
“output” — 2023/3/31 — 12:05 — page 1 — #1

Detection of Abnormalities in Cardiac Rhythm
Using Spiking Neural Networks

Dorsa Mohammad
dorsa.mohammad.3180@student.lu.se

Department of Electrical and Information Technology
Lund University

Supervisor: Amir Aminifar, Saeed Bastani
Host company: Ericsson

Examiner: Christian Nyberg

March 31, 2023

“output” — 2023/3/31 — 12:05 — page 2 — #2

© 2023
Printed in Sweden
Tryckeriet i E-huset, Lund

“output” — 2023/3/31 — 12:05 — page i — #3

Abstract

Artificial Intelligence (AI) and Machine Learning (ML) have been increasingly at-
tracting attentions in many different fields. Healthcare is one of the areas that
has greatly benefited from the advances in AI/ML. This includes a wide range of
applications such as medical data interpretation, disease or abnormality detection
or prediction, monitoring specific health condition and medical data management.
On the other hand, patients can also take advantage of available healthcare de-
vices to be more conscious of their health status and increase their quality of
life. However, implementing AI/ML algorithms on resource-constrained wearable
devices is challenging. One way to tackle this problem is to exploit the neuro-
morphic computing solutions such as Spiking Neural Networks (SNNs), which are
more energy efficient than conventional neural networks because of their more
similar function to how the brain works. In this thesis project, we investigate the
working-mechanism of these networks, how we can design, train and use them for
the detection of abnormalities in cardiac function.

i

“output” — 2023/3/31 — 12:05 — page ii — #4

ii

“output” — 2023/3/31 — 12:05 — page iii — #5

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my supervisors,
Dr. Saeed Bastani from Ericsson Research and Dr. Amir Aminifar, for all their
guidance, support and patience during all the ups and downs I experienced during
this thesis journey.

Also, I was so blessed to have amazing international coordinators in my program
at LTH to help me with all the practicalities to finish my Master’s studies.

Last but not least, I am extremely grateful to have my parents as my best friends,
supporters and companions in all peaks and valleys of my life. They have always
been the ones giving me the strength to reach my goals and the ones strongly
believing in me and reassuring me throughout my life. Thank you for being the
most selfless, caring, understanding and encouraging parents I could wish for.

iii

“output” — 2023/3/31 — 12:05 — page iv — #6

iv

“output” — 2023/3/31 — 12:05 — page v — #7

Table of Contents

1 Introduction and Background 1
1.1 Stakeholders . 1
1.2 Classical Machine Learning and Deep Learning 2
1.3 The Role of AI/ML in Healthcare and its Challenges 3
1.4 Event-Driven Machine Learning . 6
1.5 The Biology of Neurons [29] . 6
1.6 Artificial vs. Biological Neural Networks 9
1.7 Spiking Neural Networks . 9
1.8 Neuro-Inspired Computing Processors 15
1.9 Useful Simulation Tools for SNN Implementation 16

2 Related Work 19
2.1 ECG Data Description . 19
2.2 Related Work . 22
2.3 ECG Classification Algorithm Based on STDP and R-STDP Neural

Networks . 23

3 ECG Classification Using Spiking Neural Networks 29
3.1 Overview . 29
3.2 Preparing the Data . 31
3.3 Building our CNN Model . 33
3.4 CNN to SNN Conversion . 36
3.5 Optimizing the Parameters Using Regularization 37

4 Conclusions and Future Work 47
4.1 Conclusions . 47
4.2 Ideas for Future Work . 47

References 49

v

“output” — 2023/3/31 — 12:05 — page vi — #8

vi

“output” — 2023/3/31 — 12:05 — page vii — #9

List of Figures

1.1 The biological and the artificial neuron [9]. 3
1.2 The typical structure of DNNs. 4
1.3 Some popular AI/ML methods used for mobile and wearable devices

and their healthcare use-cases. 5
1.4 Diagram for action potential [31]. 7
1.5 The ion movements between the extracellular space and the neuron

cytoplasm in each stage of an action potential [32]. 8
1.6 A model of spike generation. [35]. 10
1.7 Membrane potential changes because of the arrival of spikes using a

constant window kernel and an exponentially decaying kernel. [35] . 11
1.8 Illustration of the working mechanism of different coding scheme. (a)

spike-count and rate coding for sensory (input) neurons. (b) latency
coding for sensory neurons. (c) spike-count code, (d) rate code and
(d) latency code in presynaptic-postsynaptic neuron setting at two
different weight values [35]. 13

1.9 Comparison of artificial neuron with ReLU function and IF spiking
neuron [42]. 14

1.10 The way the spike-time gradient can work [40]. 15
1.11 An overview of the Nengo ecosystem including several interacting

projects. [55]. 17

2.1 Different positions for electrodes [70]. 20
2.2 10 seconds from a recording of the MIT-BIH Arrhythmia Database

and the corresponding beat annotations [67]. 20
2.3 Different parts of a heartbeat signal [77]. 22
2.4 Overall view of the proposed solution [82]. 24
2.5 Learning rule for the synaptic weights update in STDP layer 26

3.1 An overview of the approach of this project. 30
3.2 More details of balancing data. The upper group (in green) includes

the training samples and the lower one (in red) contains the test samples. 32

vii

“output” — 2023/3/31 — 12:05 — page viii — #10

3.3 Two heart-beats belonging to two different classes and the real part of
their STFT. The first one is a normal beat. The second one, which is
a ventricular escape beat, has some distinguishing characteristics such
as wide QRS complex and abnormal morphology of QRS complex. . . 34

3.4 Structure of our NN with 105,279 trainable parameters. 35
3.5 Our final NN structure with 114,453 trainable parameters. 39
3.6 Neural activities of the first convolutional layer and the output pre-

dictions. scale firing rate = 50, number of steps = 60, synapse =
0.01. 41

3.6 Neural activities of the first convolutional layer and the output pre-
dictions. scale firing rate = 50, number of steps = 60, synapse =
0.01. 42

3.6 Neural activities of the first convolutional layer and the output pre-
dictions. scale firing rate = 50, number of steps = 60, synapse =
0.01. 43

3.7 Neural activities of the first convolutional layer and the output pre-
dictions. scale firing rate = 20, number of steps = 60, synapse =
0.01. 44

3.7 Neural activities of the first convolutional layer and the output pre-
dictions. scale firing rate = 20, number of steps = 60, synapse =
0.01. 45

3.7 Neural activities of the first convolutional layer and the output pre-
dictions. scale firing rate = 20, number of steps = 60, synapse =
0.01. 46

viii

“output” — 2023/3/31 — 12:05 — page ix — #11

List of Tables

2.1 Beat annotation in the database and beat classes in this project. . . 21
2.2 Results of some other similar works done for heart-beat classification

[82]. 28

3.1 The number of samples in each class. 32
3.2 The effect of the scale firing rate on overall accuracy, with parameters:

n_steps=10, synapse=None. 37
3.3 Results after balancing data and using SNN of Figure 3.4 for different

number of steps and scale_firing_rate=100, synapse=0.01. 38
3.4 Results after balancing data and using SNN of Figure 3.4 with param-

eters: scale_firing_rate=50, synapse=0.01, n_steps=60. 38
3.5 Parameters space exploration using neural network of Figure 3.5, synapse=0.01,

n_steps=30. 40

ix

“output” — 2023/3/31 — 12:05 — page x — #12

x

“output” — 2023/3/31 — 12:05 — page 1 — #13

Chapter 1
Introduction and Background

Artificial Intelligence (AI) and Machine Learning (ML) are attracting more and
more attention in the realm of science, industry, economy and etc. This can be
because of their promising results in a wide range of applications: from self-driving
cars, robotics and optimization for different problem settings, to protein design,
neuroscience, medical image analysis and sensor-based applications in health sec-
tor. Furthermore, ML will be an essential element in the next-generation Internet
of Things (IoT) systems, including mobile sensors and wearables. One example can
be using data obtained from healthcare devices to detect a disease or a dangerous
condition. However, healthcare wearable devices have limited computational and
power resources. This makes the implementation of computationally heavy neural
networks, in particular deep neural networks (DNNs), for these devices challenging
[1], [2]. A workaround for this issue could be found by exploring neuromorphic
computing. Neuromorphic computing is referred to as designing a system that is
inspired by biological structures. The goal is to create a system that can learn,
retain information and do certain tasks in a way that human brains can. Unlike
conventional neural networks that have a trade-off between computation speed
and power consumption, neuromorphic systems can achieve both fast computation
and lower power consumption. This performance is achieved by building a Spiking
Neural Network (SNN). SNNs can be used to reduce the power consumption but
still provide promising results. Moreover, on the hardware side, several companies
are working on designing chips that are optimized for computations being done
in an SNN. These advances will contribute to the real-world implementation and
evaluation of the neuromorphic models. As a result, this field seems to become
more attractive in a few years [3]. We discuss all these concepts in more details in
this chapter. In this thesis project, we aim to investigate the working-mechanism
of SNNs and use them for heart-beat classification.

The remaining of this chapter provides the knowledge that is required to follow
through the project.

1.1 Stakeholders

The host company of this thesis project is the Department of Device Software
Research at Ericsson, Lund, Sweden. They proposed the initial research topic and
provided the required resources for this project. Moreover, AI/ML and neuromor-

1

“output” — 2023/3/31 — 12:05 — page 2 — #14

2 Introduction and Background

phic computing research community could benefit from the approaches and ideas
proposed by this work.

1.2 Classical Machine Learning and Deep Learning

Learning is defined as the ability to improve the performance on future tasks after
making observations about the world [4]. ML is a branch of AI that uses data and
algorithms to learn a defined task and gradually improves the target performance
metric such as accuracy. ML can mainly be classified into two types: supervised
learning and unsupervised learning. However, some also add a third and fourth
type: semi-supervised machine learning and reinforcement learning.

In supervised learning, there are a collection of labeled data being used to
train algorithms to classify data or predict outcomes accurately. In other words,
each data sample is a pair of input and output. In the training step, we provide
these data samples to the model and the model should adjust its weights until
it reaches an appropriate mapping from the inputs to the outputs. There exist
certain criteria used in cross validation step, such as overfitting or underfitting,
to decide what is appropriate. Then, if a new input is fed into the model, it can
predict the output. Neural networks, linear regression, logistic regression, support
vector machine (SVM) and random forest are examples of supervised learning
methods.

Unsupervised learning uses some ML algorithms to find patterns hidden in
unlabeled datasets and the human supervision is not required. For instance, it
is a good choice for exploratory data analysis because of its ability to discover
similarities and differences in data samples. Unsupervised learning is also used
to reduce the number of features (which is the dimension of data samples) in a
model. Principal component analysis (PCA), singular value decomposition (SVD)
and k-means clustering are a few of well-known algorithms used in unsupervised
learning [5].

Semi-supervised learning is an approach that lies between supervised and un-
supervised learning as it can be inferred from its name. This algorithm is provided
with a labeled data set and usually a larger unlabeled data set. An example can
be a supervised learning problem setting that aims to predict a target value for
a given input while having some additional information on the distribution of the
examples (unlabeled data set can be used here)[6].

Reinforcement learning is learning how to map situations to actions in order to
maximize a numerical reward signal. The agent (or learner) itself should find out,
in each situation, which actions lead to the most reward by trying them. Besides
affecting the amount of immediately earned reward (or possibly punishment), ac-
tions can also change the next situation and, through that, all subsequent rewards.
These two characteristics, experimenting the states by trial-and-error search and
delayed reward, are the two key distinguishing features of reinforcement learning
[7].

Artificial Neural Networks (ANNs) are a subset of machine learning algorithms.
These algorithms are inspired by the way biological neurons signal to each other
in the human brain. An ANN consists of an input layer, one or more hidden

“output” — 2023/3/31 — 12:05 — page 3 — #15

Introduction and Background 3

layers, and an output layer. Each layer has some artificial neurons. Each neu-
ron can connect to another and has an associated weight and threshold. If the
output of a neuron is greater than its threshold value, that neuron passes data to
the next layer of the network, otherwise, the neuron would be inactive [8]. The
function that is defined for each neuron to enforce this active-inactive behavior is
called the activation function. More detailed mathematical model of an artificial
neuron is shown in Figure 1.1. There exist different architectures of ANNs, the
most famous of which are Multi-layer Perceptron (MLP), Convolutional Neural
Networks (CNN) and Recurrent Neural Networks (RNN). Moreover, the training
procedure of the neural networks are mostly based on backpropagation algorithm.
Neural Networks with more than one hidden layer are called deep neural net-
works (DNNs) and considered as DL algorithm. The typical structure of DNNs is
depicted in Figure 1.2.

