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1 Introduction

The objective of this thesis is to better understand and clarify certain as-
pects of the paper Multivariate conditional versions of Spearman’s rho and
related measures of tail dependence [4]. The motivation of the alternative
multivariate conditional versions of Spearman’s rho proposed in the paper
is that the commonly used, particularly in financial engineering, Pearson’s
correlation coefficient often is an unsuitable dependence measure as it mea-
sures linear dependence, is invariant to change of location and scale in the
univariate margins, and is very sensitive to outliers. Schmidt has studied and
obtained results in several publications on alternative correlation coefficients
to Pearson’s using copulas, among others Dependence of Stock Returns in
Bull and Bear Markets [12] where it is applied to equity market data, as well
as Multivariate Extensions of Spearman’s Rho and Related Statistics [13]
and Measuring large co-movements in financial markets [14] also co-written
with Rafael Schmidt.

We study and discuss copula theory and the work of Sklar. We refer to and
clarify certain statements and formulas in the Schmidt and Schmidt paper,
and also explore how the conditional version of Spearman’s rho could be
applied to other parts of the distribution beyond the tail. Finally, we look
at empirical versions of copulas and Spearman’s rho, using a simple example
with data from a bivariate normal distribution. Through this process, we
gained a deeper understanding of copula theory and its use in measuring
dependence. The results also support the usefulness of the theory and suggest
further study using different types of copulas and other data sets.

2 Theoretical background

2.1 Copulas

The copula theory, introduced by Sklar in 1959, is an useful method for
modelling joint distributions without making assumptions about the specific
form of the distribution function. It allows for the decomposition of a d-
dimensional joint distribution into d marginal distributions and a copula
function. Copulas describe the connection between two distributions. When
considering multiple sets of observations, a copula does not describe the
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relationship between the observations themselves, but rather the relationship
between the order of the observations. The copula can be handy when we
search for a multivariate model whose univariate distributions are rather well
understood, but whose joint distribution is only partly understood [3]. For
example, consider two random variables, X and Y, with the following joint
distribution function:

F (X, Y ) = P (X ≤ x, Y ≤ y) (1)

Each of these variables will also have a marginal distribution function, FX(x) =
P (X ≤ x) and FY (y) = P (Y ≤ y). The joint distribution function can also
be described as a function of the individual distribution functions:

F (X, Y ) = C(FX(x), FY (y)). (2)

where the function C(u, v) is termed the copula [3]. Or, in the more broad
sense with FXi

(x) = P (X ≤ x) for xi ∈ R and i = 1, ..., d and the assumption
that Fi(xi) are continuous functions, then according to Sklar’s theorem, there
exists a unique copula C : [0, 1]d → [0, 1] such that

F (x) = C(F1(x1), ..., Fd(xd)) for all xi ∈ Rd. (3)

That is, the copula is a mapping of d marginal distribution functions to their
joint distribution function.

The theory makes use of the fact that the distribution function follows a
uniform distribution from 0 to 1. That is F (X) = U , where U ∈ U(0, 1).
This is, as mentioned, convenient as further assumptions on the selection of
distribution function are not needed.

2.1.1 Sklar’s theorem

Sklar proved the following results for copulas. The following theorem and
definitions are a translation from the original article by Sklar from 1959 [11]:

Theorem 2.1. Let Gd be a d-dimensional distribution function, having marginal
distributions F1, F2, . . . , Fd. Let Rk be the set of values of Fk, k = 1, 2, . . . , d.
Then, there exists a unique function Hd, defined on the Cartesian product
R1 × R2 × . . .Rd, such that

Gd (x1, . . . , xd) = Hd (F1 (x1) , . . . , Fd (xd)) . (4)
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Definition 2.1. We will call copula (having d dimensions) any continuous
and non-decreasing function Cd, defined on [0, 1]d, satisfying the following
conditions:

(i) Cd(0, . . . , 0) = 0 , and

(ii) Cd(1, . . . , 1, α, 1, . . . , 1) = α

(iii) Cd is d-non-decreasing, i.e., for each hyperrectangle

B =
d∏

i=1

[xi, yi] ⊆ [0, 1]d the C-volume of B is non-negative:∫
B

dC(u) =
∑

z∈
∏d

i=1{xi,yi}

(−1)N(z)C(z) ≥ 0, where N(z) = # {k : zk = xk} .

