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Abstract

There are different ways of evaluating the sound pressure in a sound field. Doing
so is an essential part of several applications, such as active sound control and voice
analysis. One way of evaluating the sound pressure in a sound field is by measuring
a few discrete points in the field, combined with an interpolation method to find
the sound pressure for the remaining field. Recently, it has been shown that kernel
ridge regression (KRR) can accurately interpolate a sound field from discrete points
in space. This report examines the effect of inaccurate measurements for the resulting
estimated sound field by adding noise in all measurements. Further, to allow for
accurate estimation of how a sound is perceived at a given location, one not only needs
to form an estimate of the expected sound field at the location, but also to examine
how the presence of the person’s head will shape the resulting field. Thus, the use
of a pre-calibrated head-related transfer function (HRTF) in combination with the
interpolation technique to interpolate the in-ear sound field is also proposed. Using
both simulated and anechoic audio data, the effect of different kernels as well as the
added noise for the sound field estimate is studied, which is then illustrating how
the combined sound field interpolation technique allows for an improved estimate of
the sound field, for all frequencies. Finally, the combined sound field interpolation
is shown to be more effective than the KRR method, for both the simulated and the
anechoic audio data, with the presence of a person in the sound field.
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Populärvetenskaplig sammanfattning på svenska

Uppskattning av ljudetmellanmikrofonpositioner,
med fokus på känsligheten mot mätfel och brus
Arbetet presenterar en metod som uppskattar ljud så som en människa uppfattar
det i ett rum. Metoden kan användas i exempelvis applikationer med augmented
reality och brusreducering.

Att kunna uppskatta ljud i ett ljudfält är en nödvändighet för många applikationer.
I exempelvis aktivt brusreducerade hörlurar får man in en signal som man vill tysta
genom att skicka ut en motsatt signal, som i teorin tar ut den ursprungliga signalen
och resulterar i att inget ljud når dina öron. Att så exakt och effektivt som möjligt
kunna skatta hur ljudet beter sig i ljudfältet är därför nödvändigt för att få till effektiv
brusreducering. I detta arbetet används en nymetod för att skatta ljud i ett ljudfält, där
effektiviteten av metoden utvärderas med avseende på brus och mätfel. Utöver detta
implementeras även en ny metod som skattar hur närvaron av en människa påverkar
det resulterande ljudfältet.

Det finns olika sätt att skatta ljudtrycket i ett ljudfält. Ett sätt är att placera ut mikro-
foner i fältet som sedan används för att skatta ljudet i övriga fältet, vilket är metoden i
denna rapport. Både uppmätt data från ett ekofritt rum och simulerad data utvärderas,
där vi i den simulerade datan lagt till både mätfel och brus i alla mätningar. Tanken
med projektet är att kunna använda resultaten som en referenspunkt för framtida
implementeringar av, för att använda det tidigare exemplet, aktiv brusreducering.

I en större skala, där man vill reducera ljudnivån i ett helt rum, blir problemet mer
komplicerat. Mellan ett par hörlurar och dina öron är det inte mycket i vägen för
ljudet att färdas fritt. I ett rum kan det å andra sidan finnas en mängd olika objekt
utspridda; inte minst i form av en människa. En människas närvaro i rummet kom-
mer påverka det resulterande ljudfältet, och av särskilt intresse är ljudfältets påverkan
av människans närvaro när det gäller ljudet i människans eget öra. Om ljudet i hela
rummet som helhet dämpas men ljudet i människans öra blir högre så blir ljudreduce-
ringen i praktiken meningslös. Därför har vi implementerat en metod som tar hänsyn
till en människas närvaro i rummet, och som då uppskattar ljudet i människans båda
öron. Den implementerade metoden som presenteras i projektet är en blandning av
den tidigare nämnda metoden och en funktion som beskriver hur ljudet förändras för
en människa i rummet, head-related transfer function (HRTF).

Resultatet av experimenten med avseende på brus och mätfel presenteras först, där
den implementerade metoden sedan utvärderas. Den implementerade metoden visar
sig förbättra skattningen av ljudet i örat för alla använda frekvenser, jämfört med den
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tidigare metoden.
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Glossary

Term Definition
KRR Kernel ridge regression
u Sound pressure in frequency domain
ut Sound pressure in time domain
λ Regularization parameter for kernel ridge regression
β Directional regularization parameter, directional Helmholtz kernel
Ω The acoustic environment wherein the sound pressure is measured

and interpolated
H Function space
∥·∥H Norm over the function spaceH
∥·∥ Euclidean norm
(·)∗ Complex conjugate
rm Location of the mth microphone
sm Sound pressure recorded by the mth microphone
û Estimated sound pressure, given by the interpolation method
k Wavenumber
c Sound velocity
jν Spherical Bessel function of order ν of the first kind
Jν Bessel function of order ν of the first kind
Yν,µ Spherical harmonic function of order ν and degree µ
Pν,µ Legendre function of order ν and degree µ
κ Kernel function
η Direction of which the sound is propagating
SNR Signal-to-noise ratio, measures the impact of noise on the signal
SINAD Signal-to-noise and distortion ratio, measures the impact of noise

and distortion on the signal
r̄h Position of the sound source in relation to the head
HRTF Head-related transfer function
HRIR Head-related impulse response
H·,0 Head-related transfer function, the one used
h·,0 Head-related impulse response, the one used
ut· In-ear sound pressure, time domain
ût· Estimated in-ear sound pressure, time domain
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Chapter 1

Introduction

With recent development of spatial audio equipment, there has been a growing de-
mand to accurately describe how sound propagates and is perceived. There are dif-
ferent ways to allow for an accurate representation of a sound field, one being an
interpolation technique. Interpolating a sound field typically involves kernel ridge
regression (KRR), with the Gaussian kernel being the most widely used today, which
approximates the sound field roughly as a sum of Gaussian functions. Another ap-
proach to this is the use of a Bayesian framework [1]. In the first part of this report,
KRR with a new type of kernel proposed by Ueno et al. [2] is investigated and com-
pared to the Gaussian kernel [3], primarily to evaluate their robustness. A variation
of the kernel proposed by Ueno et al., which adds an assumed prior knowledge of the
direction to the sound source, is also investigated [4,5]. This is done with simulations
as well as experiments consisting of real measurements. Interpolating a sound field
has various applications, such as active sound control [6–9], acoustic environment
analysis [10], voice analysis [11], and speech enhancement [12].

With increasing interest in three-dimensional applications such as virtual reality en-
vironments, augmented reality environments as well as video games, there has also
been a growing demand for more natural and realistic experiences. In order to get a
more immersive experience, being able to get an accurate representation of sound in
a natural way is of great importance. Although the sound field interpolation meth-
ods presented above offer highly accurate estimates of the resulting sound field, the
presence of the human head at the location of interest will shape the sound field,
modifying the in-ear sound pressure from that of the interpolated sound field at the
location. A common approach to account for this is to use a pre-calibrated head-
related transfer function (HRTF), describing the spatial filtering effect resulting from
the presence of the head and torso. As a consequence, several methods employing
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the use of HRTFs have been introduced [13, 14], enhancing the measured HRTFs by
interpolating between the discrete measurement positions [15–18] as well as accurately
estimating the direction of sound [19].

The primary focus of this report is the sound field interpolation with KRR. Prior work
with KRR and sound field interpolation has largely been focusing on active noise
control (ANC) [4,7,20], where KRR allows the ANC to account for the interpolated
field as opposed to the more commonly used approach, where only the sound at the
recordedmicrophones is used. For smaller applications, such as active noise cancelling
headphones, there is not a lot of space between the headphones and the ear canal;
however, in a larger scale, if one for instance would want to perform ANC in an
entire room, there could be plenty of objects altering the propagation of the sound.
An object of particular interest is the human body. Lowering the noise level in the
entire room would not necessarily be of interest if the purpose of the ANC is to lower
the noise for the human in the sound field; if the overall noise level is lowered but
at the same time increased for the person in the sound field, the noise reduction is
essentially useless. Thus, a method that estimates the sound pressure as experienced
by a human in the field is proposed, by combining KRR with pre-calibrated HRTF
measurements, thereby enabling an improved estimate of the in-ear sound field, which
will constitute the second part of this report. While prior work with HRTFs has
mostly been working under the assumption that the in-ear sound pressure is available,
this work is instead trying to estimate the in-ear sound pressure based on the free-field
estimate of the sound field, specifically by interpolating the free-field estimate of the
sound pressure to the center of the head, given measurements by microphones around
the head, where the resulting interpolated sound field will be filtered through a pre-
calibrated HRTF. In this formulation, the use of the HRTF implicitly assumes that
the sound propagates from a single direction. To examine how this assumption affects
the results, we here also examine how the used directionally weighted kernel affects
the interpolation under this assumption.