Figure 1.1: The biological and the artificial neuron [9].

1.3 The Role of AI/ML in Healthcare and its Challenges

Personalized healthcare is a concept that can considerably affect the patients’
lives by customizing required care to the individual and providing an effective care
that leads to the faster outcomes and/or preventative measures. This concept
can play an active role through the whole journey of the patient, including the
prevention, diagnosis, treatment and monitoring of disease. The digital revolution
in healthcare has helped to collect, connect and analyze data from large population
of patients. This is one of the key factors to be able to use methods that could
provide healthier individuals [10].

The proliferation of mobile and wearable devices has resulted in the possibility
of collecting large amount of physiological, biological and behavioral data about
people’s daily life [11]. AI and ML methods can take advantage of these data
to predict or detect a specific health status. This has the potential to improve
people’s quality of life. Some examples of physiological data that various wear-
able devices are capable of collecting are heart rate, electrocardiogram (ECG),

“output” — 2023/3/31 — 12:05 — page 4 — #16

4 Introduction and Background

Figure 1.2: The typical structure of DNNs.

electroencephalogram (EEG), blood glucose, blood pressure, blood oxygen satura-
tion, respiration rate, body temperature and photoplethysmography (PPG). These
data can be used in several kinds of healthcare applications [10]:

a) Preventive health: Here, the goal is to detect a health related abnormal-
ity. An insightful example can be smartwatches that provide the obtained heart
rate, ECG and blood pressure to an ML-based platform and notify the users about
the potential conditions such as blocked arteries. It can act as an alert for patients
to follow up and take care of the cardiac problems [1] [12] [13] [14] [15]. Therefore,
a dangerous situation such as heart stroke could be prevented.

b) Medical consultation: This acts as an AI doctor that collects a large
amount of medical knowledge from available medical databases. It can save the
time for the diagnosis and help the real doctors to focus on finding treatment for
the disease [16], [17].

c) Medication management: This includes collecting and managing physio-
logical data, producing health reports and exploiting helpful information enabling
wearable devices to recommend certain kinds of prescriptions or to remind the
patients about the precise time they should take the drugs (based on the device
continuous monitoring) [18].

d) Monitoring chronic disease conditions: Wearable devices can be used
to keep track of a specific health metric whose changes and fluctuations have an
important role in a chronic disease and should be taken care of constantly. For
instance, using these devices for a diabetic patient can monitor oscillations in the
blood sugar level and helps to provide more precise insulin treatment customized

“output” — 2023/3/31 — 12:05 — page 5 — #17

Introduction and Background 5

for the patient and optimize the diabetic control. Other examples include sleep
related issues (such as Apnea) and epilepsy [19], [20], [21], [2], [22], [23], [24], [25].

e) Monitoring stress: The heart rate variability information collected by
wearable device can be used to cast light on people’s mental well-being and body
stress [26], [27]. Also, another physiological data that can be applied for stress
management is respiration rate.

The work we have done in this project has the nature of the first and third
group.

Unlike the data collected in clinic settings, the amount of data collected by
wearable devices is much larger and also noisier because of irregular body move-
ments. Signal processing techniques and ML-based techniques are two methods
used to work with these data. These two techniques are usually applied together
to improve the model performance. ML based approaches commonly should go
through three main steps: 1) preparation: splitting raw streaming data into
discrete pieces for further processing, 2) feature extraction: using methods to
obtain effective feature representations from data, 3) decision: training the ML
model using the derived features to output a decision for testing data. Note that
we can integrate steps 2 and 3 and make the learning process more end-to-end
by using DL methods. Some popular AI/ML techniques and their use-cases in
healthcare are outlined in Figure 1.3 [10].

Figure 1.3: Some popular AI/ML methods used for mobile and
wearable devices and their healthcare use-cases.

When it comes to the challenges of applying AI/ML methods for wearable
devices, one of them is that most wearable devices have a miniaturized design and
thus they have very limited energy supply and storage. However, the performance
of most AI/ML approaches rely on huge energy and computational resources.
Thus, taking energy efficiency into account and developing novel AI/ML techniques
that requires less energy resources can be very beneficial.

“output” — 2023/3/31 — 12:05 — page 6 — #18

6 Introduction and Background

1.4 Event-Driven Machine Learning

In event-driven computing, the happening of a specific action depends on the oc-
currence of predefined trigger events. This can help to lower the requirement of
powerful computational resources, by performing the most computationally ex-
pensive processing only when a particular trigger event occurs. This is also more
energy efficient and can improve the battery lifetime of wearable devices [28]. An
example can be [28] that present an event-driven classification technique for My-
ocardial Infarction on wearable devices. One of the goals of this paper is to intro-
duce a classification method being less computationally complex and more energy
efficient, while obtaining a high accuracy result. The idea is to reduce the number
of features that is required to compute for making confident decisions (accurate
enough), and as a result reduce the energy consumption. This is done by using
a hierarchical classifiers that can decide when it needs to go deeper in classifica-
tion level. A kind of neural networks that has an approach similar to event-driven
methods is called Spiking Neural Networks (SNNs) which is introduced in the next
section.

1.5 The Biology of Neurons [29]

The neurons are responsible to generate electrical signals in response to chemical
and other inputs, transmit them to other cells. The typical structure of a neuron
is demonstrated in Figure 1.1. The neuron is made of dendrites that receive inputs
from other neurons and the axon that conveys the neuronal output to other cells.
Because of the branching structure of the dendritic tree, the neuron is able to
receive inputs from many other neurons through synaptic connections. Also, the
end of an axon where it is connected to another neuron is called synapse.

It is useful to explain briefly about different types of biological synapses, since
it can give us insight to mathematically model a brain inspired neural network later
on. The types of most synapses in the brain are excitatory and inhibitory. The
process of learning creates new synapses between neurons in the brain and cut off
old connections. Signals transmitted over excitatory synapses increase the activity
of the receiving neuron, while signals transmitted over inhibitory synapses reduce
neuron activity. The balance between excitation and inhibition is a key factor for
the brain to work properly [30].

The mechanism of generating signals is based on the presence of various
membrane-spanning ion channels that allow ions, mainly sodium (Na+), potas-
sium (K+), calcium (Ca2+) and chloride (Cl−), to move into and out of the cell.
Ion channels control the flow of ions across the cell membrane by opening and
closing in response to voltage changes and to both internal and external signals.
In the nervous system, the electrical potential difference between the interior of
a neuron and the surrounding extracellular medium is defined as the electrical
signal. In resting conditions, the potential inside the neuron membrane is about
-70 mV relative to that of the surrounding medium. This is called the polarized
condition. The process of flowing positively charged ions out of the cell is called hy-
perpolarization. This makes the membrane potential more negative. The reverse
process, which means (positive) current flows into the cell changing the membrane

“output” — 2023/3/31 — 12:05 — page 7 — #19

Introduction and Background 7

potential to less negative or even positive values, is called depolarization.
An action potential, which is an approximately 100 mV fluctuation in the elec-

trical potential across the cell membrane lasting for about 1 ms, is generated when
a neuron is depolarized adequately so that the membrane potential reach above
a threshold level, initiating a positive feedback process. For a few milliseconds
just after an action potential, another spike cannot be fired. This is called the
refractory period. Figure 1.4 shows the membrane potential before, during and
after an action potential. Also, the ion movements between the extracellular space
and the neuron cytoplasm in different conditions are demonstrated in Figure 1.5.

Figure 1.4: Diagram for action potential [31].

Action potentials transmit information through their timing. By neglecting
the small duration of an action potential, we can represent an action potential
sequence by a list of the times when spikes occurred (such as t1, t2, ..., tn for n
spikes, where 0 ≤ ti ≤ T for all i and 0 and T are the start and end time of
recording the spikes). Moreover, the spike sequence can be shown as the sum of
Dirac δ functions as the following:

ρ(t) =

n∑
i=1

δ(t− ti) (1.1)

ρ(t) is called the neural response function. A neuron can respond differently from
trial to trial even when the same stimulus is enforced. Because of this behavior,
we cannot describe and predict the timing of each spike in the action potential

“output” — 2023/3/31 — 12:05 — page 8 — #20

8 Introduction and Background

Figure 1.5: The ion movements between the extracellular space and
the neuron cytoplasm in each stage of an action potential [32].

sequences deterministically (because there exist some randomness). Therefore,
the neuronal responses are usually studied statistically or probabilistically. An
example is the firing rates that can be used to characterize the neuronal responses
instead of specific spike sequences. Now, firing rate would be defined step by step.
First, we should introduce spike-count rate (r) which is the number of action
potentials that appear during a trial (n) and divided by the trial duration (T):

r =
n

T
=

1

T

∫ T

0

ρ(τ)dτ (1.2)

This can be interpreted as the time average of the neural response function over
the trial duration. The spike-count rate r is not a function of time and can be
computed from a single trial. A time-dependent firing rate can be defined as the
number of spikes over short time intervals. However, in this case we cannot de-
termine the value from a single trial, and we should average over different trials.
Then, we can compute the time-dependent firing rate by taking the average num-
ber of spikes (averaged over trials) existing during a short interval (between times
t and t + ∆t, and dividing by the interval duration (∆t). From Equation 1.2 we
can state that the number of spikes between times t and t + ∆t in a single trial
is equal to

∫ t+∆t

t
ρ(τ)dτ . Now, the average number (through N different trials)

of spikes during this interval is equal to 1
N

∑N
n=1

∫ t+∆t

t
ρn(τ)dτ , where ρn(τ) rep-

resents the neural response function of trial n. This can be equivalently written
as

∫ t+∆t

t
⟨ρ(τ)⟩dτ , where ⟨ρ(τ)⟩ is the trial-averaged neural response function. Fi-

nally, the firing rate (which means time-dependent firing rate r(t)) can be written
as the following:

r(t) =
1

∆t

∫ t+∆t

t

⟨ρ(τ)⟩dτ (1.3)

For computing the value of r(t) from data, ∆t should be sufficiently large.

“output” — 2023/3/31 — 12:05 — page 9 — #21

Introduction and Background 9

1.6 Artificial vs. Biological Neural Networks

The nature of the transmitted information: As we described in the last
section, the working mechanism of biological neurons is based on spike generation.
This implies that the information is encoded and transmitted in the form of discrete
events called spikes and the important thing is the timing of their occurrence.
On the other hand, artificial neurons in conventional neural networks can send
continuous values in form of synaptic weights, that makes the training procedures
such as backpropagation possible. The limit on the range of these values depends
on the used activation function in the model. For instance if the Sigmoid function
is used, the neuron can fire all the time, but with the different signal amplitudes.

Speed: It is clear that the artificial neurons, unlike their biological coun-
terparts, never get fatigued meaning that they are functions being computed as
many times and as fast as the computer hardware is capable of and that is the
only limiting factor. Also, another contributing factor for speed is that there is no
refractory period.[33]. Furthermore, the speed of the computations required for
training an ANN, which can usually be reduced to multiple matrix operations and
finding derivatives and calculating them for a large amount of data points over
and over again, increases by using specific hardware for AI or graphics processing
units (GPUs) [33].

Power consumption: As mentioned before, ANNs are much less energy ef-
ficient than the human brains. To have a reference, the thermal design power
(TDP), that is defined as the power consumption under the maximum theoretical
load, of NVIDIA GeForce RTX 3090, which is one of the most powerful available
GPUs for DL applications at the time of writing this thesis, is 350 watts [34],
while an adult human brain operates on about 20 watts [48]. Another issue is that
computers generate a lot of heat when used, but humans operate in 36.5–37.5 °C
[33].

1.7 Spiking Neural Networks

As a quick recap on feed-forward ANNs, we can briefly recall that they are multiple
layers of activation function nodes connected successively by weight parameters. It
is a mathematical model that is trained by numerous examples to learn the weight
matrix to be able to map the input x to the output and form a function f(x;w) and
the widely used algorithm to find the weight parameters is backpropagation. Here,
we should note that the model does not depend on time since no time-dependent
element is incorporated to the function f [35].

