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Abstract 
Bark beetle attacks have led to widespread tree disturbance and deaths in many parts of the 

world, and thereby also economic and biodiversity losses. Forest-rich Sweden has 

experienced periodic attacks, latest in 2018. There is a great interest in identifying the most 

important explanatory features behind bark beetle attacks and making spatial predictions on 

where attacks might happen. This could limit the reliance on expensive ad-hoc measures to 

diminish the negative effects of bark beetle attacks. This is especially important in future 

years, as bark beetle attacks are expected to increase under climate change.  

Machine learning is a family of algorithms that is capable of finding complex patterns in data 

and making predictions on unseen data. Earlier studies have already used different types of 

algorithms to predict bark beetle infestation spots and detect the most important features that 

characterise these spots. One problem with machine learning algorithms and the earlier 

studies in the field, is the lack of consideration of spatial autocorrelation and heterogeneity in 

the modelling. The current study aims to address these limitations by looking at the 

differences in prediction accuracy on different spatial scales. The study area (south-eastern 

Sweden) is divided into different numbers of zones (2, 4, 6, 8, 10, and 15) and the prediction 

accuracy and spatial distribution of feature importance are assessed and compared to that of 

the global model (full dataset). Furthermore, the results for a drought period (2018) and a 

normal period (2019-2020) are compared.  

Different algorithms are assessed – Random Forest, Support Vector Machine and Logistic 

Regression. It is found that random forest performs best, albeit only marginally, compared to 

support vector machines on the global dataset (normal period). Random forest is therefore 

also used for the local modelling in the created zones. 

The results from the local modelling indicate that zooming in to a more local scale (only 

considering the points in a zone) can result in better predictions both for the drought (year 

2018) and normal period (year 2019 and 2020). Especially in areas with a relatively even 

number of infested and healthy records and also not too few points, the prediction accuracy is 

higher than for the global dataset. In the best performing local zones, the feature importance 

differs compared to the global model, and other features are generally most important here. 

This indicates that global modelling on the full dataset may mask the fact that some features 

are more important in different parts of the study area. 

Multi-scale modelling can be beneficial for adaptation purposes and different factors can be 

prioritised in different areas depending on the local feature importance. Studies, like the 

current one, are important in the light of the future threat of an increase in bark beetle attacks. 

A more dynamic approach to the local modelling has been used in other fields where local 

machine learning models are created in all data records. It will be an interesting addition to 

current bark beetle research to make such dynamic studies in the future, but it is deemed out 

of the scope of the current study. 

Keywords: Geographically weighted regression, bark beetle, GIS, machine learning, spatial 

prediction, Southern Sweden 
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1. Introduction 
 

1.1 Bark beetle and forest disturbances  

Forests suffer a range of different natural disturbances such as insect outbreaks that can lead 

to ecosystem changes, reduced tree growth, negative impacts on wildlife and biodiversity and 

ultimately large economic losses for forest owners (Hroššo et al., 2020; Kärvemo & 

Schroeder, 2010; Koreň et al., 2021; Olsson, 2016). Bark Beetle is a forest disturbance agent 

that primarily attacks spruce and pine trees and has resulted in a high number of tree deaths in 

many areas of the world (Hernandez, Saborio, Ramsey, & Rivera, 2012; Kärvemo & 

Schroeder, 2010; Olsson, 2016) – also in European forests, that have been disturbed 

periodically by the European spruce bark beetle (Ips typographus L.) (Hlásny et al., 2021; 

Olsson, 2016).  

 

1.2 Triggers and drivers of bark beetle outbreaks  

Wind-felled and dying trees may trigger bark beetle population growth as these trees offer 

optimal conditions for breeding in the beginning of an outbreak (Kärvemo & Schroeder, 

2010; Lausch, Fahse, & Heurich, 2011). At this stage the bark population numbers are not 

high enough to overcome the living tree defences (Hroššo et al., 2020; Kärvemo & 

Schroeder, 2010). 

Generally, higher temperatures support bark beetle development, both through beetle flights, 

that are initiated at around 20 ◦C and also through an increase in the number of generations 

per year (Lausch et al., 2011). In the warmer areas of the bark beetle range such as in the 

Central European lowlands, two generations are generally completed in a year, or even three 

in years with favourable weather. Further north one generation has generally been the rule 

(Lausch et al., 2011). 

Climate change is expected to make the situation even more severe, thus increasing the need 

for adequate forest strategies and management. At the same time, a positive feedback 

between bark beetle outbreaks and climate change exist, as these lead to increased net carbon 

fluxes from the land to the atmosphere (Hlásny et al., 2021). Hernandez et al. (2012) found an 

increase in bark beetle attacks when climate change scenarios were included in the modelling. 

Higher temperatures and increased drought intensity will decrease tree vigour and increase 

the number of weakened and sensitive trees (Koreň et al., 2021). Also an increase in the 

number of bark beetle generations per year and the winter survival rate is expected (Lausch et 

al., 2011). There is an obvious increased risk of such situations in Northern Europe under 

global warming (Långström, Lindelöw, Schroeder, Björklund, & Öhrn, 2009). 

Understanding the drivers behind bark beetle attacks is difficult and based on complex 

environmental processes that differ spatially and temporally (Koreň et al., 2021). Lausch et 

al. (2011) stated that the complexity of processes and features makes it nearly impossible to 
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predict future outbreaks. A problem with some of the earlier studies in the field has been the 

lack of spatial and temporal dimensions, for instance including only one year of infestation 

data, and including only a limited number of explaining habitat factors, making it difficult to 

generalize the results to a larger scale (Lausch et al., 2011).  

Different drivers have been included in previous studies to predict bark beetle infestations 

such as forest composition features, climatic features, and spatial-temporal features 

(Hernandez et al., 2012; Hroššo et al., 2020; Koreň et al., 2021; Lausch et al., 2011). Lausch 

et al. (2011) assessed the importance of different factors in the long-term outbreak in Bavaria 

National Forest starting in 1983-1984. The most important factors determining the sites of 

infestations were spatial-temporal factors such as distance to infestation sites from previous 

year and the area and perimeter of infestation sites from previous years. Elevation was found 

to be the most important abiotic factor, whereas slope and aspect played minor roles. Climatic 

factors such as potential solar radiation were not found to be important, thereby potentially 

explaining why aspect and slope were less important. Interestingly, temperature was, contrary 

to the results from other studies, not found to be linearly associated with an increase in 

outbreak probability. Hroššo et al. (2020) assessed the drivers of bark beetle infestations 

following a windthrow in the Slovakian Carpathians in 2014. Year of attack, solar radiation 

and tree dimensions were found to be positively correlated with infestation probability. Koreň 

et al. (2021) found some of the same factors to be the most important in the Horní Planá 

region in Czech Republic including potential solar radiation, spruce age, percentage of spruce 

in forest stand, volume per hectare and distance to actual forest damage. To underscore the 

complexity between drivers and the spread of bark beetle, Lausch et al. (2011) did not find 

any mono-causal correlations between individual factors and bark beetle infestations and 

suggested that this could be the reason for the different findings in earlier studies in the field. 

The choice of model, spatial scale and input factors all influence the results and the 

assessment of the relative importance of drivers. 

 

1.3 Bark beetle outbreaks in Sweden 

Sweden has suffered different bark beetle outbreaks since 1961 where huge storms initiated 

eleven years of outbreak (Kärvemo & Schroeder, 2010). A more recent outbreak occurred 

after the 2005 storm Gudrun that exemplified some of the typical dispersal and outbreak 

processes and resulted in a severe storm felling in southern Sweden and average volumes of 

damaged forests in the magnitude of 65 to 75 m3 per ha due to the storm (Långström et al., 

2009). Especially spruce trees were affected. Large volumes of damaged trees were still left 

in the forest in the summer of 2005 in spite of a large operation to clear the forests of these. 

The aim was to save timber and minimize economic losses but also to diminish the habitat for 

bark beetle development (Kärvemo & Schroeder, 2010; Långström et al., 2009). In the spring 

and summer of 2005 there was an abundance of dead trees in the south Swedish forests, but 

the bark beetle population numbers were low. Therefore, only a small percentage of these 

felled trees were attacked in the first period (Långström et al., 2009). If the population levels 

are able to sustain on the deadwood, they may eventually reach epidemic levels which 
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usually takes one to three years (Hroššo et al., 2020). This can result in attacks and killings of 

standing trees at higher bark beetle population levels (Kärvemo & Schroeder, 2010). 