1.1 Intuition behind the limitations of the Gaussian kernel

TheGaussian kernel that is widely used today has its limitations for sound field inter-
polation, as a sum of Gaussian functions will not necessarily capture the periodicity
of a wave. An example of this can be seen in Figure 1.1, and shows how the Gaussian
kernel does not capture the periodicity when the microphones are too far apart. This
is an extreme example of microphones being evenly spread out to precisely miss the
periodicity, but should give us some intuition behind the limitations of the Gaussian
kernel. As can be seen, the Gaussian kernel gives us a fairly good estimate of the
sound pressure very close to the microphones, but not necessarily a certain distance
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away from the microphones. What can be seen is also that if only positive values of
the sound pressure is recorded, the interpolation will only contain positive values.
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Figure 1.1: Simulation using regularization parameter λ = 10−2, a frequency of 426, using 3, 5, and 10 mi-
crophones, respectively, and is done in a 2D space with the microphones being spread out evenly
along the line x = 0.0134. The plot is examined along the line x = 0.0134where the microphones
are located, with y ∈ [−2, 2]. The wave used is a plane wave propagating in the y-direction. The
grid is created with incremental changes in x and y of 0.05 m. The parameters will be explained
later on in the report.

A plot for the interpolated sound field, as well as the real sound field, can be seen in
Figure 1.2, using the same five microphone setup as for Figure 1.1.

Figure 1.2: Simulation using regularization parameter λ = 10−2, a frequency of 426, using 5 microphones,
and is done in a 2D space with the microphones being spread out evenly along the line x = 0.0134.
The wave used is a plane wave propagating in the y-direction. The grid is created with incremental
changes in x and y of 0.05m. In the left plot, the interpolated sound field using the Gaussian kernel
is shown, and in the right plot the real sound field is shown. The parameters will be explained later
on in the report.

The calculations necessary for this interpolation will be explained later on in the report
(see the appendix, section 6.1, for the 2D case) - the plots are just shown to give some
intuition for the idea behind the possible improvements that a new kernel can bring
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to the sound field interpolation problem.
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Chapter 2

Methodology

Consider an acoustic environment, where the sound pressure is measured using M
omnidirectional microphones and one seeks to determine the sound pressure. We
denote the part of the acoustic environment where we want to find the resulting sound
field as Ω ⊆ R3, which is open and simply connected. Let u(r, ω) denote the sound
pressure for the temporal frequency ω at location r ∈ Ω in the frequency domain.
Let rm and sm denote the location of and the sound pressure at themth microphone,
respectively, form = 1, . . . ,M . For the first part of this report, the frequency ω will
be disregarded in the text as only one frequency will be investiagated at a time.

For the simulations, the microphones will be spread out evenly inΩ, unless otherwise
specified. There will also be point sound sources placed outside of this region, from
where a sound wave will be simulated, propagating spherically, which will then finally
be interpolated, given the recorded signals of the microphones. The interpolation
problem will be formulated as a regularized least square problem (see also [2]),

û(r) = argmin
u∈H

M∑
m=1

|u(rm)− sm|2 + λ∥u(r)∥2H, (2.1)

where û is the estimated sound pressure, H is some function space, ∥·∥H the norm
over H, and λ is a user-specified regularization parameter. The goal is to find û(r)
for all r ∈ Ω, given the measurements sm.

9



2.1 The Helmholtz equation

This section is used as a short motivation for the choice of Hilbert space used for the
kernels in the following section, as the Helmholtz equation will play a crucial role for
the kernels used. The following derivation is mostly taken from [21]. Starting with
the wave equation, we have(

∇2 − 1

c2
∂2

∂t2

)
u(r, t) = 0. (2.2)

Assuming that the solution to this equation is space-time-separable, the solution to
the wave equation can be re-written as

u(r, t) = A(r)T (t). (2.3)

Now substituting (2.3) into (2.2) yields an equation on the form of

∇2A(r)

A(r)
=

1

c2T (t)

d2T (t)

dt2
. (2.4)

The left hand side only depends on r and the right hand side only depends on t,
which implies that both sides are equal to the same constant value. By letting both
sides be equal to the constant value −k2, two expressions can be found as

∇2A(r)

A(r)
= −k2, (2.5)

1

c2T (t)

d2T (t)

dt2
= −k2, (2.6)

and after some rearrangement, the expressions become

(∇2 + k2)A(r) = 0, (2.7)

(
d2

dt2
+ ω2)T (t) = 0, (2.8)

where ω = kc, (2.7) is the homogeneous Helmholtz equation and (2.8) is a second-
order ordinary differential equation. Consequently, under the assumption that the
sound wave is space-time-separable, the spatial component will be a solution to the
homogeneous Helmholtz equation.

2.2 Kernel ridge regression

For our interpolation problem, (2.1), the solution depends on the normed space (H, ∥·∥H).
In our case, a reproducing kernel Hilbert space will be used, which turns the problem
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into a kernel ridge regression problem as presented in [3]. The representer theorem
states that the solution to (2.1), then, may be expressed as [22]

u(r) =
M∑

m=1

αmκ(r, rm), (2.9)

where κ : H × H → C denotes a positive-definite kernel function on the normed
space (H, ∥·∥H) and αm ∈ C the corresponding magnitude at the location of the
mth microphone. By introducing

α =
[
α1 . . . αM

]⊺
, (2.10)

s =
[
s1 . . . sM

]⊺
, (2.11)

K =

 κ(r1, r1) . . . κ(r1, rM )
...

. . .
...

κ(rM , r1) . . . κ(rM , rM )

 , (2.12)

and inserting (2.9) into (2.1), yields [2]

α = (K + λI)−1s, (2.13)

such that the interpolated sound field finally is given by

û(r) =
(
(K + λI)−1s

)⊺
κ(r), (2.14)

where κ(r) = [κ(r, r1), . . . , κ(r, rM )]⊺. The used kernel function κ may be se-
lected in different ways; in this work, we will examine three alternative formulations,
all depending on the chosen normed space (H, ∥·∥H). These kernels will be defined
in the following sections.

2.2.1 The Helmholtz kernel

Under the assumption that there are no sound sources in Ω, the sound pressure u
satisfies the homogeneous Helmholtz equation¹ [23]

(∆ + k2) u(r, ω) = 0, (2.15)

where ∆ = ∇2 is the Laplace operator and k = ω
c is the wavenumber at sound

velocity c. Shown in [24], any solution to this equation can be uniquely expanded

¹There are certain assumptions made here, such as the medium being lossless and isotropic; essen-
tially, the medium is modelled as vacuum.
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around a point r0 ∈ Ω as

u(r) =

∞∑
ν=0

ν∑
µ=−ν

ũν,µ(r0)φν,µ(r − r0), (2.16)

where (̃·) denotes the expansion coefficient at the specified location, in the expression
above being r0, and the basis function φν,µ(·) is defined as

φν,µ(r) =
√
4πjν(kr)Yν,µ(r̂). (2.17)

Here, ∥·∥ is the Euclidean norm, r = ∥r∥ and r̂ = r/r. Furthermore, jν(·) is the
νth-order spherical Bessel function of the first kind [25], defined as

jν(z) =

√
1

2

π

z
Jν+ 1

2
(z). (2.18)

Here, Jν is the Bessel function of the first kind [25], defined as

Jν(z) =

(
1

2
z

)ν ∞∑
k=0

(−1
4z

2)k

k!Γ(ν + k + 1)
, (2.19)

and Yν,µ(·) is the spherical harmonic function of order ν and degree µ [23], defined
as

Yν,µ(r̂) =

√
2ν + 1

4π

(ν − µ)!