Now, it is time to introduce SNNs. They could be considered as directed
graphs consist of nodes (as spiking neurons) and directed edges (as synapses).
The main difference compared to ANNs is that the spiking neuron does not act
like the activation function node in ANNs. They incorporate a time-dependent
state variable, such as membrane potential that is a function of presynaptic spikes.
Also, unlike the real-value nature of inputs in the ANNs, the input information
to the spiking neurons is in the form of a stream of binary numbers through time
(existence or absence of a spike). In fact, the membrane potential is affected by

“output” — 2023/3/31 — 12:05 — page 10 — #22

10 Introduction and Background

arrival of any spikes. The mechanism of a leaky integrate-and-fire (LIF) model
is demonstrated in Figure 1.6. The membrane potential u changes following of
input spikes and the neuron fires a spike when the membrane potential reaches a
threshold uth. Just after the firing, the membrane potential resets to the ground
value and it is followed by the refractory period. The fact that the neuron’s state
progress through time, represents a memory-like effect [35].

It is worth mentioning that the existing neural networks for sequence learning
such as recurrent neural networks (RNNs) and long short-term memory (LSTM)
do not consider the time interval between neighboring events and just the concept
of sequence is important to them. In other words, they do not incorporate physical
time into their model. Therefore, different learning algorithms should be used for
SNNs compared to ANNs [35]. In this section we introduce a few of them. We
also discuss neuron models and coding schemes in SNNs.

Figure 1.6: A model of spike generation. [35].

1.7.1 Neuron Models

There exist various spiking neuron models. One of the state variables used to
model spiking neurons is membrane potential that we introduced earlier for LIF
neuron (or Stein’s model). However, to model the neuron in more details and
make it more similar to the actual biological counterpart, the model would be
more complex and more than one state variable would be required. Some of the
proposed neuron models are Zhikevich’s model [36], FitzHugh-Nagumo (FHN)
model [37], [38]. Here, we look into the neuron models involving one state variable
in more details.

“output” — 2023/3/31 — 12:05 — page 11 — #23

Introduction and Background 11

One of the simple models is the one that involves a single state variable (which
is membrane potential). An example of such a model is demonstrated in Figure
1.6. As mentioned earlier, the membrane potential upsurges when an input spike
arrives and then decreases during the inter-spike interval (ISI). The membrane
potential u(t) can be written as the following [35]:

u(t) = u0 + a

∫ t

0

D(s) · w · σ(t− s)ds (1.4)

Here, u0, a, D(s) and w are the base membrane potential, positive constant, a
linear filter (kernel) and the synaptic weight, respectively. Also, σ is a sequence of
N input spikes (ith spike at time ti) and it can be written as σ(t) =

∑N
i=1 δ(t− ti).

Two examples with two different kernels are shown in Figure 1.7. The first one,
using a constant window kernel, is called integrate-and-fire (IF) model and the
second one, using an exponentially decaying kernel, is called LIF or Stein’s model
as mentioned before.

Figure 1.7: Membrane potential changes because of the arrival of
spikes using a constant window kernel and an exponentially de-
caying kernel. [35]

1.7.2 Coding Schemes

In ANNs, an activation function encodes the real-valued sum of weighted inputs
to a real-valued output. However, neural coding is not that simple in SNNs.
Three coding schemes used in SNNs are introduced in this section [35]. Figure 1.8
illustrates the mechanism of these encoding methods. Figure 1.8(a) and (b) show
the spike generation of input neuron (sensory neuron) in response to 3 different
values of input stimuli. The other ones depict the postsynaptic spikes in response

“output” — 2023/3/31 — 12:05 — page 12 — #24

12 Introduction and Background

to a presynaptic spike train for 3 introduced methods and two different weight
values (w1 < w2).

Spike-count code: In the model of Figure 1.7(a), the postsynaptic neuron
potential increases in proportion to the number of input spikes until firing a spike.
Because of the fact that the leakage is not modeled here, how fast the input
spikes arrive at the postsynaptic neuron (input firing rate) and when they arrive
(input spike-timing) do not have any impact on the neuronal response. In other
words, for a given synaptic weight, the number of input spikes is the determining
factor for generating the postsynaptic spikes. A schematic of this encoding scheme
is shown in Figure 1.8(c). It can be noticed that the postsynaptic neuron with
weight w1 fires a spike when it receives 3 presynaptic spikes, while the postsynaptic
neuron with weight w2 > w1 fires a spike when it receives 2 presynaptic spikes.
Furthermore, Figure 1.8(a) illustrates spike-count code for a sensory neuron.

Rate code: Here, the potential leakage is considered. Therefore, the presy-
naptic spiking rate determines the firing of postsynaptic spikes. The input spiking
rate should be high enough (or in other words, the presynaptic spikes should be
close together enough) to make the postsynaptic neuron reach the threshold and
fire a spike. Note that the firing rate is defined as the average number of spikes
per unit time. Figures 1.8(a) and (d) show examples of postsynaptic spike train
in response to sensory inputs and a presynaptic spike train, respectively. In this
method, the neuron should integrate input spikes long enough to determine the
average of spike number per unit time. This makes rate coding time consuming,
which is one of the drawbacks of this scheme.

Temporal code: In this method, the neural information is incorporated into
individual spikes rather than their temporal average. This can perform faster than
rate coding. An example of temporal coding is latency coding, which is depicted
in Figure 1.8(b) for a sensory neuron. We can observe that the strength of the
input value intensity controls the timing of the generated postsynaptic spike. The
stronger the input the sooner a spike is elicited (the lower the spiking latency).
Also, Figure 1.8(e) shows an example of temporal code in a pair of presynaptic and
postsynaptic neuron. We can notice that a single spike (or more precisely, its spike
timing) is enough to carry the input information. A disadvantage of temporal code
is being vulnerable to error in the presence of the variability in ISI.

1.7.3 Training Techniques for SNNs

The mostly used methods for training typical ANNs are gradiant-based. Backprop-
agation is an algorithm applied in these methods that uses the chain rule from the
last layer back to each weight to derive the gradient of the loss function with respect
to each learnable parameter (weight) [39]. Because of the non-differentiability of
spikes, there exist a problem to train SNNs by using backpropagation. This is also
known as dead neuron problem [40]. In fact, the gradient of the loss function
with respect to wights is either 0 or ∞, and thus, the weight update cannot be
performed by using backpropagation.

There exist two main approaches to handle the dead neuron problem and be
able to train SNNs. Here, we discuss them:

Shadow Training or Conversion Method: In this method, a DNN is

“output” — 2023/3/31 — 12:05 — page 13 — #25

Introduction and Background 13

Figure 1.8: Illustration of the working mechanism of different coding
scheme. (a) spike-count and rate coding for sensory (input)
neurons. (b) latency coding for sensory neurons. (c) spike-
count code, (d) rate code and (d) latency code in presynaptic-
postsynaptic neuron setting at two different weight values [35].

“output” — 2023/3/31 — 12:05 — page 14 — #26

14 Introduction and Background

trained using backpropagation, and then, all neurons should be converted into
spiking neurons [41]. One of the reasons that can be convincing to use this tech-
nique in some applications is that the state-of-the-art algorithms developed for
conventional DNNs can also be applied here. Also, this is a reasonable choice
for applications where inference performance is more important than training ef-
ficiency [40].

In this project, we employ this method by replacing the ReLU neurons in our
CNN with integrate and fire (IF) spiking neuron to have our SNN. We do this using
NengoDL Python package. Figure 1.9 illustrates how IF spiking neuron functions
compared to a ReLU neuron.

Figure 1.9: Comparison of artificial neuron with ReLU function and
IF spiking neuron [42].

Direct training of SNNs: Another approach is to constitute other learning
rules that does not require the use of original version of backbropagation for up-
dating the weight parameters. Therefore, in this way, the SNN would be directly
trained and built without involving any other ANN. Bohte et al. [43] proposed
one of the first methods, called SpikeProp, to train multi-layer SNNs using spike
times for backpropagation. In this method, the gradient of loss with respect to
the spike timing (as opposed to spike itself, which is not continuous) is calculated
[40]. The intuition behind how this works is as following: if the weight w changes
by ∆w, then the membrane potential U changes by ∆U . This leads to a change
in spike timing f by ∆f . This is shown in Figure 1.10 [40]. Another solution
is to use variants of backpropagation through time (BPTT) algorithm, which is
discussed in several papers such as [44] and [45]. Moreover, local learning rules at
synapses, such as spike-timing-dependent plasticity STDP [46] similar to Hebbian
learning [47], is another choice that is more biologically inspired [41]. We refer to
a research using this method in the next chapter.

“output” — 2023/3/31 — 12:05 — page 15 — #27

Introduction and Background 15

Figure 1.10: The way the spike-time gradient can work [40].

1.8 Neuro-Inspired Computing Processors

The real world applications of AI, requiring the processing of large amount of data,
has been limited by the computing speed and power efficiency of the hardware.
Therefore, the typical computing hardware based on a von Neumann architecture is
not an efficient choice for dealing with AI tasks. Especially, the power-constrained
applications of AI, for example in the fields of edge computing and the Internet of
Things (IoT), require the development of new chip architectures. Neuro-inspired
computing chips, imitating the structure and principles of the biological brain, are
more energy efficient in performing AI tasks [48]. It is insightful to mention that
the human brain has more than 1011 neurons and 1015 synapses and consumes
only 20 watts (as said before) that is much more efficient than conventional von
Neumann computers for recognition and decision-making tasks [48].

Dedicated chips designed for ANNs and SNNs are two types of neuro-inspired
computing chips that share some features similar to those of the brain, such as a
neuron-synapse structure, in-memory computation and learning capabilities, while
working with either ANN or SNN algorithms. The neuron states in ANN chips,
are encoded as digital bits, clock cycles or voltage levels. However, in SNN chips,
information is encoded into spike timing. Also, some ANN chips try to enhance
energy efficiency by computing weighted-sum computations in memory, and SNN
chips are designed to reach ultra-low power consumption and run at relatively low
frequencies. However, most available SNN chips today, are just able to perform
basic AI tasks [48].

During the last decade, several neuromorphic processors have been released.
Some prototypical examples being able to realize SNNs on the chips are Neurogrid
[50], TrueNorth [51], DYNAPs [52], SpiNNaker [53] and Loihi [54] [35]. Neuromor-
phic hardware accompanied by a user-friendly compiler, for example by designing
a graphical user interface (GUI), can be beneficial for easier implementation. An
example of a GUI-based tools is Nengo that can be used to build SNN models,
compile and map them on neuromorphic hardware [35].

“output” — 2023/3/31 — 12:05 — page 16 — #28

16 Introduction and Background

1.9 Useful Simulation Tools for SNN Implementation

There exist multiple python libraries for building and testing SNNs. Nengo [55]
[56], Brian2 [57], snnTorch [58], BindsNET [59], SpykeTorch [60] and ANNarchy
[61] are example tools of this kind. None of these libraries are written in Python
but they still provide us with an interface in Python. Some of them are also
capable of acting as an interface to realize the SNN on a hardware. For example,
Nengo has successfully been applied to Loihi and Braindrop chip [35]. For the main
part of this project, we decided to use Nengo, because it provides comprehensive
documentation, useful examples, more online resources, continued developmental
support and updates. we have also explored Brian2 to understand the limits of
this tool, as it will be discussed in the next chapter.

The Nengo Brain Maker (simply called Nengo) is a Python package for build-
ing, testing, and deploying neural networks. The summary of this ecosystem is
depicted in Figure 1.11. The Python library Nengo (which is the core of the Nengo
ecosystem), contains five Nengo objects (Ensemble, Node, Connection, Probe, Net-
work) and a NumPy-based simulator. NengoDL simulates Nengo models (meaning
that it gets a Nengo network as input) using the TensorFlow library. This makes
the interaction with DL networks easier. It is also capable of using DL training
methods to optimize Nengo model parameters.[55]

Besides the applications in AI/ML, Nengo could be also used for modeling
the human brain which is a very challenging task. Nengo is based on a theoretical
framework proposed by Eliasmith and Anderson [62] called the Neural Engineering
Framework (NEF). The NEF had been used to build the world’s then largest
functional brain model called Spaun [63], which is a network consisting of 2.5
million spiking neurons that can perform eight cognitive tasks [56]. This model
has resulted in a more advanced vesion Spaun 2.0 that has approximately 6.6
million neurons and can perform 12 cognitive tasks [64].

