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Summary

The influence of science within sports has caused high performance athletes to break through the
bounds of older records across multiple disciplines whether it be from technique or technology. Now
that athlete testing has been made accessible and portable, we can quantify and collect information
regarding a wide range of physical characteristics. I have investigated whether this data, collected
firsthand on multiple areas of physical performance from power output to flexibility, can be used
to predict the results of a more complex movement.

In this case, Olympic Handball players were used as subjects in order to uncover a prediction
model that could accurately predict the throwing velocity of the players. Many methods were used
in order to identify this model and, subsequently, which exercise or movement that had been tested
was the most influential in the throwing movement. Out of 13 different exercises, only 4 of them
were contained in the final model: Squat Jump, Left Armed Internal Shoulder Rotation, Right
Armed Internal Shoulder Rotation and Underhand Medicine Ball Squat Throw.

Once the strongest model had been identified using certain comparative values, new and pre-
viously unseen data was supplied to the model to test it predictive capabilities. This test resulted
in a very accurate prediction of 86.36 km/h which was only 2.5% higher than the observed value
average of 84.25 km/h for this new subject.

Overall, a bigger testing pool accompanied with a larger number of exercises to be tested on
would greatly increase the accuracy and usability of these results. Though the model provided
seemingly accurate predictions, it did so only on one new subject where more would be required
for significant findings. If this study were to be improved in such areas, the results could help
to innovate the way coaches and trainers implement their training workout programs, improving
complex yet integral elements of whatever sport they happen to be a part of.
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Abstract

In this project, we attempt to predict a complex movement in space using smaller scale exercises
relating to the movement in question. Specifically, to try and predict the speed a handball player
can throw the ball by using data collected on the physical abilities of each player.

The predictor data was collected using a sensor produced by Output Sports Limited (ref.1) and
the throwing speed was measured with a velocity gun. It was then cleaned and processed before
a correlation analysis was run and the model building process began. Some high correlations were
found (not unexpectedly) between the ”Jump” variables and relationships were confirmed after the
Principle Component Analysis.

Table 3 shows the results of the model analysis that led us to include the variables provided
by the Stepwise Regression in our Final Model as it provided the best results as well as being one
of the more simple models. The Stepwise model showed few issues after a residual analysis was
performed and provided quite an accurate prediction for previously unseen data, giving a prediction
error of only 2.5% higher than the observed value.

In conclusion, there were some noticeable shortcoming of this study such as the small data
set and a narrow range of exercises to test the athletes on. Improvements in these areas would
lead to much more accurate and beneficial results. In saying this, the investigation rewarded us
with a method and model that provided accurate predictions (albeit on a single test subject, but
very accurate nonetheless) and an area of study with a lot of potential to help improve elements of
athletes’ training.
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Description of Variables

Exercise Name Description Metric Class

Bilateral CMJ Two-footed jump with arms on hips. Jump Height (cm) Jump
Squat Jump Similar to Bi CMJ but starting from squat position. Jump Height (cm) Jump

10-5 10 consecutive jumps with legs straight and hands on hips. Reactive Strength (RSI) Jump

Unilateral CMJ
One-footed jump with arms on hips.
Performed on both legs (L & R)

Jump Height (cm) Jump

Downward
Med Ball Slam

Slam medicine ball downward from above head. Peak Velocity (m/s) Power

Forward Underhand
Med Ball Squat Throw

Similar to Kettlebell Swing, throw medicine ball forward
while pressing up from squat position.

Peak Velocity (m/s) Power

External Shoulder
Rotation

Elbow at shoulder height, arm at 90◦ and
starting from flat, rotate upwards and back.

Performed on both arms (L & R).
Range of Motion (◦) Mobility

Internal Shoulder
Rotation

Elbow at shoulder height, arm at 90◦ and
starting from flat, rotate downwards and back.

Performed on both arms (L & R).
Range of Motion (◦) Mobility

20 Meter Sprint Sprint the 20m after countdown Duration (s) Speed

T-Test
Run forward, left, right, left and backwards,

tracing out shape of ”T”
Duration (s) Agility

Throwing Running step shot towards velocity gun at head height Speed (km/h)

Table 1: Descriptions of the exercises used in the data collection.
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1 Introduction

The topic of movement prediction in relation to sport was of interest to the author due to his
continued involvement in the sport of handball. The original idea for the project was to be a
comparative assessment of the physical capabilities between handball and volleyball players, however
due to logistical difficulties the testing on the volleyball athletes had to be stopped. Yet this provided
an opportunity to focus on the arguably more interesting and relevant topic of complex movement
prediction using data collected from simpler, more spatially contained movements. In this study,
the complex movement in question will be the throwing speed of a handball player’s step shot.

Output Sports Limited (ref.1) is an Ireland based company that produces a portable and easy
to use athlete testing and tracking device (Fig.18 in Appendix B). It measures strength, power and
speed giving accurate and reliable results. After some discussions with the company, a conclusion
was reached to use a set of ten measurements (described in Table 1 above), each believed to have
an intrinsic relationship to the throwing movement being studied.

The study comprised of several different elements, beginning with the data collection and
data cleaning process, and then moving on into the data analysis, model building and prediction
assessment. The data collection was arduous but not very complex. The cleaning, done in Python,
required the data to be filtered for unreasonable results and compiled into a single file, allowing for
the analysis on correlations and variable distribution to be done in R after.