(ν + µ)!
Pν,µ(cos θr̂)e

iµϕr̂ , (2.20)

where θr̂ and ϕr̂ are the polar and azimuth angles of r̂, respectively, and Pν,µ is
the associated Legendre function, defined by an unpleasantly long expression in [23,
eq. (6.30)], with the result of

P0,0(z) = 1. (2.21)

With all of the above, the Hilbert space is defined as [2]

H =
{
u ∈ C2(Ω;C), s.t. (∆ + k2)u = 0 | ∥u∥H < ∞

}
,

where C2(Ω;C) denotes the set of twice continuously differentiable functions from
Ω to C, and the inner product and norm are defined as [2]

⟨u, v⟩H =
∞∑
ν=0

ν∑
µ=−ν

ũν,µ(r0)
∗ṽν,µ(r0), (2.22)

∥u∥H =
√
⟨u, u⟩H, (2.23)
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where (·)∗ denotes the complex conjugate. For this Hilbert space, the kernel is set as

κ(r1, r2) = j0(k∥r1 − r2∥). (2.24)

From here, we want to show that this kernel is a reproducing kernel, meaning that
the inner product between the kernel and any function in the Hilbert space is equal
to the function itself,

⟨κ(r), u(r)⟩ = u(r), (2.25)

where we let κ(r′) = κ(r, r′). We now use (2.20) and (2.21) to find that

Y0,0(r̂) =

√
1

4π
P0,0(cos θr̂)e

0 =

√
1

4π
. (2.26)

By then combining (2.17) and (2.26), the basis function of order 0 and degree 0 can
be expressed as

φ0,0(r1 − r2) =
√
4πj0(k∥r1 − r2∥)Y0,0(r) (2.27)

= j0(k∥r1 − r2∥) (2.28)
= κ(r1, r2), (2.29)

Here, we use that [26]

φn,m(r) =
∞∑
ν=0

ν∑
µ=−ν

φ̃ν,µ(r
′)φν,µ(r − r′), (2.30)

for any arbitrary point r′ ∈ Ω, and by letting r′ = r in combination with (2.29),
yields

κ(r) = φ0,0(0) (2.31)

=
∞∑
ν=0

ν∑
µ=−ν

φ̃ν,µ(r)φν,µ(r − r), (2.32)

which leaves us with a unique solution when

κ̃ν,µ(r) = φ̃ν,µ(r) (2.33)
= δν,0, (2.34)

where δν,µ denotes the Kronecker delta. From here, we use the inner product (2.22).
It can be shown that this expression is invariant of coordinate rotation and translation
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[26], leaving us with a new expression expanded around the arbitrary point r′ ∈ Ω,
as

〈
κ(r′), u(r′)

〉
=

∞∑
ν=0

ν∑
µ=−ν

κ̃ν,µ(r
′)∗ũν,µ(r

′). (2.35)

By now substituting r′ = r into (2.35), the inner product becomes

⟨κ(r), u(r)⟩ =
∞∑
ν=0

ν∑
µ=−ν

δ∗ν,0ũν,µ(r) = ũ0,0(r). (2.36)

Using (2.18) and (2.19), it can be seen that spherical Bessel functions of all orders
except for order 0 will have the function value 0 at 0, and function value 1 for order
0. Using this, and letting r = 0 in (2.17), we find

φν,µ(0) =
√
4πjν(0)Yν,µ(0̂), (2.37)

which in combination with (2.26) yieldsφν,µ(0) = δν,0. Combining this with (2.30),
u(r) is expanded around r instead of r0, which gives us

u(r) = ũ0,0(r)φ0,0(0) = ũ0,0(r), (2.38)

and combining (2.36) with (2.38), we finally get ⟨κ(r), u(r)⟩ = u(r), which means
that κ is a reproducing kernel of H. This kernel will be referred to as the Helmholtz
kernel in the rest of the report. Note that this, in combination with (2.9), gives us
that the solution will be a sum of waves.

2.2.2 The directional Helmholtz kernel

Similarly to what was done for the Helmholtz kernel, we define our Hilbert space as

H =

{
1

2π

∫
S(0,1)

ũ(η) exp [ik⊺r] dη | ũ(η) ∈ L2

}
, (2.39)

where L2 denotes the space of square-integrable functions and S(0, 1) denotes the
unit sphere, again under the assumption that there are no sound sources in Ω. Al-
though thisHilbert space does not include all solutions of the homogeneousHelmholtz
equation, the solution of said equation can be approximated by functions in this
Hilbert space in the sense of uniform convergence on compact sets [27]. As pro-
posed in [27], a directional variation of the Helmholtz kernel is introduced, which
incorporates prior knowledge of the direction from which the sound is propagating.
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The solution of the homogeneous Helmholtz equation can be approximated by a sum
of plane waves, as the Herglotz wave function [28]

u(r) =

∫
S(0,1)

ũ(η̄) exp [ik⊺r] dη̄, (2.40)

where ũ is the expansion coefficient and k = −kη̄ is the wave vector, propagating in
the direction of η̄. The inner product and norm are set as [4, 5]

⟨u1, u2⟩H =
1

2π

∫
S(0,1)

1

w(η)
ũ1(η)

∗ũ2(η)dη, (2.41)

∥u∥H =
√

⟨u, u⟩H, (2.42)

where (·)∗ denotes the conjugate, η is calculated as the sound wave propagation from
chosen reference position to the sound source², andw(η) is the directional weighting
function, proposed in [5], based on the von Mises-Fisher distribution, defined as

w(x) =
1

4πC(β)
exp [βη⊺x] , (2.43)

C(β) =


1, β = 0

eβ − e−β

2β
, β ∈ (0,∞)

. (2.44)

Here, β ∈ [0,∞) is a directional regularization parameter. The directional vector
w(x) uses prior knowledge of the direction of the sound sources, and makes the sec-
ond term in equation (2.1) larger for waves propagating in another direction than
the assumed direction of propagation for the sound wave, leaving us with a final in-
terpolation more likely to propagate in the desired direction. Using this directional
weighting, the kernel is defined as [5]

κ(r1, r2) =
1

4π

∫
S(0,1)

w(x) exp [−ik⊺(r1 − r2)] dx, (2.45)

²This reference position is not necessarily easy to determine, and the choice of a reference position
has certain consequences; these will be discussed later on in the report. In [4], where this kernel was first
introduced, the propagating sound was assumed to be in the form of a plane wave, whereas our case will
be a spherical wave.
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and as shown in [5], by substituting w(x) in (2.43) into (2.45), κ(r1, r2) can be
expressed as

κ(r1, r2) =
1

C(β)
j0(

√
Ψ), (2.46)

where

Ψ =
(
iβ sin θz cosϕ− krx

)2
+
(
iβ sin θz sinϕ− kry

)2
+
(
iβ cos θz − krz

)2
,

(2.47)

j0(·) is the 0th-order spherical Bessel function of the first kind, ϕ and θz are respec-
tively the azimuth and zenith angles of η, and [rx, ry, rz]

⊺ := r1 − r2. Now, by
looking at

⟨κ(r, rm), u(r)⟩H =
1

2π

∫
S(0,1)

w(η)
1

w(η)
exp [ik⊺rm] û(η)dη (2.48)

=
1

2π

∫
S(0,1)

û(η) exp [ik⊺rm] dη (2.49)

= u(rm), (2.50)

and letting rm = r, we can confirm that this is a reproducing kernel of H. As such,
a larger value of β is expected to give a more accurate interpolation, granted that the
assumed direction of the sound propagation used corresponds to the actual direction
of the sound propagation. This kernel will be referred to as the directional Helmholtz
kernel in the rest of the report. Note that by removing the directional weighting, i.e.,
letting β = 0 in (2.46), we get the previously obtained Helmholtz kernel.

