
AN ARTIFICIAL NEURAL

NETWORK APPROACH TO

ALGORITHMIC TRADING

TIMMIE BENGTSSON

Master’s thesis
2023:E9

Faculty of Engineering
Centre for Mathematical Sciences
Mathematical Statistics

C
EN

TR
U

M
SC

IEN
TIA

R
U

M
M

A
TH

EM
A

TIC
A

R
U

M

An Artificial Neural Network
Approach to Algorithmic Trading

Timmie Bengtsson
January 2023

Degree Project in Mathematical Statistics

Lund University
Faculty of Engineering
Centre for Mathematical Sciences
Mathematical Statistics

Abstract

The field of machine learning has advanced significantly in recent decades, and, at
the same time, computational power has improved to the point where training large
machine learning models, such as artificial neural networks, is now accessible. Con-
sequently, there has been a rise in the use of these models within the financial sector,
with some firms leveraging them to assist with investment decisions. Using neural
networks, or machine learning models in general, for investing refers to investment
strategies that are constructed, at least partially, by training algorithms on histor-
ical data to identify patterns that may recur in the future. The rationale behind
this approach is that historical data contains structure that will be repeated in the
future, meaning that past price developments of an asset hold valuable information
for predicting future price developments. This approach challenges traditional mar-
ket theories, such as the efficient market hypothesis. Despite this, price patterns
have proved reliable enough to allow multiple investors to reap substantial financial
gains and development into organizations with headcounts in the thousands, solely
focused on identifying and trading these pricing patterns.

This thesis aims to construct and assess artificial neural network models intended
for use in trading algorithms. Given historical returns, the models are trained to
forecast the direction of asset price returns the following day. The predicted return
directions are then input into a trading algorithm that computes daily portfolio val-
ues. The performance of these models is then benchmarked against naive trading
strategies and the underlying asset itself. The Sharpe ratio, Sortino ratio, gross re-
turn, and maximal drawdown are benchmark values used to assess the models. The
selected underlying assets are government bond contracts, as requested by Handels-
banken Fonder.

The results do not demonstrate significant improvement in return estimation over
the simple benchmark models. However, among the tested models, the Trend model
outperformed the others with an average Sharpe ratio of 1.28, Sortino ratio of 2.21,
and gross returns of 15.04%. This suggests that incorporating trend analysis may
provide some value in predicting returns, although further research is needed to
confirm its effectiveness in different market conditions.

This thesis was written in collaboration with Handelsbanken Fonder as the conclud-
ing part of a master’s degree in engineering at Lund University.

Keywords: Financial Markets, Machine Learning, Long Short-Term Memory, Gated
Recurrent Unit, Recurrent Neural Networks, Time Series Analysis, Algorithmic
Trading.

i

Acknowledgements

I would like to thank my assistant supervisor, Carl Hvarfner, for his contributions
and for being a great supervisor to work with; always flexible and quick to answer
any questions. Highly appreciated, Carl! Erik Lindström also deserves recognition
for his high-value inputs. Thank you for your expertise, Erik. I would also like to
thank Handelsbanken Fonder for their support, ideas, and for providing the data
used in the thesis. For those interested in doing a thesis in quantitative finance, I
absolutely recommend Handelsbanken Fonder.

ii

Contents

1 Introduction 1
1.1 Objective and Scope . 3

2 Theory 4
2.1 Finance . 4

2.1.1 Long and short positions . 4
2.1.2 Trading bots and algorithmic trading 4
2.1.3 Performance metrics . 5

2.2 Time Series Analysis . 7
2.2.1 Auto-regressive models . 7
2.2.2 Naive predictors . 7

2.3 Machine Learning . 8
2.3.1 Neural networks . 8
2.3.2 Supervised learning . 9
2.3.3 Recurrent neural networks . 10
2.3.4 Feature selection and extraction 13
2.3.5 Imbalanced data . 13
2.3.6 Training neural networks . 14

3 Methodology 20
3.1 Software . 20
3.2 Data . 20

3.2.1 Data storage and extraction 20
3.2.2 Features . 21
3.2.3 Train-validation-test split . 21
3.2.4 Pre-processing . 21

3.3 Neural Network Model Structure . 22
3.3.1 Trading setup . 22
3.3.2 Hyperparameter optimization 22

3.4 Benchmarking . 22
3.4.1 Simple trading algorithms . 22
3.4.2 Economical benchmarks . 23
3.4.3 Statistical benchmarks . 23

4 Results 25
4.1 Benchmarks . 25
4.2 Trading Performance . 25

iii

5 Conclusion & Discussion 29
5.1 Conclusion . 29
5.2 Discussion . 29
5.3 Future work . 30

References 31

A 37
A.1 Portfolio development for each asset 37

A.1.1 LSTM models trading performance 37
A.1.2 GRU models trading performance 39

A.2 Benchmarking results . 41
A.3 Model accuracy and loss . 45

iv

List of Figures

2.1 Confusion Table. 6
2.2 Artificial neuron. 8
2.3 A simple neural network. 9
2.4 LSTM memory block. 11
2.5 A LSTM network. 12
2.6 Dropout. 17

4.1 Averaged trading performance, LSTM models 26
4.2 Trading performance on the IK1 data set, LSTM model 26
4.3 Averaged trading performance, GRU models 27
4.4 Trading performance on the IK1 data, GRU model 27

A.1 Trading performance on the RX1 data set, LSTM model 37
A.2 Trading performance on the TY1 data, LSTM model 38
A.3 Trading performance on the OE1 data, LSTM model 38
A.4 Trading performance on the DU1 data, LSTM model 39
A.5 Trading performance on the RX1 data set, GRU model 40
A.6 Trading performance on the TY1 data, GRU model 40
A.7 Trading performance on the OE1 data, GRU model 41
A.8 Trading performance on the DU1 data, GRU model 41
A.9 LSTM model accuracy and loss on RX1 training and validation data. 45
A.10 LSTM model accuracy and loss on TY1 training and validation data. 46
A.11 LSTM model accuracy and loss on IK1 training and validation data. . 46
A.12 LSTM model accuracy and loss on OE1 training and validation data. 46
A.13 LSTM model accuracy and loss on DU1 training and validation data. 47
A.14 GRU model accuracy and loss on RX1 training and validation data. . 47
A.15 GRU model accuracy and loss on TY1 training and validation data. . 47
A.16 GRU model accuracy and loss on IK1 training and validation data. . 48
A.17 GRU model accuracy and loss on OE1 training and validation data. . 48
A.18 GRU model accuracy and loss on DU1 training and validation data. . 48

v

List of Tables

3.1 Data table . 20

4.1 Averaged benchmarking results. 25
4.2 Number of trades and percentage of days long or short. 28

A.1 Financial benchmarking results. 42
A.2 Statistical benchmarking results. 43
A.3 Measures calculated from the statistical benchmarking results. All

values are in percentages. 44
A.4 Correlations with the underlying asset (Hold). 45

vi

1

Introduction

The branch of applied mathematics called quantitative finance is devoted to the
mathematical modeling of financial markets, and predicting future asset prices—or
their direction—relates to a number of problems in this area. A motivator behind
this type of research is to increase the efficiency of capital markets (Hübner). Those
who succeed in doing so, by decreasing or removing mispricings, will in turn profit
from their actions; since profiting is inherently the result of taking actions that cor-
rect the market. As profits are linked to the level of success achieved, the incentive
to participate in trading financial markets is quite obvious.

Hedge funds are one of the market participants frequently associated with quantita-
tive finance, with the funds heavily focused on quantitative strategies often referred
to as quant funds. This means that the funds’ trading choices are based on algo-
rithmic, systematic procedures (U.S. Securities and Exchange Commission, accessed
January 20, 2023). If a fund can consistently produce good enough predictions of
asset movements, then trading algorithms leveraging these predictions can gener-
ate high risk-adjusted returns for the fund. One of the best-known such funds is
Renaissance Technologies, which bolstered no less than a 66% annualized return
during the 30-year span from 1988 to 2018 (Zuckerman, 2019a). On the other hand,
a non-quantitative hedge fund normally bases its trading strategy on fundamental
analysis, and instead, the fund managers are in charge of the trading decisions.

According to the Efficient Market Hypothesis (EMH), asset prices in capital mar-
kets accurately reflect all of the information that is currently available, and new
information will be immediately factored into the price. This implies that asset
price development is inherently unpredictable, and it is therefore impossible to use
any information available to forecast returns. EMH proponents assert that attempts
by researchers and practitioners to develop predictive models are meaningless; the
only avenues towards generating excess returns are through chance or exposure to
riskier assets (Fama, 1970, 1965). However, EMH has been challenged multiple
times. (Grossman and Stiglitz, 1980) showed that if knowledge is expensive to col-
lect, the investor will be compensated in accordance with that cost, something that
(Ippolito, 1989) confirmed later on. It also appears that stocks with low price-to-
earnings (P/E) ratios outperform those with high P/E ratios (Dreman and Berry,
1995). According to Malkiel (2003), an increasing number of financial economists
and statisticians disagree with the EMH, they contend that both technical and fun-

1

damental information has predictive value. Malkiel (2003) does however affirm his
trust in markets being efficient in the long run, despite acknowledging the existence
of short-term predictive patterns. Alike Malkiel (2003), Timmermann and Granger
(2004) also note that there are short-term predictive structures in financial markets
but hold the belief that there are no long-term forecasting patterns because they
believe that the patterns will be crowded out if made public. The self-destruction of
patterns that Timmermann and Granger (2004) describes has consequences, one of
which is that financial forecasting researchers may be unwilling to share successful
predictive models; instead, they may choose to sell the models or keep them for
private use.

Findings exposing EMH’s shortcomings are unsurprisingly welcomed by hedge funds,
as the possibility of generating excess returns underpins the industry. However, one
might argue that the success, over long stretches of time, of some hedge funds, consti-
tutes evidence itself against the EMH. This continuous long-term success is no small
feat considering that as predictive models—or the structures they exploit—become
known and their predictive power disappears, the new structures emerging from
this, and the ones still remaining, will be increasingly complex; implying that trad-
ing markets successfully gets harder over time. A possible real-world hint of this is
that, in 2011, Goldman Sachs closed down their well-known hedge fund relying on
computer-driven trading (LaCapra and Herbst-Bayliss, 2011), indicating that even
some of the biggest institutional players were struggling. Hence, it is obvious that
the increasing complexity of patterns drives the need for using models capable of
extracting these otherwise almost unrecognizable patterns. (Huang et al., 2020)
demonstrates that artificial neural networks (ANNs) have been widely used in the
prediction of stock markets and exchange rates but also for portfolio management,
macroeconomic forecasting, and default risks.