Brian2 is another simulator of spiking neural network models. Here, the models
are mostly defined as dynamical equations. Users can write code with simple and
brief high-level descriptions, and Brian converts them into efficient low-level code
[65].

“output” — 2023/3/31 — 12:05 — page 17 — #29

Introduction and Background 17

Figure 1.11: An overview of the Nengo ecosystem including several
interacting projects. [55].

“output” — 2023/3/31 — 12:05 — page 18 — #30

18 Introduction and Background

“output” — 2023/3/31 — 12:05 — page 19 — #31

Chapter 2
Related Work

In this chapter, we review the state of the art work in relation to this thesis. This is
organized into three sections. In the first section, we describe a publicly available
database containing large amount of ECG signals. Then, several previous research
work using ECG data are described and finally, we explain a specific research paper
that we investigated in more details throughout this thesis project.

2.1 ECG Data Description

Electrocardiograms (ECGs) are widely used as an inexpensive, noninvasive and
simple ways to evaluate the heart. Electrodes, being connected to an ECG ma-
chine, are placed at certain spots on the body. Then, the electrical activity of the
heart is measured and interpreted. Continuous recording of the ECG in ambula-
tory subjects over many hours are called long-term ECG. This is a standard way
for observing transient aspects of cardiac electrical activity [66].

MIT-BIH Arrhythmia Database [67] has been widely used for ECG classifica-
tion which was the main work in this project. This database is publicly available
on PhysioNet website [68], [69]. It contains 48 half-hour excerpts of two-channel
ambulatory ECG recordings, which are related to 47 people (two records are from
the same person). One channel is obtained from a modified limb lead II (MLII),
that is when the electrodes are placed on the chest. The other channel is usually
V1 and sometimes V2, V4 or V5. These spots can be seen in Figure 2.1 [70].

These excerpts were selected to include examples of uncommon but clinically
important arrhythmias that would not be well represented in a small random
samples. The digitization rate is 360 samples per second per channel. There are
approximately 110,000 beats and each beat is assigned to a specific annotation by
cardiologists [67]. Figure 2.2 shows 10 seconds from a recording of the MIT-BIH
Arrhythmia Database [67].

The beat annotations that has been used in this database are shown in Ta-
ble 2.1. In this project, all beats are grouped into 5 classes inspired by AAMI
EC57 categories. Because, according to the ANSI/AAMI/ISO EC57:1998/(R)2008
(American National Standard on testing and reporting performance results of car-
diac rhythm and ST-segment measurement algorithms) [71], only these five classes
are sufficient for arrhythmia detection, which can be seen as accurate classification
of heartbeat classes. These classes are also depicted in Table 2.1.

19

“output” — 2023/3/31 — 12:05 — page 20 — #32

20 Related Work

Figure 2.1: Different positions for electrodes [70].

Figure 2.2: 10 seconds from a recording of the MIT-BIH Arrhythmia
Database and the corresponding beat annotations [67].

Here, we briefly describe the structure of a heartbeat. The normal rhythm of
the heart is called sinus rhythm. There exist 3 distinct waves (named with different
labels) on ECG that are representatives of depolarization and repolarization of the
atria and ventricles. The first wave is P wave representing atrial depolarisation.
After the first wave there exists a short flat period allowing the atria enough time
to pump all the blood into the ventricles. Then, it is followed by a complex of 3
waves known as the QRS complex. The largest one, R wave, represents ventricular
depolarization. In other words, this wave denotes the electrical stimulus passing
through the main portion of the ventricular walls. It is clearly the biggest wave
existing in a normal heartbeat signal. The reason is that the wall of the ventricles
is very thick and more voltage is required. The last wave in a whole cycle is T wave
illustrating the ventricular repolarization. All these different waves in a heartbeat
signal are shown in Figure 2.3 [76].

“output” — 2023/3/31 — 12:05 — page 21 — #33

Related Work 21

Beat annotation Description Class in this project

N Normal

L Left bundle branch block

R Right bundle branch block N (class 0)

e Atrial escape

j Nodal escape

A Atrial premature

a Aberrant atrial premature
S (class 1)

J Nodal premature

S Supra-ventricular premature

V Premature ventricular contraction
V (class 2)

E Ventricular escape

F Fusion of ventricular and normal F (class 3)

/ Paced

f Fusion of paced and normal Q (class 4)

Q Unclassifiable

Table 2.1: Beat annotation in the database and beat classes in this
project.

“output” — 2023/3/31 — 12:05 — page 22 — #34

22 Related Work

Figure 2.3: Different parts of a heartbeat signal [77].

2.2 Related Work

There exist several recent works applying SNNs for use cases that require ECG
as input data. Y. Feng et al. in [78] have built an SNN, using the ANN to SNN
conversion approach, to classify ECG data into four classes, mainly to detect atrial
fibrillation (AF). They have used 2017 PhysioNet/CinC Challenge [79] data set.
Also, they have tested multiple activation functions in ANN and their experiments
show that the accuracy of SNN converted from the ANN with ReLU activation
functions has the best overall accuracy result, which is 84.41%.

In [80], F. Corradi et al. have proposed a method for encoding and compressing
the ECG signals into spike trains. Then, they have designed a recurrent SNN for
heart beat classification to distinguish 17 types of cardiac patterns. Moreover,
they have implemented the network on a mixed-signal analog/digital Very Large
Scale Integration (VLSI) neuromorphic processor.

Another similar work has been done by K. Buettner et al. [81]. They have used
SNN-Toolbox framework to convert their designed CNN for heartbeat classification
into its SNN counterpart. Moreover, they have implemented this SNN on Loihi and
provided the latency, power, and energy efficiency measurements and compared
them with those of an architecturally identical ANN implemented on Intel Core
i7 CPU, Intel Neural Compute Stick 2, and Google Coral Edge TPU devices.

“output” — 2023/3/31 — 12:05 — page 23 — #35

Related Work 23

2.3 ECG Classification Algorithm Based on STDP and R-
STDP Neural Networks

Another project that we based our work on, was Amirshahi and Hashemi’s [82].
Although we could not produce a final result because of an error occurred during
training step using Brian2 package for the implementation, the whole effort gave
us a valuable insight into the methods used for implementing SNN for ECG clas-
sification problem. In this section we discuss about this work and the important
ideas behind it.

The goal of this paper is to continuously monitor the ECG signal in real-
time, on the wearable device itself and to classify them. Wearable devices have
limited computational and energy resources. On the other hand, neural network
algorithms are able to extract the features from data and are more resilient to
variations among different ECG waveforms [83]- in the classical features of ECG
signals, there can be remarkable variations among different people and under dif-
ferent conditions -, thus, they result in high accuracy for arrhythmia detection.
However, these neural networks usually require large power and high computa-
tional resources. To address this issue (the conflict between high accuracy and low
power resources when using ANNs), the paper uses an SNN.

The overall view of the proposed solution can be seen in Figure 2.6. The input
of the network is a heartbeat. Here, a heartbeat is considered as a segment of the
ECG signal starting from 0.25 seconds before an R peak and ending at 0.45 seconds
after that R peak. Then, each heartbeat is split into 7 overlapping windows. Each
of these windows contains 64 samples. These points are actually the inputs of the
first layer which will then be encoded into spike signals. As we explained in the
introduction section, this means that the information is encoded in the timing of
the spikes and not in their amplitude. Also, the Leaky Integrate-and-Fire (LIF)
neurons has been used in this SNN. If we associate the weight wij to synapse ij
that connects pre-synaptic neuron i and post-synaptic neuron j, and if we call
the membrane potential of neuron j as uj , the LIF neuron operates based on the
following differential equation:

τ
d

dt
uj(t) = −(uj(t)− urest) + α

∑
i

si(t)wij (2.1)

The sum iteration is over all neurons whose outputs are connected to neuron j.
Also, si(t) is one if neuron i has produced a spike at time t and zero otherwise.
Here we can say that when wij is larger, it is more probable that the spike of
neuron i causes a spike in neuron j. Moreover, the first term represents the role of
leakage current that causes membrane potential uj to go toward the rest potential
urest with time constant τ . The constant parameter α regulates the strength of the
second term (related to spikes) compared to the first term (the leakage current)
in changing the membrane potential.

Now, we explain each layer in more detail and discuss the results.

“output” — 2023/3/31 — 12:05 — page 24 — #36

24 Related Work

Figure 2.4: Overall view of the proposed solution [82].

“output” — 2023/3/31 — 12:05 — page 25 — #37

Related Work 25

Encoder

As we mentioned earlier, the input of the network is the samples of 7 windows.
Let X(q)

ecg be the the portion of the heartbeat signal Xecg which falls in window
q ∈ [1, 7]. Therefore, |X(q)

ecg| = 64 (because each window has 64 samples). For
every sample i ∈ [1, 64] from every window, there exist two encoder cells. If the
sample is positive, the first encoder cell produces the spikes and if the sample is
negative, the second one does it. Spikes are generated randomly based on the
Poisson process and the spike firing rate of this random Poisson process is set
proportional to X(q)

ecg[i]. In total, there are 64 × 7 × 2 = 896 encoder cells in the
spike encoding layer. Also, for each window there are 64 × 2 = 128 synapses
carrying and transferring the generated spikes to the next layer. As shown in
Figure 2.3, there exist 2× 7 = 14 windows in the next layer since the synapses are
split in two groups: The positive encoder cells are connected to the synapses in
the odd windows, and the negative encoder cells are connected to the synapses in
the even windows.

Gaussian Layer

In this layer, every window q ∈ [1, 2× 7] is processed separately. Input synapse i
in window q is connected to one neuron and its synaptic weight g(q)i changes the
spike firing rate by a factor of that weight. Let R(q)

in,i and R
(q)
out,i be the rate of

spikes on the input and on the outputs of the neuron in window q, respectively.
Then, we can write:

R
(q)
out,i = g

(q)
i ×R

(q)
in,i (2.2)

To reduce the effect of the heartbeat peak that may appear on the side of a win-
dow (in addition to the middle of another neighboring window, due to the overlap
between windows), g(q)i is set to a Gaussian kernel:

g
(q)
i = β(q) × 1

σ
√
2π

× e−
1
2 (

i−µ
σ)2 (2.3)

To put this Gaussian kernel at the center of each window µ is set to µ = 1
2 |X

(q)
ecg|.

Also, in the paper, σ is chosen such that the effect of a side peak is reduced but
not completely neglected. β(q) is a trainable parameter being different for each q.
It should be trained in such a way that makes the average firing rates of different
windows to be similar. Let R(q)

out be the average number of spikes fired by the
neurons in window q in this layer. β(q) is initialized to 1 and then the update rule
for that in training step is as the following:

∆β(q) = α× (1− R
(q)
out

Rtarget
) (2.4)

“output” — 2023/3/31 — 12:05 — page 26 — #38

26 Related Work

STDP Layer

STDP is a phenomenon found in live neurons by Bi and Poo [46] and has been
a source of inspire for learning event-based networks. STDP learning is an unsu-
pervised learning algorithm based on dependencies between times of pre-synaptic
and post-synaptic spikes [84]. Here, the synaptic weight is also called plasticity.
Assume that w(q)

ij is the synaptic weight in window q for synapse ij, where i and
j denote the pre-synaptic and post-synaptic neurons, respectively. These weights
are trained as the following. The synaptic weight increases if the spike time of the
post-synaptic neuron (shown as tpost) is after (during a specific time window) the
spike time of the pre-synaptic neuron (shown as tpre). This is called long-term
potentiation (LTP). Similarly, a decrease in the synaptic weight happens if the
post-synaptic spike occurs before the pre-synaptic spike. This is called long-term
depression (LTD). This learning rule is shown in Figure 2.4. We can see that, the
smaller the time difference ∆t = tpost − tpre is, the larger the amount of change in
the synaptic weight would be (∆w = wnew − wold). The equation for this STDP
learning rule is:

∆w =

{
a+ × e(−

|∆t|
τ) ∆t > 0

a− × e(−
|∆t|
τ) ∆t < 0

(2.5)

Where a+ and a− are learning rates which are positive and negative constant val-
ues, respectively, and τ is the time constant. However, in Amirshahi and Hashemi
paper, they have modified this learning rule with a reasonable intuition to alleviate
some problems of the above-mentioned rule.