2.2.3 The Gaussian kernel

The Gaussian kernel is defined as [3]

κ(r1, r2) = e−γ2∥r1−r2∥2 . (2.51)

With this, H0 denotes the function space

H0 =

f :

k∑
j=1

αjκ(rj , r)

 . (2.52)
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Given this function space, an inner product and norm is defined as

⟨f1, f2⟩H0
=

k∑
i=1

l∑
j=1

αiαjκ(ri, rj), (2.53)

∥f∥H0 =
√
⟨f, f⟩H0

=

√√√√ k∑
i=1

k∑
j=1

αiαjκ(ri, rj) =
√
αTKα, (2.54)

where we have α = [α1, . . . , αk]
⊺ and Kij = κ(ri, rj). By now looking at the

kernel expressed as a function in H0, as well as a general function u(r), defined as

κ(r) = κ(rm, r), (2.55)

u(r) =
k∑

i=1

αiκ(ri, r), (2.56)

the inner product is found to be

⟨κ(r), u(r)⟩H0
=

k∑
i=1

αiκ(ri, rm) (2.57)

= u(rm). (2.58)

By letting rm = r, we can confirm that this is a reproducing kernel and ultimately
leaves us with a reproducing kernel Hilbert space, (H0, ∥·∥H0), with the Gaussian
kernel. Note that this can be used for any dimension, unlike the two previous kernels
that are only defined for the case of a three dimensional field ³.

2.3 Modelling the measurements

In order to evaluate the robustness of the interpolation with the different kernels to
measurement errors, noise will be added to all of the measurements in our model. For
all the sound pressures u(rm) in the case of the simulated data, noise is added as

sm = u(rm) + ep,m, (2.59)

where sm denotes the recorded sound pressure, and ep,m ∈ N (0, σ2
p) denotes the

noise in the recorded signal, both for microphone index m, and σ2
p is the specified

³The corresponding 2D kernels can be found in the appendix, section 6.1.
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variance. For the microphone and sound source positions, we let

r̂m = rm + em, (2.60)
r̂s = (rs, θs + es,θ, ϕs + es,ϕ) (2.61)

where we let r̂m and rm denote the estimated and real position of microphone m,
respectively, r̂s and rs denote the estimated and real position of the sound source,
respectively, em ∈ N 3(0, σ2

mI ) denote the error in microphone position estimate,
es,θ, es,ϕ ∈ N (0, σ2

s) denote the error in the measured θ and ϕ, respectively, where
σ2
s , σ

2
m is the specified variances. All of these errors are assumed to be independent

of the signal or measurements.

2.4 Performance measurements - SNR, SINAD

This section breaks down the different performance evaluationmeasurements, namely
the signal-to-noise ratio (SNR) and the signal-to-noise and distortion ratio (SINAD).
As both of these measures have several different definitions, we will define both of
them in this section. As the similarity in their names imply, they’re more or less
the same thing. They both measure, in our case, one sound pressure measurement
to another sound pressure measurement. When evaluating the recorded signal, we
define the SNR as

SNR =
|u(rm)|2

|sm − u(rm)|2
=

|u(rm)|2

|u(rm) + ep,m − u(rm)|2
=

|u(rm)|2

|ep,m|2
. (2.62)

The SNR evaluates how much the noise alters the recorded sound pressure in relation
to the real sound pressure. Further, the expected value of the SNR is then

E(SNR) = E
(
|u(rm)|2

|ep,m|2

)
=

E
(
|u(rm)|2

)
E (|ep,m|2)

. (2.63)

Since ep,m ∈ N(0, σ2), |ep,m| follows a half-normal distribution [29], which with
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the definition of the variance yields

V (|ep,m|) = E
(
|ep,m|2

)
− E (|ep,m|)2 =⇒

E
(
|ep,m|2

)
= V (|ep,m|) + E (|ep,m|)2

= σ2(1− 2

π
) +

(
σ

√
2

π

)2

= σ2. (2.64)

Inserting (2.64) into (2.63), and then solving for σ2 yields a final expression as

σ2 =
E
(
|u(rm)|2

)
E (SNR)

. (2.65)

This will later on be used to simulate an error that on average gives us a specified
SNR⁴. To evaluate the interpolation, the SINAD is introduced, defined as

SINAD(r) =
|u(r)|2

|û(r)− u(r)|2
. (2.66)

The SINAD evaluates howmuch the noise in combination with the distortion created
by the interpolation method affected the interpolated sound pressure in relation to
the real sound pressure, hence the name. As we do not have access to the real signal
u(r) for the real data, neither the SNR nor the SINAD can be calculated. However,
an approximation of the SINAD measurement is introduced by replacing the signal
u(rm) with sm for the real data. For this measurement, as long as the distortion
caused by the interpolation is small enough, the approximation is valid. Lastly, for the
in-ear sound pressure measurements, the evaluation will be done in the time domain
and is then defined as

SINAD(r) =

∑N
t=0 |ut(r, t)|2∑N

t=0 |ut(r, t)− ût(r, t)|2
, (2.67)

where ut(r, t) denotes the sound pressure at time t at location r, i.e., formulated in
the time domain rather than the frequency domain. Again, the real signal ut will be
replaced with the in-ear sound pressure measurements for the real data.

⁴Note that this can be done both for real and complex-valued numbers; in this project, it was done
only with real numbers.
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2.5 Using real data

In order to use real data, microphones will of course record the sound pressure in
the time domain rather than the frequency domain, giving us ut(r, t). In order to
perform the proposed interpolation methods, one needs to account for this in some
way. In this work, we will only work with single frequency sinusoids, as those were the
only signals used for the real measurements. Thus, the recordings will be transformed
to the frequency domain through a Fourier transformation, and only the largest found
frequency will be considered for the calculations. This could easily be expanded to
work for all frequencies in the signal, but as we know the signal used only contains a
single frequency, the rest will be considered noise.

2.6 In-ear sound pressure interpolation

While the previous parts of the report consisted of free-field sound interpolation, i.e.,
an acoustic environment where the sound waves propagate freely, we here apply this
method to find an estimate of the in-ear sound pressure with the presence of a human
body in the field. Notable efforts have gone into modelling how the presence of the
listener affects the sound field. As the physical properties of the listeners head signifi-
cantly impact the sound pressure inside of the ear canal, a generalized HRTF cannot
be used if one wants an accurate representation of the sound pressure. While there are
several datasets of HRTFs available [30–32], these are often cumbersome to use, and
requires notable efforts to measure. As a result, most datasets are limited to HRTFs
for a sound source at a given distance, measured at incremental steps in both azimuth
and elevation. In order to take the presence of the head and torso into account for the
sound field interpolation, a pre-calibrated HRTF is often used. Considering a sound
source at r̄h = (rh, θh, ϕh), where rh denotes the radial distance, θh the elevation,
and ϕh the azimuth angle to the center of the listener’s head, the HRTFs from the
position of the center of the listener’s head in a free field, to the listener’s left and right
ears, Hl,0 and Hr,0, as defined in [31], may be expressed as

Hi,0(rh, θh, ϕh, ω) =
Hi(rh, θh, ϕh, ω)

H0(rh, θh, ϕh, ω)
, (2.68)

with i ∈ {l, r}, where ul and ur denote the sound pressure in the left and right
ear, Hl and Hr the transfer function from the sound source to ul and ur, u0 the
sound pressure in the position of the center of the head if the head was absent, H0

the transfer function from the sound source to u0, andHl,0 andHr,0 the HRTF from
u0 to ul and ur. It should be stressed that r̄h depends on the orientation of the head;
in our case, the left and right ears are placed on the positive and negative y−axis,
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respectively, with the head center being placed at the origin. The HRTF can then be
expressed in the time domain, as

hi,0(rh, θh, ϕh, t) = F−1Hi,0, (2.69)

with i ∈ {l, r}, where F−1 denotes the inverse Fourier transform, and hl,0 and hr,0
the head related impulse response (HRIR) from the center of the listener’s head to the
left and right ear, as was also done in [31]. This allows the sound pressure in each ear
to be expressed as

uti(rh, θh, ϕh, t) = hi,0(rh, θh, ϕh, t) ∗ ut0(rh, θh, ϕh, t), (2.70)

with i ∈ {l, r}, where utl and utr corresponds to the sound pressure in the left and
right ear in the time domain, respectively, ut0 corresponds to the sound pressure in
the position of the center of the head in the time domain with the head absent, and
∗ denotes the convolution operator.