The emergence of machine learning techniques in parallel with computing power
during the last decades has showcased the immense potential of these models for
a number of problems, including prediction. Google’s AlphaFold (Jumper et al.,
2021), which predicts 3D models of protein structures, is a renowned example of
this. Although these later developments might have promoted the use of machine
learning in finance, machine learning—especially ANNs—was already a fast-growing
area within financial forecasting during the 1990s (Zhang et al., 1998). Widrow et al.
(1994) reported in 1994 that multiple 1990s financial sector giants, such as Salomon
Brothers, Lehman Brothers, Citibank, and Merrill Lynch, employed ANNs for finan-
cial forecasting and portfolio management, with Citibank claiming that their neural
network models yielded 25% yearly returns trading currency markets. Renaissance
Technologies allegedly used machine learning methods for bet sizing in 1992 and later
developed machine learning systems that ran on their own (Zuckerman, 2019b), in-
dicating, when considering their returns, that machine learning methods are indeed
effective for predicting asset prices and assisting in trading algorithms. BlackRock,
the world’s largest asset manager as defined by assets under management, confirms
this by stating that they believe machine learning and big data technologies are able
to boost investors’ ability to generate alpha (Savi et al., 2015).

Unfortunately, the strategies used by Renaissance and hedge funds alike are nor-

2

mally kept secret, limiting insight into the research and working strategies of these
funds. Researchers in academia, on the other hand, are incentivized to publish, and
from this research, a number of insights can be gained. For example, Blume et al.
(1994) shows how information on historical stock prices together with trading vol-
ume can be informative of future stock price movements. Enke and Thawornwong
(2005) uses feedforward neural networks and comes to the conclusion that, given
the right inputs, a neural network model outperforms both linear regression models
and buy-and-hold strategies. For derivative assets, pricing formulas derived by using
neural networks may be more accurate than traditional methods under certain con-
ditions Hutchinson et al. (1994) or reduce computing time Liu et al. (2019). When
comparing state-of-the-art deep learning models, Livieris et al. (2020) analysis in-
dicates that long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997)
models are the most effective for predicting gold prices. Lo et al. (2000) Used a non-
parametric kernel regression approach for pattern recognition on a large number of
US stocks, spanning the 31 years from 1962 to 1996, and showed that several techni-
cal indicators did provide predictive properties during this period. When predicting
the direction of change of the Taiwan Stock market index (Chen et al., 2003) found
that the best-performing model was a probabilistic neural network (PNN) trained
on historical data. Chatigny et al. (2021) employs attention-guided (Vaswani et al.,
2017) deep learning to identify the most influential firm characteristics and uses the
results to construct a mean-variance optimized portfolio that ends up performing
well compared to existing models. In 2020, (Zhang et al., 2020) showed that rein-
forcement learning algorithms designed for trading futures contracts could deliver
positive profits despite heavy transaction costs on 50 very liquid contracts between
2011 and 2019. A finding highlighting that, despite the markets now being so com-
petitive, it has been possible to design profitable algorithmic trading strategies.

Attempts at modeling markets have also been approached from a visually inspired
avenue. Convolutional neural networks (CNN) (Fukushima, 1988), normally used
for image recognition tasks, were used to provide visual representations of stock
market data features and achieved state-of-the-art performance in the domain of
using neural networks for technical forecasting Ghoshal and Roberts (2020). Again
using a CNN approach, but this time combined with LSTM, Zhang et al. (2019)
could predict price movements from limit order book (LOB) data of cash equities.
Their network outperformed all existing state-of-the-art algorithms and produced
stable out-of-sample prediction accuracy for a variety of instruments on the London
Stock Exchange (LSE). These predictions generated statistically significant profits;
indicating that the model is capable of extracting universal features.

1.1 Objective and Scope

The objective of this thesis is to develop and assess artificial neural network models
that predict the returns of financial time series and then use these predictions in
trading algorithms. The scope will be limited to training and evaluating the models
to forecast and trade the five credit assets supplied by Handelsbanken Fonder.

3

2

Theory

This part explains the financial and mathematical ideas that are essential for un-
derstanding the problem. It begins by introducing fundamental financial concepts
and statistical tools. Following this, the section delves into the theory of machine
learning and its underlying mathematical principles.

2.1 Finance

This section covers financial concepts fundamental for understanding trading algo-
rithms along with measures used to evaluate these algorithms.

2.1.1 Long and short positions

An investor who buys an asset is said to take a long position in that asset. If the
asset price increases over the holding period, the investor’s investment will increase
in value. If the asset price decreases, the investor’s investment will instead decrease
in value. The investor’s returns on invested capital will correspond to the change in
the asset’s value over the holding period.

A short position is in a sense the opposite of a long position. In practice, a short
position is commonly associated with a net short position instead of just selling an
existing holding, meaning that the investor owns a negative amount of some asset.
An investor achieves this by, for example, borrowing an asset from another investor
and then selling that asset.

2.1.2 Trading bots and algorithmic trading

Someone who, usually as their full-time profession, enters shorter-term positions in
financial instruments could be called a trader. A successful trader, loosely defined
as a trader who achieves a positive return on capital over time from their trading
activity, takes decisions based on data and executes the trades they believe will be
profitable. The data analyzed in order to reach trading decisions vary, but almost
all traders analyze historical time series data of assets. This process of roughly:
(1) observing data, (2) analyzing the data, (3) forming a decision, and finally (4)
executing on the decision, could be replicated by a computer. If implemented by
code, this is what is normally referred to as a trading bot. When these trading

4

bots are then deployed for trading on an exchange, it is referred to as ”algorithmic
trading”, indicating that it is not a human who trades but rather an algorithm.

2.1.3 Performance metrics

Sharpe ratio

A common way to benchmark the financial performance of assets, or more commonly
groups of assets in a portfolio, is by comparing Sharpe ratios (SR) (Sharpe, 1966).
The Sharpe ratio is a way to quantify financial performance with a so-called risk-
adjusted return; hence, it will be suitable for comparisons of the different trading
strategies in this thesis. The Sharpe ratio for some asset is defined as follows,

Sharpe ratio =
rp − rf

σp

where rp is the average yearly return of the asset, rf the risk-free market rate and σp

the yearly volatility of the asset. This formula is only valid for annualized returns and
volatilities; however, those values are sometimes not available. Thus, for shorter time
frames, the ratio is usually multiplied by the square root of the number of periods
in a year, like

√
252 for daily returns and volatilities. Unfortunately, this simple

method has been shown to produce inaccurate estimates (Lo, 2002), see section 3.4
for how this issue was dealt with.

Sortino ratio

Sortino and Van Der Meer (1991) developed the Sortino ratio which is a mea-
sure comparable to the Sharpe ratio but that differs in one critical way: it only
takes downside risk into consideration. The ratio’s justification is that an investor
wouldn’t mind if a portfolio’s return showed significant fluctuation exclusively on
the upside. Even though it exhibits significant fluctuation, a portfolio that yields
3% the first month, 50% the next month, and finally 10% would likely satisfy most
investors. Instead, what investors are typically more concerned about is downside
volatility. The Sortino ratio is calculated as follows,

Sortino ratio =
rp − rf

σp−negative

where

σp-negative =

(
1

n

n∑
k=1

min (0, rk)2
)1/2

where n is the number of periods and rk the return at period k

Gross return

Gross return is the total return achieved over a period, for a time period t = t0 . . . tn
it is found by,

Gross return(tn) =
ytn − yt0

yt0

5

Maximal-drawdown

Maximal drawdown is the biggest loss as counted from the last peak. Let At be the
value of an asset at time t, then its running maximum Mt is given by,

Mt = max
u∈[0,t]

Au.

Maximum drawdown, MDDt, is then defined as (Pospisil and Vecer, 2008) the
largest drop in the asset price from the running maximum up to time t,

MDDt = max
u∈[0,t]

(Mu − Au)

Statistical measures

The previously mentioned measures evaluate the models’ performance from a finan-
cial perspective. These measures are not optimal from a scientific perspective due
to the potentially large effects single returns can have on the performance; see 3.4.3.
Therefore, some statistical measures are introduced as well. Let’s start with the
confusion matrix and its components: true negatives, true positives, false negatives,
and false positives.

Figure 2.1: Confusion Table.

True Positive (TP): Model correctly predicts an assets upward price movement

False Positive (FP): Model predicts an assets price to go up when it went down

True Negative (TN): Model correctly predicts an assets downward price movement

False Negative (FN): Model predicts an assets price to go down when it went up

Derived from TP, FP, TN and FN are True Positive Rate (TPR), True Negative Rate (TNR),
Positive Predictive Value (PPV), Negative Predictive Value (NPV) and Accuracy,

True Positive Rate =
True Positive

True Positive + False Negative

True Negative Rate =
True Negative

True Negative + False Positive

Positive Predictive Value =
True Positive

True Positive + False Positive

6

Negative Predictive Value =
True Positive

True Positive + False Positive

Accuracy =
True Positive + True Negative

True Positive + True Negative + False Positive + False Negative
.

TPR (TNR) is the rate of correct positives (negatives) the model predicted out of all
actual positives (negatives). PPV (NPV) is the rate of correct positives (negatives)
the model predicted out of all positives (negatives) that the model generated. The
accuracy is the rate of correct predictions out of all model predictions.

2.2 Time Series Analysis

This section will briefly cover the topics of auto-regressive models and naive predic-
tors in the context of traditional time series analysis.

2.2.1 Auto-regressive models

The Auto-regressive (AR) model is a way of describing certain time-varying pro-
cesses. In many cases, these are time-varying processes with stochastic properties,
such as those found in nature or finance. Concretely, the auto-regressive model takes
chosen prior values of the time series, multiplies them with some constant and adds
them together with a stochastic term. This sum will be the AR model’s prediction
of a future value. Thus, the output variable is linearly dependent on both its own
previous values and a stochastic term.

More precisely, we define an auto-regressive model of order n, AR(n), as

Xt =
n∑

i=1

φiXt−i + εt

where φ1, . . . , φn are the parameters of the model, and εt is zero mean white noise.

2.2.2 Naive predictors

A rudimentary predictor, with a simple and seemingly naive approach to producing
predictions, is often called a naive predictor. In the setting of predicting the next
day’s opening price for a stock, a naive predictor could, for example, be constructed
so that the prediction is the previous day’s closing price, xt = xt−1 + εt. Naive pre-
dictors are usually created to serve as benchmarks for more complex models. The
idea behind this is that if the more complex model does not outperform the naive
model, it is ineffective. Increasing the complexity of a model should, in general,
only be done if it improves the performance of the model. If no performance im-
provements are apparent, then it is usually better to opt for the model with lower
complexity.

7

2.3 Machine Learning

This section will lay out the machine learning theory underlying the models.

2.3.1 Neural networks

Artificial neural networks (ANNs), sometimes known as neural networks (NNs), are
mathematical structures that draw inspiration from the biological neural networks
that make up the brain. More precisely, it is a collection of nodes connected by
edges. They are often used to model patterns in data, i.e. function approximation,
to model probability distributions and to solve classification and regression tasks in
supervised learning.