Several models were created and tested in the investigation, with variables deemed relevant
from several different analyses. Principal Component Analysis, Lasso Regression and Stepwise
Regression were employed to identify the significant variables and variable combinations used in
the models, who’s Residuals were then examined and important comparative metrics extracted for
conclusions to be drawn later.
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2 Theory and Method

2.1 Definitions

We describe complex movements as those such that a higher number of degrees of freedom are
required in order to perform said movement. Degrees of freedom are defined as the mechanisms that
are required in order for you to perform a certain action under specific circumstances and coordinate
between different parts of the body and the environment (ref.2). For example, a standing two-footed
jump requires the leg muscles to push off from the ground and the coordination between the brain
and legs to land stably on the flat ground. The individual muscle groups themselves are also broken
down into more specific degrees of freedom. However comparing this with the complexity of the
step shot movement, we see that the number of degrees of freedom are much higher. The throwing
muscles, coordination of the legs and arms with the need to aim the ball in order to avoid the
measuring equipment (and so on) are all needed in this action. Both of these concepts are part of
the broader subject of non-linear pedagogy and are a current point of interest in the research of
sport-scientists.

2.2 Data Collection

The data collection process began during the spring semester 2022, with the author contacting the
coaches and trainers of the three handball teams from the club he desired to use for testing. In an
attempt to get a good spread of results, the three teams were of varying skill levels, with one of
them being the clubs women’s team also. The initial data gathering commenced in August 2022
and continued throughout the semester since testing could only realistically be done during the
respective trainings of each team.

One player at a time was taken out of training in order for them to complete the ten exercises
decided upon with the members of Output Sports. The four jumping exercises were tested first,
followed by the power output tests, the shoulder mobility and finally the speed and agility tests.
It took approximately 15-25 minutes to fully test an athlete, with the goal of testing 45 handball
players in total by the end of the semester. Unfortunately, not all of the athletes were able to be
tested given time restrictions, cancelled trainings, upcoming matches etc.

Once the players created a profile on the Output mobile app, the testing would begin. The
sensor, connected via Bluetooth through the app itself for a stronger connection, was attached using
a Velcro strap to different parts of the body depending on which exercise was being tested. For the
jumps it was placed on the players’ dominant foot (with the exception of the Uni CMJ’s as both
legs were tested), for the power on the dominant wrist, and each wrist for the mobility exercises
as both shoulders were tested. No sensor was needed for the speed and agility tests, nor for the
throwing speed readings.

Apart from the Sprint and T-Test exercises, everything was done in free space and only required
a stable connection with the sensor. The sprint required a 20 meter straight line, and the T-Test
had a 10 meter center line and a 10 meter top line across (5 meters each side from the center line to
the ends of the top line). Since these dimensions had to be measured out each time testing was to
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be done, it led to some obvious human error. However this was deemed mostly insignificant due to
the difference in scale between the (at most) centimeters of error versus the meter or more length of
stride the players took. The biggest factor of error would (besides that of improper technique) be
found in the sprints. Each player was given a countdown, with the timer on the mobile application
being started on ”GO” by the author. This error was minimised by the applications ability to
stop the timer automatically once the athlete crossed the finish line (which was aligned with the
indicator on the camera opened through the app).

The last thing to do was to test the author on the exercises contained in the final model in
order to provide the model with new data is has not seen before. Once the authors results had been
fed into the Final Model, a percentage error was calculated in order to gauge how well the model
did in the prediction.

To briefly mention the ethics of the testing, all players volunteered for the testing of their own
volition and their data is covered under the terms and conditions of Output Sports Limited. The
only identifying piece of information actually used in the investigation was the player names, of
which I make no mention of in this or any report. I am the only non-company person who had
access to the raw data and details of the volunteers, all of which was deleted once this study had
been completed.

2.3 Data Cleaning & Analysis

Once a portion of the data had been collected, the cleaning process could get underway. The raw
data was exported from the online Output Hub onto the authors computer, where the individual
”.csv” files had to be filtered and combined. An iterative program was written in Python to read
in the 10 exercise files and filter the column of the desired metric for any unreasonable results. The
ranges for reasonable values were devised after consultation with colleagues at Output Sports, and
also from the practical knowledge gained during the testing process.

Once the data had been filtered, some of the exercises needed to be split into files based on
which limb was begin tested (left or right). Once this had been done, the average values for the
desired metric from each of the 10 exercise files, as well as the ”Throwing” measurements, were
calculated and the important information from each was extracted and added to a new singular
file. From here we imported the file into R to alter the column names, remove some unfinished
observations and begin looking at the data.

Some descriptive values were extracted like the predicted variables mean, standard deviation
etc. Following this, a correlation analysis was run in order to identify any significant relationships
between variables that may cause us problems in the future. Those pairings with a high correlation
were kept in mind when interpreting the results and choosing the final model.

2.4 Models and Model Building

We used several methods over the course of this investigation in order to identify the most effective
model, and in turn discern which of the tested exercises had the greatest impact in the prediction of
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the throwing speed of an athlete. Once the optimal model has been identified, we examine certain
properties, such as its residuals, in order to uncover any possible issues or shortcomings it might
have with the fit of the data. In the following section we talk about standard linear regression, The
Lasso Method, Random Forests, Stepwise Regression and Principal Component Analysis (PCA).
Following this, the discussion leads into an explanation of the Residual Analysis we undertake when
examining our final model.