(5)

Theorem 2.2. The function Hd of Theorem 1 can be extended (in general,
non-uniquely) to a copula Cd. Being an extension of Hd, the copula Cd

satisfies the condition

Gd (x1, . . . , xd) = Hd (F1 (x1) , . . . , Fd (xd)) . (6)

Theorem 2.3. Let one-dimensional distribution functions F1, . . . , Fd be given.
Let Cd be any d-dimensional copula. Then, the function

Gd (x1, . . . , xd) = Cd (F1 (x1) , . . . , Fd (xd)) (7)

is an d-dimensional distribution function having marginals F1, F2, . . . , Fd.

2.1.2 Frechet–Hoeffding bounds

Copulas satisfy a version of the Frechet–Hoeffding bounds inequality. Both
the upper and the lower Frechet–Hoeffding bounds are copulas. Specifically;
every copula C is bounded as follows where

W (u1, . . . , ud) ≤ C (u1, . . . , ud) ≤ M (u1, . . . , ud) , (8)

the function W is called the lower Fréchet-Hoeffding bound and is defined as

W (u1, . . . , ud) = max

{
1− d+

d∑
i=1

ui, 0

}
, (9)
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and the function M is called the upper Fréchet-Hoeffding bound and is de-
fined as

M (u1, . . . , ud) = min {u1, . . . , ud} . (10)

Proof for W ≤ C:
C(x) is a distribution function of, (U1, . . . , Un) random variables with U(0, 1)
marginals, thus one-dimensional distribution functions (F1 (x1) . . . Fd (xd)),
follows uniform distributions. That said, for any u = (u1, . . . un) ∈ [0, 1]d

C(u) = P (U1 ≤ u1, . . . , Ud ≤ ud) = P (A) = 1− P (Ac)

where A =
d⋂

i=1

(Ai) =
d⋂

i=1

(Ui ≤ ui) and Ac is the complement of A

and as the complement of an intercept is the union of the complements we get

Ac =
d⋃

i=1

Ac
i =

d⋃
i=1

(Ui > ui) also recall P

(
d⋃

i=1

Ac
i

)
≤

d∑
i=1

P (Ac
i) hence

1− P (Ac) ≥ 1−
d∑

i=1

P (Ui > ui)

= 1−
d∑

i=1

(1− P (Ui ≤ ui) = 1−
d∑

i=1

(1− ui) = 1− d+
d∑

i=1

ui.

(11)
Proof for C ≤ M :
From the definition, a copula is non-decreasing, denoting the smallest u thus
min {u1, . . . , ud} = us. Then

C(u1, ..., ud) ≤ C(u1, ..., ud−1, 1) ≤ C(1, ..., us, ..., 1) = us (12)

and as us is the smallest u

us = min {u1, . . . , ud} = min {u1, . . . , ud−1, 1} = min {. . . , 1, . . . , us, 1} .
(13)

In two dimensions, i.e. the bivariate case, the Fréchet-Hoeffding Theorem
states

max{u+ v − 1, 0} ≤ C(u, v) ≤ min{u, v}. (14)

The lower bound, max
{
1− d+

∑d
i=1 ui, 0

}
, can in two dimensions be writ-

ten as max{1−2+F (Y1)+F (Y2), 0}, where Y1 and Y2 are random variables.
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The lower bound becomes zero when the sum of the marginal probabilities
is less or equal to one. For example, if A is an event and its complemen-
tary event is denoted by Ac, then Y1 and Y2 can be defined as Y1 = 1A

and Y2 = 1Ac , where 1 is the indicator function. We have the relationship
P (A) = 1 − P (Ac), thus as F (Y1) = P (A) and F (Y2) = P (Ac), we have
1− 2 + F (Y1) + F (Y2) = 1− 2 + P (A) + P (Ac) = 0.

An example of the upper bound for two random variables X1 and X2, is
when X1 is a monotonic transformation of X2. If X1 = aX2 + b, where
a and b are constants. Thus X1 and X2 have a full dependency and the
minimum copula is a lower bound. Thus if F (X1) = 0.3 and F (X2) = 0.4,
F (X1, X2) = 0.3 = min{F (X1), F (X2)} = M{F (X1), F (X2)}.

Note that the upper bound is the Comonotonicity copula, which is a special
copula characterising perfect positive dependence, i.e., it represents the cop-
ula of X1, ..., Xd is FX1 = ... = FXd

with probability one, if there exists an
almost surely strictly increasing functional relationship between Xi and Xj

(i ̸= j) [4].

2.1.3 Copulas

In modern theory, Sklar’s theorem is usually written as:

Theorem 2.4. Sklar’s Theorem [6]: Let F (x1, . . . , xd) be a multivariate
cumulative distribution function, with marginal distributions Fi (Xi) for i ∈
{1, . . . , d}. Then there exists a d-copula C such that for all x in Rd,

F (x1, . . . , xd) = C (F1 (x1) , . . . , Fd (xd)) (15)

If Fi (Xi) for i ∈ {1, . . . , d} are all continuous, then C is unique; other-
wise C is uniquely determined on [0, 1]d. Conversely if C is an d-copula and
F1, F2, ..., Fd are distribution functions, then the function F defined by (15)
is an d-dimensional distribution function with margins, F1, F2, ..., Fd.