An estimated 60% of the remaining wind-felled trees were attacked by bark beetle in Sweden 

in 2006 and in the end of the summer also 1.5 million m3 of standing trees were killed 

(Långström et al., 2009). The reasons for this were the high temperatures in 2006 that led to 

intense beetle flight at the end of the summer and the completion of a second generation 

(Långström et al., 2009). In the following year, colder and wetter weather at the end of the 

summer led to decreased beetle flights and thus less attacks (Långström et al., 2009). 

This example, following the storm Gudrun, shows a typical bark beetle outbreak that has also 

been reported in other countries following big wind-felling events (Hroššo et al., 2020; 

Långström et al., 2009; Lausch et al., 2011). Both Bavaria and Sweden have experienced 

prolonged bark beetle attacks (Kärvemo & Schroeder, 2010; Lausch et al., 2011). Outbreaks 

lasting a decade or longer can happen when continued storms lead to wind-fells and dry 

weather increase the sensitivity and decrease the tree defence of standing trees. So in general 

the bark beetle outbreak risk is high when the population numbers are high and there is an 

abundance of weakened trees, for instance due to dry weather (Hroššo et al., 2020; Kärvemo 

& Schroeder, 2010; Långström et al., 2009). The biggest bark beetle outbreak in Sweden was 

recorded following the exceptionally dry and warm weather in the summer of 2018 that led to 

the killing of approximately 17 million m3 of spruce forest from 2018 to 2020 (Schroeder, 

2020). 

 

1.4 Outbreak dynamics and methods to predict bark beetle attacks  

There is a great interest in better understanding the dynamics, dispersal processes and spatial 

dimension of bark beetle outbreaks. This could lead to more suitable forest management 

strategies, which could reduce economic losses as well as potential negative effects on 

biodiversity and ecosystem changes (Hlásny et al., 2021; Hroššo et al., 2020; Koreň et al., 

2021). An increased understanding of outbreak dynamics and the most important drivers 

could also help to make precise predictions of the areas, that are most sensitive to bark beetle 

attacks. Such predictions would be beneficial as bark beetle management measures 

traditionally have been employed ad-hoc after the occurrence of infestations (Rammer & 

Seidl, 2019). Measures such as chemical control and removal of wind-felled trees are 

expensive and may be disapproved by society (Valdez Vasquez et al., 2020). According to 

Hroššo et al. (2020), 80% of the bark beetles must be killed and 80% of the windthrow must 

be removed to substantially decrease the risk. This can be problematic, especially after a huge 

storm event such as Gudrun in Sweden due to the vast number of wind-felled trees in the 

ground (Långström et al., 2009). Långström et al., (2009) therefore also found that the 

evidence suggested that these outbreaks cannot really be controlled by humans. The emphasis 

should be on understanding population dynamics and identify sensitive areas before 

infestation occurs (Hroššo et al., 2020; Långström et al., 2009). 

In general, there is a growing interest among ecosystem managers and policy makers in 

precise predictions since these can forecast ecosystem trajectories and help to sustain the 
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provision of ecosystem services that are essential to human beings and biodiversity (Rammer 

& Seidl, 2019). Pest prediction models is a traditional method that has been employed to 

predict the probability of pine bark beetle attacks in the US, based on the number of bark 

beetle trappings per day. The accuracy of these is highly variable and range between 32-85% 

(Billings & Upton, 2010; Munro, Montes, & Gandhi). Other traditional methods, such as 

linear regression, that has often been used in geographical analyses, are not suitable to model 

complex, non-linear relationships between independent and dependent variables as in the case 

of bark beetle attacks (Brunsdon, Fotheringham, & Charlton, 1996; Luo, Yan, McClure, & 

Li, 2022).  

Advances in technology and data availability due to increased computational power, remote 

sensing and interpolation techniques have made such predictions much more feasible today 

(Rammer & Seidl, 2019), especially through the use of machine learning (ML). ML has been 

used in recent bark beetle studies that have assessed the performance of various ML 

algorithms in predicting sensitive forest areas (Koreň et al., 2021; Munro et al.; Ramazi, 

Kunegel-Lion, Greiner, & Lewis, 2021; Rammer & Seidl, 2019; Valdez Vasquez et al., 

2020). These studies have shown that ML can improve the prediction accuracy of bark beetle 

infestations compared to traditional models such as pest prediction models and be helpful 

guidelines for forest managers (Valdez Vasquez et al., 2020). 

 

1.5 Machine Learning and geographically weighted methods  

ML algorithms are flexible, data-driven, sophisticated and effective at extracting knowledge 

from data (Georganos et al., 2021; Nikparvar & Thill, 2021). These algorithms can learn from 

data and eventually be used to predict new data points and to explore the relationship 

between dependent and independent variables (VanderPlas, 2016). The models could satisfy 

the increasing interest in more computationally intensive and data-driven algorithms. They 

can be used for a range of different tasks, such as pattern recognition, clustering, regression, 

and classification. ML has been used in many different fields and applications such as land 

use and land cover classification, disaster management, forest dynamic drivers, crop 

productivity prediction, forest disturbance assessment and population modelling (Georganos 

et al., 2021; Koreň et al., 2021; Nikparvar & Thill, 2021; Santos, Graw, & Bonilla, 2019). 

Non-parametric ML models such as Random Forest (RF) can learn non-linear relationships 

from complex, high-dimensional data (Luo, Yan, & McClure, 2021) and are not sensitive to 

outliers such as is the case for linear regression models (Quiñones, Goyal, & Ahmed, 2021). 

These models are thus suitable to model complex, non-linear phenomena such as bark beetle 

attacks (Koreň et al., 2021). The problem with ML algorithms is that they are basically 

‘aspatial’ and assumes that the relationship between independent and dependent variables do 

not vary over space, thereby disregarding potential spatial heterogeneity (Georganos et al., 

2021). Not only the temporal, but also the spatial dimension appears to be important to 

describe the relationship between input factors and bark beetle infestations. The transition 

from endemic bark beetle attacks to self-driven epidemics is likely driven by individual 

factors whose importance vary depending on local conditions (Hroššo et al., 2020).  
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Earlier studies have tried to incorporate the spatial autocorrelation in ML modelling by 

combining ML and geographically weighted regression (GWR), introduced by Brunsdon et 

al. (1996). The rationale behind GWR is Tobler’s first law of geography that states that things 

near to each other are more related and their attributes more alike compared to things more 

distant from each other (Arabameri, Pradhan, & Rezaei, 2019; Luo et al., 2022). Instead of 

one global regression model incorporating the whole area under study, GWR is based on 

multiple local regression models (Luo et al., 2022). GWR is an extension of the ordinary least 

squares method and uses a weighted least squares approach for each location, giving higher 

weights to observations that are closer than those farther away (Hagenauer & Helbich, 2021; 

Luo et al., 2022). As GWR is based on local linear regression models, the approach is not 

appropriate when relationships between independent and dependent variables are non-linear 

and multicollinearity between the independent variables exists (Luo et al., 2022; Quiñones et 

al., 2021). Newer studies have used novel approaches, combining RF and GWR to overcome 

the limitations of either approach and be able to model complex, spatial relationships and 

improve model performance (Georganos et al., 2021; Luo et al., 2021; Quiñones et al., 2021). 

Studies report a higher prediction accuracy of local models compared to global ones 

(Arabameri et al., 2019; Luo et al., 2021). Furthermore, these models are better at explaining 

the spatial heterogeneity of the relationships between independent and dependent variables 

(Quiñones et al., 2021). By dividing the study area into different neighbourhoods, mapping 

the prediction performances can reveal in what areas the local models perform well. In the 

areas with worse prediction accuracies, adding more features could improve the model 

performance (Georganos et al., 2021; Quiñones et al., 2021). Local scale modelling can guide 

the formulation of local management strategies focused on the most important factors in a 

specific area (Luo et al., 2021). 

 

1.6 Earlier bark beetle studies 

Different methodologies and algorithms have been used in the previous ML and bark beetle 

studies. For instance, Koreň et al. (2021) predicted the spatial distribution of spruce bark 

beetle infestation spots in the Horní Planá region, Czech Republic, using different machine 

learning algorithms, both linear and more complex non-linear models. Rammer & Seidl 

(2019) showed the usability of using deep learning and neural networks to predict bark beetle 

outbreaks in Bavarian Forest National Park in Germany. Ramazi et al. (2021) assessed the 

performance of eight machine learning models in future bark beetle predictions in Cypress 

Hills, Canada.  