2.4.1 Full Model

To begin, we formed the ”Full Model”, containing all 13 variables using standard regression. As
we can see from Fig.1, with the exception of the tails, the model fits quite well to the centre line,
indicating that the model residuals (the difference between the observed values and values predicted
by the model) are normally distributed, a necessary condition in order to run linear regression. This
bodes well for future analyses of smaller models.

Figure 1: Q-Q Plot for the Full Model

2.4.2 Stepwise Selection

There are several approaches to Stepwise selection, including the how to compare the measure of fit,
the stopping criteria and the direction. In this project we performed both Forward and Backward
selection two times, once using the models’ AIC as the measure of fit, and another using BIC.

In Forward Selection, the algorithm begins with the null model, i.e. no predictor variables, and
at each step adds the variable that most improves the accuracy of the model. Since we are using
AIC and BIC as measures of accuracy, the variable that lowers the relevant metric the most will be
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included in the next selection step. Backwards Selection however begins with the full model and
removes the variable that effects the model the least until no improvement was found or the Null
model was achieved.

2.4.3 Lasso Regression

The Lasso method is a regularisation technique that we utilise in order to prevent overfitting in
our model. Since our full model has quite a high number of independent variables relative to the
number of observations, it is at risk of such a problem.

The method estimates the coefficients by minimizing the cost function, to which it adds a
shrinkage penalty in order to encourage the beta-coefficients to be as small as possible while still
maintaining a good fit to the data. The shrinkage penalty is controlled by a tuning parameter,
λ, that is proportionate to the absolute value of the coefficients. When λ is large it results in a
stronger penalty that reduces the value of the coefficients, even lowering some of them to exactly
0. This feature of the Lasso method is the reason we include it in our model selection process.

n∑
i=1

(
yi − β0 −

p∑
j=0

βjxij

)2

+ λ

p∑
j=1

|βj | = RSS + λ

p∑
j=1

|βj | (1)

Eq. (1) (ref.4) shows the loss function with the additional penalty term (λ
∑p

j=1 |βj |) and
tuning parameter λ. Since λ is a hyperparameter and therefore must be chosen before the process
begins, we will use Repeated K-Fold Cross Validation with RMSE as the model assessment criteria
in order to determine the most optimal value of λ.

2.4.4 Random Forest

Random Forest analysis is an ensemble method (the combination of multiple models) used to split
and organise ones data in order to identify the importance of each variable with respect to the
predictor variable. It works by creating multiple decision trees and combining their results in order
to find the model that minimises the RMSE.

In a regression analysis, a decision tree is used to predict a continuous target variable. The
algorithm starts at the ”root” of the tree, and at each internal ”node”, it splits the data based on
the value of a feature, so that the samples are split into subsets with similar target values. The
algorithm continues to build the tree recursively by repeating the process at each internal node
until a stopping criterion is met. The final tree can be used to make predictions on new data by
traversing the tree from the root to a leaf node.

The number of variables considered at each split is an important parameter in random forest
model as it controls the complexity of the decision trees in the model. The random forest algorithm
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will still consider all the variables in the data set when building the decision trees, but at each split,
it will randomly select a subset of variables from all available variables to consider for the split.

We again used cross validation in order to determine the most optimal structure for the decision
trees in our random forest. We can see from Fig.6 that the forest in which 3 variables were considered
at each split held the lowest amount of error, with the error increasing steadily for more complex
models.

2.4.5 Principal Component Analysis (PCA)

PCA is, amongst other things, a dimension reduction technique that transforms the factors into
new, uncorrelated variables such that the most variance is captured by these ”principal components”
as possible. Geometrically speaking, principal components represent the directions of the data that
explain a maximal amount of variance (ref.5). In doing so, it can in some settings provide us with a
simpler model, removing a lot of the noise contained in models such as those with lots of predictor
variables.

Principal Components are calculated as follows:

1. Standardize the data set using the standardization formula:

xnew =
x− µ

σ
, (2)

and form the standardization matrix, S.

2. Calculate the covariance matrix.

3. Calculate and sort the eigenvectors and eigenvalues of the covariance matrix in decreasing
order.

4. Choose the top k eigenvalues and form a matrix, P of the respective vectors.

5. Transform the standardized matrix by multiplying it by the eigenvector matrix: S ∗ P

The resulting matrix will contain the transformed data that can now be examined on simpler
axes of dimension k. Once the above procedure was performed, we subjected our newest model,
containing the top 2 PCs, to cross validation in order to determine its predictive abilities.

2.5 Residual Analysis

Once the different models have been formed using the methods outlined above, we identified the
most promising model using some residual analysis techniques. We looked at some metrics com-
monly used in model selection, as well as the Studentized Residuals of the final model. In addition,
properties of the data such as Leverage and Cook’s Distance were analysed to check for any irreg-
ularities within the final model.
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2.5.1 Selection Metrics

Root Mean Square Error

The RMSE differs from the Mean Square Error only in the square root seen in Eq. (3). From
this equation we can also see that a smaller RMSE value is more desirable.