In order to find an estimate for the in-ear sound pressure, one needs to find an estimate
of ut0. By setting upmicrophones in the acoustic environment, we here interpolate the
sound pressure to the center of the head using the recorded signals of themicrophones.
This is done by first taking the Fourier transform of the signals in every microphone,
which we then use to find an estimate of the sound pressure, in the frequency domain,
at the position of the center of the head with the KRRmethod from the previous parts
of the report, yielding û0(rh, θh, ϕh, ω).

The proposed method for the in-ear sound pressure interpolation is then to use the
estimated sound pressure using the KRR interpolationmethod (see also [3]), expressed
in the time domain, ût0(rh, θh, ϕh, t), to find the sound pressure estimate inside of
the ears, as (for i ∈ {l, r})

ûti(rh, θh, ϕh, t) = hi(rh, θh, ϕh, t) ∗ ût0(rh, θh, ϕh, t). (2.71)

2.6.1 Different HRTF datasets

The HRTF dataset used in this project is from [31]. This dataset consists of HRTF
measurements defined as the transfer function for the sound pressure in the center
of the head, with the person absent, in a free field, to the sound pressure inside of
both of the ear canals in the same field but with the person present. As the dataset
from [31] also introduced a group delay of 100 samples, further changed by windowing
and filtering, which has to be accounted for, the estimated delay for the HRIRs was
approximately 108 samples.

An example plot of the HRIR from this dataset can be seen in Figure 2.1. The shape
of the different HRIRmeasurements differ a lot depending on the angles to the sound
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Figure 2.1: Example plot of an HRIR from [31], using the KEMAR manikin for the measurements, for the az-
imuth of 180°and the elevation of 60°. In the upper plots are the HRIRs for the left and right ear,
in the left and right plot, respectively. The relative level of the respective sound pressure is shown
below the HRIRs. The relative level of the respective sound pressure is shown below the HRIRs,
comparing the in-ear sound pressure to the reference sound pressure, in this case the sound pres-
sure in the center of the head, with the absence of the KEMAR manikin.

source; however, worth noting is that the relative level of the sound pressure does not
significantly change for lower frequencies, and this behaviour is similar for all of the
HRIRs.

However, HRTF datasets are defined in different ways, and another example of this
is the HRTF dataset from [30]. This is instead defined as the transfer function from
the speaker to the sound pressure in both ear canals, and consequently, the relative
sound pressure levels are inversely proportional to the distance to the sound source,
given the spherical form of the wave. An example plot of the HRIR from this dataset
can be seen in Figure 2.2. Note that the HRIRs are very different from the ones in
Figure 2.1, as is expected since the HRIRs are defined through completely different
transfer functions.

For the former figure, the HRIR needs to be compensated by the approximate 108
samples of introduced extra delay, while the latter figure does not need this. However,
the relative change in sound pressure, by both amplitude and phase shift, is still intact
for both datasets. A common approximation for HRIRs defined for distances larger
than 1 m is as a far-field approximation, where the distance no longer is relevant for
the relative changes in phase shift and amplitude for the HRIRs [33]. In the case with
the dataset used in this project, as long as the mentioned delay is adjusted for, the
HRIRs can be used as they are defined for any distance greater than 1 m. For the
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Figure 2.2: Example plot of an HRIR from [30], using the KEMAR manikin for the measurements, for the az-
imuth of 180°and the elevation of 60°. In the upper plots are the HRIRs for the left and right ear,
in the left and right plot, respectively. The relative level of the respective sound pressure is shown
below the HRIRs, comparing the in-ear sound pressure to the reference sound pressure, in this case
the signal omitted from the speaker.

HRIRs from [30], the distance would still be needed for the amplitude scaling as well
as the delay. In conclusion, HRTFs defined as in [31] will be easier to use for this
project, which motivates our choice of the HRTF dataset actually used.
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Chapter 3

Experimental evaluation

Before we dive into the real experiments, we look back at the 2D example from the
introduction. What was used in the example was five microphones placed along a
line, evenly spread out. What could be seen was that the Gaussian kernel did not
at all capture the periodicity of the sound wave. Now, we’ve introduced the new
kernels¹, and the same experiment but with the directional Helmholtz kernel as well
can be seen in Figure 3.1, where the directional parameter β was set to a value of 10. It
is evident from the plot that the directional Helmholtz kernel introduces a significant
improvement to the interpolation problem, at least in the two-dimensional case for
this setup.

Figure 3.1: Simulation using regularization parameter λ = 10−2, a frequency of 426, using 5 microphones,
and is done in a 2D space with the microphones being spread out evenly along the line x = 0.0134.
The wave used is a plane wave propagating in the y-direction. The grid is created with incremental
changes in x and y of 0.05 m. In the leftmost and middle plot, the interpolated sound field using
the Gaussian kernel and directional Helmholtz kernel (β = 10), respectively, is shown, and in the
rightmost plot the real sound field is shown.

Now we move on to the 3D case, which will be the case for the rest of the report. To
assess the effectiveness of the interpolation method, we first examine the simulated

¹The kernels introduced so far have been the 3D kernels, but the corresponding 2D kernels can be
found in the appendix, section 6.1.
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audio environment. A point sound source was placed uniformly at random on a
distance of a specified interval away from the center ofΩ, outside of the region, where
the audio signal was formed as a single tone with a random phase shift, propagating as
a monochromatic spherical wave in a free field to all microphones. The signal omitted
is given by

vwave(r, t) =
A

|r|
exp(i(ωt− k|r|)), (3.1)

where A is a complex-valued constant set to A = 1 for all simulations. Then, 12
microphones were placed in Ω. The regularization parameter λ was set to 10−2 for
all of the simulations ². The interpolation was done with all three, previously defined,
kernels, with γ = 0.5k for the Gaussian kernel, as it was shown to perform the best
for this value in [2]. For all the plots, we let ”no interpolation” denote an interpolation
where all interpolated values are set to 0.

3.1 Grid evaluation

For this section, all the measurements were evaluated in all of Ω, by setting up a grid
with incremental changes in the x, y, and z direction of 0.05 m. In this section, we
defined Ω to be a sphere of radius 1m. There were 64 simulations for each frequency,
all of which had different positions of the microphones as well as the point sources.
The microphone positions were based on the grid coordinates, but as noise was added
to the measurements, their real positions was off the grid; this does not change any-
thing for the computations, only the recorded sound pressure values. For these grid
measurements, the reference position chosen for the directional Helmholtz kernel was
the center of Ω, meaning that the directional weighting was based on the direction
from the center of the sphere to the point sound source. Unless otherwise specified,
the point sound source was placed uniformly at random on a distance of 10 to 12
meters from the center of Ω. The directional weighting parameter β is specified in
the plots.

²This could be examined further; however, this parameter is added to model the noise, and as such
the optimal parameter value would depend on the added noise. Thus, in the case of no noise in any
measurement, the optimal value would be 0, but this is not realistic for real measurements. The value
10−2 was used in [2], which is why it was used here as well.
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Figure 3.2: No noise in any measurements. Frequencies used are frequencies between 150 and 500with incre-
mental steps of 50, as well as 700, 900, 1100, 1500, and 2000.

In Figure 3.2, we see the resulting average SINAD for all points in Ω, given the in-
terpolation by the specified kernel, for all measured frequencies³. As expected, the
directional Helmholtz kernel outperforms both other kernels, while the Helmholtz
kernel slightly outperforms the Gaussian kernel.

In order to evaluate the robustness to noise in the sound pressure measurements, the
average SINAD in dB scale for the frequencies between 150 and 500with incremental
steps of 50, when noise is added by the specified SNR, was calculated. These were
chosen as the interpolation was fairly good for all kernels for these frequencies.

³Note that these are the frequencies measured in the real experiment. This is why we use a combi-
nation of these frequencies for the plots in this section.
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Figure 3.3: Noise is added to the sound pressure measurements by the microphones, by the level of the spec-
ified SNR. Frequencies used are frequencies between 150 and 500 with incremental steps of 50,
where the SINAD is calculated as the average SINAD for all frequencies.