These studies have shown that ML algorithms can lead to better prediction accuracies 

compared to more traditional methods and be helpful in the spatial prediction of sensitive 

areas through the use of geographical data. At the same time, ML can be used to perform 

feature importance analysis that can shed light on the most important drivers and their 

relationships to bark beetle infestations (Koreň et al., 2021; Rammer & Seidl, 2019; Valdez 

Vasquez et al., 2020). (M. Müller, Olsson, Eklundh, Jamali, & Ardö, 2022) used a ML 

algorithm to perform feature analysis in the same study area and based on the same data as 

the current study.   
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Earlier bark beetle studies have used spatial input data, for instance in the form of 

coordinates, and distance-based input features such as the distance to damage spots from 

previous year and distance to forest edges (Koreň et al., 2021; Munro et al.; Rammer & Seidl, 

2019; Valdez Vasquez et al., 2020). That being said, these studies (Koreň et al., 2021; M. 

Müller et al., 2022) still relied on global models that were used for predictions over the whole 

case area, thus not considering spatial autocorrelation and spatial non-stationarity of the 

relationship between bark beetle presence and explanatory features.  

Another problem with earlier bark beetle studies is their limitations in time or space, either 

only covering one year or only a limited scale, making it difficult to make comparisons 

between studies and see which drivers are most important on a larger scale (Lausch et al., 

2011). 

The limitations of earlier studies in the field are related to the limited temporal and spatial 

scales of the input data as well as a lack of consideration of the spatial non-stationarity 

between the independent and dependent variables. 

 

1.7 Aim and research questions  

This study tried to fill in some of the research gaps that are present in earlier bark beetle 

studies. ML algorithms in the form of Random Forest (RF), Support Vector Machine (SVM) 

and Logistic Regression (LR) were applied to a dataset from south-eastern Sweden, 

consisting of bark beetle presence and related, explanatory features. LR was included to 

assess the difference in prediction accuracies between linear and non-linear models. 

The aim of the study was foremost to use ML algorithms as a predictive tool – to establish the 

model with the best performance when it comes to predicting bark beetle infestation areas. 

ML models with a high prediction accuracy can guide future forest management and 

potentially help minimizing problems in forest-rich countries such as Sweden, especially 

under climate change and the expected increase in forest disturbances. The dataset was split 

into a drought and a normal period based on the weather in the assessed years. Modelling was 

performed on both datasets to assess the importance of drought, which could be an indication 

of potential impacts of climate change in the study area. 

Multi-scale modelling was performed to see whether predictions would be more accurate on a 

more local scale and also to see whether the relationship between explaining factors and bark 

beetle presence varied over the study area. Both global models that considered all the data 

points in the study area, and local models only considering (spatially contiguous) subsets of 

the data in the study area, were assessed. The local zones were made both randomly and 

based on GWR scores. The best models, on both global and local scales were also used as 

exploratory tools, since knowing the most important factors on a local scale is another aspect 

that can help guide local bark beetle management in the future.  

Multi-scale modelling overcame some of the scale limitations mentioned in the bark beetle 

literature and made it possible to study outbreak dynamics on different scales.  
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Answering the following research questions should help to fulfil the overall aim. 

- Which machine learning algorithm predicts bark beetle infestations most accurately 

on the global scale? 

- Does local modelling result in an overall higher prediction accuracy? 

- What characterizes the best and worst performing local models and how do their 

feature importance vary over space?  

- How do the results differ between the normal and the drought period and what are the 

implications of these results in relation to climate change? 
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2. Methods and material 

 

2.1 Study area 

The study area is a 48,600 km2 large area in south-eastern Sweden located at 56.10 °N, 13.44 

°E to 58.53 °N, 16.53 °E. It is a typical Swedish landscape, with large forest lands, water 

bodies, and less agricultural and built-up land (Fig. 1). The forests are mainly coniferous 

forests, with Norway spruce as the dominant species, with a low number of deciduous forests. 

Most of the area covers the hemi-boreal zone which is the transition zone between temperate 

and boreal zones and a small part is covered by the nemoral vegetation zone (Jonsson et al., 

2016). Most of the study area is also in the hemi-boreal climate zone characterized by a 

humid-continental climate with hot summers. That being said, the climate is relatively mild. 

During the normal period 1991-2020 the mean temperature was -1.3 °C in January and 17.1 

°C in July in Tranås, located in the northern part of the study area. In Växjö located in the 

south-central part, the January temperature was -1.1 °C and the July temperature identical to 

Tranås (“Dataserier med normalvärden för perioden 1991-2020 | SMHI”).  

 

Figure 1. Map over study area 
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2.2 Data 

 

2.2.1 Bark Beetle data 

Harvested trees (infested with bark beetle) and their coordinate information were collected 

with harvester machines with global satellite navigation systems by Sveaskog and Södra in 

the years 2018 to 2020 (M. Müller et al., 2022). Data was removed if more than 10 

coordinate duplicates were found. Since harvester machines potentially were harvesting more 

trees from the same position, this threshold was applied.  

The data was structured in a 10x10 m grid covering the study area. Each pixel was 

characterized as infested if an infested tree was present here. Since the harvested data was 

only based on trees that were removed due to bark beetle infestations and surrounding trees, 

data about absence of bark beetle (healthy data) was needed (M. Müller et al., 2022). The 

chosen solution for this was to use landcover and property data, and defining healthy data as 

pixels that were not characterized as infested and at the same time located in estates that had 

harvested trees in other pixels (M. Müller et al., 2022). 

Data from June to December 2019, from Sveaskog was discarded since there was uncertainty 

whether a part of the infestations from 2019 was actually from 2018. In the end since a 

substantial amount of data was discarded, instead of dividing it into annual parts, it was 

divided into a normal period covering the years 2019 and 2020 and a drought period covering 

2018. 

The end result was two grids based on healthy and infested pixels for both the normal (2019 

and 2020) and drought period (2018). The number of healthy records far out-weighted 

infested records. To equalize the counts, a stratified random sampling was performed using 

the forest and soil type coverage percentages as grouping parameters (M. Müller et al., 2022). 

This could alleviate some of the problems with unbalanced datasets. In the end 24,433 

records were included for the drought period, and 75,447 for the normal period. The final step 

was to combine the bark beetle presence data with the other data sources, that are described 

below. 
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2.2.2 Other data sources and explanatory features 

Features that could help to explain bark beetle infestations were included through other data 

sources. All the data was included in the 10x10 m grid through resampling – nearest 

neighbour was used for discrete features and bilinear interpolation for continuous features 

(M. Müller et al., 2022). The list of data sources and the resultant features are included in 

Table 1. 

Some variables had to be merged due to a high number of values. These were forest and soil 

type. Forest type was originally divided into: spruce forest (not on wetland), mixed 

coniferous forest (not on wetland), mixed forest (not on wetland), spruce forest (on wetland), 

mixed coniferous forest (on wetland), and mixed forest (on wetland). These were merged to 

the three types and information about position at wetlands omitted. The soil types were 

merged into eight types based on grain size (Table 1). 

For the drought period, the features that included information about previous year such as 

distPrevDmg (see Table 1), were naturally not included. They were included in the normal 

period. Other features had NA-values due to deficiencies in geodata or other problems. Forest 

types were encoded with NA if the land cover class did not include spruce trees. Another 

reason for NA’s for this feature was unsuccessful classification in the land cover data, most 

probably due to clouded remote sensing images. Some smaller islands were encoded with the 

value ‘open water’ in the soil wetness feature since resolution was too coarse to account for 

these. The ‘open water’ areas were removed from the data and then the soil wetness values 

were encoded as NA for these smaller islands.  

Feature scaling was used, especially to prepare the data for the SVM algorithm as this model 

is sensitive to data on different scales. The VIF-score of features were used to assess the 

degree of multicollinearity, especially important for LR and its assumptions. Features with 

high VIF-scores were omitted for the LR algorithm. 