Figure 2.5: Learning rule for the synaptic weights update in STDP
layer

Inhibitory Layer

In the previous layer, all neurons might extract the similar patterns of spikes. To
avoid this and to capture different spike patterns, inhibitory neurons are added.
In the inhibitory Layer there exists exactly one inhibitory neuron for every neuron

“output” — 2023/3/31 — 12:05 — page 27 — #39

Related Work 27

in the STDP layer. When a neuron j in the STDP layer fires, its corresponding
inhibitory neuron j fires as well and prevents all the other neurons j′ ̸= j in the
same window from firing in the STDP layer. As can be seen in Figure 2.6 there are
negative backward synaptic weights w′(q)

jj′ that decrease the membrane potentials
of neurons j′ ̸= j in STDP layer when carrying spikes coming from neuron j in
STDP layer. The learning rule that works in this scenario is as the following:

∆w′ =

{
b− |∆t| ≤ λ

b+ |∆t| > λ
(2.6)

Note that b− and b+ are negative and positive constant values, respectively. This
means that if any neuron j′ (which is in the same window q as neuron j), spikes
around the same time as neuron j, the weight w′(q)

jj′ would decrease (would become
more negative). Adding this inhibitory layer might cause a problem: when there
is not much difference between all generated patterns, this inhibition plays a sig-
nificant role and decreases the number of spikes and therefore weaken the power
of STDP training. In Amirshahi and Hashemi’s paper [82], a modified version of
the previous update rule has been introduced. We do not intend to discuss it here,
but it can be checked for more details. It is also worth mentioning that inhibitory
neurons only exist during the training step, and they would be eliminated during
the test step.

Reward-modulated STDP (R-STDP) Layer

This layer acts as the classifier. Each neuron in this layer corresponds to one class
and the one firing more frequently (the winner neuron), determines the predicted
heart-beat class. Unlike STDP layer that would be trained according to a learning
rule without providing any true labels (unsupervised learning approach), R-STDP
layer would be trained according to supervised learning procedure. During train-
ing, if the winner neuron k predicts correctly, a reward is applied to all its synaptic
weights ψ(q)

jk . It can be seen in Figure 2.6 that j represents all the pre-synaptic
neurons from all windows q that are connected to the winner neuron k. Similarly,
if the prediction is incorrect, a punishment signal is applied. The learning equation
used here, is as follows:

∆ψ =

{
a+r × ψ(ψmax − ψ) tpost > tpre

a−r × ψ(ψmax − ψ) tpost ≤ tpre
(2.7)

∆ψ =

{
a−p × ψ(ψmax − ψ) tpost > tpre

a+p × ψ(ψmax − ψ) tpost ≤ tpre
(2.8)

When the prediction is correct, the first equation is used where a+r and a−r are
learning rates in this reward situation. Similarly, when the prediction is incorrect,
the second equation is used where a+p and a−p are learning rates in this punishment
situation. There are two cases in each situation: tpost > tpre and tpost ≤ tpre. This
is because this layer also has the STDP characteristics. The term ψ(ψmax − ψ) is
used to prevent the value of weight ψ go far beyond ψ = 0 or ψ = ψmax.

“output” — 2023/3/31 — 12:05 — page 28 — #40

28 Related Work

Paper Model Accuracy

Amirshahi et al. SNN 97.9%

Hu et al. MLP 94.8%

Crippa et al. KLT, GMM 98.9%

Kachuee et al. CNN 93.4%

Kiranyaz et al. FFT, CNN 98.6%

Saadatnejad et al. Wavelet, RNN 99.2%

Ince et al. Wavelet, MLP 97.6%

Kolagasioglu et al. Wavelet, SNN 95.5%

Lee et al. Wavelet 97.2%

Table 2.2: Results of some other similar works done for heart-beat
classification [82].

Training and Results

As we mentioned before, STDP has the unsupervised learning nature but R-STDP
is of supervised learning nature. Thus, the layers should be trained consecutively:
First, the Gaussian layer would be trained. Then, the STDP and inhibitory layers
are trained at the same time. At the end R-STDP layer should be trained. After
training the whole network, the trained weights should be stored to be used for
the test stage.

Finally, a result summary of some similar works has been provided in the paper
that we have added it here in Table 2.2. It would be a solid base for providing a
comparison with our own results, later.

“output” — 2023/3/31 — 12:05 — page 29 — #41

Chapter 3
ECG Classification Using Spiking Neural

Networks

In this section, we explain the main work we have done in this thesis. As we
mentioned in the first section, there are mostly two points of view when it comes
to the SNN implementation: 1) in direct method, the neural network is originally
designed based on dynamicism paradigm, to capture temporal dimension of infor-
mation (e.g. spikes and spikes timing). An example of using this method is ECG
Classification by Amirshahi and Hashemi [82] that was described in the previous
section, 2) in indirect method, a (non-spiking) neural network is trained, and then
we store the learned parameters, and convert it to an SNN, test it on our data
and tune the required parameters. In the conversion step, we need to take care of
some adjustments to have better classification results. In this thesis, we used the
indirect method.

The main goals of this project are to investigate if it is possible to build
an SNN for ECG classification while not sacrificing the accuracy, and to explore
several actions we can take to improve the final results.

3.1 Overview

Most existing works on signal classification that are based on machine learning
methods, use time samples or frequency components of the signal. In this project
we have used time-frequency joint distribution to capture time-varying frequency
components. This has been inspired by A. Das et al. paper [89]. That paper is
based on a two-phase approach to real-time heartbeat classification: 1. Derive
the time-frequency joint distribution of each heart-beat, convert it into sparse
distributed signatures, use them as inputs of a multi-layer perceptron (MLP), and
train that network for classification. 2. Use the trained network to classify live
ECG heart-beats. In this work, we have used a similar approach. However, for
exploiting features of time-frequency joint distribution of a heart-beat, we design
and use a CNN instead of generating sparse distributed signatures. Also, after
training our whole network, we convert the CNN to SNN, which is then used for
testing of heart-beat classification. Figure 3.1 outlines our proposed approach in
this thesis.

29

“output” — 2023/3/31 — 12:05 — page 30 — #42

30 ECG Classification Using Spiking Neural Networks

Figure 3.1: An overview of the approach of this project.

“output” — 2023/3/31 — 12:05 — page 31 — #43

ECG Classification Using Spiking Neural Networks 31

3.2 Preparing the Data

3.2.1 Heart-beat Segmentation

As the first step, heart-beats are segmented. We have done this by using the
location of peaks in the ECG signal. A heartbeat is considered as a segment of
the ECG signal starting from 0.25 seconds before an R peak and ending at 0.45
seconds after that peak. This is equivalent to acquiring 90 samples before and 162
samples after the peak sample, since the sampling frequency of the signal is 360 Hz
(360 × 0.45 = 162, 360 × 0.25 = 90). Thus, after this step we have all segmented
heart-beats and their labels that were introduced in Table 2.1.

3.2.2 Balancing Data

In this step, we first check if our data is balanced, and, if not, how to balance it.
By data balancing, we mean all class labels are fairly represented in the dataset.
This is important for the assessment of our classification result. Consider we have
an extremely imbalanced data set, for instance, 90% of its samples belong to class
1, and the remained samples (10% of the whole data set) belong to all other
classes. In this scenario, if the classifier simply predicts class 1 for all the input
samples, the overall classification accuracy will be 90% which might seem pretty
good at the first glance. However, the per-class accuracy is 0% for all classes
except the first one which is 100%. Therefore, making the data set relatively
balanced is of great importance. Table 3.1 shows the number of samples and the
contribution percentage of each class. There exist 109452 heart-beat samples in
total. According to the table, the data set is highly imbalanced. We investigate two
ways for making our data more balanced and describe these methods as follows.

1. Down-sampling

As can be seen in Table 3.1, Class 0 has far more data samples than four other
classes. Thus, in the first method, we tried to decrease this huge gap by taking a
simple action. The average number of samples in Class 1 to 4, is 4714, thus, we
randomly select 4714 out of 90594 samples for Class 0. Therefore, data imbalance
decreases. The problem of this method is that the number of data samples is not
enough. We would see that our neural network could not be trained well and the
accuracy result is not satisfying at all.

2. Combination of down-sampling and up-sampling

In the second method, we tried to alleviate the problem of the previous one (in-
sufficiency of the data samples for training). Therefore, we used up-sampling for
Class 1 to 4, in addition to using down-sampling for Class 0. We aimed for around
23000 samples for each class. Therefore, we randomly selected 23000 out of 90594
samples in Class 0. Then, we replicated the samples in other classes as much as
there would be around 23000 samples in each class. It is worth mentioning that
this step should be done separately in training and test set. It means that, test-
train splitting should be done before the replication step, so that we would not

“output” — 2023/3/31 — 12:05 — page 32 — #44

32 ECG Classification Using Spiking Neural Networks

Class 0 Class 1 Class 2 Class 3 Class 4 Average number
of samples in
Class 1, 2, 3, 4

90594 2781 7235 802 8040 4714

(82.77%) (2.54%) (6.61%) (0.73%) (7.35%)

Table 3.1: The number of samples in each class.

have any exact same sample in both training and test sets. Thus, we could have
more realistic assessment of our model when we test it. More details are depicted
in Figure 3.2. We can see that we used 70% of our data for training the network.
Also, we have 8 copies of each sample in Class 1, 3 copies of each sample in Class
2, 25 copies of each sample in Class 3 and 3 copies of each sample in Class 4.

Figure 3.2: More details of balancing data. The upper group (in
green) includes the training samples and the lower one (in red)
contains the test samples.

3.2.3 Short-Time Fourier Transform

ECG signals have transient nature and are considered as non-stationary signals.
Time-frequency joint distributions, such as short-time Fourier transform (STFT),
can be used to capture time varying frequency components of these transient
signals. In other words, by using STFT, we can obtain frequency content of local
sections of a time signal. The short-time Fourier transform of a discrete-time signal

“output” — 2023/3/31 — 12:05 — page 33 — #45

ECG Classification Using Spiking Neural Networks 33

x(t) is derived as the following [89]:

X(t, ω) =

∞∑
τ=−∞

h(t− τ)x(τ)e−jωτ (3.1)

Here, h(t) is a time window dividing the signal into shorter segments of equal
length. Then, the Fourier transform can be calculated for each segment. Signal
X(t, ω) is a two-variable function (time and frequency) containing two components,
real and imaginary. Therefore, each component can be shown in a 3-D diagram.

We know that the narrower a function is in one domain (time or frequency) the
wider it will be in the other domain. Therefore, the length of the window function
h(t) is related to the time–frequency resolution. This means that a wider window
results in better frequency resolution but worse time resolution, and similarly, a
narrower window leads to better time resolution but worse frequency resolution.
This could help us experimenting with some parameters required for STFT and
deciding about their values. Another parameter, besides the window length, is the
length of the overlap between successive segments of input signal, generated by
h(t). This overlap helps to minimize the data loss in the window boundary. In
this project, we used the Gaussian window with length 30 and overlap length 20.
By choosing these parameters the STFT of the heart-beats would be quite similar
to A. Das et al. work [89] with which we wanted to compare our final results.
Two heart-beats from two different classes and the real component of their STFT
are shown in Figure 3.3. The dimension of our obtained STFT, for both real and
imaginary components, is 120× 23 (along frequency and time axis, respectively).

3.2.4 Two-channel input to neural network

The last step of preparing our data is to put two 2-D data (real and imaginary
part) together to have a structure of a two-channel input. This is a pretty typical
data structure to feed into CNN networks.

3.3 Building our CNN Model

Before designing and testing our CNN, we consider using a random forest for our
heart-beat classification problem using our final prepared data (STFT version of
the heart-beats) to have an idea about the expected accuracy. A random forest
with 100 trees resulted in an overall accuracy of 88.71. As we mentioned before,
our final goal is to build an SNN for heart-beat classification and we want to use
the conversion approach, thus, we cannot work with random forest and need a
neural network instead. Now, we should start building our neural network. We
mentioned in the previous section that we explored two methods for balancing
data. Here we discuss the results of both methods.

3.3.1 Using down-sampling method for balancing data

In this case, we had 23572 samples in total. We experimented some different
CNNs, but none of their results was satisfying. In fact, the overall test accuracy

“output” — 2023/3/31 — 12:05 — page 34 — #46

34 ECG Classification Using Spiking Neural Networks

a) A heart-beat belonging to Class 0

b) A heart-beat belonging to Class 2

Figure 3.3: Two heart-beats belonging to two different classes and
the real part of their STFT. The first one is a normal beat.
The second one, which is a ventricular escape beat, has some
distinguishing characteristics such as wide QRS complex and
abnormal morphology of QRS complex.