Here is the idea behind the proof: Using the definition of the multivariate dis-
tribution function in conjunction with the monotonic increasing property of
distribution functions; for any multivariate random variable with continuous
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marginals and distribution F it holds that

F (x1, . . . , xd) = P (X1 ≤ x1, . . . , Xd ≤ xd)

following that the distribution function is non-decreasing

= P (F1 (X1) ≤ F1 (x1) , . . . , Fd (Xd) ≤ Fd (xd))

= P (U1 ≤ F1 (x1) , . . . , Ud ≤ Fd (xd))

= C (F1 (x1) , . . . , Fd (xd)) .
(16)

Definition 2.2. Let f : [a, b] → [c, d] be a non-decreasing function. Then
the quasi-inverse f (−1) of f is defined as follows:

1. if t ∈ Ran f then f (−1)(t) = x such that f(x) = t, that is

f
(
f (−1)(t)

)
= t.

2. if t /∈ Ran f then

f (−1)(t) = inf{x | f(x) > t} = sup{x | f(x) < t}

The range of f, Ran f , is the set of all values that f takes. Note that the
quasi-inverse of f will not necessarily be unique, as there might be multiple
choices of x in 1.

Remark. If f is strictly increasing, we have that f (−1) = f−1, meaning that
the regular inverse and the quasi-inverse of f coincide [7].

Let F be a d-dimensional distribution function and assume that its marginals
F1, F2, . . . , Fd are continuous. Then the copula C satisfying (15) is deter-
mined, for all u ∈ [0, 1]d, by

C(u) = F
(
F

(−1)
1 (u1) , F

(−1)
2 (u2) , . . . , F

(−1)
d (ud)

)
(17)

were F
(−1)
i is the quasi-inverse of Fi [7].

Despite Sklar’s result that a copula function always exists, it is not always
apparent to identify the copula function. Indeed, for many applications, the
problem is that the joint distribution is not always given but can be assumed

7



due to some stylised facts. For example, in financial problems, the relation-
ships between different asset returns are given, then we usually make the
assumption that the joint distribution follows a multivariate Gaussian or a
log-normal distribution for calculation simplicity, even if these assumptions
may not be accurate. To understand full multivariate outcomes, the mod-
elling problem consists of two steps: Identifying the marginal distributions
as well as defining the appropriate copula function describing the dependence
structure [9].

Copulas are normally divided into three categories: fundamental copulas rep-
resent a number of important special dependence structures, this category in-
clude the ones showed above M(u),W (u) as well as the independence copula
Π(u) :=

∏d
i=1 ui,u ∈ [0, 1]d; implicit copulas are extracted from well-known

multivariate distributions using Sklar’s Theorem, but do not necessarily pos-
sess simple closed form expressions; explicit copulas have simple closed-form
expressions and follow general mathematical constructions known to yield
copulas [8].

In this project, we will make use of the Gaussian copula, mentioned above,
which is an example of an implicit copula, defined as:

Definition 2.3. Gaussian copula
The copula CGauss

Σ of a d-dimensional standard normal distribution, with
linear correlation matrix Σ, is the distribution function of the random vector
(Φ(X1), ...,Φ(Xd)), where Φ is the univariate standard normal distribution
function and X is Nd(0,Σ)-distributed. Hence,

CGauss
Σ (u) = P (Φ(X1) ≤ u1, . . . ,Φ(Xd) ≤ ud)) = Φd

Σ

(
Φ−1 (u1) , . . . ,Φ

−1 (ud)
)

(18)
where Φd

Σ is the distribution function of X [3].

We will also make use of the Farlie-Morgenstern copula, also often denoted
as Farlie-Gumbel-Morgenstern copula, which is an example of an explicit
copula, defined as:

Definition 2.4. The Farlie-Gumbel-Morgenstern copula
For some parameter θ ∈ [−1, 1] and u, v ∈ [0, 1], the copula is defined as

Cθ(u, v) = uv + θuv(1− u)(1− v). (19)
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Definition 2.5. Farlie-Gumbel-Morgenstern d-copulas. The FGM family
has the following extension to a

(
2d − d− 1

)
-parameter family of d-copulas,

d ≥ 3:

C(u) = u1u2 · · ·ud

[
1 +

d∑
k=2

∑
1≤j1<···<jk≤d

θj1j2···jk ūj1ūj2 · · · ūjk

]
(20)

(where ū = 1− u ). Each copula in this family is absolutely continuous with
density

∂dC(u)

∂u1 · · · ∂ud

= 1 +
d∑

k=2

∑
1≤j1<···<jk≤d

θj1j2···jk (1− 2uj1) (1− 2uj2) · · · (1− 2ujk) .