Geographical coordinates were not used as a feature in the modelling as the geographical 

dimension was assumed to be included when going from global to more local models.  
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Table 1. Overview over data sources and variables in dataset 

 

Data source Variables Units Data 

Harvester data  

X 

 

Meter, SWEREF99 TM 

 

Position 

Y Meter, SWEREF99 TM Position 

bbPresence Binary:  

0= healthy, 1 = infested 

Field records of Bark Beetle infested trees 

Performed clearcuts 

[dataset] 

(Skogsstyrelsen, 

2020) 

Raster 

distToCC5 meter Distance to clear cut conducted within 0 to 5 

years. 

distToCC10 meter Distance to clear cut conducted within 6 to 10 

years. 

Digital elevation 

model [dataset] 

(Lantm¨ateriet, 

2020) 

aspect degrees Sun exposition 

dem meters Elevation above sea level 

slope degrees Equal to the rise divided by the run. 

landforms discrete classes 1=Depression, 2=Lower Slope, 3=Flat Area, 

4=Middle Slope, 5=Upper Slope, 6=Upland 

Soil wetness 

(Ågren et al., 2021) 

soilWetness Index 0-100 Relative soil-wetness in ‘normal’ circumstances 

National landcover 

data [dataset] 

(Naturvårdsverket, 

2018) 

distForestEdge meters Distance to closest edge between forest and non-

forest landcover class 

forestType discrete classes 1 = Spruce forest, 2 = Mixed coniferous forest,  

3 = Mixed Forest, 

Harvester data prevY_f11Sum Total sum Total sum of trees removed previous year in a 

11×11 pixels neighborhood. Included only in 

normal period data. 

prevY_f21Sum Total sum Total sum of trees removed previous year in a 

21×21 pixels neighborhood. Included only in 

normal period data. 

distPrevDmg meter Distance to closest pixel where infestations were 

recorded during drought period. Included only in 

normal period data.  

Digital Forest Map 

[dataset] (Swedish 

University of 

Agricultural 

Sciences, 2015) 

basalArea Cubic meters/ha (m2/ha) Area occupied by stems at height of 1.3 meters 

biomass Tons of dry matter per hectare (t/ha) Biomass of all vegetation. Deviating from 

volumetric biomass, branches are included. Does 

not include roots or tree stumps. 

canopyHeight decimeters (dm) Mean height of the canopy 

spruceVol cubic meters per hectare (m3/ha) Includes spruce stem volume over normal tree 

stump height, tree top and the bark. 

Soil type [dataset] 

(Geological Survey 

of Sweden, 2015) 

soilType discrete classes 1=Organic, 2=Clay, 3=Silt, 4=Sand, 5=Gravel, 

6=Moraine, 7=Rock, 8= Unspecified Sediment 
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2.3 Machine learning methods 

The first step was to decide which type of ML task this was. Since the dependent variable 

was labelled and class-based – whether bark beetle is present or not – this was an example of 

a supervised classification task (Géron, 2019). Supervised methods are used when we have 

input/output pairs in the data and want to predict an output from a certain input (A. C. Müller 

& Guido, 2016). Model performance in this study was mainly defined as prediction accuracy 

– the number of samples that are correctly classified divided by total number of samples 

(Cracknell & Reading, 2014). 

The non-parametric ML algorithms used in this study included RF and SVM. These are 

versatile and popular algorithms that can be used for both classification and regression tasks 

(Géron, 2019; A. C. Müller & Guido, 2016). These algorithms can learn from complex, non-

linear data and should therefore be suited for the problem in this study. LR is a linear 

classification algorithm and very fast to work with. It was included to see how well it 

performed compared to more advanced, non-linear models. In the following each of these 

algorithms are presented but without putting too much emphasis on the mathematical part. 

 

2.3.1 Random Forest 

RF is an example of an ensemble algorithm that aggregates the results from multiple simpler 

estimators called decision trees (VanderPlas, 2016). A decision tree (DT) is a ML model on 

its own, but they often have problems with overfitting and therefore poor generalization 

performance. They tend to work well on the training data but worse on unseen test or 

validation data (A. C. Müller & Guido, 2016). DTs can model the data closely since they are 

non-parametric and therefore the number of parameters depends on the data, a posteriori 

(Géron, 2019). The strength of DT’s is that they are very intuitive (VanderPlas, 2016). They 

arrive at their predicted output by establishing a series of if-else questions, also called tests, 

and answering these with the feature values (A. C. Müller & Guido, 2016). The crucial part 

of the training is to ask the right questions (VanderPlas, 2016). If the complexity of DTs is 

high and they contain pure leaves, meaning a 100% prediction accuracy on the training data, 

the final predictions are often more a result of noise or outliers than the true data distribution 

(VanderPlas, 2016). This will most definitely lead to overfitting when looking at unseen data, 

especially if outliers are present (A. C. Müller & Guido, 2016). To regularize DTs and 

diminish overfitting, different hyperparameters can be tweaked, such as restricting the depth 

of the tree (reducing the number of questions asked) or setting the minimum number of points 

in a node before splitting it, so data is not split into increasingly small leaves (Géron, 2019; 

A. C. Müller & Guido, 2016). 

RF is designed to decrease the problem of overfitting by combining multiple DTs. They are 

trained on different random subsets of the data (Géron, 2019). Since only a subset of the 

training data is used for each tree, the bias is increased but aggregating the trees into a forest, 

reduces both variance and bias (Géron, 2019). Averaging the results in case of regression or 

using the majority vote in case of classification from slightly different DTs will diminish 
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overfitting and result in more robust models that will work better on unseen data (Georganos 

et al., 2021; A. C. Müller & Guido, 2016). RF has both tree-specific hyperparameters which 

are the same as for the DTs and at the same time hyperparameters that are ensemble-specific 

(Géron, 2019). The most important parameters are the number of trees to grow, which should 

generally be set as high as computationally feasible to result in more robust results, and the 

number of features in each node of the tree (Georganos et al., 2021; A. C. Müller & Guido, 

2016).   

Even though RF seems superior to DT performance-wise, DTs are still used for easy 

visualization of the tree structure, showing how a prediction was made (A. C. Müller & 

Guido, 2016). DTs are white box models compared to the black box models of RFs. In 

general RF makes good predictions but it is much more difficult to explain how the model 

arrived at a result (Géron, 2019). RFs are easy to use and normally the hyperparameters do 

not need to be tuned to a very high degree (A. C. Müller & Guido, 2016). 

 

2.3.2 Support Vector Machine 

SVM is another type of powerful, supervised ML algorithm that can be used for both 

classification and regression tasks. In classification problems, SVMs use discriminative 

classification, meaning that a line, curve or manifold is used to divide the classes from each 

other in space (VanderPlas, 2016). SVMs are binary classifiers and therefore suited to the 

data in this study as the dependent variable only can take two values (Géron, 2019). 

Together with LR, linear SVM is one of the most common linear classification algorithms (A. 

C. Müller & Guido, 2016). SVMs are maximum margin estimators, which means that in 

linear problems, a line is drawn that maximises the margin between the two classes 

(VanderPlas, 2016). The key here is the support vectors that lie on this margin. All the points 

further away from the margin do not influence the algorithm as long as they are placed on the 

correct side of the line (VanderPlas, 2016). SVMs can be extended to more efficiently handle 

non-linear data by projecting the data into a higher dimension (VanderPlas, 2016), thereby 

making the classes linearly separable in the higher dimension.  

For linear SVMs, the hyperparameter that determines the degree of regularization is C. For 

low values of C, the model generalizes better and puts more emphasis on the majority of the 

points, whereas a high values of C puts more emphasis on the single points, thus trying to fit 

the training data as well as possible (A. C. Müller & Guido, 2016). This can lead to 

overfitting and make the model perform worse on unseen data. Other hyperparameters that 

are important for non-linear SVMs, are the gamma hyperparameter for the gaussian kernel, 

which determines the radius of the kernel and the influence of nearby points. If the gamma is 

set low, the radius is high and many points are considered important for building the decision 

boundaries, often leading to a more general model, prone to underfitting (A. C. Müller & 

Guido, 2016)  

SVMs have potentially more weaknesses than RFs. Working on big datasets, the computation 

time, especially for non-linear SVMs, can be very high (A. C. Müller & Guido, 2016; 

VanderPlas, 2016). Furthermore, the data must be scaled, which is not a prerequisite of RF. 
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SVMs are also very sensitive to choice of hyperparameters, and cross-validation or grid 

search could be performed, which would also increase the cost and time of the modelling 

(Géron, 2019; VanderPlas, 2016). That being said, a SVM was chosen here, because they are 

very versatile and once trained the prediction phase can be very fast, making them suitable 

for predictions on unseen data (VanderPlas, 2016).   