“output” — 2023/3/31 — 12:05 — page 35 — #47

ECG Classification Using Spiking Neural Networks 35

was around 60-65% using a network with around 115000 trainable parameters.
Therefore, we realized that the number of samples might not be sufficient and
the network was not able to learn enough. Therefore, we decided to increase the
sample size and use the second method to make data balanced while having more
samples.

3.3.2 Using joint down-sampling and up-sampling method for balancing
data

Here, we had 111123 samples in total as we showed in Figure 3.2. After several
experiments, our final CNN architecture, that we used before converting to the
SNN version, is depicted in Figure 3.4. We observe that the input is of size
120 × 23 × 2 that corresponds to what we described before. Then, we have two
convolutional layers using 64 kernels for each. They are followed by the average
pooling, another convolutional and a few fully connected layers ending with a 5-
neuron output layer to solve our 5-class classification problem. This network has
105,279 trainable parameters. It is worth mentioning that we used Keras API of
TensorFlow to build our network. Moreover, we used NengoDL to train our CNN,
convert it to SNN and finally test it. We could obtain around 95% accuracy after
10 epochs using the CNN showed in Figure 3.4. This CNN could even reach 98%
accuracy using more epochs. At this point, we had an acceptable result, thus, we
saved the trained parameters using save_params function of nengo_dl.Simulator
and then moved on to the next step which is CNN to SNN conversion.

Figure 3.4: Structure of our NN with 105,279 trainable parameters.

“output” — 2023/3/31 — 12:05 — page 36 — #48

36 ECG Classification Using Spiking Neural Networks

3.4 CNN to SNN Conversion

We converted our CNN to its spiking version by using nengo_dl.Converter. This
would perform the conversion by replacing the neurons activation functions from
tf.nn.relu in CNN version to nengo.SpikingRectifiedLinear() to have the SNN
version. Here, we had to carefully configure some tuning parameters including:
scale firing rate, number of steps and synapse value. We would discuss
the effect of each of them, but before that note that the initial accuracy result of
our SNN without tuning the parameters (scale firing rate = 1, synapse = None,
number of steps = 10) was around 20%, which is a very low accuracy. Therefore,
we had to experiment with different values to realize their effect and think about
the explanation and intuition behind that behaviour. Finally, we could find an
acceptable set of parameters that improves the performance of the spiking model.
Here, we explain these parameters and their roles. We leave the explanation of
the parameters’ optimization in the next section.

3.4.1 Scale Firing Rate

We can think of a typical ANN as an SNN that spikes continuously and non-stop
[90]. In other words, the firing rate is infinite in a typical ANN. We could expect
that the SNN performance improves by increasing the neurons spike firing rates,
because then, the neurons can update their output more frequently. We could
use the scale_firing_rates parameter in NengoDL converter when we intend
to convert our CNN to SNN for testing the performance of the spiking model,
without retraining our network [90]. The larger scale parameters means more
spikes to process, which is a negative factor for energy efficiency. The infinite scale
firing rate leads to the behavior of ANNs, which we criticize for their inefficiency.
The effect of the scale firing rate on our spiking model accuracy (while other
parameters are fixed) is shown in Table 3.2. We observe that the overall trend
when raising the firing rate is an increase in accuracy.

Figure 3.6 and 3.7 show the effect of firing rate on the neural activity and
the output prediction (performance). Two samples of each class has been selected
and feed into our SNN, once with scale_firing_rates = 50 depicted in Figure
3.6, and once with scale_firing_rates = 30 depicted in Figure 3.7 while other
parameters are the same. We observe that the first network performs better and
with more confidence, which means that it reaches a more stable prediction sooner.

3.4.2 Synapse time constant

Now, that we have a spiking model, which means the model functions based on
discrete events called spikes, we can move on to the next step. In fact, the neurons’
outputs have spike nature and each spike is present for a very short time and
disappears quickly. Therefore, we could expect that the output predictions would
be very noisy without applying any low-pass filter. Also, even if correct output
neuron spikes pretty quickly, there is no guarantee that it will spike on exactly
the last time-step, which is the time we check the result [90]. To mitigate the
problem of these rapid changes and to help smoothing the spikes, we should use

“output” — 2023/3/31 — 12:05 — page 37 — #49

ECG Classification Using Spiking Neural Networks 37

scale_firing_rate 1 10 50 75 100

overall accuracy 20.51% 19.64% 25.09% 22.7% 30.11%

Table 3.2: The effect of the scale firing rate on overall accuracy,
with parameters: n_steps=10, synapse=None.

synaptic filters provided in Nengo. The default synapse used in Nengo is a low-
pass filter, and the value we specify for the synapse parameter, is the low-pass
filter time constant enforced on every neuron output. We can imagine that this
would act as computing a running average of each neuron’s activity over a short
window of time, instead of just looking at the spikes on the last timestep [90]. As
a result, it is of high importance to mention that using large time constant (the
synapse parameter value) leads to the longer time required for the output neurons
to settle. The intuition behind this fact is that the filters with long duration result
in inferior output responsiveness to rapid changes in the input. Thus, we need to
average over longer time window of neuronal activities. This means an increase in
the latency and less responsiveness. In fact, there exists latency versus accuracy
trade-off. After trying several values for synapse time constant, we decided to use
the value synapse=0.01.

3.4.3 Number of Steps

It is worth reminding that spiking neural networks and Nengo models always run
over time. Therefore, we should enter time into our data. We do that by running
our spiking model (used for testing step) for several time steps (instead of a single
time) to be able to collect the spike data over time [90]. In more details, we add a
fourth dimension to our data used for putting the replications of the actual data.
This means that a single input sample was of size 120×23×2 and now it would be
120×23×2×n_steps. Note that, our data set size is relatively huge and it is very
important to consider that the replication action, or in other words extending our
data over time, can be very time-consuming and also can cause memory shortage
(depending on the number of steps and the way we implement it). Thus, we are
not able to set the number of steps as large as we desire. Particularly, it would
affect the capacity required and delay of the model, and this would question the
underlying goal of the project. Therefore, again there exists a trade-off between
latency and memory capacity versus accuracy [90].

Finally, we can see the overall accuracy and per-class accuracy results of SNN
of Figure 3.2, for different number of steps in Table 3.3.

3.5 Optimizing the Parameters Using Regularization

Here, we have our last chance to experiment a little more with the architecture
of our previously fixed neural network to see if we could achieve better results.

“output” — 2023/3/31 — 12:05 — page 38 — #50

38 ECG Classification Using Spiking Neural Networks

n_steps=40 n_steps=60 n_steps=120

overall accuracy 53.90 86.7 90.78

accuracy for Class 0 57.48 87.14 93.84

accuracy for Class 1 56.58 81.15 80.79

accuracy for Class 2 77.53 93.36 96.51

accuracy for Class 3 20.17 73.30 81.87

accuracy for Class 4 54.73 96.53 99.31

Table 3.3: Results after balancing data and using SNN of Figure
3.4 for different number of steps and scale_firing_rate=100,
synapse=0.01.

overall accuracy 92.39

accuracy for Class 0 95.97

accuracy for Class 1 88.07

accuracy for Class 2 96.45

accuracy for Class 3 80.53

accuracy for Class 4 99.14

Table 3.4: Results after balancing data and using SNN of Fig-
ure 3.4 with parameters: scale_firing_rate=50, synapse=0.01,
n_steps=60.

“output” — 2023/3/31 — 12:05 — page 39 — #51

ECG Classification Using Spiking Neural Networks 39

Figure 3.5: Our final NN structure with 114,453 trainable parame-
ters.

This leads us to a slightly different architecture showed in Figure 3.5 (this was
tested with and without pooling layers). Then, we explore the space of other
hyper-parameters, such as number of epoches, training batch size and the choice
of optimizer. Also, we aim to optimize the firing rate for each convolutional layer
instead of fixing their values from the beginning. We could accomplish this by
adding loss functions that compute the mean squared error (MSE) between the
neurons output of each of the convolutional layers and a specific firing rate we de-
fine for each layer. This approach is inspired by L2 regularization and we similarly
should define a value for regularization hyperparameters (also called as regular-
ization rate or λ parameter in L2 regularization) [90]. To implement this method,
we should again train our CNN, but this time with using regularization term for
different layers. Table 3.5 shows the results for our exploration in the hyper-
parameters space. The setting of the colored row leads to the best SNN overall
accuracy result.

“output” — 2023/3/31 — 12:05 — page 40 — #52

40 ECG Classification Using Spiking Neural Networks

ar
ch

it
ec

tu
re

su
m

m
ar

y
#

ep
oc

h
s

op
ti

m
iz

er
tr

ai
n
in

g
b
at

ch
si

ze
re

gu
la

ri
za

ti
on

hy
p
er

p
ar

am
et

er
s

C
N

N
te

st
ac

cu
ra

cy
S
N

N
ac

cu
ra

cy

no
po

ol
in

g
12

0
R

M
Sp

ro
p(

0.
00

1)
10

5
0.

00
1

al
lc

on
v

la
ye

rs
86

.6
8%

po
ol

in
g

no
re

gu
la

ri
zi

ng
30

0
R

M
Sp

ro
p(

0.
00

1)
10

5
0.

00
1

al
lc

on
v

la
ye

rs
86

.8
2%

po
ol

in
g

no
re

gu
la

ri
zi

ng
30

0
A

da
m

(0
.0

01
)

19
5

0.
00

1
74

.8
2%

po
ol

in
g

no
re

gu
la

ri
zi

ng
30

0
R

M
Sp

ro
p(

0.
00

1)
19

5
1e

-4
,1

e-
5

21
%

po
ol

in
g

no
re

gu
la

ri
zi

ng
30

0
R

M
Sp

ro
p(

0.
00

1)
19

5
0.

00
1

al
lc

on
v

la
ye

rs
21

%

no
po

ol
in

g
30

0
R

M
Sp

ro
p(

0.
00

1)
10

5
0.

00
1

58
%

no
po

ol
in

g
40

0
R

M
Sp

ro
p(

0.
00

1)
10

5
0.

00
1

on
ly

la
st

co
nv

96
%

94
.2

3%

no
po

ol
in

g
40

0
R

M
Sp

ro
p(

0.
00

1)
10

5
0.

00
1

on
ly

fir
st

co
nv

94
%

86
.6

3%

no
po

ol
in

g
40

0
R

M
Sp

ro
p(

0.
00

1)
10

5
0.

1
on

ly
la

st
co

nv
95

.3
9%

49
%

Table 3.5: Parameters space exploration using neural network of
Figure 3.5, synapse=0.01, n_steps=30.

“output” — 2023/3/31 — 12:05 — page 41 — #53

ECG Classification Using Spiking Neural Networks 41

True Class: 0, Predicted Class: 0, Test sample number: 11

True Class: 0, Predicted Class: 2, Test sample number: 7

True Class: 1, Predicted Class: 1, Test sample number: 3

True Class: 1, Predicted Class: 1, Test sample number: 6

Figure 3.6: Neural activities of the first convolutional layer and the
output predictions. scale firing rate = 50, number of steps =
60, synapse = 0.01.

“output” — 2023/3/31 — 12:05 — page 42 — #54

42 ECG Classification Using Spiking Neural Networks

True Class: 2, Predicted Class: 2, Test sample number: 1

True Class: 2, Predicted Class: 2, Test sample number: 2

True Class: 3, Predicted Class: 3, Test sample number: 46

True Class: 3, Predicted Class: 3, Test sample number: 28

Figure 3.6: Neural activities of the first convolutional layer and the
output predictions. scale firing rate = 50, number of steps =
60, synapse = 0.01.

“output” — 2023/3/31 — 12:05 — page 43 — #55

ECG Classification Using Spiking Neural Networks 43

True Class: 4, Predicted Class: 4, Test sample number: 4

True Class: 4, Predicted Class: 2, Test sample number: 5

Figure 3.6: Neural activities of the first convolutional layer and the
output predictions. scale firing rate = 50, number of steps =
60, synapse = 0.01.

“output” — 2023/3/31 — 12:05 — page 44 — #56

44 ECG Classification Using Spiking Neural Networks

True Class: 0, Predicted Class: 0, Test sample number: 11

True Class: 0, Predicted Class: 2, Test sample number: 7

True Class: 1, Predicted Class: 1, Test sample number: 3

True Class: 1, Predicted Class: 2, Test sample number: 6

Figure 3.7: Neural activities of the first convolutional layer and the
output predictions. scale firing rate = 20, number of steps =
60, synapse = 0.01.