Figure 2.2: Example of a single neuron network.

Artificial neurons, or nodes, that loosely resemble the neurons in a biological brain,
are the foundation of an ANN. Like the synapses in the human brain, each link has
the ability to send a signal to neighboring neurons. An artificial neuron can signal
neurons that are connected to it after processing signals that are sent to it. The
output of each neuron is calculated as some function of the sum of its inputs, and
the signal at a connection is a real number. Edges refer to the connections. One
commonly used activation function is the Rectified Linear Unit (ReLU), defined as

ReLU(x) = max(0, x), x ∈ R.

The weight of neurons and edges often changes as learning progresses. The weight
alters a connection’s signal intensity by increasing or decreasing it. Neurons may
have a threshold and only send a signal if the combined signal crosses it, much like
how neurons in the human brain function. This is the case for the ReLU. Neurons
are frequently grouped together into layers. Different layers may modify their inputs
in different ways. Signals move through the layers, from the first layer, the input
layer, to the last layer or neuron, usually called the output layer; a visual represen-
tation of this is seen in Figure 2.3.

8

Output layer

Hidden
layers

Input layer

Figure 2.3: A simple neural network with two hidden layers. The S-shaped curves indicate
that the activation functions are logistic sigmoids.

Let’s now define a basic neural network. The feed-forward neural network, with
input and output dimensions N and M, is defined by the function

RN ∋ x0 ⇒ f(x0;W) ∈ RM ,

where x0 is the input and W is the collection of weight parameters. The output of
the feedforward neural network layer, ℓ ∈ {1, . . . , L}, is

h(ℓ)(h(ℓ−1)) = ϕ(ℓ)(W (ℓ)h(ℓ−1) + b(ℓ)),

where h(ℓ−1) is the output of the layer preceding h(ℓ), ϕ(ℓ) is the activation function of
layer ℓ which operates element wise on the input vector; W (ℓ) is the weight matrix;
b(ℓ) is the bias vector for the layer ℓ; and finally, f(x0;W) = h(L) where h(0) = x0.
The width of the layers in between the input and output layers may have other sizes
than N or M . Another choice of activation function is the Logistic Sigmoid. It is
commonly used as the last activation function in the network for problems involving
binary classification. One reason for this is that the output can be interpreted as a
probability, Goodfellow et al. (2016). The Logistic Sigmoid function is given as,

hθ(x) =
1

1 + e−θx
.

2.3.2 Supervised learning

Supervised learning (SL) is used to solve issues when the data at hand consists
of labeled instances, which means that each input data set has some features and
a corresponding label; this is the case for the problem approached in this thesis.
Specifically, we have the labeled data pairs, (x1, y1) , (x2, y2) , . . . , (xn, yn), where
x1,x2, . . . ,xn ∈ X, y1, y2 . . . , yn ∈ Y and the goal is to find the function that con-
nects X and Y .

9

So, based on sample input-output pairs, a supervised learning algorithm aims to
learn a function that maps the feature vectors (inputs) to the labels (outputs).
Each example in supervised learning is a pair that includes an input item, usually
transformed into a vector, and an intended output value. The function generated by
the supervised learning algorithm from the training data can then be used to map
new samples. Ideally, this function will be able to accurately determine class labels
for these unseen instances (not used for training). To succeed with this, the learning
algorithm has to generalize from the training data to hypothetical situations.

2.3.3 Recurrent neural networks

In feed-forward neural networks, information flows forward, meaning that nodes re-
ceive information only from nodes preceding them, and each new input vector x
results in one output vector y. If the data is time series data, then this structure
will not capture the specific time position, in relation to the whole dataset, that
the input vector has. However, in practice, it is often desired to capture the time
dynamics when dealing with time series data, and one way to achieve this is by using
the Recurrent neural network architecture.

Recurrent neural networks differ from feed-forward networks in that node input now
includes node outputs from previous time steps,

ht = ϕh (W hxt + Uhht−1 + bh)

yt = ϕy (W yht + by)
(2.1)

where t indicates the that it is the node output at time t, U is another parameter
matrix, and ϕh and ϕy are activation functions (Amidi and Amidi).

The basic recurrent neural networks introduced by Elman (1990) are capable of
learning shorter and simpler patterns, which, unfortunately, is not especially helpful
when modeling messy real-world data. Methods able to handle longer and more
complicated patterns were desired. The reason for this limitation of basic recur-
rent neural networks is the problem of vanishing or exploding gradients. This is
a problem that appears when training deep networks, such as recurrent networks.
When training a neural network, each weight is updated proportionally to the par-
tial derivative of the error function with respect to the current weight during each
training iteration; see equation 2.2 below. What happens is that this gradient may
become increasingly smaller (or bigger) as it passes through the network, ending
up so small (or big) that the weights no longer update (or explode) their value
during training. Vanishing gradients are in a sense the price paid for increased com-
plexity, and numerical accuracy is the limiting factor. Solving this problem have
been attempted numerous times (Graves, 2012), and one successful such attempt is
the creation of Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber,
1997). The LSTM architecture is one of the most effective approaches for solving
the problem, along with the Gated Recurrent Unit (GRU) architecture introduced
in 2014 by Cho et al. (2014). GRU is akin to Long Short-Term Memory but has
fewer parameters. The LSTM and GRU are, along with other recurrent neural net-
work architectures, recommended by Goodfellow et al. (2016) for problems where
the inputs and outputs are sequences.

10

Long Short-Term Memory

Figure 2.4 and 2.5 from Graves (2012) displays the LSTM cell and an example of
the LSTM architecture, respectively. As seen in 2.4, LSTM cells have three gates:
the input, the output, and the forget gate; these can be seen as continuous analogs
of write, read, and reset for the cells. These three gates function as nonlinear
summing units that assemble activations from both within and outside the block
and use multiplication to regulate the activation of the cell (represented by small
black circles in Figure 2.4). While the forget gate multiplies the previous state of the
cell, the input and output gates multiply the cell’s current input and output. Within
the cell, no activation is used. Typically, the logistic sigmoid is used as the gate
activation function (f), resulting in gate activations between 0 and 1. The input
and output activation functions for cells (g and h) are normally logistic sigmoid
or tanh functions. Dashed lines in Figure 2.4 represent the weighted connections
from the cell to the gates. The block’s remaining connections are all unweighted
(or, equivalently, fixed to 1.0). The output gate multiplication is the only source of
outputs from the block to the remainder of the network.

Figure 2.4: A LSTM memory block with one cell.

The network consists of four input units, a hidden layer of two single-cell LSTM
memory blocks, and five output units. Not all connections are shown. Note that
each block has four inputs but only one output (Graves, 2012).

Formally, a LSTM unit is updated as follows. First, every cell state ct is altered by
a forget gate f t, an input gate it and an output gate ot. The relation is described

11

by the following set of equations (Li et al., 2018),

f t = ϕf (W fxt + U fht−1 + bf)

it = ϕi (W ixt + U iht−1 + bi)

ot = ϕo (W oxt + U oht−1 + bo)

c̃t = ϕc (W cxt + U cht−1 + bc)

ct = ct−1 · f t + c̃t · it
ht = ϕh (ct) · ot

where ϕ is the sigmoid function, W ∗ and U ∗ are weight matrices, b∗ are bias-vectors,
xt is the input to the cell at time t and, lastly, ht is the hidden state output and ·
is element-wise multiplication.

In Figure 2.5 the LSTM memory cells can be seen implemented in a neural network.
This is a network with four input units, one hidden layer consisting of two single-
cell LSTM memory blocks, and five output units. Note that not every connection
is displayed and that each block has four inputs but just one output.

Figure 2.5: A simplified LSTM network consisting of two of the LSTM memory cells seen
in Figure 2.4 above (Graves, 2012).

Gated Recurrent Unit

The Gated Recurrent Unit (GRU) memory cell was developed as an answer to
if all pieces of the LSTM architecture were needed in order to capture long-term
dependencies. GRUs empirically proved that they were not. But, despite having
fewer pieces, an improvement in performance over LSTMs has been demonstrated
on several tasks and datasets (Chung et al., 2014). The main difference between

12

GRU and LSTM cells is that a single gating unit controls both the forgetting factor
and the decision to update the state unit (Chung et al., 2014). Resulting in that
GRU cells only have two gates instead of three as seen in LSTM cells. Having two
gates–a reset and an update gate–instead of three means that there will be fewer
parameters in GRU networks. The GRU memory cell is updated as follows (Heck
and Salem, 2017),

ut = ϕg (W uxt + Uuht−1 + bu)

rt = ϕg (W rxt + U rht−1 + br)

ĥt = ϕh (W hxt + Uh (rt ∗ ht−1) + bh)

ht = (1− ut) ∗ ĥt + ut ∗ ht−1

where ut is the update gate, rt is the reset gate, and, as previously, ht is the hidden
state output.

2.3.4 Feature selection and extraction

Feature selection refers to the process of choosing a subset of relevant features for
use in developing the model. In the context of time series prediction using neural
networks, feature selection would involve identifying a subset of the time series data,
such as particular time steps or certain variables that are believed to have explana-
tory power of future values. The core idea underlying the use of feature selection
techniques is that the data contains redundant features that can be eliminated with
minimal loss of information. In the case of predicting the next value in a time se-
ries, one could, for example, assume that data from a longer time ago is no longer
relevant or has very little explanatory power when predicting the next value in the
same time series. It might also be that one relevant characteristic is redundant in
the presence of another relevant characteristic with which it is highly correlated.
For instance, if there are auto-regressive properties in the data, older data points
could be deemed redundant since some of the information will be present in more
recent data points.

Feature extraction generates new features from functions that have the original
features as input. For financial time series data, such functions could, for example, be
moving averages, volatility, or some of the popular technical indicators like Moving-
Average-Convergence-Divergence (MACD), Bollinger-Bands, or Relative Strength
Index (RSI).

2.3.5 Imbalanced data

In classification tasks with an uneven split in the number of samples in each class,
this is often referred to as ”unbalanced data”. This might create problems when
training a machine learning model. The training model will spend the majority of
its time on instances of one class and not learn enough from the other class because
there are so few samples in comparison to the other class. Say one has a severe skew
between two classes, that is, less than 1% in one class and the rest in the other class.
Then, in the case of a batch size of 128, many batches won’t have any samples of
the class with less than 1% representation, making the gradients less informative
(He and Garcia, 2009). Batch size refers to the number of training examples used

13

in one iteration.

A way of handling the issue of imbalanced data by downsampling and upweighting.
Downsampling is when one samples from the majority class examples, creating a
subset, and trains the model on this subset instead of the whole set. This process
will improve the imbalance between the sets. If desired, one could sample so that
there is an even split between the two classes.

Upweighting means that one adds an example weight to the subset created by down-
sampling. This weight is equal to the factor by which the downsampling was per-
formed (He and Garcia, 2009).