 

2.3.3 Logistic Regression 

LR was chosen to be able to compare a simpler, linear model to the non-parametric models 

described above. LR is despite its name a classification algorithm, that tries to estimate the 

probability that an instance belongs to one of two classes, thus making it a binary classifier 

(Géron, 2019). It can be extended to a multinomial LR where the dependent variable can fall 

in more than two classes (Ae, 2013). The probability is found through the fitting of a logistic 

sigmoid function to the relationship between independent and dependent variables (Ae, 

2013). This S-shaped curve has values between 0 and 1 and the outputted number indicates 

the probability of a positive event (Ae, 2013). The parameter C determines the regularization 

of the model, just as in the case of SVM. So, if the model tends to overfit, a good procedure 

would be to lower this parameter (A. C. Müller & Guido, 2016). Especially in the case of 

multivariable analysis with many features in high dimensions such as in this study, being 

aware of overfitting is important (A. C. Müller & Guido, 2016).  

LR has been included in this study since they are fast to train and use for prediction. They are 

especially suited for large datasets, that would otherwise often lead to very long computation 

times for non-parametric models. Sometimes linear models are simply used due to 

computation and time constraints, even though they expectedly result in worse prediction 

accuracies on non-linear problems (A. C. Müller & Guido, 2016). And of course, this is the 

big problem with these types of models – that they will often not result in very accurate 

predictions on real-world, complex, and non-linear data.   

LR makes fewer assumptions about the data than linear regression. No assumptions are made 

that the relationships between dependent and independent variables are linear (Ae, 2013). LR 

can furthermore handle both continuous and categorical input data (Ae, 2013). That said, 

there are other assumptions that are problematic in relation to the data in this study, including 

independence of samples and multicollinearity between features. The latter can be checked 

with Pearson’s correlation coefficient or preferably variance inflation factor (VIF) that shows 

how much the variance of the estimated coefficient is influenced by multicollinearity 

(Senaviratna & Cooray, 2019). If multicollinearity is indicated, omitting or combining 

correlated features or increasing sample size are possible solutions (Senaviratna & Cooray, 

2019). 
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2.4 Modelling working steps 

A flowchart of the working steps can be seen in Fig. 2. 

 

2.4.1 Global modelling 

The first step was to run the global models for the normal period data (2019 and 2020). The 

global models were run on the entire dataset. The models were initially run ‘quick and dirty’, 

meaning without fine-tuning the hyperparameters, just to get a feeling which model might 

yield the best results. Hereafter the hyperparameters leading to the best results were found 

through cross-validation and grid-search. The ML model that performed best for the normal 

period was also used for the drought period. The global models (both normal and drought) 

were assessed through cross-validated scores based on five splits as well as confusion 

matrices.  

Furthermore, partial dependence plots were established for the most important features in the 

best model to get an understanding of the relationship between these independent variables 

and the dependent variable. Feature importance for the model with highest accuracy was 

noted and compared to the results for the local models.  

 

DATA PREPARATION      GLOBAL MODELLING          EVALUATION 

 

 

 

                                                                       

     

    CREATION OF LOCAL ZONES                   LOCAL MODELLING 

 

 

With the 

 

 

 

Figure 2. Flowchart over methodology. Data preparation was not included to a high degree, since the prepared data from M. 

Müller et al. (2022) was used. The local modelling was only performed with the ML algorithm that resulted in the best 

global results. Blue boxes = data preparation (for both global and local models), orange boxes = global modelling, green 

boxes = local modelling, grey box = evaluation. 

 

Getting balanced, prepared 

data from Müller et al. (2022) 

Removal of variables: 

geographical coordinates and 

period 

Preparation for LR and SVM: 

feature scaling and removal 

of collinearity 

Without setting 

hyperparameters 

With grid search to find 

optimal hyperparameters 

Performance evaluation 

and feature importance of 

the best global and local 

models 

Normal Drought 

Random zones created with 

“Balanced zones” tool in 

ArcGIS 

Local zones based on GWR 

results and “Spatially 

constrained multivariate 

clustering” tool in ArcGIS 

With the same 

hyperparameters as the 

global ones  
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2.4.2 Local modelling 

As an initial step to see whether local models could be expected to perform better, a spatial 

autocorrelation analysis was performed in ArcGIS Pro through the Moran’s I global test. To 

run it more smoothly the point data was collapsed into a 400x200 pixel fishnet and 

aggregated, so the proportion of bark beetle presence in each polygon was calculated. The 

size of the fishnet was determined through trial and error, both bigger and smaller polygons 

resulted in error and therefore 400x200 was used. The distance method was set to Euclidean 

and the conceptualization of spatial relationships to inverse distance (“Spatial Autocorrelation 

(Global Moran’s I) (Spatial Statistics)—ArcGIS Pro | Documentation”).  

Initially the idea was to perform the local modelling in the same way as in earlier spatial ML 

studies (Georganos et al., 2021; Quiñones et al., 2021; Santos et al., 2019) where a dynamic 

approach was used to combine GWR with RF. These studies were based on raster or 

polygon-data, for instance counties in the US (Quiñones et al., 2021) with fewer data records 

compared to the current study. The more dynamic approach creates local models for each 

data record only including neighbours to this specific data record. This can result in very long 

computing times on big datasets, since the same number of models as data points in the 

dataset basically have to be created. The simpler approach used in the current study was to 

divide the full dataset into geographical entities (spatially contiguous zones) in two different 

ways in ArcGIS: random zones and GWR zones.  

 

2.4.2.1 Random zones 

The first approach was based on the Balanced zones tool in ArcGIS, that divides the study 

area into spatially contiguous zones based on the data in the area. The criteria used here was 

‘defined number of zones’, with 2, 4, 6, 8, 10 and 15 zones created. This option is useful if 

the aim is to make zones with the same number of records (“How Build Balanced Zones 

works—ArcGIS Pro | Documentation”). The bark beetle presence variable could have been 

considered to try to keep a relative balance between infested and non-infested records inside 

each zone. In the end it was decided to keep things simple and not use the dependent variable 

for the zone-building. Including attribute criteria would make it much more difficult to create 

zones with approximately equal number of records, and this was the aim here.  

 

2.4.2.2 GWR zones 

The second method was generally more sophisticated and based on GWR results. This one 

was also performed in ArcGIS where GWR can be calculated. Since GWR is a linear model, 

problems can exist in case of multicollinearity, and this proved to be the case here. After 

removing problematic features (canopy height, basal area, and biomass for drought period 

and distToCC10, aspect, slope, prevY_f11sum, prevY_f21sum, basal area, biomass, canopy 

height and soil type for normal period), a distance-based kernel of 50 km, also called a fixed 

kernel, was used. The model type was specified as binary. The weighting scheme used was 

set to bisquare, gradually decreasing the influence of nearby-points based on distance in the 
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local models (“How Geographically Weighted Regression (GWR) works—ArcGIS Pro | 

Documentation”). The output included the percentage of deviance explained by both the 

global and local model (“How Geographically Weighted Regression (GWR) works—ArcGIS 

Pro | Documentation”). A higher deviance explained by the local model(s) indicates spatial 

autocorrelation and the appropriateness of using local models for the problem in question.  

The tool Spatially constrained multivariate clustering in ArcGIS was used to create the local 

zones based on the GWR results. This tool creates spatially contiguous zones based on some 

attribute values (“Spatially Constrained Multivariate Clustering (Spatial Statistics)—ArcGIS 

Pro | Documentation”), in this instance the local percent deviance scores. No cluster size 

constraints were used, and the number of clusters was set to respectively 2, 4, 6, 8, 10 and 15, 

the same as for random zones. This meant that, in opposite to the random zones, the local 

zones would generally include different number of records. By not setting any constraints (for 

instance the minimum number of records in each zone), the local zone-building was based 

solely on geographic contiguity as well as the local percent deviance scores, making it 

possible to create distinct zones where the scores were relatively similar.  