(21)

Due to its simple analytical form, the Farlie-Morgenstern Copula has been
used in modelling, testing of association, and studying the efficiency of non-
parametric procedures. However, the Farlie-Morgenstern Copula can only
model relatively weak dependence [6].

2.2 Spearmans Rho - from 1904 paper to copula rep-
resentation

Spearman’s rho, denoted ρS, originally published by the psychologist C.
Spearman in 1904, is in the original form the Pearson correlation coefficient
applied to the ranks associated with a sample {(xi, yi)}ni=1. Let Ri = rank(xi)
and Si = rank(yi); then computing the sample (Pearson) correlation coeffi-
cient r for {(Ri, Si)}ni=1 yields

ρS =

∑n
i=1(Ri −R)(Si − S)√∑n

i=1(Ri −R)2 ·
∑n

i=1(Si − S)2
= (22)

= 1− 6
∑n

i=1(Ri − Si)
2

n(n2 − 1)
, (23)

where R =
∑n

i=1Ri/n = (n+ 1)/2 =
∑n

i=1 Si/n = S.
If X1 and X2 are random variables with respective distribution functions FX1

and FX2 , Spearmans rho is defined to be the Pearson correlation coefficient
of the random variables FX1(X1) and FX2(X2):
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Definition 2.6. For random variables X1 and X2 with marginal distributions
F1 and F2 Spearman’s rho is given by ρS (X1, X2) = ρ (F1 (X1) , F2 (X2)), i.e.,

ρS = corr[F1(X1), F2(X2)] =
cov (F1 (X1) , F2 (X2))√

var (F1 (X1))
√
var (F2 (X2))

. (24)

In other words, Spearman’s rho is simply the linear correlation of the probability-
transformed random variables, which for continuous random variables is the
linear correlation of their unique copula. Since the copula C is the joint distri-
bution function of the random variables Ui = Fi(Xi), i = 1, ..., d. Spearmans
rho can be defined in the sense of copulas as (recall for uniform [0, 1] distri-
bution E[U ] = 1

2
(1− 0), var[U ] = 1

12
(1− 0)) :

ρS =
cov (F1 (X1) , F2 (X2))√

var (F1 (X1))
√

var (F2 (X2))
=

cov (U1, U2)√
var (U1)

√
var (U2)

=
E [U1U2]− E[U1]E[U2]√

1
12

√
1
12

=

∫ 1

0

∫ 1

0
uvc(u, v)dudv −

(
1
2

)2√
1
12

√
1
12

=

∫ 1

0

∫ 1

0
uvdC(u, v)−

(
1
2

)2√
1
12

√
1
12

= 12

∫ 1

0

∫ 1

0

C(u, v)dudv − 3,

(25)

where c(u, v) is the joint density of U1, U2, thus c (u, v) =
∂2

∂u∂v
C (u, v).

Further, we’d like to generalise (25) to d dimensions. Schmid and Schmidt
[4] gives the following alternative representation, which is readily verified and
plays a central role in the forthcoming definitions of conditional versions of
Spearman’s rho

ρS2 =

∫ 1

0

∫ 1

0
C(u, v)dudv −

∫ 1

0

∫ 1

0
uvdudv∫ 1

0

∫ 1

0
min{u, v}dudv −

∫ 1

0

∫ 1

0
uvdudv

=

∫ 1

0

∫ 1

0
C(u, v)dudv −

∫ 1

0

∫ 1

0
Π(u, v)dudv∫ 1

0

∫ 1

0
M(u, v)dudv −

∫ 1

0

∫ 1

0
Π(u, v)dudv

.

(26)

This version of ρS2 can be interpreted as the normalised average distance
between the copula C and the independence copula Π(u, v) = uv. The
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numerator is derived as

E [U1U2]− E[U1]E[U2] =

∫ 1

0

∫ 1

0

uvc(u, v)dudv −
∫ 1

0

udu

∫ 1

0

vdv

=

∫ 1

0

∫ 1

0

uvc(u, v)dudv −
∫ 1

0

∫ 1

0

uvdudv

=

∫ 1

0

∫ 1

0

C(u, v)dudv −
∫ 1

0

∫ 1

0

Π(u, v)dudv.