RMSE =

√∑N
i=1(yi − ŷi)2

N
(3)

R2

R2 is a measure of the variability of the dependant variable. Traditionally, the R2
adj is generally

thought of as a stronger indicator given that it accounts only for the variables that account for
some measure of variability and punishes models that contain variables that don’t. In our case
however, we have access to stronger numerical tools, allowing us to run more complex operations
and bypassing the need for the R2

adj . Instead, since repeated k-fold cross validation is used, the R2

value can be considered a stronger representation of the quality of given model and so we use that.

The R2 value is calculated by using Eq. (4) (ref.6). The higher the R2 value the better, as it
indicates a higher percentage of variability explained by the data.

R2 =

∑N
i=1(ŷi − ȳ)2∑N
i=1(yi − ȳ)2

=
SSex

SStot
, (4)

where SSex is the explained variation and SStot is the total variation.

Mean Absolute Error

As the name suggests, the MAE calculates the average absolute error over the data in the
model. It was of course preferable that the models had a lower MAE, calculated with the following
equation:

MAE =

∑N
i=1 |ŷi − yi|

N
(5)

Similar to the RMSE, a lower error value is of course more desirable.

Using these four metrics to evaluate the effectiveness of our models, we chose the most successful
method to investigate further and took a deeper look at its characteristic by analysing those in the
section below.
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2.5.2 Studentized Residuals

Residuals are the difference between the observed values of the dependent variable and the predicted
value provided by the model. The difference between Residuals and Studentized Residuals (SRs) is
that SRs have been standardized by dividing the residual value by the estimated standard deviations
of the residuals, also referred to as the residual standard error. This results in the SRs to be
unaffected by the dependant variables scale (km/h) and the size of the model’s residuals, leading
it to be a more appropriate detector for potential outliers in our model.

The studentized residuals are calculated by using Eq. (6) (ref.7) below.

ti =
|yi − ŷi|√∑N−1

j=1 |yj− ˆyj(−i)|2
N−p−1

=
|yi − ŷi|√

MSE(−hii)(1− hii)
(6)

where ˆyj(−i) is the j’th fitted value when ŷi is removed, hii is the leverage of the i’th observation
and MSE(−hii)(1− hii) is the MSE of the residuals with the i’th leverage removed.

2.5.3 Leverage

Leverage measures the relative influence a given data point has on the fitted model. Leverage was
of interest to us because a high leverage can have a significant effect on the intercept and coefficient
values of our model. Since we worked with quite a small data set, any strong effects on our data
or model wished to be avoided. We also include a plot of the fitted values against the square
root of the leverage value to avoid the skewedness that tends to occur when the original value is
used. Transforming the leverage values also compresses the range of values, making it easier to see
patterns in the graph.

By standard convention, any leverage value greater than three times the average leverage (Eq.
(7)) of the data points is considered high and should be monitored. We included points that were
two times the average leverage but kept an eye on these points also.

h̄ = 3
(p+ 1

N

)
(7)

2.5.4 Cook’s Distance and DFBETAS

The last methods of analysis that were looked at were the Cook’s D and the DFBETAS of the data.
Cook’s D looks at the impact removing a certain observation has on the regression coefficients,
whereas the DFBETAS looks at the impact of removing one of the predictions instead. A large
Cook’s D or DFBETAS score indicates the point holds a large sway on the data and should be
noted and or investigated.
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Cook’s D and DFBETAS of a point can be calculated using Eq. (8) (ref.8) and Eq. (9) (ref.9)
respectively.

Di =

∑N
j=1(ŷj − ˆyj(−i))

2

p ∗MSE
(8)

DFBETASi =
βk − βk(−i)√
MSE(−i) ∗ ckk

=
βk − βk(−i)

SEβ(−i)
(9)

where p = number of predictor variables in the model, ˆyj(−i) the j’th fitted value when yi
is removed, βk(−i) is the k’th coefficient of the model with the i’th observation removed and ckk
the k’th diagonal element of the unscaled covariance matrix. The unscaled covariance matrix is
a matrix such that multiplying it by an estimate of the error variance produces an estimated
covariance matrix for the coefficients (ref.10). Typically a Cook’s D and DFBETAS value greater
than 4

N and 2√
N

respectively can be considered as a potentially influential observation, however this

varies with the size and dimensions of the data set, hence the use of the previous analysis methods.

3 Results

To briefly summarise this section, we first look at the results from the data and correlation analysis,
identifying any descriptive values and significant relationships combined with a look at the PCA.
Then we present a table with the comparative metric values. Next we look into meaningful results
from each model and show the results of the further investigation into the final model. Lastly, the
authors own measurements will be used in order to test the final model on its predictive capabilities
with previously unseen data.

Repeated k-fold cross validation testing was performed on all models, which we ran over k = 5
folds and repeated 20 times. These parameter values were chosen so the data could be best split in
order to avoid folds that were too small and therefore diluted the data. In order to compensate for
the small number of folds, a high repeat value was chosen, resulting in a higher computation time
but more accurate results. The results in Table 3 below are taken from the cross-validated model
in each case with the exception of the Null Model, which has no predictor variable values to split.