 

2.4.2.3 The modelling of the local models  

The final step was to run the models in the created zones. As already said, It is important to 

acknowledge that the term local models differ here compared to the other studies already 

mentioned (Georganos et al., 2021; Quiñones et al., 2021; Santos et al., 2019). Here it is more 

understood as local zones where one model was run for the entire zone.  

The same hyperparameters were used in the local zones as in the global model, meaning if 

the best global model was RF, the local models were run with RF with the same hyper-

parameters as in the global model. Also, five-folded cross-validation was used for the 

accuracy assessments as well as confusion matrices. The final and overall accuracy 

assessment for the local models was performed by weighing the cross-validation accuracy 

scores by the size of the zones (number of records in each). The best results for the normal 

and drought period were mapped, including the feature importance for each of these zones.
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3. Results 
 

3.1 Data exploration 

The spatial proportions of bark beetle infestations in the normal and drought period are 

included (Fig. 3 and 4). These maps are based on the full data set (rather than the balanced, 

stratified dataset) to get an overview on the true extent of the problem and the spatial 

diversion. The identical maps based on the stratified and balanced data are included in the 

appendix (Fig. 17). It should be noted here that this is based on the available data only, and 

there would be bark beetle attacked trees, that we do not know about in the study area. 

Instead of showing the full data set (2,659,545 records in normal period, and 1,356,357 

records in drought period), a fishnet was created (100x50 pixels) and the proportion of bark 

beetle inside each polygon calculated. This fishnet size was deemed best for visualization 

purposes. Since the proportion of bark beetle is limited in both the normal and drought 

datasets, the majority of polygons were characterized by a low proportion (below 7%) in both 

maps (Fig. 3 and 4). The majority of bark beetle presence in the normal period was found in 

the south-eastern part of the study area, whereas some clusters were found in the northern and 

southern part in the drought period. More single polygons with higher bark beetle presence 

were found in the normal period compared to the drought where more clusters were found.  
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Figure 3. Proportion of infested trees from bark beetle (based on the full dataset) for the normal period. Classification based on Natural Breaks (Jenks). 
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Figure 4. Proportion of infested trees from bark beetle (based on the full dataset) for the drought period. Classification based on Natural Breaks (Jenks).
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3.1.1 Correlations 

Fig. 5 and 6 show the correlations between the numerical variables in the two balanced data 

sets (normal and drought period). In the rest of the study the balanced datasets were used 

since the modelling was based on these. It was most interesting to look at the correlations 

between bark beetle infestations and the explanatory features, but intercorrelations between 

the features could show important properties such as multicollinearity.  

Generally, the correlations did not differ to a high degree between the two periods (normal 

and drought). The tree characteristic features (basal area, biomass, canopy height, spruce 

volume) had a positive relationship with bark beetle presence. The correlations between these 

were very high, and multicollinearity must be considered. Omitting one or more of these 

features would probably not decrease model performance. The tree characteristic features 

generally had a negative relationship with the other features, such as elevation and soil 

wetness, indicating that in drier and lower-lying areas the tree characteristic features could be 

higher.  

The elevation related features generally had a negative relationship with bark beetle presence, 

but the effect was higher in the normal period, especially for elevation. The relationship to 

the tree characteristic features could also partly explain this. 

Soil wetness was negatively correlated to bark beetle presence in both periods, indicating that 

soil dryness could be a problem in both normal and drought periods. Wetness in the soils has 

a mitigating effect, lowering the amount of bark beetle presence. Distance to previously clear 

cut areas, distToCC5 and distToCC10 (see Table 1), had a negative effect on bark beetle 

especially in the drought period where both these features had a relatively strong negative 

correlation.  

To sum up, the same correlation patterns were seen between the two periods, but elevation 

showed a more remarked negative effect on bark beetle presence in the normal period. It 

should be noted here that the main aim of this study was not to make a thorough feature 

analysis per se, but instead to assess model performance and the importance of modelling 

scale. Therefore, no figures or maps showing the extent of the features were included here. 

On the other hand, M. Müller et al. (2022) was more focused on analysing the explanatory 

features for bark beetle attacks, in the study area, based on the same data.
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Figure 5. Correlations between numerical variables, normal period     Figure 6. Correlations between numerical variables, drought period 
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3.1.2 Spatial autocorrelation and GWR results 

Spatial autocorrelation was calculated both through the Moran’s I global test and the 

subsequent GWR results. Both were calculated in ArcGIS Pro. For both the normal and 

drought period, Moran’s I showed significant spatial autocorrelations (p < 0.001) with 

positive Moran’s I-scores, indicating that bark beetle presence was clustered (Fig. 18 and 19 

in the appendix). Based on these results, a local modelling approach that better incorporate 

spatial autocorrelation could be expected to perform better than a global model.  

For both periods, the local models performed better than the global ones and explained more 

of the deviance, which also indicated spatial autocorrelation (Table 2). The results also 

showed that the effect was more pronounced for the drought period, but only marginally. By 

comparing the residual sum of squares, the improvement in performance when going from 

global to local was 19.2% for normal period and 21.6% for drought period (“How 

Geographically Weighted Regression (GWR) works—ArcGIS Pro | Documentation”). The 

reason for this could also be explained by the fact that more features were included in the 

drought model, as multicollinearity was more of a problem in the normal period dataset. For 

instance, the soil type variable was omitted in the normal period model (Table 2).  

The GWR score is based on a linear (OLS) model. A complex problem like the one assessed 

here consisting of a large number of records and many different environmental and geospatial 

features is not necessarily well explained by a linear model. None the less, this served as a 

good starting point to divide the study area into zones with different deviance scores – areas 

with higher local deviance scores should perform better when modelling on a more local 

scale.   
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Table 2. GWR outputs for normal and drought period, calculated in ArcGIS. 

For both models  

Distance band 50 km 

Dependent variable Bark beetle presence 

  

Model for normal period  

Explanatory variables • DistToCC5 

• DistPrevDmg 

• Dem 

• Landforms 

• Soil wetness 

• DistForestEdge 

• Forest type 

• Spruce vol 

 

Deviance explained by the global model (non-

spatial):       

0.27 

Deviance explained by the local model:                      0.41 

Deviance explained by the local model vs. 

global model:      

0.19 

  

Model for drought period  

Explanatory variables • DistToCC5 

• DistToCC10 

• Aspect 

• Dem 

• Landforms 

• Slope 

• Soil wetness 

• DistForestEdge 

• Forest type 

• Spruce vol 

• Soil type 

 

Deviance explained by the global model (non-

spatial):       

0.22 

Deviance explained by the local model:                      0.39 

Deviance explained by the local model vs. 

global model:      

0.22 
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3.2 Global modelling results 

 

3.2.1 Model performance and hyperparameters 

Model runs were made with the three ML models on the normal period data and hyper-

parameters were tuned with the help of grid search. The model performance was assessed 

through five-fold cross validation. In general, all the models performed quite well, with the 

non-linear models performing better than the linear ones (Table 3). The best model 

performance was found with RF, although SVM and RF performed similarly after 

hyperparameter tuning. The improvement from hyperparameter tuning was only marginal for 

RF whereas it was more pronounced for SVM. In the end, the RF was deemed to be the best 

performing model for the normal period and used both for the global drought modelling and 

the subsequent local modelling. RF performed worse in the drought period compared to the 

normal period but still had a rather high prediction accuracy.  

 

Table 3. Global model performance (prediction accuracy) with and without hyperparameter tuning (HPT) 

Normal period RF LR Linear SVM SVM 

     

Without HPT 0.87 0.76 0.79 0.83 

 

 

With HPT 0.89 

{'bootstrap': False, 

 'max_depth': 60, 

 'max_features': 'auto', 

 'min_samples_leaf': 1, 

 'min_samples_split': 3, 

 'n_estimators': 200} 

0.76 

{'C': 1.0, 'penalty': 

'l1', 'solver': 

'liblinear'} 

0.79 

{'C': 1.0, 'penalty': 'l2'} 

0.88 

{'C': 10, 'gamma': 1, 

'kernel': 'rbf'} 

Drought period RF 

  

Without HPT 0.83 

 

With HPT 0.84 

{'bootstrap': False, 

 'max_depth': 70, 

 'max_features': 'auto', 

 'min_samples_leaf': 1, 

 'min_samples_split': 2, 

 'n_estimators': 200} 

 

3.2.2 Feature importance for global models  

Feature importance was calculated for both the normal and drought period to assess whether 

there were differences and to see what features could be more important in future drought 

years compared to wetter years (Fig. 7 and 8). Partial dependence plots were made for the six 
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most important features in each period to get a deeper understanding of the relationship 

between these features and bark beetle presence (Fig. 9 and 10). Only two tree characteristic 

features were included in the partial dependence plots as these features were expected to have 

a rather identical relationship to bark beetle presence and therefore it was more interesting to 

include other features.  