(27)

Consider now the denominator∫
[0,1]2

M(u, v)dudv = 1/3 and

∫
[0,1]2

Π(u, v)dudv = 1/4 (28)

thus √
var[U1] var[U2] =

1

12
=

1

3
− 1

4
. (29)

This shows why (26) corresponds to (25).

Wolff [16] introduces the following straightforward generalisation of Spear-
man’s rho ρS2 to d dimensions;

ρSd
=

∫
[0,1]d

C(u)du−
∫
[0,1]d

Π(u)du∫
[0,1]d

M(u)du−
∫
[0,1]d

Π(u)du
=

d+ 1

2d − (d+ 1)

{
2d
∫
[0,1]d

C(u)du− 1

}
.

(30)

2.3 Comparison with an alternative representation of
Spearman’s rho

The representation of Spearman’s rho in (30) is not the only representation
that has been studied. In this section, we compare it with an alternative
version by Ruymgaart and van Zuijlen [15].

Ruymgaart and van Zuijlen [15] address the estimation of the alternative

11



measure, ρ̃Sd
:

ρ̃Sd
=

∫
[0,1]d

Π(u)dC(u)−
∫
[0,1]d

Π(u)du∫
[0,1]d

M(u)du−
∫
[0,1]d

Π(u)du

=
d+ 1

2d − (d+ 1)

{
2d
∫
[0,1]d

Π(u)dC(u)− 1

}
=

d+ 1

2d − (d+ 1)

{
2d
∫
[0,1]d

Π(u)c(u)d(u)− 1

}
.

(31)

It is said by Schmidt and Schmidt [4] that both generalisations ρd and ρ̃d
coincide with Spearman’s rho if d = 2. Here we show the general case when
d = 2, according to (25):

ρ̃S2 = 12

∫
[0,1]2

Π(u, v)dC(u, v)− 3

= 12

∫
[0,1]2

uvdC(u, v)− 3

= 12

∫
[0,1]2

C(u, v)dudv − 3 = ρS2 .

(32)

Further we look into a case with a specific copula. As an example, compare
ρSd

and ρ̃Sd
in the d = 2 case with the bivariate Farlie-Morgenstern copula

C(u, v; θ) = uv + θuv(1− u)(1− v), θ ∈ [−1, 1], with joint density function

cd (u1, . . . , ud;θ) =
∂d

∂u1 · · · ∂ud

C (u1, . . . , ud;θ)

= 1 +
d∑

k=2

∑
1≤j1<···<jk≤d

θj1···jk (1− 2uj1) · · · (1− 2ujk) .

(33)

Thus ρS2 and ρ̃S2 are denoted as;

ρS2 = 12

∫
[0,1]d

C(u, v)dudv − 3

= 12

∫
[0,1]d

uv + θuv(1− u)(1− v)dudv − 3

=
θ + 9

3
− 3 =

θ

3

(34)
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and

ρ̃S2 = 12

∫
[0,1]d

uv · c(u, v)dudv − 3

= 12

∫
[0,1]d

uv · (1 + θ(2u− 1)(2v − 1)) dudv − 3

=
θ + 9

3
− 3 =

θ

3
,

(35)

where we see that ρSd
corresponds with ρ̃Sd

in the d = 2 case for the Farlie-
Morgenstern copula.
Further, we take a look at the d = 3 case. By comparing the copula, it is
noted that it becomes a bit more to calculate

C2 (u1, u2;θ) =u1u2 (1 + θ12 (1− u1) (1− u2)) ,

C3 (u1, u2, u3;θ) =u1u2u3 (1 + θ12 (1− u1) (1− u2) + θ13 (1− u1) (1− u3)

+θ23 (1− u2) (1− u3) + θ123 (1− u1) (1− u2) (1− u3)) ,
(36)

and

c2 (u1, u2;θ) =1 + θ12 (1− 2u1) (1− 2u2) ,

c3 (u1, u2, u3;θ) = (1 + θ12 (1− 2u1) (1− 2u2) + θ13 (1− 2u1) (1− 2u3)

+θ23 (1− 2u2) (1− 2u3) + θ123 (1− 2u1) (1− 2u2) (1− 2u3)) .
(37)

Thus ρS3 and ρ̃S2 are denoted as;

ρS3 = 8

∫
[0,1]3

C(u1, u2, u3)du1du2du3 − 1

= 8

∫
[0,1]3

u1u2u3 (1 + θ12 (1− u1) (1− u2) + θ13 (1− u1) (1− u3)