3.1 Exploratory Data Analysis

We started by checking the marginal distribution of our response variable to see if it is normally
distributed or if we need to apply some transformation before we run our regression analysis. As
we can see from Fig.2 (ref.3) our variable is nicely distributed with a mean around 81km/h with
a standard deviation of 9.71. Table 2 shows more descriptive metrics for the Throwing variable.
Next we looked into the correlation of our data set, keeping in mind the results of this during the
model building process described below.
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Figure 2: The image shows the marginal distribution of our response variable ”Throwing”. As we can
see, the variable is quite normally distributed (as expected).

Mean Median SD Min Max
Throwing 81.1 80.5 9.7 66.3 102.3

Table 2: Descriptive measures of the dependant variable.

Looking at Fig.3 (ref.3) we can see that there is occasional mild, positive correlations between
some of the variable pairs. Almost all of these were between pairs of ”Jump” variables, the only
exception being ”TTest” and ”tenfive” with a correlation of −0.70. The strongest correlations
were between (BiCMJ, SquatJump), (UniCMJL, UniCMJR), (BiCMJ, UniCMJL and UniCMJR)
and (SquatJump, UniCMJL and UniCMJR), with correlations 0.94, 0.95, 0.87, 0.88, 0.84 and 0.81
respectively . This was expected given how similar all of these exercises are to each other, especially
the first two pairs which are extremely synonymous. In Fig.17 found in Appendix A, we can see the
correlation of each variable pair, the variable distributions and the point plot for each combination
of variables.
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Figure 3: Variable Correlations. Only variables with a correlation of p > 0.05 are shown. Lesser
correlations are left blank.

Though it may be quite difficult to see in Fig.4, the PCA has clustered together exercises of
similar classes, for example all of the Jumping exercises are contained in the red group. cluster 1.
Running PCA allows us to have our data contained to a 2 dimensional space, where interpretations
and conclusions are more easily drawn, instead of the 13 dimensions if all variables were used.

Later we show that the PC model did not prove to be as effective as originally hoped given
by its model results in Table 3, although it did provide some credibility to the correlation analysis
and our choice for the final model. As we can see in Fig.4 above, over 50% of the variability of our
data is described by just the first two PCs. Having a good spread of variables from both of these
components is a good sign of how well our final model might capture the variability found in our
observations.
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Figure 4: PCA circle graph showing how the transformed variables were grouped. It can be seen on the
axis labels that the first PC contained almost 50% of the variability in the data, while the

second PC contained less than 12%.

3.2 Model Selection

We now dig deeper into the results from each of the model selection methods outlined in the previous
sections. Below is the results table of all the comparative measures we used to identify the most
suitable model from all of techniques we utilised over the course of this study.

Model RMSE R2 MAE

Full Model 10.650 0.417 8.979
Null Model 9.530 ∼ 0 7.540
Lasso Model 6.966 0.597 6.017

Random Forest 5.788 0.707 4.971
Stepwise Model 5.887 0.750 4.853
PCA Model 6.841 0.595 6.039

Table 3: Model selection metrics and results. A lower RMSE and MAE indicate a better fitting model,
where as a larger R2 value indicates the same. The values in this table have been calculated by
cross-validation and thus reflect test error or test prediction accuracy (depending on the metric)

and not training error.
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3.2.1 Full and Null Model

After fitting the Full Model, it was clear that this was not a very reliable model. Overfitting was
perhaps present as there were only a single significant variable (Right Arm Internal Rotation).
All results for this model were found to be quite poor, with the highest values for RMSE and
MAE, and the lowest value for R2. These results may have been caused by a number of things,
from unnecessary variables that only add to any overfitting, or the variable relationships we found
during the correlation analysis (Fig.3).

Though the Null Model does not present any interesting results in and of itself, it is used to
provide a base level to compare other models to. The Null Model results (Table 3) further justify
our dismissal of the Full Model. Other than the near 0 value for the R2 (presumably due to the
lack of predictor variables), both of the other comparative metrics are better in the Null Model
than in the Full. This indicates that a more complex model than the Full Model is needed in order
to determine any further relationships within the data.

3.2.2 Lasso Model

The Lasso Model proved to garner quite good results in relation to those we have already looked
at as well as in general, having a smaller (and more desirable) RMSE value than the Final Model
(Table 3). The repeated k-fold cross validation on 50 tuning values (λ) proved to be quite supportive
of the final model that was chosen. A λ = 2.56 was found to provide the best lasso model, having
an RMSE of 6.97. After forming a lasso model with this value of λ, it was found to contain the
four variables SquatJump, IntRotR, UnderThrow and UniCMJL.

Figure 5: The results of the cross validation process showing the smallest λ (left dotted line) and the
lambda.1se (right dotted line).

Fig.5 shows the results of k-fold cross validation from a slightly different R function. The
cross validated model it formed provided 2 choices of λ. The leftmost dotted line shows the λ that
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minimised the RMSE value, λ = 1.11. However this is not always the best choice as it can be a
result of overfitting. The second dotted line is a more realistic value for λ. The λ = 3.72 model
may have had a slightly higher RMSE value of 9.28, but it results in a simpler model (4 variables,
taken from the top axis).

3.2.3 Random Forest Model

One of the first things we found out after running the repeated k-fold cross validation on the random
forest model was that the best results occurred when exactly 3 variables were chosen at random to
be considered at each split. Fig.6 shows the trend in RMSE for the best model in each choice of
the number of variables considered. A very clear minimum can be seen when 3 variables were used.