The most important features included tree characteristics (only 2 included here but more were 

actually in top six), elevation, soil wetness, and distToCC5 (see Table 1) for both models. So 

generally, the most important features did not differ remarkably between the two periods. In 

the normal period also the distPrevDmg (see Table 1) was included.  

 

3.2.2.1 Tree characteristic features and elevation 

As for the correlations, the importance of the tree characteristic features was generally similar 

for the two periods (Fig. 7 and 8). These features had high importance, especially canopy 

height. As can be seen on the partial dependence plots (Fig. 9 and 10) the relationship was 

positive for canopy height and spruce volume, but the positive effect seemed to weaver off 

for both features in both periods. Canopy height had a very steep increase from around 170 

dm, resulting in an approximately doubling of bark beetle presence at canopy heights around 

220 dm in the normal period. The relationship between spruce volume and bark beetle 

presence was more linear but the marginal increase was higher in the drought period at higher 

spruce volume values whereas the plateau was reached earlier in the normal period (Fig. 9 

and 10).  

Elevation was important in both periods, but especially in the normal period (Fig. 9 and 10). 

The lowest areas in the normal period had the highest bark beetle presence after which a steep 

decrease happened around 50 m.a.s.l. From around 80 m.a.s.l. the rate of change was lower 

with the overall trend being a slight decrease. A trend was not obvious in the drought period 

where an increase was followed by a decrease and the partial dependence returned to almost 

the same value.  

 

3.2.2.2 The other features 

Soil wetness was more important in the drought period, but still included as one of the top six 

features in the normal period (Fig. 9 and 10). This was not surprising and in line with the 

correlation values. At dry soils the bark beetle presence was generally higher in the drought 

period. The marginal effect of soil wetness was higher for low increases in the drought 

period, indicating that even a slight increase in soil wetness can have an effective mitigating 

effect. The partial dependence decreases more steadily in the normal period.  

The distance to previous attack (distPrevDmg – see Table 1), only included in the normal 

period, had a low correlation with bark beetle presence but relatively high importance in the 

model (Fig. 7). The reason could be that this feature was not correlated to the other 

explanatory features and therefore had a unique relationship to bark beetle presence. The 

partial dependence plot showed a rather trendless relationship between the feature and bark 

beetle presence, but at lower levels there was more going on with a decrease and subsequent 
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increase in partial dependence (Fig. 9). Since most of the records had rather low values of this 

variable and 60% of the records were found in this interval (approx. 0-2000 m) this could 

explain the big importance in the model. With increasing distance, the partial dependence 

dropped in the beginning and subsequently increased. The distance features – distToCC5 and 

distToCC10 (see Table 1) were less important and decreased rather linearly in both periods 

(Fig. 9 and 10).  

 

 

Figure 7. Feature importance for normal period (global model, RF). 
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Figure 8. Feature importance for drought period (global model, RF). 
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Figure 9. Partial dependence plots for the 6 most important features (organized after importance), normal period (global 

model, RF). Only two tree characteristic features included. 
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Figure 10. Partial dependence plots for the 6 most important features (organized after importance), drought period (global 

model, RF). Only two tree characteristic features included. 
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3.3 Local modelling results 

 

3.3.1 Overall local model performance 

The general picture was the same for the normal and drought local models with overall, local 

models performing better than the global counterparts. With an increasing number of local 

zones, the overall performance (the average of the performances inside each zone weighted 

after the number of records in the zones) generally increased for both the random zones and 

the zones based on GWR results (Fig. 11 and 12). For the normal period, all the local models 

based on random zones performed better than the models based on GWR zones. The local 

models based on 10 zones actually performed worse than the ones based on 8 zones, but 

accuracy increased again with 15 zones (Fig. 11). For the drought period, the random local 

models performed best at lower number of zones but GWR performed better at 15 zones (Fig. 

12). It must be noted, that even though an increase in performance was seen with more zones, 

the absolute increase was generally marginal.  

The local models were based on RF. Due to the vast number of different results, only the best 

performing local models for both the normal and drought period and their characteristics are 

presented here under. The best performing local models were the random model based on 15 

zones for the normal period (Fig. 11), and the GWR model based on 15 zones for the drought 

period (Fig. 12). From now on, these two will be described as Random 15 normal and GWR 

15 drought for simplicity. Once again, it should be noted that the performances were in 

general similar, especially from 8 zones and more. The full results for each zone in Random 

15 normal and GWR 15 drought, including cross-validated performance and feature 

importance are included in Table 4 and Table 5 in the appendix. 

  

 

Figure 11. Local model performances, normal period. The figure is based on the number of zones – only 2, 4, 6, 8, 10, and 

15 zones were assessed. The prediction accuracy is the average of the accuracy inside each zone weighted after number of 

records inside each zone. 
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Figure 12. Local model performances, drought period. The figure is based on the number of zones – only 2, 4, 6, 8, 10, and 

15 zones were assessed. The prediction accuracy is the average of the accuracy inside each zone weighted after number of 

records inside each zone. 

 

3.3.1.1 Spatial model performance 

The spatial distribution of local model performance in Random 15 normal and GWR 15 

drought is seen in Fig. 13. For both periods, the same trends were seen with the best 

performing zones located in the north-western and mid-eastern part of the study area. Once 

again it should be noted that performance did not differ much between the different zones on 

an absolute scale, but it was interesting that the zones in the western and eastern part (located 

under the mid-eastern good performing part) were performing even worse than the global 

model for the normal period. 
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Figure 13. The spatial (local) model performances for Random 15 normal (left) and GWR 15 drought (right). Classification 

made with Natural Breaks (Jenks) based on the data distribution of Random 15 normal (also used for GWR 15 drought).   

 

3.3.2 Local feature importance 

Fig. 14 and 15 show the local feature importance of the five most important features for both 

models (these were defined as the features most often found in top 5 in each of the 15 zones). 

Since the tree characteristic features were assumed to be correlated as in the global model, 

only two of these features were included here, so other types could be assessed. The feature 

importance was generally higher in Random 15 normal compared to GWR 15 drought. The 

five most important features inside each zone in the two local models can be seen in Table 4 

and Table 5 in the appendix.  

 

3.3.2.2 Local feature importance for the normal model/zones 

When looking at the best performing zones in Random 15 normal, the tree characteristic 

features seemed to be less important than they were in the relatively worse performing zones. 

The elevation, distPrevDmg, and distToCC10 (see Table 1) were more important in these 

areas (Table 4). The feature importance of distPrevDmg’s was high in the north-western and 

mid-eastern part (Fig. 14). Elevation had a high importance, especially in the middle and 

southern part of the study area, two areas defined by a relatively high performance.  
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The worse performing zones in Random 15 normal were located in north-east, mid-west, and 

south-east (Fig. 13). These generally had tree characteristic features as the most important 

feature, such as canopy height and spruce volume. Spruce volume for instance had a 

relatively high feature importance in the north-eastern part, whereas canopy height had a high 

importance in the middle part of the study area (Fig. 14). The patterns are naturally not that 

clearly defined, spruce volume for instance also showed a high importance in the north-

western part – an area defined by high model performance. Soil wetness was generally less 

important than the other mentioned features with lower importance in areas that performed 

better such as the mid-eastern part, and a higher importance in areas that performed worse 

such as the north-eastern part.   

 

3.3.2.2 Local feature importance for the drought model/zones 

The best performing zones in GWR 15 drought were generally characterized by a high 

importance for forest type, especially in the north-western and northern part of the study area 

(Fig. 15). 

Tree characteristic features seemed to have a more varied relationship with model 

performance. Both of these (canopy height and spruce volume) were important in the mid-

eastern part, and spruce volume also in the north-western part of the study area. Canopy 

height on the other hand had low importance in the north-eastern, well-performing part of the 

study area. There were indications that elevation had a more complicated relationship with 

model performance in the GWR 15 drought compared to Random 15 normal with low 

importance in the north-western part but higher importance in the mid-eastern part (Fig. 15). 