“output” — 2023/3/31 — 12:05 — page 45 — #57

ECG Classification Using Spiking Neural Networks 45

True Class: 2, Predicted Class: 2, Test sample number: 1

True Class: 2, Predicted Class: 1, Test sample number: 2

True Class: 3, Predicted Class: 3, Test sample number: 46

True Class: 3, Predicted Class: 0, Test sample number: 28

Figure 3.7: Neural activities of the first convolutional layer and the
output predictions. scale firing rate = 20, number of steps =
60, synapse = 0.01.

“output” — 2023/3/31 — 12:05 — page 46 — #58

46 ECG Classification Using Spiking Neural Networks

True Class: 4, Predicted Class: 4, Test sample number: 4

True Class: 4, Predicted Class: 0, Test sample number: 5

Figure 3.7: Neural activities of the first convolutional layer and the
output predictions. scale firing rate = 20, number of steps =
60, synapse = 0.01.

“output” — 2023/3/31 — 12:05 — page 47 — #59

Chapter 4
Conclusions and Future Work

4.1 Conclusions

A. Das et al. in [89] state that their approach has resulted in an overall accuracy
of 95.7% for heart-beat classification, which shows an improvement compared to
the preceding studies. This result has been obtained using an ANN. However,
we could reach an overall test accuracy of 94.23% while using an SNN. Moreover,
we observe that our result is comparable to the ones in Table 2.2 (in Chapter
2) considering that we use SNN instead of conventional ANNs. Another point is
that the previous proposed models usually do not perform well on heart-beats of
Class 1 and Class 3. This can also be noticed in Table 3.4. But, these results still
outperform several previous studies. For instance, one of the most recent papers
using SNN for ECG classification [91] obtains around 68% and 66% accuracy
for Class 1 and 3, respectively. Overall, our SNN model performs well in ECG
classification compared to the state of the art work.

4.2 Ideas for Future Work

4.2.1 Using Direct Method for Building SNN

As we mentioned in the first chapter, another method for generating and using
an SNN, besides ANN to SNN conversion, is building the SNN from scratch and
training it directly without involving any ANN. This would have several advantages
over the indirect method that includes training a non-spiking neural network. It
is expected to alleviate the problem of high memory requirements and the slow
speed of training if an efficient spiking learning algorithm could be developed. A
novel example of such algorithm is proposed in Bojian et al. paper [92]. The
authors of this paper have presented a recently developed alternative to BPTT,
Forward-Propagation Through Time (FPTT) and its application for training the
SNNs.

4.2.2 Implementation on a Neuromorphic Hardware

It is valuable to implement and evaluate our SNN on a neuromorphic hardware.
Then, we would be able to measure and evaluate the energy consumption and

47

“output” — 2023/3/31 — 12:05 — page 48 — #60

48 Conclusions and Future Work

latency and compare the results with what is achievable with ANNs. This could
be performed using NengoLoihi package and Intel’s Loihi chip, or a simulated Loihi
if the Loihi hardware is not available.

As we discussed earlier, it is beneficial to develop methods and algorithms
that are capable of decreasing the energy consumption while not compromising the
accuracy, so that by applying them, wearable devices performance and efficiency
could be improved. Also, the existence of these methods and the possibility of
their implementation on an actual hardware, can encourage the manufacturers to
produce more health wearable devices. This makes such devices more accessible
in the market and they might be used more often to raise the quality of life by
notifying users about any abnormality in their heart signals and helping to decrease
the probability of occurrence of dangerous and life-threatening situations.

“output” — 2023/3/31 — 12:05 — page 49 — #61

References

[1] D. Sopic, Amin Aminifar, Amir Aminifar, D. Atienza, "Real-Time Event-
Driven Classification Technique for Early Detection and Prevention of My-
ocardial Infarction on Wearable Systems." IEEE Transactions on Biomedical
Circuits and Systems, July 2018.

[2] F. Forooghifar, A. Aminifar, L. Cammoun, I. Wisniewski, C. Ciumas, P.
Ryvlin, D. Atienza, "A Self-Aware Epilepsy Monitoring System for Real-Time
Epileptic Seizure Detection." Mobile Networks and Applications, 2019.

[3] K. Roy, A. Jaiswal, P. Panda, "Towards spike-based machine intelligence with
neuromorphic computing." Nature, 575, 607–617, 2019.

[4] S. J. Russell, P. Norvig, 2010, Artificial Intelligence: A Modern Approach.
3rd ed. Prentice Hall.

[5] "What is Machine Learning?", IBM, Available online:
https://www.ibm.com/topics/machine-learning

[6] O. Chapelle, B. Schölkopf, A. Zien, 2006, Semi-Supervised Learning. The MIT
Press.

[7] R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduction. 2nd ed.
The MIT Press.

[8] "What are Neural Networks?", IBM, Available online:
https://www.ibm.com/uk-en/cloud/learn/neural-networks

[9] "The Concept of Artificial Neurons (Perceptrons) in Neural Networks",
Available online: https://towardsdatascience.com/the-concept-of-artificial-
neurons-perceptrons-in-neural-networks-fab22249cbfc

[10] S. Syed-Abdul, X. Zhu, L. Fernandez-Luque, Digital Health: Mobile and
Wearable Devices for Participatory Health Applications. Elsevier.

[11] E. De Giovanni, F. Forooghifar, G. Surrel, T. Teijeiro, M. Peon, A. Aminifar,
D. A. Alonso, "Intelligent Edge Biomedical Sensors in the Internet of Things
(IoT) Era." Emerging Computing: From Devices to Systems, pp 407–433,
2022.

49

“output” — 2023/3/31 — 12:05 — page 50 — #62

50 References

[12] D. Sopic, E. De Giovanni, A. Aminifar, D. Atienza, "Hierarchical Cardiac-
Rhythm Classification Based on Electrocardiogram Morphology." 2017 Com-
puting in Cardiology (CinC).

[13] E. De Giovanni, A. Aminifar, A. Luca, S. Yazdani, Jean-Marc Vesin, D.
Atienza, "A Patient-Specific Methodology for Prediction of Paroxysmal Atrial
Fibrillation Onset." 2017 Computing in Cardiology (CinC).

[14] E. De Giovanni, A. A. ValdÉs, M. PeÓn-QuirÓs, A. Aminifar, D. Atienza,
"Real-Time Personalized Atrial Fibrillation Prediction on Multi-Core Wear-
able Sensors." IEEE Transactions on Emerging Topics in Computing, Vol-
ume: 9, Issue: 4.

[15] G. Surrel, T. Teijeiro, A. Aminifar, D. Atienza, M. Chevrier, "Event-Triggered
Sensing for High-Quality and Low-Power Cardiovascular Monitoring Sys-
tems." IEEE Design and Test, Volume: 37, Issue: 5.

[16] Eduardo José da S. Luz, W. R. Schwartz, G. Cámara-Chávez, D. Menotti,
"ECG-based heartbeat classification for arrhythmia detection: a survey."
Computer Methods and Programs in Biomedicine, Volume 127, April 2016,
Elsevier.

[17] A. Craik, Y. He, Jose L Contreras-Vidal, "Deep learning for electroencephalo-
gram (EEG) classification tasks: a review." Journal of Neural Engineering,
16, April 2019.

[18] P. R. Chai, R. K. Rosen, E. W. Boyer, "Ingestible Biosensors for Real-Time
Medical Adherence Monitoring: MyTMed." Proceedings of the Annual Hawaii
International Conference on System Sciences, 2016.

[19] G Surrel, A Aminifar, F Rincon, S Murali, D Atienza, "Online Obstructive
Sleep Apnea Detection on Medical Wearable Sensors." IEEE Transactions on
Biomedical Circuits and Systems (TBioCAS), 2018.

[20] D. Sopic, A. Aminifar, D. Atienza, "e-Glass: A Wearable System for Real-
Time Detection of Epileptic Seizures." IEEE International Symposium on
Circuits and Systems (ISCAS), 2018.

[21] F. Forooghifar, A. Aminifar, D. Atienza, "Resource-Aware Distributed
Epilepsy Monitoring Using Self-Awareness From Edge to Cloud." IEEE
Transactions on Biomedical Circuits and Systems, Volume: 13, Issue: 6, 2019.

[22] F. Forooghifar, A. Aminifar, D. Atienza, "Self-Aware Wearable Systems in
Epileptic Seizure Detection." 21st Euromicro Conference on Digital System
Design (DSD), 2018.

[23] S. Baghersalimi, T. Teijeiro, D. Atienza, A. Aminifar, "Personalized Real-
Time Federated Learning for Epileptic Seizure Detection." IEEE Journal of
Biomedical and Health Informatics, Volume: 26, Issue: 2, 2022.

[24] D. Pascual, A. Amirshahi, A. Aminifar, D. Atienza, P. Ryvlin, R. Wat-
tenhofer, "EpilepsyGAN: Synthetic Epileptic Brain Activities with Privacy
Preservation." IEEE Transactions on Biomedical Engineering (TBME), 2020.

“output” — 2023/3/31 — 12:05 — page 51 — #63

References 51

[25] R. Zanetti, A. Aminifar, D. Atienza, "Robust Epileptic Seizure Detection
on Wearable Systems with Reduced False-Alarm Rate." 42nd annual inter-
national conference of the IEEE engineering in medicine and biology society
(EMBC), 2020.

[26] V. Montesinos, F. Dell’Agnola, A. Arza, A. Aminifar, D. Atienza, "Multi-
Modal Acute Stress Recognition Using Off-the-Shelf Wearable Devices." 41st
Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), 2019.

[27] , "Real-Time EEG-Based Cognitive Workload Monitoring on Wearable De-
vices." IEEE Transactions on Biomedical Engineering, 2021.

[28] D. Sopic, Amin Aminifar, Amir Aminifar, D. Atienza, "Real-Time Event-
Driven Classification Technique for Early Detection and Prevention of My-
ocardial Infarction on Wearable Systems." IEEE transactions on biomedical
circuits and systems, 2018, Volume 12, Issue 5.

[29] P. Dayan, L. F. Abbot, Theoretical Neuroscience: Computational and Math-
ematical Modeling of Neural Systems. The MIT Press.

[30] Z. Huang, H. G Khaled, M. Kirschmann, S. M. H. Gobes, R. H. R. Hahnloser,
2018, "Excitatory and inhibitory synapse reorganization immediately after
critical sensory experience in a vocal learner." eLife 7:e37571.

[31] S. Sharma, G. Kumar, D. K. Mishra, D. Mohapatra, "Design and Imple-
mentation of a Variable Gain Amplifier for Biomedical Signal Acquisition."
International Journal of Advanced Research in Computer Science and Soft-
ware Engineering, Volume 2, Issue 2, February 2012.

[32] Available online: https://www.nagwa.com/en/explainers/494102341945/

[33] "The differences between Artificial and Biological Neural Networks", writ-
ten by R. Nagyfi, Available online: https://towardsdatascience.com/the-
differences-between-artificial-and-biological-neural-networks-a8b46db828b7

[34] "Best GPU for AI/ML, deep learning, data science." Available online:
https://bizon-tech.com/blog/

[35] D. S. Jeong, "Tutorial: Neuromorphic spiking neural networks for temporal
learning." Journal of Applied Physics, 124, 152002, 2018.

[36] E. M. Izhikevich, "Simple model of spiking neurons." IEEE Transactions on
Neural Networks, Volume: 14, Issue: 6, November 2003.

[37] R. FitzHugh, "Impulses and Physiological States in Theoretical Models of
Nerve Membrane." Biophysical Journal, Volume 1, Issue 6, July 1961.

[38] J. Nagumo, S. Arimoto, S. Yoshizawa, "An Active Pulse Transmission Line
Simulating Nerve Axon." Proceedings of the IRE, Volume: 50, Issue: 10,
October 1962.

[39] D. E. Rumelhart, G. E. Hinton, R. J. Williams, "Learning representations by
back-propagating errors." Nature, 1986.

“output” — 2023/3/31 — 12:05 — page 52 — #64

52 References

[40] J. K. Eshraghian, M. Ward, E. Neftci, X. Wang, G. Lenz, G. Dwivedi, M.
Bennamoun, D. S. Jeong, W. D. Lu, "Training Spiking Neural Networks Using
Lessons From Deep Learning." arXiv:2109.12894.