2.3.6 Training neural networks

When processing samples that each have a known ”input” and ”label”, neural net-
works build probability-weighted associations between the two. These associations
are then stored in the network’s structure in the tunable parameters of the network,
such as the weights. In order to train a neural network from a given example, one
compares the processed output of the network—often a prediction—against the de-
sired output. The error is in the discrepancy between the two. The network then
modifies its weighted associations using this error value and a learning strategy;
in practice, this implies minimizing a loss function through the use of some opti-
mization algorithm. The neural network will produce outputs that are increasingly
comparable to the goal output as modifications are made over time. These mod-
ifications are usually made a number of times before the training is stopped as it
fulfills certain conditions. This is called supervised learning.

Without being designed with task-specific rules, neural networks still ”learn”, as
they are trained, by considering a large number of examples. For instance, in time
series prediction, they might study sample vectors, each containing data points pre-
ceding the target data point. If there are learnable patterns in the data, the neural
network will be tuned to identify these patterns. When the neural net is later fed
with an unseen vector, it will produce a prediction based on the learned patterns
from the training data.

Since training a network on a given dataset, D, is essentially an optimization problem
with the goal of minimizing a loss function, the training task can thus be posed as
finding the weights that will satisfy:

W ∗ = arg min
W

L(W ;D),

where L(W ;D) is the loss function tailored to the task at hand.

An optimization algorithm describes the procedure of identifying the input param-
eters or arguments for a function so that the minimum or maximum output of the
function is found; here, that would be the weights, W , which minimizes L(W ;D).
One such optimization algorithm is Gradient Descent (GD),

W t+1 = W t − ηt∇W tL (W t;D) , (2.2)

14

where ηt is the step size, often loosely referred to as the learning rate.

Gradient descent runs through all samples in the training set to do a single param-
eter update in a particular iteration. This is computationally inefficient and can
take a long time when the training data set is large. Therefore, other methods have
been designed. With the data often batched, stochastic gradient descent (SGD) or
mini-batch stochastic gradient descent can be used. Using either one or a subset of
training samples to update a parameter in a particular iteration, respectively.

Backpropagation through time

To compute the gradients in order to tune the parameters of a recurrent neural net-
work, backpropagation through time (BPTT) (Werbos, 1990) is often applied. Lets
walk through it briefly using the same notation as previously, for the interested a
gentle introduction is found in Chen (2016).

For clarity, a loss function L(W ;D) is set, let it be the cross-entropy defined as

L = −
∑
s

yt · log ŷt.

where yt is the label to predict and ŷt is the prediction obtained from the model at
time t.

Recall that the goal of this procedure is to find the parameters that minimise L.
To accomplish this the derivative ∂L

∂mt
must be obtained. Set mt = by + Wyht (see

equation 2.1), from Chen (2016) we then have,

∂L
∂mt

= ŷt − yt

Now, the derivatives with respect to Uh (see equation 2.1) can be found since an
RNN uses the same Uh in each time step. Consider just the derivative of the loss
function at time step t + 1, that is

Lt+1 = −yt+1 log ŷt+1

then
∂Lt+1

∂Uh

=
∂Lt+1

∂ŷt+1

∂ŷt+1

∂ht+1

∂ht+1

∂Uh

=
t∑

k=1

∂Lt+1

∂ŷt+1

∂ŷt+1

∂ht+1

∂ht+1

∂hk

∂hk

∂Uh

,

where BPTT was used in the second equality. The derivative with respect to Uh is
arrived at by summing up at all time steps,

∂L
∂Uh

=
N−1∑
t=1

t+1∑
k=1

∂Lt+1

∂ŷt+1

∂ŷt+1

∂ht+1

∂ht+1

∂hk

∂hk

∂Uh

assuming t = 1, . . . , N .

15

Now, let’s find the derivative with respect to Wh (2.1). Start with the derivative of
the last time step,

∂Lt+1

∂Wh

=
∂Lt+1

∂ht+1

∂ht+1

∂Wh

=
t+1∑
k=1

∂Lt+1

∂ht+1

∂ht+1

∂hk

∂hk

∂Wh

.

and then sum up the derivatives at all previous time steps,

∂L
∂Wh

=
N−1∑
t=1

t+1∑
k=1

∂Lt+1

∂zt+1

∂zt+1

∂ht+1

∂ht+1

∂hk

∂hk

∂Wh

.

For clarity, the iterator k in the sum is the BPTT part summing over all hidden
states hk, and the iterator t sums over the time-steps with regard to the loss func-
tion L. In the setting of multiple-to-one prediction this last sum can be omitted
since only the last prediction, and hence the last loss function value, is of importance.

Finally, we calculate the derivatives with respect to by (2.1) and Wy (2.1) as follows,

∂L
∂by

=
N−1∑
t=1

∂L
∂ŷt

∂ŷt
∂by

∂L
∂Wy

=
N−1∑
t=1

∂L
∂ŷt

∂ŷt
∂Wy

Regularization

Overfitting is a common issue encountered during the training of neural networks,
and it can be difficult to prevent. Ensemble regularization methods, which involve
combining the predictions of multiple neural networks during testing, can mitigate
overfitting but are computationally expensive for large networks. To address this
issue, dropout is a regularization technique that has been shown to be effective.
The basic idea of dropout is to randomly remove nodes and their connections with a
certain probability hyperparameter p during training. This has been demonstrated
to enhance the performance of neural networks while reducing computational com-
plexity (Srivastava et al., 2014). Figure 2.6, adapted from Srivastava et al. (2014),
provides a visual representation of the technique.

16

Figure 2.6: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers.
Right: An example of a net with dropout. Crossed units have been dropped (Srivastava
et al., 2014).

Other ways to achieve regularization include choosing smaller batch sizes and, in
some cases, batch normalization (see section below).

Batch normalization

Batch normalization is a reparameterization of the model that introduces addition
and multiplication to the hidden units during training. Its primary purpose is to
improve optimization. However, to avoid encountering an undefined gradient in the
calculations, noise is added. This noise can also have a regularizing effect, sometimes
making dropout unnecessary (Goodfellow et al., 2016).

Batch normalization is performed by applying the following procedure (Ioffe and
Szegedy, 2015),

Input: Values of x over a mini-batch: B = {x1...m}
Parameters to be learned: γ, β

Output: {yi = BNγ,β (xi)}

µB ← 1

m

∑m
i=1 xi // mini-batch mean

σ2
B ← 1

m

∑m
i=1 (xi − µB)2 // mini-batch variance

x̂i ←
xi − µB√
σ2
B + ϵ

// normalize

yi ← γx̂i + β ≡ BNγ,β (xi) // scale and shift

where ϵ is a constant added for numerical stability. The last step is done in order to
maintain expressive power of the network. Instead of just replacing the hidden unit
activations xi with the normalized x̂i, they are instead replaced by yi. Now, since
γ and β are learnable parameters, this allows yi to have any mean and standard
deviation (Goodfellow et al., 2016).

17

Binary cross-entropy

When dealing with probability values, p ∈ [0, 1], common loss functions such as the
squared residual with L(p) = (1− p)2 are inefficient due to the small changes in loss
when the probability p changes. Since the step size in backpropagation depends in
part on the derivative of the loss function, a monotonically decreasing loss function
with large loss for bad predictions and small loss for good predictions is desired. The
derivative of the cross-entropy loss function will be relatively large compared to that
of the squared residual loss function for bad predictions. Hence, the cross-entropy
loss function will improve training as compared to squared residual since the step
sizes during backpropagation will be larger. Cross-entropy can be written as,

Cross-entropy = − 1

N

N∑
i=1

(pi log (p̂i) + (1− pi) log (1− p̂i)) ,

and for N = 1 one finds binary cross-entropy (Nielsen, 2015). This is the log
probability density function of a Bernoulli variable.

The Adam optimizer

The Adam optimization algorithm is an extension to stochastic gradient descent.
There are a large number of different optimizers one could use, and which one is
best will depend on the problem at hand. However, some optimizers might be su-
perior in some cases as compared to others. The Adam optimizer is an algorithm
that performs well in a number of different settings. According to Ruder (2016)
the Adam optimizer might be the best overall choice under certain conditions. The
Adam optimizer was previously recommended as the default algorithm to use in the
course CS231n at Stanford (Stanford University).

One way to grasp the Adam algorithm is to step through its algorithm. The algo-
rithm can be written as (Kingma and Ba, 2014),

Algorithm 1 The Adam algorithm

Input: f(W), W0, η, β1, β2, ϵ
Output: Wt

1: procedure
2: m0 ← 0
3: v0 ← 0
4: t← 0
5: while Wt not converged do
6: t← t + 1
7: gt ← ∇Wtft (Wt−1)
8: mt ← β1 ·mt−1 + (1− β1) · gt
9: vt ← β2 · vt−1 + (1− β2) · g2t
10: m̂t ← mt/ (1− βt

1)
11: v̂t ← vt/ (1− βt

2)
12: Wt ← Wt−1 − η · m̂t/

(√
v̂t + ϵ

)
return Wt

18

where, f(W) is the objective function with weights (parameters) W , W0 are the
initial weights, η is the learning rate, and β1, β2 and ϵ are hyperparameters.
What happens is that the first and second moment vectors along with the timestep
are initialized. Then the while loop is entered; here, t is updated, and the gradient
with respect to the objective function at time t is found. Then the biased first and
second moments are updated. After that, the bias-corrected first and second mo-
ment estimates are computed. Finally, the weights are updated. This is done until
the weight matrix has converged. The resulting weights are then returned.

In essence, the Adam algorithm computes and keeps track of the biased first and
second moment of the gradients, or mean and variance respectively, as follows

mt+1 = β1mt + (1− β1)∇W tL (W t;D)

vt+1 = β2vt + (1− β2) (∇W tL (W t;D))2 ,

where β1 and β2 are usually set to 0.9 and 0.999 respectively (Kingma and Ba,
2014). The moments are initialized to zero, as seen in the code above. The unbiased
moment estimates are then calculated,

m̂t+1 =
mt+1

1− βt
1

v̂t+1 =
vt+1

1− βt
2

.

Finally, the weights are updated,

W t+1 = W t − η
1√

v̂t+1 + ϵ
m̂t+1,

where ϵ is needed to numerically stabilize the calculations, it is usually set to 10−8.

19

3

Methodology

This section lays out the methodology for developing and evaluating the models used
in this study. It will cover details regarding the software used, data processing, model
structure, and model evaluation.

3.1 Software

Microsoft Excel was utilized to extract and handle the data. The analysis was
conducted in Python3 using the Jupyter Notebook platform within the Visual Studio
Coding code editor. Several packages were imported, for example, Pandas, NumPy,
PyPlot, and Matplotlib.

3.2 Data

Historical time series data for closing prices on five assets were received from Han-
delsbanken Fonder. Information about the data can be found in table 3.1.

