTLA4 CD56 CD45 HLA.DR
CD68 CD4 PD.L1 PanCk PD.1
Fibronectin CD20 SMA Ki.67 Histone.H3
CD3 CD8 Beta.2.microglobulin CD11c CD44
CD40 CD80 CD127 PD.L2 CD25
ICOS CD27 X4.1BB LAG3 ARG1
VISTA OX40L GITR STING IDO1
B7.H3 Tim.3 CD163 FAP.alpha FOXP3
CD66b CD14 CD34 CD45RO

Table A.1: Protein biomarkers measured with the DSP
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Appendix B

Normalization of data

Figure B.1: Normalization of data with respect to differences in cell num-
bers, sampled area and background noise: The figures shows that significant
differences in number of cells and areas sampled are not reflected in the nor-
malized data, as shown for the three negative control antibodies
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Appendix C

Biomarker intra-patient
heterogeneity measures (MSE)

Biomarker INFILT STROMA TLS
GZMB 0.157 0.201 0.035
CTLA4 0.523 0.538 0.143
CD56 0.333 0.118 0.082
CD45 0.260 0.283 0.149
HLA.DR 0.470 0.420 0.609
CD68 0.771 0.315 0.131
CD4 0.169 0.401 0.048
PD.L1 0.357 0.575 1.155
PanCk 0.332 0.363 0.026
PD.1 0.266 0.238 0.032
Fibronectin 0.839 0.428 0.731
CD20 0.342 0.172 0.404
SMA 2.054 0.753 0.921
Ki.67 0.345 0.359 0.300
Histone.H3 0.307 0.177 0.052
CD3 0.531 0.748 0.142
CD8 0.279 0.488 0.116
Beta.2.microglobulin 0.302 0.150 0.063
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CD11c 0.460 0.522 0.531
CD44 0.203 0.276 0.127
CD40 0.371 0.383 0.131
CD80 0.342 0.703 0.274
CD127 0.106 0.061 0.061
PD.L2 0.624 0.488 0.260
CD25 0.175 0.111 0.049
ICOS 0.696 0.621 0.431
CD27 0.222 0.259 0.041
X4.1BB 0.454 0.322 0.362
LAG3 0.782 0.517 0.224
ARG1 0.647 0.682 0.243
VISTA 0.848 0.222 0.621
OX40L 0.639 0.582 0.211
GITR 0.839 0.707 0.161
STING 1.057 1.163 0.106
IDO1 0.819 0.865 0.984
B7.H3 0.200 0.373 0.346
Tim.3 0.398 0.288 0.045
CD163 0.879 0.929 0.941
FAP.alpha 0.401 0.282 0.273
FOXP3 0.744 0.729 0.286
CD66b 2.509 2.771 1.032
CD14 0.490 0.533 0.434
CD34 0.536 0.265 0.088
CD45RO 0.438 0.464 0.138

Table C.1: MSE as a measure of intra-patient heterogeneity calculated for
each biomarker separately for each sample type
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Appendix D

CD66b & Sting: Skewness and
deviation from normality

Figure D.1: CD66b Kernel Density Estimation
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Figure D.2: STING Kernel Density Estimation

Figure D.3: Normal Q-Q plot of STING (sample type STROMA)
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