+θ23 (1− u2) (1− u3) + θ123 (1− u1) (1− u2) (1− u3)) du1du2du3 − 1

=
1

9

(
θ12 + θ13 + θ23 +

θ123
3

)
(38)
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and

ρ̃S3 = 8

∫
[0,1]3

u1u2u3 · c(u1, u2, u3)du1du2du3 − 1

= 8

∫
[0,1]3

u1u2u3 (1 + θ12 (1− 2u1) (1− 2u2) + θ13 (1− 2u1) (1− 2u3)

+θ23 (1− 2u2) (1− 2u3) + θ123 (1− 2u1) (1− 2u2) (1− 2u3)) du1du2du3 − 1

=
1

9

(
θ12 + θ13 + θ23 −

θ123
3

)
,

(39)
where we see that, ρ̃Sd

̸= ρSd
, for d = 3. Thus we conclude that differences

occur in more dimensions where the dependence structure gets more complex.
The interested reader can look into more examples, to see if this accounts for
all copulas in higher than two dimensions, or if there exist cases where the
representations are equivalent also in higher dimensions. Also to be noted
is that the Farlie-Morgenstern copula in d = 2 only depends on the chosen
parameter θ. Thus the usefulness is rather limited but proves the point in
this case. Different copulas are focused on different aspects of distributions,
and there may be cases for simpler copulas where both generalisations of rho
correspond for higher dimensions than two. However, as mentioned above,
it is more likely that differences occur when the structure is more complex.

2.4 Conditional versions of Spearmans rho

In the interest of looking at the case of Spearmans rho for left tail events,
i.e., low probability events in the left part of the distribution, we want to
move towards conditional versions of Spearmans rho.
The following definition of the multivariate conditional version of Spearman’s
rho is motivated by (30):

ρSd
(g) :=

∫
[0,1]d

C(u)g(u)du−
∫
[0,1]d

Π(u)g(u)du∫
[0,1]d

M(u)g(u)du−
∫
[0,1]d

Π(u)g(u)du
(40)

for some measurable function g ≥ 0 such that the integrals exist.
The function of choice is g(u) = 1[0,p]d(u), 0 < p ≤ 1. Making the function
concentrated to the lower part of the copula C. The resulting d dimensional
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conditional version of Spearman’s rho for 0 < p ≤ 1 is defined by

ρSd
(p) :=

∫
[0,p]d

C(u)du−
∫
[0,p]d

Π(u)du∫
[0,p]d

M(u)du−
∫
[0,p]d

Π(u)du
=

∫
[0,p]d

C(u)du−
(

p2

2

)d
pd+1

d+1
−
(

p2

2

)d . (41)

Another interesting case can be to introduce more degrees of freedom by split-
ting into other parts to be able to highlight different parts of the distribution.
Thus we look at some other area, [p1, p2]

d, or several [0, p1]
d and [p2, p3]

d, by
g(u) = 1[p1,p2]d(u), 0 < p1 < p2 < 1, or g(u) = 1[0,p1]d(u) + 1[p2,p3]d(u),
0 < p1 < p2 < p3 < 1 giving

ρSd
(p) :=

∫
[p1,p2]d

C(u)du−
∫
[p1,p2]d

Π(u)du∫
[p1,p2]d

M(u)du−
∫
[p1,p2]d

Π(u)du
(42)

or

ρSd
(p) :=

∫
[0,p1]d

C(u)du+
∫
[p2,p3]d

C(u)du−
∫
[0,p1]d

Π(u)du−
∫
[p2,p3]d

Π(u)du∫
[0,p1]d

M(u)du+
∫
[p2,p3]d

M(u)du−
∫
[0,p1]d

Π(u)du−
∫
[p2,p3]d

Π(u)du
.

(43)
Denote the smallest u thus min {u1, . . . , ud} = us and M(u) and Π(u) are
given as ∫

[p1,p2]d
M(u)du =

∫
[p1,p2]d

min(u)du =∫ p2

p1

us(

∫ us

p1

1du1...dus−1)dus =∫ p2

p1

us(us − p1)
d−1dus =

(p2 − p1)
d(dp2 + p1)

d(d+ 1)

(44)

and ∫
[p1,p2]d

Π(u)du =

(
p22 − p21

2

)d

. (45)

This gives us the ability to give weights to selected parts of the copula and we
can study dependence in other parts than in the tail. For example, putting
the upper percentile to one, p2 = 1, yields the upper tail. It would for
example be interesting to further look into if the upper tail corresponds to
the lower tail plugged in with reversed data.
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2.5 Estimation under unknown marginal distributions

2.5.1 Empirical copula

Consider a random sample (Xj)j=1,...,n from a d-dimensional random vector
X with joint distribution function F and copula C. Assume that the univari-
ate marginal distribution functions FXi

of F are continuous but unknown.
The marginal distribution functions FXi

are estimated by their empirical
counterparts

F̂i,n(x) =
1

n

n∑
j=1

1{Xij≤x}, for i = 1, . . . , d and x ∈ R. (46)