Table 3.1: Data table

Series Name Frequency Unit Start Date End Date

RX1 Daily Price 2000-01-04 2022-10-25
TY1 Daily Price 2002-01-04 2022-10-25
IK1 Daily Price 2009-09-15 2022-10-25
OE1 Daily Price 2002-01-04 2022-10-25
DU1 Daily Price 2002-01-04 2022-10-25

3.2.1 Data storage and extraction

The data was collected from the Bloomberg Terminal and Handelsbanken’s internal
systems. The data was initially stored in Excel files. These files were instead saved
as csv files to reduce file size and improve load time into Python. The csv files were
then loaded into a Pandas DataFrame. This DataFrame was then manipulated to
only contain the data of interest. The same overall process applies to all model data
used in this thesis.

20

3.2.2 Features

The features used were previous closing prices from the time series itself. The model
was extended to handle inputs from multiple other time series. When incorporating
other time series as inputs, previous closing prices from these time series were used.

3.2.3 Train-validation-test split

The data was split up into three sets: training, validation, and testing. The training
set was used to train the models. The validation set was then used to evaluate the
model’s accuracy and to tune the hyperparameters (Hvarfner et al., 2022b). The
results from the validation accuracy were used as a base to evaluate which model
performed the best. The improved models were then retrained on the training data
and finally evaluated on the test data. The test set was allocated the last 10% of
the full dataset, with the remaining 90% being split between training and validation
as 90% and 10% respectively.

3.2.4 Pre-processing

In order to use the data in practice, a number of data manipulation steps are needed.
A fundamental premise of neural network learning is that training and test data
come from a stationary data set. That is, xtrain and xtest should be outcomes of
X if X is a random variable. This is not always the case for time series data since
some processes might have non-stationary properties. Asset prices are among the
examples of processes that usually have non-stationary properties. Stock prices, as
an example, typically have an upward drift of both mean and variance. Monthly
annualized volatilities are usually lower than daily annualized volatilities, while an-
nualized volatilities are higher. As a result, prices typically exhibit short-term rever-
sion and long-term trending. Additionally, volatility normally decreases gradually
before abruptly increasing. Therefore, to arrive at something more stationary, the
asset price data was transformed into returns,

rt = (pt − pt−1)/pt−1,

and scaled to be in the interval x ∈ [0, 1] using preprocessing.scale() from the scikit-
learn library. The scaling was done separately for the training, validation, and test
sets to not introduce data leakage. After this, the data was split into as many input
and target series as possible for each time series set. The input series consists of the
n previous data points of the target, located at position n + 1 in the original time
series. There is one input series for each target, and the number of targets in a time
series is t = length(series)− n. Resulting from this will be t sets each consisting of
one input series and one target. These sets will now be split into two groups, one
with all the negative targets, ”downs”, and one with all the positive targets, ”ups”.
If the target is negative, it is replaced with a 0, and the remaining positive targets
are replaced with ones. Instead of having specific values as targets, the described
process have reduced the targets to a binary choice of 1 or 0, representing up and
down respectively. The number of elements in each group, ”ups” or ”downs”, is
counted, and the group with the most elements is reduced so that it has the same
size as the smaller group. Finally, the two groups are merged and shuffled. Note
that ”targets” here are interchangeable with ”labels”.

21

3.3 Neural Network Model Structure

The neural network model structures used were Long Short-Term Memory and
Gated Recurrent Units. Both models consisted of 4 layers with 128 LSTM or GRU
nodes, respectively, followed by one dense layer of 32 ReLU nodes, and finally a single
sigmoid output neuron. Added between each layer was dropout with p = 0.25 and
batch normalization. Hyperparameters were learning-rate = 1e−4, decay = 1e−6,
epochs = 30 and batch-size = 8. A binary cross-entropy loss function was used for
training. The model for each asset was trained on the training data derived from
that same asset; that is, the neural model used to trade, for example, RX1 was
trained on the training data generated from RX1. The 60 previous returns were
used to predict the next return, and thus, to predict rt, (rt−1, rt−2,, rt−60) was
used as input to the model. Dropout (Srivastava et al., 2014) was implemented in
accordance with the recommendations to select the least flexible model that pro-
duces comparable cross-validation results (Zhang et al., 2020). Zhang et al. (2020)
also notes that using dropout improves results for financial applications, especially
in the case of complex network architectures.

3.3.1 Trading setup

The outputs from the models are utilized as inputs for the trading algorithm. When
the model output is ”up,” indicating a positive prediction for the next trading day’s
return, the trading algorithm will take a long position at the end of the preceding
trading day. This position will be held until the model predicts a ”down” for the
next trading day, at which point the trading algorithm will swap the long position
for a short position at the end of the preceding trading day.

Since the neural network model’s final node is a sigmoid activation function that
generates predictions ranging from 0 to 1, a threshold separating ”up” and ”down”
predictions must be defined. This threshold has been set to 0.5. If the output is
precisely 0.5, the position remains unchanged. The choice of 0.5 stems from that
the output could be interpreted as a pseudo-probability. A value of 0.5 would imply
that the model believes there is an equal likelihood that the next day’s return will
be positive or negative.

3.3.2 Hyperparameter optimization

Since K-fold cross-validation fails in finance (De Prado, 2018), cross-validation is
used for hyperparameter tuning (Hvarfner et al., 2022a). This optimization is per-
formed using the validation set; leaving the test set for a final out-of-sample evalu-
ation. This method will minimize data leakage.

3.4 Benchmarking

3.4.1 Simple trading algorithms

In order to benchmark the more advanced models, very simple models were imple-
mented and evaluated. The performance of these models where then compared to

22

the performance of the advanced models. Specifically, an auto-regressive model of
order one, called Naive, and one of order 10, called Trend, were used.

The Naive model simply takes the most recent return as its prediction, that is
yt = yt−1, which implies that the direction (up or down) of the last return will be
the predicted direction of the next return. The Trend model’s prediction is the
weighted average of the last n = 10 returns,

yt =
yt−1 + yt−2 + · · ·+ yt−n

n
.

again this means that if this weighted average is bigger than zero the model will
predict that the next return is positive and vice versa.

3.4.2 Economical benchmarks

Benchmarking can be done after the models have been used to predict asset direction
and the trading algorithm has converted these predictions into trading performance.
Transaction fees have been excluded. When transaction fees are insignificant in re-
lation to assets under management (AUM) and trading volume is low, this should
not be a problem. However, if transaction fees accumulate, it might erode returns
for trading strategies with higher turnover. The resulting trading performance is
used to find the Sharpe ratio, Sortino ratio, maximal drawdown, and gross return.
On the request of Handelsbanken, the risk-free rate (rf) was set to rf = 0.0.

Since (Lo, 2002) found that the traditional method of calculating Sharpe-ratios
results in inaccurate readings, another method will be used in this thesis. Instead,
the annual return and volatility will be calculated from the portfolio development
4.2 directly. The following code displays how the Sharpe-ratio was calculated,

1 def sharpe_ratio(portfolio_values, risk_free_rate):

2 tot_return = gross_return(portfolio_values) - risk_free_rate

3 years_held_invest = len(portfolio_values) / 252

4 tot_return_annual = pow(1 + tot_return, 1/years_held_invest) - 1

5 volatility_yearly = yearly_standard_deviation(portfolio_values)

6 return tot_return_annual / volatility_yearly

7

8 def portfolio_yearly_standard_deviation(portfolio_values):

9 every_fifth_value = portfolio_values[0::5]

10 weekly_returns = returns(every_fifth_value)

11 yearly_variance = weekly_returns.var() * 52

12 yearly_standard_deviation = np.sqrt(yearly_variance)

13 return yearly_standard_deviation

3.4.3 Statistical benchmarks

Statistical benchmarking (classification) is performed using the model outputs di-
rectly, hence the labeling emphasizing a difference from the financial benchmarks.
The financial benchmarks are affected by the actual returns. If the model is wrong
for a prediction where there is a huge move, this will significantly affect the finan-
cial performance negatively. Due to the cumulative nature of returns, just a few

23

decisions can permeate the model’s financial performance. This results in finan-
cial performance that is potentially misleading. Therefore, it seems meaningful to
also observe benchmarks not affected by this randomness. Calculated for this task
are true negatives (TN), true positives (TP), false negatives (FN) and false posi-
tives (FP). Derived from these are the true positive rate (TPR), true negative rate
(TNR), positive predictive value (PPR) and negative predictive value (NPR), all of
which are independent from the returns.

24

4

Results

The section presents the average trading performance for each model, along with key
benchmarks. The benchmarks are presented both for each dataset and model, as well
as an average across all datasets for each model. For an outline of all benchmarks
and trading performances, please see the Appendix.

4.1 Benchmarks

Table 4.1 displays averaged benchmarking results for each model. The Trend model
performs the best across almost all measures (excluding TPR, NPR, PPV, and
NPV); it has the highest accuracy, Sharpe ratio, Sortino ratio, gross return, and the
lowest maximal drawdown. When the same measures are observed, the GRU model
is second best, except for maximal drawdown, where the naive model is slightly
better.

Table 4.1: Averaged benchmarking results.

Model
Sharpe
Ratio

Sortino
Ratio

Gross
Return
(%)

Maximal
Drawdown

(%)

True
Positive
Rate (%)

True
Negative
Rate (%)

Positive
Predictive
Value (%)

Negative
Predictive
Value (%)

Accuracy
(%)

LSTM 0.37 0.53 4.43 (9.11) 50.3 50.4 47.0 53.6 50.3
GRU 0.87 1.47 10.77 (5.90) 48.5 55.0 48.6 54.9 52.0
Trend 1.28 2.21 15.04 (4.72) 38.4 64.7 49.0 54.4 52.4
Naive 0.55 0.90 4.43 (5.80) 48.2 54.8 48.3 54.7 51.7
Hold (1.02) (2.05) (14.9) (15.8) - - - - -

4.2 Trading Performance

In Figure 4.1 average trading performance is plotted, LSTM models are found in
red. The Trend model in green has the highest gross return over the period. The
simple Naive model in purple has the second highest gross return, outperforming
the Neural model.

25

0 100 200 300 400
Timesteps

90

95

100

105

110

115

Po
rtf

oli
o
Va

lue

Trading Performance - Averaged, excluding IK1
Neural
Trend
Naive
Hold

Figure 4.1: Averaged trading performance for the LSTM models plotted in red, excluding
IK1.

IK1 LSTM trading performance and neural network model output are seen below,
akin results for the other assets (RX1, TY1, OE1 and DU1) are found in Appendix
A.1.1.

0 50 100 150 200 250
Timesteps

80

90

100

110

120

130

Po
rtf
oli
o
Va

lue

Trading Performance
Neural
Trend
Naive
Hold

0 50 100 150 200 250
Timesteps

0.40

0.48

0.56

0.64

Ps
eu

do
-p
ro
ba

bil
ity

Model output

Figure 4.2: Trading performance on the IK1 data set along with the neural network model’s
output for the LSTM model. Note that the number of time steps (trading days) is fewer
in this data set.