As can be seen in Figure 3.3, once again, the directional Helmholtz kernel outperforms
both other kernels for all SNR values above 0, while the Helmholtz kernel slightly
outperforms the Gaussian kernel for SNR values above 5. A note on this is that
an SNR of 0, in dB scale, corresponds to having the same amount of power in the
recorded sound pressure coming from the noise as is coming from the real signal, or
with other words - the recording itself is extremely noisy.
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Figure 3.4: Noise is added to the measured position of the microphones. Frequencies used are frequencies
between 150 and 500 with incremental steps of 50, where the SINAD is calculated as the average
SINAD for the frequencies from 150 to 500, with incremental steps of 50.

In Figure 3.4, the average SINAD for the measured frequencies can be seen as a
function of the added expected error in the microphone position measurements. As
shown, the SINAD decreases most significantly for the directional Helmholtz kernel.
Since the directional Helmholtz kernel not only gets an error in the measured sound
pressure due to the positional change, it also tries to approximate the measured sound
pressure, with the error, as a wave propagating in a specific direction, the relative
change in the SINAD is expected to be larger for this kernel as the error grows larger.
Conversely, the non-directional kernels put no emphasis on the direction of which
the sound wave was propagating, and thus should suffer smaller relative changes to
the SINAD as the measured positions have an increasing error.

The relative change for the SINAD is larger for the directional Helmholtz kernel,
compared to the two other kernels. The small relative change for the SINAD with
the Gaussian kernel could be explained by the fact that the kernel puts no emphasis
on the physical properties of a wave, while the others do, which in turn could lead to
the addition of errors in the measurements not having a too big of an impact on the
interpolation, as the interpolation is already relatively bad. Conversely, the impact
of the other two kernels is expected to be larger, as they rely more heavily on the

29



physical properties of the actual sound wave; the directional Helmholtz kernel for
both the wave itself and its direction of propagation.
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Figure 3.5: Noise is added to the measured position of the point sound source position. Frequencies used
are frequencies between 150 and 500 with incremental steps of 50. The measurement error is
added such that the elevation and azimuth angles for the sound source position are both off by
the specified measurement error, in degrees, on average.

Figure 3.5 shows the SINAD plotted against the added average measurement error
for the sound source position. Here, the measurement error was added such that the
elevation and azimuth angles were both off by the specified measurement error, in
degrees, on average. For the Helmholtz and Gaussian kernel, the point sound source
position is irrelevant for the interpolation algorithm, while the directional weighting
for the directional Helmholtz kernel depends on the direction of the propagating
sound for its weighting function. As shown in the plot, while the performance does
decrease for the directional Helmholtz kernel, it is still outperforming the other two
kernels for very large changes in the measured position of the point source in relation
to the real position.
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Figure 3.6: The plot shows the average SINAD as a function of the distance to the sound source from the center
of Ω. Frequencies used are frequencies between 150 and 500 with incremental steps of 50.

As stated previously in the report, for both variations of the Helmholtz kernel, the
region Ω must be source free in order for the solution to be valid. Further, while
the sound source is located close to Ω, the amplitude of the wave changes rapidly as
it is inversely proportional to the distance to the sound source. Far away, the wave
can be approximated as a plane wave; this is not the case when the sound source is
close. Thus, it seems likely that we would need more measurement points in Ω to
more accurately model the behaviour of the wave when the sound source is nearby.
With this in mind, we want to investigate the dependence of the distance to the sound
source. Further, the directional Helmholtz kernel has a reference position from where
it calculates the direction of which the sound wave propagates; this angle is used for
all positions in the sound field, which naturally means that a point sound source very
far away from Ω will result in fairly similar direction of propagation for all points in
Ω, while a point sound source being close will not.

Note that Ω is a sphere of radius 1 m, which is why we place the sound source no
closer than 1m to the center of the sphere. In Figure 3.6, we plot the average SINAD
for the specified frequencies against the distance to the point sound source. While the
resulting SINAD for all kernels improves by increasing the distance, the most signif-
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icant improvement can be seen for the directional Helmholtz kernel, as is expected
given the reasoning above.
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Figure 3.7: The plot shows the average SINAD as a function of the directional regularization parameter β.
Frequencies used are frequencies between 150 and 500with incremental steps of 50. The SINAD of
the Helmholtz kernel and the Gaussian kernel will be constant on average, as they do not depend
on β.

Lastly, an evaluation of the performance as a function of the directional regularization
parameter β can be seen in Figure 3.7. As the sound source was located rather far
away from Ω, the direction of sound wave propagation in relation to each of the
microphones should be fairly similar, and as there was no added noise or measurement
error, an increasing β value should result in a better performance, as was also the case
for the simulation.

3.2 Spatial point evaluation

As opposed to the previous section, this section will not be using a grid to measure the
interpolation performance. Instead, the microphones will be placed in Ω based on
real-life measurements, taken from the anechoic chamber at the Dept. of Construc-
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tion Sciences at Lund University, and the evaluation will be done by iterating through
every microphone as the validation microphone, with the remaining 11microphones
used to form the interpolation to the validation microphone. The setup can be seen in
Figure 3.8, including the in-ear measurement positions, which were excluded for this
part of the project. As the purpose of this section is to evaluate the real-life measured
data, the simulated data is used to mimic the real-life experiment as a comparison;
as such, the simulated data will be evaluated in the same way, despite being able to
evaluate the interpolated data for the entire field, which we would be able to do since
we have access to the simulated sound pressure in the entire field.

Figure 3.8: On the left is a plot of the resulting microphone positions, including the in-ear microphones, and
on the right is a picture of the real setup of the microphones, taken from the anechoic chamber at
the Dept. of Construction Sciences at Lund University. Exact positions can be found in the appendix.

The distances between the microphones were measured and used with classical mul-
tidimensional scaling [34] in order to find the relative positions. The speaker position
was found by trilateration, using an eigenvalue solver as described in [35]. The root-
mean-square error (RMSE) of the microphone positions was measured to be ±0.02
m, by comparing the estimates given by the multidimensional scaling with that of the
distance measurements. As certain distances were hard to measure due to the pres-
ence of the KEMAR manikin, two microphone positions were also found using the
trilateration method from [35].
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Figure 3.9: On the left is the resulting SINAD for the real data. On the right is the plot for the simulated data,
with no measurement error or noise.

The resulting average SINAD for the real data as well as the simulated data using the
same microphone and sound source position can be seen in Figure 3.9. While there
was no noise in the simulated data, there is still a fairly large resemblance between the
two plots, most notably for the Helmholtz kernel for the frequency of 900. For this
frequency, the SINAD drops below 0 for both the real data and the simulated data,
which is likely due to the placement of the microphones, which also implies that the
model is likely fairly accurate.
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Figure 3.10: On the left is the resulting average SINAD as a function of β for the real data. On the right is
the corresponding plot for the simulated data, with no measurement error or noise. Frequencies
used are frequencies between 150 and 500with incremental steps of 50, as well as 700, 900, 1100,
1500 and 2000.

Finding an optimal β value depends on both microphone positions as well as the
measurement errors and noise. In Figure 3.10, the average SINAD for all measured
frequencies is shown as a function of β. For the real data, the best SINAD for the
specified frequencies was found for β ≈ 7, while for the simulated data it was found
for β ≈ 17. A similar experiment was done for the frequencies between 150 and 500
with incremental steps of 50, where the best SINAD for the specified frequencies was
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found for β ≈ 6 for the real data, which motivates the use of β = 6 for the previous
section.

3.3 Spatial point evaluation, in-ear sound pressure

In order to get a more accurate interpolation of the in-ear sound pressure, an HRTF
was used, which essentially describes the spatial filtering effect resulting from the pres-
ence of the head and torso. The way the HRTF used in this report [31] is defined is as a
function of r̄h = (rh, θh, ϕh), where rh denotes the radial distance, θh the elevation,
and ϕh the azimuth angle from the center of the listener’s head to the sound source.
As such, the orientation of the listeners head in the space is essential to determine
the angles. Thus, the position of the ears were used to rotate all measured positions
such that the position of the left and right ears were on the positive and negative y-
axis, respectively, as was done for the HRTF measurements in [31]. Once the rotation
was complete, the left and right ears were placed at [0 0.09 0]⊺ and [0 − 0.09 0]⊺,
respectively, being the ear locations of the KEMAR manikin. Worth noting here is
that the RMSE of the microphone positions was roughly 0.02 m, which for the ini-
tial interpolation is not necessarily a lot - however, for the purpose of rotating all the
measured positions based on the position of the left and right ear, granted that the
distance between the ears is only 18 cm, this error can lead to a fairly large error in the
rotation. This will only affect the HRTF used, but as HRTFs are known to be very
sensitive to the r̄h, the impact could be quite large ⁴. The HRTF dataset used had
measurements for 835 different positions for the sound source, all of which had the
sound source being located 1.5 m away from the position of the center of the head.