Figure 6: Number of random predictor variables considered at each split against the RMSE of the
Random Forest.

Though the random forest doesn’t give us a specific regression model, it does allow us to gain
some insight into the ”Importance” of the variables in our data set. The repeated cross validation
revealed that the decision trees showed the best results when sets of 3 variables were chosen to be
the filters at each split (Fig.6). The smaller the number of variables used here the more decorrelated
the trees in the forest get from each other..
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Figure 7: Importance values for each variable after repeated cross validation.

Fig.7 shows the Importance of the variables in our model. Found by measuring the relative
change in accuracy between models when the variable is removed, importance is a very good indi-
cator of the significance of predictors. We notice that the jumping exercises are actually the most
important for predicting the throwing speed. We look into the relation of this result with that of
our final model later in the Discussion section.

3.2.4 Stepwise Model

In our stepwise regression analysis we formed 4 models, exhausting all combinations of forward,
backward, AIC criteria and BIC criteria. We decided to go with the AIC criteria for both forward
and backward models since they garnered the same model summary results and AIC tends to be a
better facilitator of balancing goodness of fit and model complexity.

Forward AIC Backward AIC

Step AIC # of Vari-
ables

Step AIC # of Vari-
ables

1 123.74 0 1 106.10 13
2 108.83 1 2 104.17 12
3 105.94 2 ... ... ...
4 99.20 3 9 94.95 5
5 94.28 4 10 94.28 4

Table 4: Stepwise Regression results. BIC criteria was also used in the testing, though no differences
could be seen.
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Figure 8: A histogram of the residuals from the Stepwise Model. They appear to be quite well normally
distributed

After running the stepwise algorithms we arrived at quite an interesting conclusion. Both the
forward and backward methods resulted in the same model containing the SquatJump, IntRotR,
UnderThrow and IntRotL variables, and with an AIC of 94.28. This is a very positive result in
favour of this model since both directions ended up at the same conclusion even with different
accuracy criteria. With a look at our results table we can that the Stepwise Model is slightly better
than the next best model, the Random Forest, on all fronts, labelling stepwise regression as the
most successful method and therefore our choice as the Final Model.

3.2.5 Principal Component Regression

Lastly we formed a model using the first two PCs to see if there were any significant results,
although we did not have many expectations given the amount of variability described by the
number of principle components we used (just over 60%). Though not the worst model, it only
really surpassed the Full and the Null Model in its performance. It actually performed quite similarly
to the Lasso Model, with a slightly better RMSE, almost the same R2 value, and a slightly worse
MAE.
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3.3 Final Model Analysis

Model Summary

Min 1Q Median 3Q Max
-8.0 -3.0 -0.2 2.7 10.0
RSE R2 R2

adj p-value

5.275 0.7503 0.7049 2.2x10−6

Coefficient Estimates
Intercept SquatJump IntRotR UnderThrow IntRotL
41.12 0.34 -0.52 8.77 0.40

Coefficient Confidence Intervals (2.5%, 97.5%)
Intercept SquatJump IntRotR UnderThrow IntRotL
(10.2, 72.0) (−0.13, 0.81) −(0.78, 0.26) (3.88, 13.66) (0.07, 0.72)

Table 5: Summary of the Final Model containing some descriptive measures and the estimates for the
Intercept and the four predictor variables.

Variable SquatJump UnderThrow IntRotR IntRotL

Importance 290 193 151 85

Table 6: Table of the variables from the Final Model with the Importance values taken from the
Random Forest investigation after repeated cross validation. The highest importance found

between all 13 variables in the Random Forest was 380, while the lowest was 54.

After the insight provided by all of the techniques outlined above we finally arrived at the decision
to set the Stepwise Model as our Final Model. Containing 4 variables: SquatJump, IntRotR,
UnderThrow and IntRotL. it had the best R2 and MAE value, and was only 0.1 higher than the
RMSE value of the Random Forest. Once the Final Model had been chosen we took a closer look
at the finer details of the collection of variables used and how the data was affecting the results.
To start, the Studentized residuals were calculated and plotted against the fitted values.

23



Figure 9: Studentized Residuals vs Fitted values of Throwing variable. Points above or below the solid
lines at (|y| = 2) are considered unusually large, while points above or below the broken lines

at (|y| = 3) are considered suspiciously large

Fig.9 reveals 3 data points above the lower limit we indicated with the solid lines. Since all of
these values occur at the tails of the graph and the remainder of the data is spread quite evenly
around 0 (with only a few points even coming close to the lower limit), the plot looks quite well
fitted.

The two plots for the leverage against fitted values appear to be quite normal. A couple values
approach the red line in Fig.10a but most remain quite low. As desired, most of the data varies
around 0.82 in Fig.10b, with a similar occurrence as the studentized residuals where we notice the
tails spike slightly due to a few singular points above the lower indicator line.

(a) Leverage plotted against the fitted values. Notice the
red line to indicate extreme values.

(b) Square root of the leverage value vs fitted values.
Data should vary randomly around 0.82 (lower solid

black) without systematic trends.

Figure 10: Leverage plots of the Final Model.
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Similar results can be seen in figures Fig.11 and Fig.12. A small number of observations
approach close to the line for high leverage, with none going over. The data is spread quite far out
but this is to be expected with such a physically diverse group and such a small data set.