In Figure 4.3 averaged trading performance is plotted, GRU models are seen in red.
The Trend model in green has the highest gross return over the period, followed by
the Neural model. Note that the Naive and Trend models’ performances are identical
to those in Figure 4.1, this is expected since these models are deterministic.

26

0 100 200 300 400
Timesteps

90

95

100

105

110

115

Po
rtf

oli
o
Va

lue

Trading Performance - Averaged, excluding IK1
Neural
Trend
Naive
Hold

Figure 4.3: Averaged trading performance for the GRU models plotted in red, excluding
IK1.

IK1 GRU trading performance and the neural network model’s output are seen
below, akin results for the other assets (RX1, TY1, OE1 and DU1) are found in
Appendix A.1.2.

0 50 100 150 200 250
Timesteps

80

88

96

104

112

120

Po
rtf
oli
o
Va

lue

Trading Performance
Neural
Trend
Naive
Hold

0 50 100 150 200 250
Timesteps

0.42

0.48

0.54

0.60

Ps
eu

do
-p
ro
ba

bil
ity

Model output

Figure 4.4: Trading performance on the IK1 data set along with the neural network model’s
output for the GRU model.

27

Table 4.2: Number of trades and percentage of days long or short.

Data Model
Number
of trades

Days
Long (%)

Days
Short (%)

RX1 LSTM 79 35.7 64.3
GRU 70 27.1 72.9
Trend 58 37.8 62.2
Naive 230 44.5 55.5

TY1 LSTM 65 53.4 46.6
GRU 104 42.7 57.3
Trend 62 35.3 64.7
Naive 223 47.6 52.4

IK1 LSTM 36 37.1 62.9
GRU 54 61.0 39.0
Trend 45 30.5 69.5
Naive 131 41.7 58.3

OE1 LSTM 84 47.2 52.8
GRU 92 38.5 61.5
Trend 54 40.0 60.0
Naive 228 45.0 55.0

DU1 LSTM 49 70.9 29.1
GRU 74 69.9 30.1
Trend 60 37.6 62.4
Naive 216 52.2 47.8

Average LSTM 62.6 49.9 50.1
across GRU 78.8 46.7 53.3
all data Trend 55.0 36.8 63.2

Naive 207 46.6 53.4

Table 4.2 displays the number of trades taken by each model and the percentage of
days that the model held a long or short position. When observing the averaged
results, it can be seen that the Trend model took the least amount of trades, followed
by the LSTM model. The number of long and short days are almost the same for the
LSTM, GRU, and Naive models; in contrast to the Trend models which on average
held a short position 63% of the days.

28

5

Conclusion & Discussion

5.1 Conclusion

Based on the findings of this thesis, no definitive conclusions can be drawn regarding
the efficacy of artificial neural networks in reliably forecasting expected returns of
credit futures and utilizing them in trading algorithms. While the ANN models
proposed in this study did not outperform simple predictors, it is important to
note that generalization beyond the specific models and time series examined here
is challenging. This is primarily due to the multitude of design options available
when building neural networks, including input data selection, neural network type,
architecture, regularization approach, and parameter selection, among other factors.
It is conceivable that, with the appropriate design, an ANN model could improve
return estimations and produce a trading algorithm that outperforms benchmark
models. Further research is needed to explore the potential of ANNs in this domain.

5.2 Discussion

The trend model outperformed the other models tested in this study. However, its
simplicity makes it enticing to question whether its success was simply circumstan-
tial. While it might be true for the results of this thesis, it is probably not true
in general given that multiple studies have reached the conclusion that trend mod-
els outperform markets (Johnson, 2002), (Fama and French, 2012), (Barroso and
Santa-Clara, 2015), (Chan et al., 1996). It is also worth noting that simple predic-
tion models have yielded impressive results in different markets too. For instance,
Bill Benter reportedly made close to a billion dollars by using linear regression mod-
els to place bets on horses in Hong Kong (Chellel, 2018).

However, it is possible that the superior performance of the trend model was due
to it holding a short position for 63% of the days during a period when the un-
derlying asset was trending downward. Additionally, the model’s accuracy was just
52.4%, which suggests that its impressive results were only specific to that period.
As such, it is difficult to draw any firm conclusions about whether the model could
consistently produce such performance in other market climates based solely on the
results of this study.

29

The performance of the LSTM models is notably poor, and, in many cases, worse
than that of the naive models. One possible reason for this could be observed in the
average percentage of days when the models are long versus short. On average, the
LSTM models are short for 50.1% of the days, while the naive model is short 53.3%
of the days. However, it is possible that the series under consideration contains
an AR(1) component. While the authors consider this to be unlikely, it cannot be
entirely ruled out as a contributing factor to the poor performance of the LSTM
models.

The validation loss that remained constant throughout the training process, as de-
picted in A.3, may be a result of trying to fit a signal that appears as noise due
to the high level of complexity in the data. In such cases, any predictions made
by the model, no matter how plausible they may seem, could be spurious. This
is supported by the fact that both the naive and trend models performed as well
as, or even better than, the neural models. However, it is worth noting that the
downward trend of the underlying asset during the test period may have benefited
the trend and naive models. To better understand the effectiveness of the models,
test periods with both sideways and upward trends must be evaluated. In summary,
although the results of this study do not provide conclusive evidence for the efficacy
of neural models in predicting the returns of credit futures, the findings highlight
the complexity of the problem and the importance of careful evaluation when using
neural networks.

5.3 Future work

Multiple questions and ideas emerged throughout the thesis. In the hopes of inspir-
ing future thesis writers, some of these are presented here,

• How do the algorithms perform if thresholds are set so that trades are only taken
if the ”probability” is above or below some value, otherwise it does nothing? This
problem would mimic solving for optimal trading strategies when considering
transaction fees (Nystrup et al., 2018).

• If predictions the day before larger movements are evaluated, might these predic-
tions in any way indicate that something bigger is about to happen the next day
as compared to the other predictions? If such a pattern is identified, the trading
algorithm could be tuned so that it takes a larger position than it otherwise would.

• If the models are trained jointly on multiple different assets, will they be able
to predict one of them? Might the models’ performance to predict one of them
improve as compared to only training on the asset itself?

• How could using multiple assets or exogenous information for the prediction of
one asset improve results?

• How do the models perform for shorter time frame data, such as between 1 and
15 minute ticks? Here, one might also weight more recent data higher than older
data in order to continually capture the most recent market dynamics.

30

• Is there a way to quantify market dynamics and train another model to identify
which dynamics prevail given some input data? Can the side-model’s outputs
then be used as inputs to the trading algorithm?

• It might be an idea to implement information about the performance from a
longer time ago, such as 1 to 5 years, possibly less as one goes further back, but
thematically accurate, so that the model has some sense of if the recent few years
have been positive or negative.

• The model could be continuously re-trained with new data to tune it as new
market data become available over time.

• Weigh the allocation size depending on how certain the model is on a trade, as
determined by how much the output deviates from 0.5.

• Leverage the domain-specific knowledge of experts to incorporate additional rel-
evant input datasets.

31

Bibliography

A. Amidi and S. Amidi. CS230 - deep learning. URL https://stanford.edu/

~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks#.

P. Barroso and P. Santa-Clara. Momentum has its moments. Journal of Financial
Economics, 116(1):111–120, 2015.

L. Blume, D. Easley, and M. O’hara. Market statistics and technical analysis: The
role of volume. The journal of finance, 49(1):153–181, 1994.

L. K. Chan, N. Jegadeesh, and J. Lakonishok. Momentum strategies. The Journal
of Finance, 51(5):1681–1713, 1996.

P. Chatigny, R. Goyenko, and C. Zhang. Asset pricing with attention guided deep
learning. Available at SSRN 3971876, 2021.

K. Chellel. The gambler who cracked the horse-racing code. Bloomberg L.P.,
2018. URL https://www.bloomberg.com/news/features/2018-05-03/the-

gambler-who-cracked-the-horse-racing-code.

A.-S. Chen, M. T. Leung, and H. Daouk. Application of neural networks to an
emerging financial market: forecasting and trading the taiwan stock index. Com-
puters & Operations Research, 30(6):901–923, 2003.

G. Chen. A gentle tutorial of recurrent neural network with error backpropagation.
Manuscript, 2016. URL http://arxiv.org/abs/1610.02583.

K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio. On the properties of
neural machine translation: Encoder-decoder approaches. CoRR, abs/1409.1259:
1–9, 2014. URL http://arxiv.org/abs/1409.1259.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated re-
current neural networks on sequence modeling. In Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Proceedings of the
27th International Conference on Neural Information Processing Systems - Vol-
ume 2, volume 2 of NIPS’14, pages 2267–2275, Cambridge, MA, 2014. MIT
Press. URL http://papers.nips.cc/paper/5346-empirical-evaluation-of-

gated-recurrent-neural-networks-on-sequence-modeling.

M. L. De Prado. Advances in financial machine learning. John Wiley & Sons, 2018.

D. N. Dreman and M. A. Berry. Overreaction, underreaction, and the low-p/e effect.
Financial Analysts Journal, 51(4):21–30, 1995.

32

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks#
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks#
https://www.bloomberg.com/news/features/2018-05-03/the-gambler-who-cracked-the-horse-racing-code
https://www.bloomberg.com/news/features/2018-05-03/the-gambler-who-cracked-the-horse-racing-code
http://arxiv.org/abs/1610.02583
http://arxiv.org/abs/1409.1259
http://papers.nips.cc/paper/5346-empirical-evaluation-of-gated-recurrent-neural-networks-on-sequence-modeling
http://papers.nips.cc/paper/5346-empirical-evaluation-of-gated-recurrent-neural-networks-on-sequence-modeling

J. L. Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

D. Enke and S. Thawornwong. The use of data mining and neural networks for
forecasting stock market returns. Expert Systems with applications, 29(4):927–
940, 2005.

E. F. Fama. The behavior of stock-market prices. The journal of Business, 38(1):
34–105, 1965.

E. F. Fama. Efficient capital markets: A review of theory and empirical work. The
journal of Finance, 25(2):383–417, 1970.

E. F. Fama and K. R. French. Size, value, and momentum in international stock
returns. Journal of financial economics, 105(3):457–472, 2012.

K. Fukushima. Neocognitron: A hierarchical neural network capable of visual pat-
tern recognition. Neural networks, 1(2):119–130, 1988.

S. Ghoshal and S. Roberts. Thresholded convnet ensembles: neural networks for
technical forecasting. Neural Computing and Applications, 32:15249–15262, 2020.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

A. Graves. Supervised Sequence Labelling with Recurrent Neural Networks. Springer,
2012.

S. J. Grossman and J. E. Stiglitz. On the impossibility of informationally efficient
markets. The American economic review, 70(3):393–408, 1980.