[41] M. Pfeiffer, T. Pfeil, "Deep Learning With Spiking Neurons: Opportunities
and Challenges." Frontiers in Neuroscience, Volume: 12, 2018.

[42] S. Lu, A. Sengupta, "Exploring the Connection Between Binary and Spiking
Neural Networks." Frontiers in Neuroscience, June 2020.

[43] S. M. Bohte, J. N. Kok, H. La Poutré, "Error-backpropagation in temporally
encoded networks of spiking neurons." Neurocomputing, Volume: 48, Issues:
1–4, 2002.

[44] C. Lee, S. S. Sarwar, P. Panda, G. Srinivasan, K. Roy, "Enabling Spike-Based
Backpropagation for Training Deep Neural Network Architectures." Frontiers
in Neuroscience, Volume: 14, 2020.

[45] G. Bellec, D. Salaj, A. Subramoney, R. Legenstein, W. Maass, "Long
short-term memory and learning-to-learn in networks of spiking neurons."
arXiv:1803.09574, 2018.

[46] G. Q. Bi, M. M. Poo, "Synaptic modifications in cultured hippocampal neu-
rons: dependence on spike timing, synaptic strength, and postsynaptic cell
type." Journal of Neuroscience, 1998.

[47] S. Song, K. D. Miller, L. F. Abbott, "Competitive Hebbian learning through
spike-timing-dependent synaptic plasticity." Nature Neuroscience, 2000.

[48] W. Zhang, B. Gao, J. Tang, P. Yao, S. Yu, M. F. Chang, H. J. Yoo, H. Qian,
H. Wu, "Neuro-inspired computing chips." Nature Electronics , 3, 371–382,
2020.

[49] C. D. Schuman, S. R. Kulkarni, M. Parsa, J. P. Mitchell, P. Date, B. Kay,
"Opportunities for neuromorphic computing algorithms and applications."
Nature Computational Science, Volume 2, 10–19, 2022.

[50] B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chandrasekaran,
J. M. Bussat, R. Alvarez-Icaza, J. V. Arthur, P. A. Merolla, K. Boahen,
"Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neu-
ral Simulations." Proceedings of the IEEE, Volume: 102, Issue: 5, May 2014.

[51] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F.
Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S.
K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R.
Manohar, D. S. Modha, "A million spiking-neuron integrated circuit with a
scalable communication network and interface." Science, Volume: 345, Issue
6197, August 2014.

[52] S. Moradi, N. Qiao, F. Stefanini, G. Indiveri, "A Scalable Multicore Ar-
chitecture With Heterogeneous Memory Structures for Dynamic Neuromor-
phic Asynchronous Processors (DYNAPs)." IEEE Transactions on Biomedi-
cal Circuits and Systems, Volume: 12, Issue: 1, February 2018.

“output” — 2023/3/31 — 12:05 — page 53 — #65

References 53

[53] E. Painkras, L. A. Plana, J. Garside, S. Temple, F. Galluppi, C. Patterson,
D. R. Lester, A. D. Brown, "SpiNNaker: A 1-W 18-Core System-on-Chip for
Massively-Parallel Neural Network Simulation." IEEE Journal of Solid-State
Circuits, Volume: 48, Issue: 8, August 2013.

[54] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday, G.
Dimou, P. Joshi, N. Imam, S. Jain, Y. Liao, C.-K. Lin, A. Lines, R. Liu, D.
Mathaikutty, S. McCoy, A. Paul, J. Tse, G. Venkataramanan, Y.-H. Weng, A.
Wild, Y. Yang, H. Wang, "Loihi: A Neuromorphic Manycore Processor with
On-Chip Learning." IEEE Micro, Volume: 38, Issue: 1, January-February
2018.

[55] "Nengo", Available online: https://www.nengo.ai/

[56] T. Bekolay, J. Bergstra, E. Hunsberger, T. DeWolf, T. C. Stewart, D. Ras-
mussen, X. Choo, A. R. Voelker, C. Eliasmith, "Nengo: a Python tool for
building large-scale functional brain models." Frontiers in Neuroinformatics,
Volume 7, January 2014.

[57] "Brian2", Available online: https://brian2.readthedocs.io/en/stable/

[58] "snnTorch", Available online: https://snntorch.readthedocs.io/en/latest/

[59] H. Hazan, D. J. Saunders, H. Khan, D. Patel, D. T. Sanghavi, H. T. Siegel-
mann, R. Kozma, "BindsNET: A Machine Learning-Oriented Spiking Neural
Networks Library in Python." Frontiers in Neuroinformatics, Volume 12, De-
cember 2018.

[60] M. Mozafari, M Ganjtabesh, A. Nowzari-Dalini, T. Masquelier, "SpykeTorch:
Efficient Simulation of Convolutional Spiking Neural Networks With at Most
One Spike per Neuron." Frontiers in Neuroscience, Section Neuromorphic
Engineering, Volume 13, July 2019.

[61] J. Vitay, H. Ü. Dinkelbach, F. H. Hamker, "ANNarchy: a code generation
approach to neural simulations on parallel hardware." Frontiers in Neuroin-
formatics, Volume 9, July 2015.

[62] C. Eliasmith, C. H. Anderson, Neural Engineering: Computation, Represen-
tation, and Dynamics in Neurobiological Systems. The MIT Press, 2004.

[63] C. Eliasmith, T. C. Stewart, X. Choo, T. Bekolay, T. DeWolf, Y. Tang, D.
Rasmussen, "A Large-Scale Model of the Functioning Brain." Science, Volume
338, Issue 6111, November 2012.

[64] Feng-Xuan Choo, "Spaun 2.0: Extending the World’s
Largest Functional Brain Model." UWSpace. Available online:
http://hdl.handle.net/10012/13308

[65] M. Stimberg, R. Brette, D. FM Goodman, "Brian 2, an intuitive and efficient
neural simulator." eLife, 2019.

[66] "Electrocardiogram", Johns Hopkins Medicine, Available on-
line: https://www.hopkinsmedicine.org/health/treatment-tests-and-
therapies/electrocardiogram

“output” — 2023/3/31 — 12:05 — page 54 — #66

54 References

[67] G. B. Moody, R. G. Mark, "The impact of the MIT-BIH Arrhythmia
Database", IEEE Engineering in Medicine and Biology Magazine. Volume
20, Issue 3, May-June 2001.

[68] A. Goldberger, L. Amaral, L. Glass, J. Hausdorff, P. C. Ivanov, R. Mark,
J. E. Mietus, G. B. Moody, C. K. Peng, and H. E. Stanley, "PhysioBank,
PhysioToolkit, and PhysioNet: Components of a new research resource for
complex physiologic signals." Circulation [Online]. 101 (23), pp. e215–e220.
(2000).

[69] Available online: https://physionet.org/content/mitdb/1.0.0/

[70] S. Jayaraman, V. Sangareddi, R. Periyasamy, J. Joseph, "Modified limb lead
ECG system effects on electrocardiographic wave amplitudes and frontal plane
axis in sinus rhythm subjects." The Anatolian Journal of Cardiology, January
2017.

[71] A. for the Advancement of Medical Instrumentation et al., “Testing and re-
porting performance results of cardiac rhythm and st segment measurement
algorithms. american national standards institute, inc.(ansi),” Inc.(ANSI),
ANSI/AAMI/ISO EC57, 2008.

[72] "Electroencephalogram (EEG)", Johns Hopkins Medicine, Available
online: https://www.hopkinsmedicine.org/health/treatment-tests-and-
therapies/electroencephalogram-eeg

[73] A. Shoeb, "Application of Machine Learning to Epileptic Seizure Onset De-
tection and Treatment." PhD Thesis, Massachusetts Institute of Technology,
September 2009.

[74] Available online: https://physionet.org/content/chbmit/1.0.0/

[75] X. Hou, Y. Liu, O. Sourina, W. Mueller-Wittig, "CogniMeter: EEG-based
Emotion, Mental Workload and Stress Visual Monitoring." 2015 International
Conference on Cyberworlds (CW).

[76] "Cardiology Teaching Package: A Beginners Guide to Nor-
mal Heart Function, Sinus Rhythm and Common Cardiac Ar-
rhythmias." The University of Nottingham. Available online:
https://www.nottingham.ac.uk/nursing/practice/resources/cardiology/
function/sinus_rythm.php

[77] P. Madona, R. I. Basti, M. M. Zain, "PQRST wave detection on ECG signals."
Gaceta Sanitaria, Volume 35, 2021.

[78] Y. Feng, S. Geng, J. Chu, Z. Fu, S. Hong, "Building and training a deep
spiking neural network for ECG classification." Elsevier: Biomedical Signal
Processing and Control, Volume 77, August 2022.

[79] G. D. Clifford, C. Liu, B. Moody, H. L. Li-wei, I. Silva, Q. Li, A. E. Johnson,
R. G. Mark, "AF Classification from a Short Single Lead ECG Recording: the
PhysioNet/Computing in Cardiology Challenge 2017." Computing in Cardi-
ology (CinC), IEEE, 2017.

“output” — 2023/3/31 — 12:05 — page 55 — #67

References 55

[80] F. Corradi, S. Pande, J. Stuijt, N. Qiao, S. Schaafsma, G. Indiveri, F.
Catthoor, "ECG-based Heartbeat Classification in Neuromorphic Hardware."
2019 International Joint Conference on Neural Networks (IJCNN), IEEE.

[81] K. Buettner, A. D. George, "Heartbeat Classification with Spiking Neural
Networks on the Loihi Neuromorphic Processor." 2021 IEEE Computer So-
ciety Annual Symposium on VLSI (ISVLSI).

[82] A. Amirshahi, M. Hashemi, "ECG Classification Algorithm Based on STDP
and R-STDP Neural Networks for Real-Time Monitoring on Ultra Low-Power
Personal Wearable Devices." IEEE Transactions on Biomedical Circuits and
Systems, Volume 13, Issue 6, December 2019.

[83] S. Kiranyaz, T. Ince, M. Gabbouj, "Real-Time Patient-Specific ECG Clas-
sification by 1-D Convolutional Neural Networks." IEEE Transactions on
Biomedical Engineering, Volume: 63, Issue: 3, March 2016.

[84] T. Iakymchuk, A. Rosado-Muñoz, J. F. Guerrero-Martínez, M. Bataller-
Mompeán, J. V. Francés-Víllora , "Simplified spiking neural network architec-
ture and STDP learning algorithm applied to image classification." EURASIP
Journal on Image and Video Processing, 2015.

[85] F. Tian, J. Yang, S. Zhao, M. Sawan, "A New Neuromorphic Computing Ap-
proach for Epileptic Seizure Prediction." 2021 IEEE International Symposium
on Circuits and Systems (ISCAS).

[86] Y. Luo, Q. Fu, J. Xie, Y. Qin, G. Wu, J. Liu, F. Jiang, Y. Cao, X. Ding,
"EEG-Based Emotion Classification Using Spiking Neural Networks." IEEE
Access, Volume: 8, March 2020.

[87] S. Koelstra, C. Muehl, M. Soleymani, J.-S. Lee, A. Yazdani, T. Ebrahimi, T.
Pun, A. Nijholt, I. Patras, "DEAP: A Database for Emotion Analysis using
Physiological Signals." EEE Transactions on Affective Computing, Volume:
3, 2012.

[88] https://bcmi.sjtu.edu.cn/home/seed/

[89] A. Das, F. Catthoor, S. Schaafsma, "Heartbeat Classification in Wear-
ables Using Multi-layer Perceptron and Time-Frequency Joint Distribution
of ECG." 2018 IEEE/ACM International Conference on Connected Health:
Applications, Systems and Engineering Technologies (CHASE).

[90] "Converting a Keras model to a spiking neural network." Available online:
https://www.nengo.ai/nengo-dl/examples/keras-to-snn.html

[91] Y. Xing, L. Zhang, Z. Hou, X. Li, Y. Shi, Y. Yuan, F. Zhang, S. Liang, Z. Li,
L. Yan, "Accurate ECG Classification Based on Spiking Neural Network and
Attentional Mechanism for Real-Time Implementation on Personal Portable
Devices." Electronics, 2022.

[92] B. Yin, F. Corradi, S. M. Bohte, "Accurate online training of dynamical
spiking neural networks through Forward Propagation Through Time."