(a) Leverage vs SquatJump. (b) Leverage vs UnderThrow.

Figure 11: Leverage plots for the SquatJump and UnderThrow variables with an upper threshold for
concern at y = 0.37 in red.

(a) Leverage vs IntRotL. (b) Leverage vs IntRotR.

Figure 12: Leverage plots for the IntRotL and IntRotR variables with an upper threshold for concern at
y = 0.37 in red.

When looking at the Cook’s D plot in Fig.13, we see the same three points above the lower
bound for suspicious observations as those in the Studentized residual plot. Though not an extreme
distance from the commonly accepted norm, however in such a small data set this pushed us to
keep an eye on these specific observations to avoid any significant influence.

25



Figure 13: Cook’s D vs Fitted values of Throwing variable. Points above the broken line (y = 0.15) are
considered unusually large, while points above the solid line (y = 0.90) are considered

suspiciously large

Noticing the single point past the higher threshold of the first DFBETAS plot in Fig.14
prompted us to investigate this subject further. Also a part of the group of three found in the
earlier analyses, it was found to be the subject with the highest result for our predicted variable,
which is thought to be a strong cause of the high influence it has over the data in the model.

Figure 14: DFBETAS vs Fitted values of Throwing variable. Points above or below the broken lines at
(|y| = 0.39) are considered unusually large, while points above or below the solid lines at

(|y| = 0.95) are considered suspiciously large.

Again we see in the DFBETAS plots for each of the variables in the final model that almost all
points lie within the lower threshold of ”normal” influence with the exception of one or more of the
three points noted earlier lying in between the two threshold bands (Fig.15a, Fig.15b and Fig.16a).
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However in Fig.16b the same outlier as in the Cook’s D plot lies just outside the edge of the upper
threshold.

(a) DFBETAS vs SquatJump. (b) DFBETAS vs UnderThrow.

Figure 15: DFBETAS plots for the SquatJump and UnderThrow variables. Points above or below the
broken lines at (|y| = 0.39) are considered unusually large, while points above or below the

solid lines at (|y| = 0.95) are considered suspiciously large.

(a) DFBETAS vs IntRotL (b) DFBETAS vs IntRotR

Figure 16: DFBETAS plots for the IntRotL and IntRotR variables. Points above or below the broken
lines at (|y| = 0.39) are considered unusually large, while points above or below the solid

lines at (|y| = 0.95) are considered suspiciously large.
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3.3.1 Final Model Testing

Once we confirmed that the Final Model was not hiding any extreme underlying disturbances, we
proceeded to supply some new, unseen data into the model for prediction. The authors results
vector, (SquatJump = 37, IntRotR = 92, UnderThrow = 4.72, IntRotL = 100), was fed into the
model. The resulting prediction for throwing speed was 86.36 km/h, which turned out to be very
close to the observed value of 84.25 km/h. The prediction on unseen data for a new subject had an
error of approximately 2.5%. We deemed this quite reasonable since the observed value we used to
compare with the predicted value was an average of multiple measurements, of which the minimum
was 80 km/h and the maximum was 87 km/h. As we can see the predicted value was well within
the set of observed measurements.

4 Discussion

We take a small step away from the statistical results now to have a critical look at certain aspects
of the study itself. To start at the beginning, the data collection of course had some room for
improvement, as does any process that involves direct contact with the tester. The tests needed
for variables like Sprint and T-Test involved laying out markers a specific distance from each other
and the ”Start” button for the timer to be pressed as the athlete began their run. Both of these
run a high risk of human error that is made more relevant given the accuracy the sensors measure
in (to three decimal places for the variables mentioned above).

Another unfortunate aspect was the size of the data set. With only 27 complete observations
eligible for the regression analysis, it was quite hard to form any meaningful significance or conclu-
sions without having access to a larger spread of athlete results. This was due to time constraints
and athlete availability, as testing could only be done during the trainings of the handball players,
and not everyone present wished to be involved. However the authors position in the local handball
club allowed him to take measurements from players of different levels throughout the different
associated teams. This diversity was very important in order to help compensate for the sample
size.

Something that should be noted is the effectiveness of the velocity gun used to take the Throw-
ing variables measurements, which gave results much lower than was to be expected. Even though
this was not the most accurate or reliable of tools, it provided a consistent and comparable space
in which all of the subjects’ results would be relative to the same technology, allowing the study to
proceed without any major adjustments to the data. Given the accuracy of the authors predicted
throwing speed, we can comfortably say that more accurate methods for gathering this variables
information should lead to similar outcomes.

One of the things that was considered when choosing the model building methods was model
reduction. Due to the small sample size coupled with the large number of predictor variables, our
models ran a high risk of overfitting. The need to combat this was what led us to choose lasso
regression over ridge regression. While ridge regression lowers the variable coefficients somewhat
like what happens in lasso regression, the lasso method has the ability to set the coefficient to
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exactly 0, thus holding the power of feature selection. We also chose to look at PCA for the same
reason, as it would allow us to transform the data onto a different space where we could use a much
smaller amount of principle components to assess the data instead.