H. He and E. A. Garcia. Learning from imbalanced data. IEEE Transactions on
knowledge and data engineering, 21(9):1263–1284, 2009.

J. C. Heck and F. M. Salem. Simplified minimal gated unit variations for recurrent
neural networks. In 2017 IEEE 60th International Midwest Symposium on Circuits
and Systems (MWSCAS), pages 1593–1596. IEEE, 2017.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

J. Huang, J. Chai, and S. Cho. Deep learning in finance and banking: A literature
review and classification. Frontiers of Business Research in China, 14(1):1–24,
2020.

J. M. Hutchinson, A. W. Lo, and T. Poggio. A nonparametric approach to pricing
and hedging derivative securities via learning networks. The journal of Finance,
49(3):851–889, 1994.

C. Hvarfner, F. Hutter, and L. Nardi. Joint entropy search for maximally-informed
bayesian optimization. In A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho,
editors, Advances in Neural Information Processing Systems, 2022a. URL https:

//openreview.net/forum?id=4R5x8no2Ts-.

33

http://www.deeplearningbook.org
https://openreview.net/forum?id=4R5x8no2Ts-
https://openreview.net/forum?id=4R5x8no2Ts-

C. Hvarfner, D. Stoll, A. Souza, M. Lindauer, F. Hutter, and L. Nardi.

\

pi bo : Augmentingacquisitionfunctionswithuserbeliefsforbayesianoptimization.arXiv preprint arXiv:2204.11051, 2022b.

D. Hübner. Ep perspective on today’s regional policy and the relevance of financial
engineering instruments. Keynote speech at Conference on JEREMIE and JESSICA:
Towards successful implementation, Brussels, 29-30 November 2010. URL https:

//www.eib.org/attachments/general/events/keynote_danuta.pdf.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning,
pages 448–456. PMLR, 2015.

R. A. Ippolito. Efficiency with costly information: A study of mutual fund perfor-
mance, 1965–1984. The Quarterly Journal of Economics, 104(1):1–23, 1989.

T. C. Johnson. Rational momentum effects. The Journal of Finance, 57(2):585–608,
2002.

J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tun-
yasuvunakool, R. Bates, A. Ž́ıdek, A. Potapenko, et al. Highly accurate protein
structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014. URL http://arxiv.org/abs/1412.6980. Revised version
published 2015 in International Conference on Learning Representations.

L. T. LaCapra and S. Herbst-Bayliss. Goldman to close global alpha fund after losses.
2011. URL https://www.reuters.com/article/us-goldmansachs-hedgefund-

idUSTRE78F28Y20110916.

H. Li, Y. Shen, and Y. Zhu. Stock price prediction using attention-based multi-input
lstm. In Asian conference on machine learning, pages 454–469. PMLR, 2018.

S. Liu, C. W. Oosterlee, and S. M. Bohte. Pricing options and computing implied
volatilities using neural networks. Risks, 7(1):16, 2019.

I. E. Livieris, E. Pintelas, and P. Pintelas. A CNN-LSTM model for gold price time-
series forecasting. Neural computing and applications, 32(23):17351–17360, 2020.

A. W. Lo. The statistics of sharpe ratios. Financial analysts journal, 58(4):36–52,
2002.

A. W. Lo, H. Mamaysky, and J. Wang. Foundations of technical analysis: Computa-
tional algorithms, statistical inference, and empirical implementation. The journal
of finance, 55(4):1705–1765, 2000.

B. G. Malkiel. The efficient market hypothesis and its critics. Journal of economic
perspectives, 17(1):59–82, 2003.

M. A. Nielsen. Neural networks and deep learning, volume 25. Determination press
San Francisco, CA, USA, 2015.

34

https://www.eib.org/attachments/general/events/keynote_danuta.pdf
https://www.eib.org/attachments/general/events/keynote_danuta.pdf
http://arxiv.org/abs/1412.6980
https://www.reuters.com/article/us-goldmansachs-hedgefund-idUSTRE78F28Y20110916
https://www.reuters.com/article/us-goldmansachs-hedgefund-idUSTRE78F28Y20110916

P. Nystrup, H. Madsen, and E. Lindström. Dynamic portfolio optimization across
hidden market regimes. Quantitative Finance, 18(1):83–95, 2018.

L. Pospisil and J. Vecer. PDE methods for the maximum drawdown. Journal of
Computational Finance, 12(2):59–76, 2008.

S. Ruder. An overview of gradient descent optimization algorithms. CoRR,
abs/1609.04747, 2016. URL http://arxiv.org/abs/1609.04747.

R. Savi, J. Shen, B. Betts, and B. Maccartney. The evolution of active investing finding
big alpha in big data. Blackrock, 2015.

W. F. Sharpe. Mutual fund performance. The Journal of business, 39(1):119–138,
1966.

F. A. Sortino and R. Van Der Meer. Downside risk. Journal of portfolio Management,
17(4):27, 1991.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout:
a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Stanford University. CS231n convolutional neural networks for visual recognition. URL
https://cs231n.github.io/neural-networks-3/.

A. Timmermann and C. W. Granger. Efficient market hypothesis and forecasting.
International Journal of forecasting, 20(1):15–27, 2004.

U.S. Securities and Exchange Commission. Mutual funds and exchange-traded funds
(ETFs). https://www.investor.gov/introduction-investing/investing-

basics/investment-products/mutual-funds-and-exchange-traded-3, ac-
cessed January 20, 2023.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

P. J. Werbos. Backpropagation through time: what it does and how to do it. Proceed-
ings of the IEEE, 78(10):1550–1560, 1990.

B. Widrow, D. E. Rumelhart, and M. A. Lehr. Neural networks: applications in
industry, business and science. Communications of the ACM, 37(3):93–106, 1994.

G. Zhang, B. E. Patuwo, and M. Y. Hu. Forecasting with artificial neural networks::
The state of the art. International journal of forecasting, 14(1):35–62, 1998.

Z. Zhang, S. Zohren, and S. Roberts. Deeplob: Deep convolutional neural networks
for limit order books. IEEE Transactions on Signal Processing, 67(11):3001–3012,
2019.

Z. Zhang, S. Zohren, and S. Roberts. Deep reinforcement learning for trading. The
Journal of Financial Data Science, 2(2):25–40, 2020.

35

http://arxiv.org/abs/1609.04747
https://cs231n.github.io/neural-networks-3/
https://www.investor.gov/introduction-investing/investing-basics/investment-products/mutual-funds-and-exchange-traded-3
https://www.investor.gov/introduction-investing/investing-basics/investment-products/mutual-funds-and-exchange-traded-3

G. Zuckerman. The making of the world’s greatest investor. 2019a.
URL https://www.wsj.com/articles/the-making-of-the-worlds-greatest-

investor-11572667202.

G. Zuckerman. The man who solved the market: How Jim Simons launched the quant
revolution. Penguin, 2019b.

36

https://www.wsj.com/articles/the-making-of-the-worlds-greatest-investor-11572667202
https://www.wsj.com/articles/the-making-of-the-worlds-greatest-investor-11572667202

Appendix A

A.1 Portfolio development for each asset

The figures below display the portfolio value for each model for the different as-
sets. The performance of the neural network model (Neural) is plotted in red, this
performance is seen along with the benchmark models (Trend and Naive) and the
underlying asset itself (Hold). Just below the trading performance is the neural
network model’s output. The neural model’s accuracy and loss on the training and
validation set can be found in section A.3.

A.1.1 LSTM models trading performance

First, the LSTM models performance. The GRU models performance are found in
the next subsection A.1.2.

0 100 200 300 400
Timesteps

80

90

100

110

120

130

Po
rtf
oli
o
Va

lue

Trading Performance
Neural
Trend
Naive
Hold

0 100 200 300 400
Timesteps

0.40

0.48

0.56

Ps
eu

do
-p
ro
ba

bil
ity

Model output

Figure A.1: Trading performance on the RX1 data set along with the neural network
model’s output, LSTM model.

37

0 100 200 300 400
Timesteps

85

90

95

100

105

110

Po
rtf
oli
o
Va

lue

Trading Performance
Neural
Trend
Naive
Hold

0 100 200 300 400
Timesteps

0.40

0.48

0.56

Ps
eu

do
-p
ro
ba

bil
ity

Model output

Figure A.2: Trading performance on the TY1 data set along with the neural network
model’s output, LSTM model.

0 100 200 300 400
Timesteps

88

92

96

100

104

108

112

Po
rtf
oli
o
Va

lue

Trading Performance
Neural
Trend
Naive
Hold

0 100 200 300 400
Timesteps

0.48

0.56

0.64

Ps
eu

do
-p
ro
ba

bil
ity

Model output

Figure A.3: Trading performance on the OE1 data set along with the neural network
model’s output, LSTM model.

38

0 100 200 300 400
Timesteps

97.5

99.0

100.5

102.0

103.5

Po
rtf
oli
o
Va

lue

Trading Performance
Neural
Trend
Naive
Hold

0 100 200 300 400
Timesteps

0.42

0.48

0.54

0.60

Ps
eu

do
-p
ro
ba

bil
ity

Model output

Figure A.4: Trading performance on the DU1 data set along with the neural network
model’s output, LSTM model.

A.1.2 GRU models trading performance

In this subsection the trading performance for the GRU models are displayed. Note
that the Trend and Naive portfolio development is exactly the same as in the plots
in section A.1.1; which is expected since these models are deterministic.

39

0 100 200 300 400
Timesteps

80

90

100

110

120

130

Po
rtf
oli
o
Va

lue

Trading Performance
Neural
Trend
Naive
Hold

0 100 200 300 400
Timesteps

0.40

0.48

0.56

0.64

Ps
eu

do
-p
ro
ba

bil
ity

Model output

Figure A.5: Trading performance on the RX1 data set along with the neural network
model’s output, GRU model.

0 100 200 300 400
Timesteps

84

90

96

102

108

114

120

Po
rtf
oli
o
Va

lue

Trading Performance
Neural
Trend
Naive
Hold

0 100 200 300 400
Timesteps

0.45

0.50

0.55

0.60

Ps
eu

do
-p
ro
ba

bil
ity

Model output

Figure A.6: Trading performance on the TY1 data set along with the neural network
model’s output, GRU model.

40

0 100 200 300 400
Timesteps

88

92

96

100

104

108

112

Po
rtf
oli
o
Va

lue

Trading Performance
Neural
Trend
Naive
Hold

0 100 200 300 400
Timesteps

0.42

0.48

0.54

0.60

Ps
eu

do
-p
ro
ba

bil
ity

Model output

Figure A.7: Trading performance on the OE1 data set along with the neural network
model’s output, GRU model.