Further, set Ûij,n := F̂i,n (Xij) for i = 1, . . . , d, j = 1, . . . , n, and Ûj,n =(
Û1j,n, . . . , Ûdj,n

)
. Note that

Ûij,n =
1

n
( rank of Xij in Xi1, . . . , Xin) . (47)

The estimation of the copula will therefore be based on ranks (and not on
the original observations). In other words, we consider order statistics. The
copula C is estimated by the empirical copula which is defined as the discrete
function Ĉn given by

Ĉn

(
i

n
,
j

n

)
=

number of pairs (x, y) in the sample with x ≤ x(i), y ≤ y(j)
n

where x(i) and y(j), 1 ≤ i, j ≤ n, denote order statistics from the sample.
I.e., the share of elements fulfilling where both x and y are below order i, j
respective. This can be written for d dimensions as

Ĉn(u) =
1

n

n∑
j=1

d∏
i=1

1{Ûij,n≤ui} for u = (u1, . . . , ud) ∈ [0, 1]d. (48)

The empirical copula, being a particular multivariate empirical distribution
function, often exhibits a large bias when the sample size is small. One way
to counteract this is to use the empirical beta copula. The estimator is given
by

Ĉβ
n (u) =

1

n

n∑
i=1

d∏
j=1

Fn,Rij
(uj) u ∈ [0, 1]d (49)
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where Fn,r represents a beta distribution function with parameters r and
n + 1 − r and where Rij represents the rank of Xij where X is the original
data set used to ”fit” the empirical copula.

2.5.2 Empirical rho

The empirical copula yields the following empirical version of Spearmans rho

ρ̂Sd,n :=

∫
[0,1]d

Ĉn(u)du−
∫
[0,1]d

Π(u)du∫
[0,1]d

M(u)du−
∫
[0,1]d

Π(u)du

=

1
n

∑n
j=1

∫
[0,1]d

∏d
i=1 1{Ûij,n≤ui}du−

(
1
2

)d
1

d+1
−
(
1
2

)d
=

1
n

∑n
j=1

∏d
i=1

(
1− Ûij,n

)
−
(
1
2

)d
1

d+1
−
(
1
2

)d ,

(50)

recall the approach for the conditional version of Spearmans rho, for g(u) =
1[0,p]d(u), 0 < p ≤ 1, given in (40). For the estimated copula this gives us

ρ̂Sd,n(g) :=

∫
[0,1]d

Ĉn(u)g(u)du−
∫
[0,1]d

Π(u)g(u)du∫
[0,1]d

M(u)g(u)du−
∫
[0,1]d

Π(u)g(u)du

=

1
n

∑n
j=1

∫
Ûj,n≤u

g(u)du−
∫
[0,1]d

Π(u)g(u)du∫
[0,1]d

M(u)g(u)du−
∫
[0,1]d

Π(u)g(u)du

(51)

given g as earlier g(u) = 1[0,p]d(u), 0 < p ≤ 1,

ρ̂S2,n(p) =

1
n

∑n
j=1

∫
Ûij,n≤ui

1[0,p]d(u)du−
(

p2

2

)d
pd+1

d+1
−
(

p2

2

)d
=

1
n

∑n
j=1

∏d
i=1

(
p− Ûij,n

)+
−
(

p2

2

)d
pd+1

d+1
−
(

p2

2

)d ,

(52)

where p is the chosen quantile and d the number of dimensions. Thus, for
two dimensions ρS is estimated by
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ρ̂S2,n(p) =

1
n

∑n
j=1

(
p− Û1j,n

)+ (
p− Û2j,n

)+
−
(

p2

2

)2
p3

3
−
(

p2

2

)2 . (53)

It is clear that the limiting laws for
√
n {ρ̂Sd,n(p)− ρSd

(p)} depends on the

asymptotic behaviour of the copula process
√
n
{
Ĉn(u)− C(u)

}
. I.e., if

√
n
{
Ĉn(u)− C(u)

}
converges towards a Gaussian process, that is the es-

timate has asymptotic normality, then it is also the case for ρ̂Sd,n. The
asymptotic behaviour of the ordinary empirical copula process is well stud-
ied. Schmidt and Schmidt [4] also shows that

√
n {ρ̂Sd,n(p)− ρSd

(p)} con-
verges weakly to a centred Gaussian process, i.e. a Gaussian process with
mean 0. The weak convergence takes place in ℓ∞([ϵ, 1]) for arbitrary but
fixed 0 < ϵ < 1, i.e.