The model results occasionally lined up quite nicely with each other. For example, the forward
and backward stepwise regression both suggested the same model as the best option which was
a very good sign for the strength of the Final Model. In addition, the Lasso model contained
almost all of the same variables as those in the Final Model with the only difference being that the
UniCMJL variable was in the place of IntRotL. The λ that resulted in this model also suggested
that a four-variable model was the most successful and had the strongest prediction power, a result
in favour of both the Lasso and Final Model.

Another positive that was found from another model was the results from the Importance
testing done when forming the Random Forest. The results in Fig.7 show that SquatJump and
UnderThrow had quite high importance, with both variables used in the Lasso and Final Model.
In addition to this, we can accommodate the fact that SquatJump was chosen in place of some
other ”Jump” variable due to the high correlation found between all the Jump variables (as can be
expected). Notice also that SquatJump also lies in the middle of the rest of the Jump predictors
in terms of Importance, which could imply that it was chosen because it contains the best spread
of information from all Jump options. The inclusion of the IntRot variable was to be somewhat
expected in a study testing for a ”Throwing” movement. Their inclusion also accounts for a good
spread of information from the lower end of the table.

Something interesting that came up later in the study was the changes that occurred after the
late addition of a new data subject. The subject had been missing some variable results that forced
them to not be included in the analyses until they were filled in. When this missing information
was added however, most models showed significant changes to their final model suggestion. For
example, previously the stepwise methods provided distinct models, one with four variables and
the other with six. Afterwards we see that forward and backward selection aligned to give the same
model. This could be because the new subject had good results and therefore held a large influence
over the data, although most likely the changes were due to the size of the data set giving each
individual a stronger pull on the data than they would have normally had in a larger sample.

The size of the data set impacted the study in other ways. In anything that involves the
physical abilities of subjects, there will be a large diversity in their capabilities, especially if testing
was done over different performance levels. In a set of this size this diversity was allowed to permeate
into the results, as can be seen in some of the model analysis plots in the previous section. Fig.9
for example should ideally be monotone around 0, however the moving average shows the tails
to be pulled up slightly from the distinctly low or high predicted values. In practice, this could
be caused by the athletes prowess in certain areas given their position or physique. Normally this
would be compensated for if the data set was sufficiently large and covered a wider range of physical
capabilities.

Using the Final Model to predict the throwing speed based on new data revealed the models
surprising predictive capabilities, only differing very slightly from the observed value. In saying this
we of course have to mention that it could have simply been a fortunate result given that only a
single previously unseen subject’s data was tested on. To get a better idea of how well the model
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predicts the throwing speed more subjects would be required. Nonetheless, the final result bodes
well for future studies into this field.

Since the original purpose of the measurement equipment used in the testing is that of high
performance athlete training and tracking, the implications of a more refined study could be quite
significant in that field. If further testing reveals the ability to identify the most important exercises
or movements in larger scale and more complex movements for different sports, it could sharply
refine the focuses of the training and strength and conditioning of athletes in the future. In the
specific case of handball in this study and which of the 13 variables tested hold the most influence on
the Throwing result, the above results should be taken with a grain of salt given the shortcomings
and possible improvements of the project, like including more exercises to test for example.

5 Conclusion

We briefly review some of the more important or interesting insights that were learned over the
course of this study.

It was found that the Jump variables held an unexpected influence on the throwing action that
was being tested. Most of the variables in the final model regularly ranked high in significance within
different models as well as in the Importance analysis observed in the Random Forest, SquatJump
being third highest overall.

The Final Model was backed by several results found from other models, like the Lasso model
showing the ideal model contained 4 variables and the levels of Importance mentioned in the previous
paragraph. In the overall case as well, Stepwise regression had the most promising R2 and MAE
values, as well as a very close second when it came to the RMSE.

It seems important to reiterate the importance of a larger data set for future studies however,
given how much the small selection of participants affected the study. Certain elements would
preferably be closer to the standard level of acceptance, such as the residuals be closer to the
ideal, or the data to have larger dimensions to avoid any unwanted influence from individuals and
to get more reliable and interpretable results. Having a larger testing pool removes a lot of the
challenges in presenting more concrete results, but adding more variables should not be overlooked
accompanied by this. If the sample size was much larger, we could afford to test more exercises
without as much a worry on overfitting or diluting the modelling. Doing so would provide a deeper
insight into which movements should be valued over others.

Given the previously discussed criticisms, the study yielded a surprisingly accurate final result
with the predicted throwing speed only 2.5% larger than the observed value. Since the equipment
used when taking these measurements only provided a relative measure of the athletes performance,
a more accurate method would be needed in order to get results that would provide sufficient insight
into the players performance. With this insight, trainers and coaches could streamline and tailor
their training programs in order to maximise certain elements of the game that would otherwise be
difficult to identify or focus on.
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Further investigations would take these two recommendations, in addition to improving the
method of collecting the results for the dependant variable, into account during the experiment
building process in order to come to the most accurate conclusions. The conclusions themselves
can provide a deep insight into the training and improvements of individuals in general and athletes
as a whole if this is expanded into other sports.
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Figure 17: This graph shows the individual variable distributions along the diagonal, the pair plots of
each variable pair in the bottom half and the p-value of each variable pair in the top half,
highlighting the significant pairs of variables.
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7.2 B

Figure 18: Sensor (white) and straps from Output Sports used in the data collection procedure.
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Figure 19: Velocity gun used to measure the Throwing velocity of the handball players’ step shot.
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