The setup for the microphones was still as shown in Figure 3.8. The only addition from
before was that we here evaluated the performance of the final interpolation based
on the average SINAD using the recorded sound pressure in the left and right ear,
forming the interpolation based on all recordings from the 12 regular microphones
as test data. In addition to the propagating sound wave being modelled as a spherical
wave in a free field, to mimic the presence of the head, the signal was further filtered
using the HRTFs for the corresponding direction in order to form the sound pressure
inside each of the ears, thus using the exact same HRTF for the simulated signal as for
the interpolated signal for the simulated data. The simulations were done for each of
the 835 measured point source locations for the HRTF data, while the real data only
consisted of data from one sound source position. The HRTF used for both the real
and simulated data was measured with a KEMAR manikin, which is the same type of
manikin used in our experiment.

⁴Due to this, the sound source position was manually slightly adjusted, read more about this in the
appendix.
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For the measured data, only one sound source location was used, located approxi-
mately 2.8m away from the center position of the head. As the elevation and azimuth
angles from the sound source to the center of the head in our measurement were not
part of the HRTF dataset detailed in [31], the used HRTF was interpolated according
to the method described in [16]. As the distances to the sound source both in the
HRTF measurements and in our experiment were larger than 1.0 m, the measured
HRTF was used as a far field approximation of the HRTF [33].

In order to make an easier distinction between the methods, we will hereafter denote
the interpolation method from the previous sections as kernel ridge regression (KRR),
while the same interpolation method but through the filtering of the HRTF will be
denoted as the proposed method.
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Figure 3.11: The figure show the estimated average SINAD for the sound pressure in both ears for different
frequencies. The plot on the left is obtained using the real data, while the plot on the right is
obtained using simulated data. The purple line corresponds to the interpolation method without
the use of an HRTF, while the proposed method is using the HRTF filtering of the interpolated
signal from the center position of the head.

In Figure 3.11, the resulting average SINAD for the real data on the left, as well as
the simulated data on the right, is shown. The purple line is using the interpolation
method of the previous sections, i.e., KRR without the use of an HRTF. From this,
there are two primary comparisons to be made. First, the resulting average SINAD
for the three plots labeled as the proposed method. It is clear that the directional
Helmholtz kernel outperforms the other two kernels. The other comparison is be-
tween the proposed method with the directional Helmholtz kernel and the use of the
same kernel but without the HRTF filtering; i.e., the blue and purple lines. Again,
the proposed method with the directional Helmholtz kernel improves the average
SINAD for both the real and simulated data. While the behaviour of the measured
data was quite different from the simulated data, the same conclusion still holds; the
proposed method, with the directional Helmholtz kernel, performed better than the
previously used interpolation method. The difference between the behaviour of the
two plots for the lower frequencies is likely due to measurement errors.
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Figure 3.12: The figures show the estimated average SINAD for the sound pressure in both ears for different
values of the regularization parameter β. The plot on the left is obtained using the real data,
while the plot on the right is obtained using simulated data.

Lastly, the effect of the directional regularization parameter β on the resulting average
SINAD for the measured frequencies was investigated, and is shown in Figure 3.12.
For the simulated data, the resulting SINAD was improved by increasing the β value
until β ≈ 9 for the proposed method, while with the KRR method, an increased β
value essentially made no difference for β values larger than 3. Since the KRRmethod
does not take the presence of the head and torso into account, this is to be expected, as
a more accurate free field estimate does not imply a more accurate estimate while the
head and torso is present. What is evident from this figure is also that the proposed
method, for the measured frequencies, on average, outperforms the KRR method for
all values of β at least up to 20, for both simulated and real data.
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Chapter 4

Discussion

4.1 Robustness of the HRTF implementation

What would seem like a natural addition to the in-ear sound pressure simulations is
the addition of either noise in the HRTF measurements, or measurement error in the
measurement of the sound source position, as was done for the KRRmethod. Ideally,
this should also be done, but in order to get a meaningful result out of this, there are
some issues. First, in the case of noise in the HRTF measurements, we would either
need to set up a new experiment with a very precise change in position of the sound
source, which is far beyond the scope of this project, or get access to such data from
somewhere else. As the HRTF datasets are usually presented in terms of the finished
HRTF, rather than the measured signals, this type of data is not easily accessible.

In the case of the robustness in relation to the sound source position estimate, this
could be done for the simulated data fairly easily. However, as mentioned previosuly,
the HRTF data available is measured with incremental steps in elevation and azimuth
angles, and to get theHRTF for the intermediate values, an interpolation of theHRTF
needs to be done, as was the case in this project, using theHRTF interpolationmethod
described in [16].

For the simulations for the in-ear sound pressure in this report, the real signal was
simulated as a spherical wave. In order to get the real in-ear sound pressure, the
sound pressure in the position of the center of the head was filtered through

Hi,0(rh, θh, ϕh, ω).

Then, the recorded sound pressure from the microphones in the simulation was used
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to form the interpolated value in the center of the head, once again filtered through

Hi,0(rh, θh, ϕh, ω)

to get the estimated in-ear sound pressure. By adding a noise to the position of the
sound source, the latter HRTF used would have to be changed into

Hi,0(r̂h, θ̂h, ϕ̂h),

where ˆ̄rh = (r̂h, θ̂h, ϕ̂h) denotes the position of the sound source with the added
measurement error. As the HRTF was only measured for incremental steps in the
elevation and azimuth angles, the added error either has to be exactly the same as
the incremental steps for the measured data, or the HRTF has to be interpolated.
However, by interpolating the HRTF, the resulting robustness to evaluate would be
a mixture of several things at once, including the HRTF interpolation method, the
KRR interpolation as well as the real HRTFs robustness to measurement error. There-
fore, neither the robustness to noise in the HRTF measurement nor the addition of
measurement error in the sound source position was evaluated for in-ear sound pres-
sure estimates.

For the real data, we already use an interpolation method for the HRTF itself; this
could very well be shifted by some degrees to evaluate the robustness, but once again,
the same problem occurs.

A final note on this topic is that the effectiveness as well as the robustness of the pro-
posed method, i.e., the in-ear sound pressure interpolation, depends on several things,
including the interpolation method used, the measurement errors, the robustness of
the real HRTF, as well as the robustness of the HRTF interpolation method. As all of
these things are interdependent, they would have to be evaluated all together, mean-
ing that if for instance an optimal β value for the directional Helmholtz kernel was
found for a specific HRTF interpolation method, this might not be the ideal β value
for another HRTF interpolation method.

4.2 Measurement errors for the real data

Themeasured data from the anechoic chamber at the Dept. of Construction Sciences
at LundUniversity had several issues. While the gain for the regular microphones were
set to be the same for all microphones, this gain differed from the KEMAR manikin
measurements. On top of this, the KEMAR manikin recordings were not properly
synced with the microphone recordings, and had to be fixed manually. This was done
by the use of a clapperboard and estimated positions of the microphones. Thus, the
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recorded sound pressure had to be re-scaled and synced manually. This could explain
the behaviour for the lower frequencies in Figure 3.11 for the real data. Another point
is the rotation of all coordinates; the HRTF used could be off by quite a large margin
due to the measurement error for the ears, which were used for the rotation. This
could be fixed by measuring the positions of something along the same axis as the
ears but with a larger distance between the points, as the relative changes in the angles
between the points would be significantly lower the farther away the measured points
were, assuming that the measurement error remains the same.

Further, the assumption used for the interpolation is that the microphones are om-
nidirectional, which was not the case for the microphones used. This could impact
the sound pressure recorded by each microphone, essentially adding distortion to the
recorded sound pressure. There are likely ways of dealing with this, but would require
measurements of the direction of the microphones, which we never measured.