0 100 200 300 400
Timesteps

97.5

99.0

100.5

102.0

103.5

Po
rtf
oli
o
Va

lue

Trading Performance
Neural
Trend
Naive
Hold

0 100 200 300 400
Timesteps

0.48

0.56

0.64

Ps
eu

do
-p
ro
ba

bil
ity

Model output

Figure A.8: Trading performance on the DU1 data set along with the neural network
model’s output, GRU model.

A.2 Benchmarking results

Table A.1 presents benchmarking results for the financial metrics.

41

Table A.1: Financial benchmarking results.

Data Model
Sharpe
Ratio

Sortino
Ratio

Gross
Return (%)

Maximal
Drawdown (%)

RX1 LSTM (1.09) (1.67) (14.2) (19.9)
GRU 1.36 2.04 18.6 (8.22)
Trend 2.29 3.73 34.8 (5.30)
Naive 0.58 1.09 7.77 (6.66)
Hold (1.43) (2.89) (19.7) (20.9)

TY1 LSTM (0.29) (0.53) (3.48) (9.99)
GRU 1.41 2.70 17.28 (5.93)
Trend 0.82 1.58 9.75 (5.09)
Naive (0.09) (0.09) (0.95) (7.81)
Hold (1.61) (3.00) (17.9) (18.3)

IK1 LSTM 1.90 3.20 25.2 (6.56)
GRU 1.93 3.10 23.3 (8.29)
Trend 1.43 2.40 17.8 (7.87)
Naive 0.74 1.33 8.30 (7.81)
Hold (1.91) (3.75) (23.0) (24.9)

OE1 LSTM 0.90 1.07 8.81 (5.59)
GRU (0.56) (0.87) (4.67) (4.76)
Trend 1.06 1.97 10.2 (3.98)
Naive 0.72 1.05 4.81 (5.01)
Hold (1.23) (2.40) (10.5) (11.3)

DU1 LSTM (0.41) (0.60) (1.14) (3.53)
GRU (0.20) (0.36) (0.67) (2.30)
Trend 0.82 1.36 2.65 (1.36)
Naive (0.80) (1.13) 2.20 (1.71)
Hold (1.07) (1.80) (3.27) (3.68)

In Table A.2 statistical benchmarking results are found.

42

Table A.2: Statistical benchmarking results.

Data Model
True

Positives
False

Positives
True

Negatives
False

Negatives
Accuracy (%)

RX1 LSTM 66 101 158 143 47.9
GRU 59 68 191 150 53.4
Trend 92 81 172 113 57.6
Naive 93 115 144 115 50.7

TY1 LSTM 114 132 109 106 48.4
GRU 107 90 151 113 56.0
Trend 73 86 149 143 49.2
Naive 107 112 129 112 51.3

IK1 LSTM 45 56 102 69 54.0
GRU 76 90 68 38 52.9
Trend 35 45 106 76 53.8
Naive 48 65 92 66 51.7

OE1 LSTM 104 117 140 107 52.1
GRU 82 98 159 129 51.5
Trend 89 94 157 118 53.7
Naive 96 114 143 114 51.2

DU1 LSTM 173 159 64 72 50.6
GRU 161 166 57 84 46.6
Trend 87 85 134 152 48.2
Naive 136 108 115 108 53.7

Table A.3 presents measures calculated from the statistical benchmarking results.

43

Table A.3: Measures calculated from the statistical benchmarking results. All values are
in percentages.

Data Model
True Positive
Rate (%)

True Negative
Rate (%)

Positive Predictive
Value (%)

Negative Predictive
Value (%)

RX1 LSTM 31.6 61.0 39.5 52.5
GRU 28.2 73.8 46.5 56.0
Trend 44.9 68.0 53.2 60.3
Naive 44.7 55.6 44.7 55.6

TY1 LSTM 51.8 45.2 46.3 50.7
GRU 48.6 62.7 54.3 57.2
Trend 33.8 63.4 45.9 51.0
Naive 48.9 53.5 48.9 53.5

IK1 LSTM 39.5 64.6 44.6 59.7
GRU 66.7 43.0 45.8 64.1
Trend 31.5 70.2 43.7 58.2
Naive 42.1 58.6 42.5 58.2

OE1 LSTM 49.3 54.5 47.1 56.7
GRU 38.9 61.9 45.6 55.2
Trend 43.0 62.6 48.6 57.1
Naive 45.7 55.6 45.7 55.6

DU1 LSTM 70.6 28.7 52.1 47.1
GRU 65.7 25.6 49.2 40.4
Trend 36.4 61.2 50.6 46.8
Naive 55.7 51.6 55.7 51.6

In Table A.4 the correlation between the portfolio values resulting from the models
and the underlying asset is found. Numbers in parenthesis means that it is a negative
value.

44

Table A.4: Correlations with the underlying asset (Hold).

Data Model Correlation (%) Volatility (%)

RX1 LSTM 88.4 7.26
GRU (95.2) 7.09
Trend (92.4) 7.61
Naive (83.1) 7.06
Hold 100 7.80

TY1 LSTM 31.2 6.56
GRU (87.6) 6.44
Trend (84.0) 6.36
Naive (34.6) 6.09
Hold 100 6.35

IK1 LSTM (82.7) 12.2
GRU (67.4) 11.1
Trend (86.2) 11.4
Naive (86.4) 10.3
Hold 100 11.3

OE1 LSTM (58.8) 4.34
GRU (91.3) 4.44
Trend (88.1) 5.04
Naive (87.4) 3.58
Hold 100 4.52

DU1 LSTM 63.4 1.50
GRU 37.5 1.78
Trend (93.3) 1.74
Naive (85.9) 1.47
Hold 100 1.66

A.3 Model accuracy and loss

0 5 10 15 20 25 30
Epochs

0.70

0.72

0.74

0.76

0.78

0.80

Lo
ss

Model Loss
Train
Validation

0 5 10 15 20 25 30
Epochs

0.44

0.46

0.48

0.50

0.52

Ac
cu

ra
cy

Model Accuracy
Train
Validation

Figure A.9: The LSTM neural network model accuracy and loss on training and validation
data, RX1 dataset.

45

0 5 10 15 20 25 30
Epochs

0.700

0.725

0.750

0.775

0.800

0.825
Lo

ss
Model Loss

Train
Validation

0 5 10 15 20 25 30
Epochs

0.48

0.50

0.52

0.54

Ac
cu

ra
cy

Model Accuracy
Train
Validation

Figure A.10: The LSTM neural network model accuracy and loss on training and valida-
tion data, TY1 dataset.

0 5 10 15 20 25 30
Epochs

0.700

0.725

0.750

0.775

0.800

Lo
ss

Model Loss
Train
Validation

0 5 10 15 20 25 30
Epochs

0.46

0.48

0.50

0.52

0.54

0.56

Ac
cu

ra
cy

Model Accuracy
Train
Validation

Figure A.11: The LSTM neural network model accuracy and loss on training and valida-
tion data, IK1 dataset.

0 5 10 15 20 25 30
Epochs

0.70

0.72

0.74

0.76

0.78

0.80

Lo
ss

Model Loss
Train
Validation

0 5 10 15 20 25 30
Epochs

0.44

0.46

0.48

0.50

0.52

0.54

0.56

Ac
cu

ra
cy

Model Accuracy
Train
Validation

Figure A.12: The LSTM neural network model accuracy and loss on training and valida-
tion data, OE1 dataset.

46

0 5 10 15 20 25 30
Epochs

0.70

0.72

0.74

0.76

0.78

0.80
Lo

ss
Model Loss

Train
Validation

0 5 10 15 20 25 30
Epochs

0.44

0.46

0.48

0.50

0.52

0.54

Ac
cu

ra
cy

Model Accuracy
Train
Validation

Figure A.13: The LSTM neural network model accuracy and loss on training and valida-
tion data, DU1 dataset.

0 5 10 15 20 25 30
Epochs

0.46

0.48

0.50

0.52

Ac
cu

ra
cy

Model Accuracy
Train
Validation

0 5 10 15 20 25 30
Epochs

0.70

0.72

0.74

0.76

0.78

0.80

Lo
ss

Model Loss
Train
Validation

Figure A.14: The GRU neural network model accuracy and loss on training and validation
data, RX1 dataset.

0 5 10 15 20 25 30
Epochs

0.70

0.72

0.74

0.76

0.78

0.80

Lo
ss

Model Loss
Train
Validation

0 5 10 15 20 25 30
Epochs

0.46

0.48

0.50

0.52

Ac
cu

ra
cy

Model Accuracy
Train
Validation

Figure A.15: The GRU neural network model accuracy and loss on training and validation
data, TY1 dataset.

47

0 5 10 15 20 25 30
Epochs

0.700

0.725

0.750

0.775

0.800

0.825
Lo

ss
Model Loss

Train
Validation

0 5 10 15 20 25 30
Epochs

0.46

0.48

0.50

0.52

0.54

0.56

Ac
cu

ra
cy

Model Accuracy
Train
Validation

Figure A.16: The GRU neural network model accuracy and loss on training and validation
data, IK1 dataset.

0 5 10 15 20 25 30
Epochs

0.70

0.72

0.74

0.76

0.78

0.80

0.82

Lo
ss

Model Loss
Train
Validation

0 5 10 15 20 25 30
Epochs

0.46

0.48

0.50

0.52
Ac

cu
ra
cy

Model Accuracy
Train
Validation

Figure A.17: The GRU neural network model accuracy and loss on training and validation
data, OE1 dataset.

0 5 10 15 20 25 30
Epochs

0.70

0.72

0.74

0.76

0.78

0.80

Lo
ss

Model Loss
Train
Validation

0 5 10 15 20 25 30
Epochs

0.46

0.48

0.50

0.52

0.54

Ac
cu

ra
cy

Model Accuracy
Train
Validation

Figure A.18: The GRU neural network model accuracy and loss on training and validation
data, DU1 dataset.

48

Master’s Theses in Mathematical Sciences 2023:E9
ISSN 1404-6342

LUTFMS-3467-2023

Mathematical Statistics
Centre for Mathematical Sciences

Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.lu.se/

	Introduction
	Objective and Scope

	Theory
	Finance
	Long and short positions
	Trading bots and algorithmic trading
	Performance metrics

	Time Series Analysis
	Auto-regressive models
	Naive predictors

	Machine Learning
	Neural networks
	Supervised learning
	Recurrent neural networks
	Feature selection and extraction
	Imbalanced data
	Training neural networks

	Methodology
	Software
	Data
	Data storage and extraction
	Features
	Train-validation-test split
	Pre-processing

	Neural Network Model Structure
	Trading setup
	Hyperparameter optimization

	Benchmarking
	Simple trading algorithms
	Economical benchmarks
	Statistical benchmarks

	Results
	Benchmarks
	Trading Performance

	Conclusion & Discussion
	Conclusion
	Discussion
	Future work

	References
	
	Portfolio development for each asset
	LSTM models trading performance
	GRU models trading performance

	Benchmarking results
	Model accuracy and loss