√
n {ρ̂Sd,n(p)− ρSd

(p)} w→ N(0, σ2). (54)
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3 Method

Here, we first check asymptotic normality for the empirical copula. We limit
the scope to two dimensions. The dataset used is samples from a multi-
variate normal distribution. We then fit a Gaussian copula according to
(18), and an empirical copula according to (48), using n samples from the
multivariate normal distribution. To check the asymptotic behaviour of the
copula process, we draw 4000 samples from each fitted copula and evaluate

the distribution of
√
n
{
Ĉn(u)− C(u)

}
, to see if it approached a normal

distribution when n increases.

To check the asymptotic behaviour of the copula process, we use synthetic
data with samples from a multivariate normal distribution with two dimen-
sions. We let the number of samples, n, increase and compare the empirical
rho for d = 2 as in (50) and Spearmans rho as in (24) as n increases. To see
if
√
n {ρ̂n(u)− ρS(u)} approaches a normal distribution as n increases.
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4 Results

4.1 Empirical copula

Figure 1: Gaussian copula for n = 200

Figure 2: Empirical copula for n = 200
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Figure 3: Gaussian copula for n = 600

Figure 4: Empirical copula for n = 600
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Figure 5: Gaussian copula for n = 2000

Figure 6: Empirical copula for n = 2000
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Figure 7: n = 200. The distribution of
√
n
{
Ĉn(u)− C(u)

}
for 4000 draws

from Empirical copula and 4000 draws from Gaussian copula

Figure 8: n = 600. The distribution of
√
n
{
Ĉn(u)− C(u)

}
for 4000 draws

from Empirical copula and 4000 draws from Gaussian copula
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Figure 9: n = 2000. The distribution
√
n
{
Ĉn(u)− C(u)

}
for 4000 draws

from Empirical copula and 4000 draws from Gaussian copula

4.2 Empirical rho

Figure 10: n = 1000. The distribution of
√
n {ρ̂Sd,n(p)− ρSd

(p)} for 1000
draws from multivariate normal distribution. Mean = −0.1897, Variance =
1.18476 · 10−13.
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Figure 11: n = 1000000. The distribution of
√
n {ρ̂Sd,n(p)− ρSd

(p)} for 1m
draws from multivariate normal distribution. Mean = −0.001897, Variance
= 1.18476 · 10−18.

5 Discussion

5.1 Empirical results

From the results, we note that for d = 2,
√
n
{
Ĉn(u)− C(u)

}
tends towards

a normal distribution as n increases and that we obtain a normal distribution
when n = 2000, when the data is sampled from a bivariate normal distri-
bution and C(u) is a Gaussian copula. Also to be noted is that the copula
gets smoother and more and more resembles a Gaussian copula as n increases.

For the empirical rho in d = 2, we note that
√
n {ρ̂S2,n(u)− ρS(u)} tends

towards a normal distribution quite fast, although the mean is slightly neg-
ative below zero and that the variance is very small. An interesting note is
that when increasing n from 1000 to 1000000 is that the mean decreases by
a factor 100, i,e, µ1000 = 100µ1000000 and that the variance decreases by a
factor 10−5. Thus it seems that we have converged towards a distribution
and that only a scale factor differs when we increase n.

For further research, it would be interesting to look into the results with
other choices of the copula. It would also be interesting to investigate if
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√
n
{
Ĉn(u)− C(u)

}
converges faster towards a normal distribution if the

smoother empirical beta copula (49) is used.

5.2 Overall discussion and conclusion

The goal for this work was to understand and clarify some of the proposi-
tions and results in Schmidt and Schmidt’s paper Multivariate conditional
versions of Spearman’s rho and related measures of tail dependence [4]. First,
we gained a deeper understanding of the copula theory and started in Sklar’s
paper from [11] where copulas were introduced. We explained the Frechlet-
Hoeffding bonds and discussed copulas further to gain a deeper understand-
ing. We then analyse and discuss the work of Schmid and Schmidt’s Multi-
variate conditional versions of Spearman’s rho and related measures of tail
dependence. We came up with some examples considering this and clari-
fied how the conditional version was derived and also looked into how the
conditional version of Sperman’s rho could be applied to other areas of the
distribution than to the tail. In the last part of the thesis, we investigated
the empirical versions of the copula as well as the proposed Spearman’s rho,
where we modeled a simple case with samples from a bivariate normal dis-
tribution.

From this work we have gained a deeper knowledge of the copula theory and
how it can be used for dependence measures. The results also indicate that
the theory works and motivates further studies on its applicability with other
types of copulas and other datasets.
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