Lastly, the presence of the KEMAR manikin as well as everything else used to set up
the microphones in the sound field will likely affect the sound field, as it introduces
absorption, diffraction and reflections. In the simulations, this was completely ig-
nored, while this introduces distortion to the recorded, real, data. There are several
ways of dealing with this, including the finite element method and the boundary ele-
ment method [36], however, this was deemed to be beyond the scope of this project.
Another point on the same topic is that the anechoic chamber at Lund University
is not perfectly anechoic, resulting in minor reflections of the sound waves from the
walls, in which case a more accurate representation of the sound wave used in the mea-
sured data could be simulated using the mirror image method, as originally described
in [37]. This would however require additional measurements, as the reflection coef-
ficients of the walls would be needed. This was also deemed to be beyond the scope
of this project.

4.3 Angles used for the directional Helmholtz kernel

The angles used for the directional Helmholtz kernel are calculated from the same
reference position to the sound source location for all positions. While the initial idea
behind the implementation of this kernel was to use it for plane waves, in this project
we used it for spherical waves, which is why the reference position was introduced.
In the case of a plane wave, the direction of the sound wave propagation can be esti-
mated through various methods and will be the same for all microphones, but for the
spherical wave this will not be the case. There are some possibilities to improve the
directional Helmholtz kernel by introducing a new weighting function, which would
then use the direction and possibly even the distance to the sound source into account.
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However, for real applications, it is commonly the case that the distance to the sound
source is unknown and hard to estimate, while the general direction to the sound
source, from all microphones, is much easier to estimate. Thus, this implementation
was never fully explored.

4.4 Improvements to the Helmholtz kernel

The kernel used in this work uses the Bessel functions, spherical and non-spherical
for the 3D and 2D case, respectively. The reasoning behind the kernel comes from
the expansion of a wave around a point r0, as defined earlier in the report, as

u(r) =
∞∑
ν=0

ν∑
µ=−ν

ũν,µ(r0)φν,µ(r − r0).

What was later shown was that this could be expanded around any point in Ω, and
by expanding around an arbitrary point r′ ∈ Ω, the resulting expression becomes

u(r) =

∞∑
ν=0

ν∑
µ=−ν

ũν,µ(r
′)φν,µ(r − r′) (4.1)

= ũ0,0(r
′)φ0,0(r − r′) +

∞∑
ν=1

ν∑
µ=−ν

ũν,µ(r
′)φν,µ(r − r′). (4.2)

Now, by looking at the expansion around the point of evaluation, i.e., letting r′ = r,
the second term becomes 0, and we get

u(r) = ũ0,0(r)φ0,0(r − r) = ũ0,0(r)j0(k∥r − r∥). (4.3)

Essentially, by defining the kernel as κ(r1, r2) = j0(k∥r1 − r2∥), as was done in
this report, we model the behaviour in the measured points, i.e., where we have mi-
crophones, by letting the expansion coefficient be the measured sound pressure. For
these discrete points, the estimate gives us the actual expansion of the wave, with the
expansion coefficient ũ0,0 being the sound pressure in the measured positions. How-
ever, the resulting sound field is approximated by a sum of waves expanded around
the points of the microphones; when evaluating the points that are not the micro-
phone positions in the field, the second term in (4.2) does not disappear. Thus, the
resulting interpolation method used in this report only accounts for the zeroth-order
expansion of the real wave, expressed in terms of the basis function φν,µ. In order
to get a more accurate representation of the real sound field, higher order estimates
of the basis functions would be needed. Something similar, but by using a Bayesian
framework with infinite-order analysis, was done in [38].
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Worth pointing out is that while the resulting sound field is not accurate in the entire
field, the zeroth-order component used corresponds to the only component in the
expression that is independent of the direction of propagation of the wave, which
likely is why it was proposed this way to begin with; using higher orders makes the
problem significantly much more complex to deal with.
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Chapter 5

Conclusion

A simulated acoustic environment was set up, and an interpolation technique through
kernel ridge regression was implemented. A similar experiment was also set up in a
real acoustic environment. Three different kernels were introduced, and the direc-
tionally weighted kernel performed the best in essentially all aspects for all of the
experiments. However, this kernel is dependent on prior knowledge of the direction
of the propagating sound wave. The robustness of the KRR technique was evaluated
for simulated data with noise in the measured signals, measurement errors for the
microphones, measurement error for the the sound source position, distance to the
sound source as well as different values of the directional regularization parameter β
for the directional Helmholtz kernel.

The measured data was also evaluated as a function of the directional regularization
parameter β, and compared to a simulated case using the same setup as the measured
data. The optimal β value was found to be around 7 and 17 for the measured and
simulated data, respectively.

Finally, the proposed method, combining the KRR method with a pre-calibrated
HRTF, was evaluated and compared to the KRR method without the use of the
HRTF, as well as a function of β. For the real experiments, the optimal β value was
found to be around 3, while for the simulated case with the same setup, the parameter
increased the performance for very high values of β. The proposed method was shown
to improve the performance for both simulated and real data, for all frequencies, and
for all values of the directional parameter β.

While it is hard to generalize the result to any microphone and sound source setup,
this project could be used as a foundation to similar experiments.
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Chapter 6

Appendix

6.1 The Helmholtz kernels in two dimensions

As the kernels primarily used in the project were defined for the three-dimensional
(3D) case, this section will contain a brief comment on the two-dimensional (2D)
case. The deduction of the kernel is close to identical to the previously presented
kernels, where the only difference is in the initial differential equation that is used
to define the basis function φν,µ(·). For the 3D case, spherical coordinates are used,
while in the 2D case polar coordinates are used, which slightly alters the solution. For
more details on the derivation of the solution, the reader is referred to [4, 7], as this
kernel will only be used for illustrative purposes in this report. However, this kernel
can be used to model for instance water waves and seismic waves. The 2D Helmholtz
kernel is defined as

κ(r) = J0(k∥r1 − r2∥), (6.1)

where J0 denotes the zeroth-order Bessel function of the first kind. The only differ-
ence between the 2D case and the 3D case is that the 3D case uses the zeroth-order
spherical Bessel function of the first kind. Similarly, the directional Helmholtz kernel
is defined as

κ(r1, r2) = J0

(√
(iβ cosϕ− krx

)2
+
(
iβ sinϕ− kry

)2)
, (6.2)

as shown in [4]. Note that the directional weighting function in this case does not
contain C(β), as this is a normalizing constant for three dimensions. Here, ϕ is the
polar angle from a chosen reference position to the sound source.
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6.2 Measurements from the anechoic chamber

Below are the coordinates of the microphones, the KEMAR microphones as well as
the speaker. These are the final positions after the rotation is complete, as well as the
change in the ear positions to fit the real measurements of the KEMAR manekin.
Note that after the rotation, the speaker position was changed by −0.2 in the x-
direction, −0.2 in the y-direction and −0.1 in the z-direction to more accurately
represent where it actually was located in the room. This had a very minor impact on
the final result, and the same conclusion would still hold without this change.

Table 6.1: Position of all the calculated points from the measurements in the anechoic chamber.

x-coordinate y-coordinate z-coordinate
Microphone 1 −0.1437 0.4849 −0.0015
Microphone 2 0.1834 0.1575 0.4284
Microphone 3 0.1163 −0.5258 0.0914
Microphone 4 0.3162 −0.3577 0.1624
Microphone 5 0.2920 −0.0273 0.1867
Microphone 6 0.3256 −0.3689 0.3600
Microphone 7 −0.2272 0.1765 0.1367
Microphone 8 −0.1844 −0.3365 0.0739
Microphone 9 0.0975 0.0052 0.5025
Microphone 10 −0.3049 0.1771 0.4842
Microphone 11 0.2443 0.2557 −0.0309
Microphone 12 −0.2794 −0.4140 0.4280
Left ear 0 0.09 0
Right ear 0 −0.09 0
Speaker 0.8396 −0.8508 2.4578

In Figure 6.1, the speaker and the microphones can be seen.
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Figure 6.1: The speaker, as well as the microphones, without the KEMAR manikin present.
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