Elevation therefore also seemed to have a relatively high importance in zones that did not 

perform that well.  

DisttoCC5 (see Table 1) and canopy height also had a higher importance in worse-

performing zones – in the middle part of the study area. Even forest type also had a high 

importance in the middle part (under the lake Vättern, located in the mid northern part of the 

study area) that performed relatively bad as well as the southern part that also did not perform 

as well as the best areas. In general, it seemed more difficult to make some general statements 

about the local feature importance in the drought model.  
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Figure 14. Spatial distribution of local feature importance in Random 15 normal. The five most important features included 

here (defined as the features most often found in top 5 in each of the 15 zones). Only two tree characteristic features 

included. Classification based on manual interval for easier comparison. 
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Figure 15. Spatial distribution of local feature importance in GWR 15 drought. The five most important features included 

here (defined as the features most often found in top 5 in each of the 15 zones). Only two tree characteristic features 

included. Classification based on manual interval for easier comparison. 

 

3.3.3 Characteristics of zones based on their performance 

One of the aims of this study was to characterise the best performing local zones and to 

assess the potential of using more local models to predict bark beetle presence. In the 

appendix, Table 4 and Table 5 show a detailed account of the different zone results for the 

two best performing local models – GWR 15 drought and Random 15 normal.   

The number of zones clearly had a big influence, indicating the degree of locality. Both local 

models based on the greatest number of zones (15) performed best. The number of records in 

each zone differed based on how the study area was split. The random zones were 

characterized by an approximately equal number of data records in each zone, whereas the 

GWR-based zones were characterized by an uneven number of records. The correlation 

between model performance and the number of records inside the zone was assessed for the 

two best performing local models. Both correlation coefficients were negative indicating that 

fewer number of records could result in better model performance. That said, it was difficult 

to make conclusions about the relationship between the number of records and performance, 

since none of these tests were significant (p-value > 0.05). It should of course be noted that it 
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was expected that the random model would not result in significant correlations due to the 

approx. even number of records in each zone. 

Performance was highly dependent on the distribution of bark beetle presence inside each 

zone, with an equal distribution generally resulting in the best local performance. Zone 3 and 

9 in the GWR 15 drought (Table 5) were examples where local models did not perform very 

well as data in the zone was unbalanced resulting in a low prediction accuracy for healthy 

records in zone 3 and infested records in zone 9. 

The local deviance score was found to be significantly correlated (p-value < 0.05) to model 

performance for GWR 15 drought with a correlation value of 0.63. The areas with high GWR 

scores were characterized by high spatial autocorrelation and therefore using more local input 

data resulted in higher model performance. Figure 16 shows the local deviance scores for the 

drought dataset. The north-western, south-western, and mid-eastern parts of the study area 

had high local deviance scores, which coincided to a high degree with high model 

performance (Figure 13). 

The feature importance in the best performing zones in both the normal and drought models 

generally differed from the zones that did not perform as well. These had certain features 

with higher importance, especially distPrevDmg (see Table 1) and elevation in Random 15 

normal, and forest type in GWR 15 drought. The relatively worse-performing zones were 

more associated with high feature importance of the tree characteristic features, such as in the 

global models. As said, it was a bit more difficult to make general statements about local 

feature importance in the drought model, but the general conclusion must be that the best 

performing zones differ from the global ones in their feature importance.  
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Figure 16. Spatial distribution of local deviance scores, GWR 15 drought. Classification made with Natural Breaks (Jenks).  
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4. Discussion 
In this study, an assessment of using ML models to predict bark beetle attacks was performed 

on different scales. Many methodological choices had to be made that could potentially 

influence the results and make them less reliable.  

 

4.1 Global results 

Only a handful of features and ML models were assessed. The features included were varied 

and consisted of both temporal and spatial features as well as more static, landscape features. 

One can always consider whether the chosen features are appropriate for a specific 

application, but the high model performances obtained in the study indicate that the chosen 

features were good at estimating and predicting future bark beetle attacks in the case area.  

Of the ML models assessed, RF was found to perform (marginally) better on the global 

dataset. This is in line with the results from Koreň et al. (2021) that found tree based models 

to perform best in the spatial prediction of bark beetle presence. After some hyperparameter 

tuning, SVM performed almost as good as RF. But there are other reasons, apart from pure 

performance, to prefer RF – for instance due to its fast computation time, the fact that 

standardization and scaling of data is not required, and also its ability to handle collinearity 

between features (M. Müller et al., 2022; Quiñones et al., 2021) – the first two are often seen 

as disadvantages of the SVM model. Cracknell & Reading (2014) compared RF and SVM 

among other ML models and reported that RF performed better in different aspects compared 

to SVM, here under stability and processing time. SVM on the other hand showed a higher 

computation time and instability over the cross-validated scores. In the current study the 

stability was identical between SVM and RF – meaning there was no significant difference in 

variance between the cross-validated performance scores for the two models. For some of the 

aforementioned reasons, RF has been chosen in different spatial studies as the only ML 

model (Georganos et al., 2021; M. Müller et al., 2022; Santos et al., 2019). 

Since RF performed best for the normal period, it was also used for the global drought 

modelling. The prediction accuracy was lower compared to the normal dataset but still 

performed adequately. This could indicate a more complex relationship between the 

explaining features and bark beetle presence under drought – feature importance was 

generally lower. But as already mentioned in M. Müller et al. (2022) it could also be due to 

the lower number of features included in the drought dataset.  

Tree characteristic features such as canopy height and spruce volume were found to be highly 

indicative of sensitive areas, with higher values increasing the risk of bark beetle presence. 

Both in the normal and drought period, these factors were found to be highly important 

(Figure 7 and Figure 8). This was in accordance with other studies such as Koreň et al. (2021) 

who found percentage of spruce and spruce forest age to be important features. Topographic 

features have also been noted as important features in other studies (M. Müller et al., 2022) 

and elevation was found to be the most important abiotic factor predicting bark beetle attacks 

in Lausch et al. (2011). The same was found in this study, in both the normal and drought 

period. The feature importance was especially high in the normal period, where higher 
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elevation was associated with lower bark beetle presence. The negative correlation between 

tree characteristic features and elevation in the normal period can partly explain this (Figure 

5). The relationship between bark beetle presence and elevation seemed more diffuse in the 

drought period with a correlation value very close to zero.  

Lausch et al. (2011) found temporal and distance-based features to be highly indicative of 

bark beetle risk, such as distance from the site of infestation from previous year. This makes 

sense as bark beetles will typically attack trees located close to trees recently attacked (M. 

Müller et al., 2022). The distPrevDmg feature (see Table 1) included in the normal period, 

was found to be the most important feature after the already mentioned (tree characteristics 

and elevation), even though it was only marginally, positively correlated to bark beetle 

presence. According to M. Müller et al. (2022) this distance-based feature could explain the 

better performance in the normal global model compared to the drought one, and this is 

confirmed here by the high importance of this feature in the normal model. In Koreň et al. 

(2021), distance to actual forest damage was one of the features included in the best 

performing model.   

 

4.2 Local results  

Local zones, defined as spatially contiguous zones, were created based on both GWR scores 

and random selection, and modelling was performed inside these. In general, local modelling 

resulted in better model performance, especially when a sufficient number of zones were 

created – best results were obtained with 15 zones. Quiñones et al. (2021) found that 

geographically weighted RF had a higher potential for accurate diabetes predictions 

compared to traditional and global methods. Georganos et al. (2021) examined the spatial 

scales at which local models could perform better than global models, by considering 

different kernel sizes (number of neighbours), and found that if a suitable geographical scale 

is chosen, local RF can perform better than global RF.  

One thing that must be noted here, is that the term ‘local model’ differs between this study 

and earlier studies (Georganos et al., 2021; Quiñones et al., 2021; Santos et al., 2019). The 

approach in this study was more static, meaning a comparison was made between a global 

model that used data from the whole study area and ‘local’ models that only used data from 

one zone. The more dynamic approach employed in earlier studies is based on kernels and 

bandwidths where a model is performed in each record, and only based on nearby points, thus 

constantly changing the inputs in each model. One potential problem with the more static 

approach used in this study is the fact that models could perform worse at the zone edges, and 

there will naturally be more of these when more zones and models are considered compared 

to one global. Since many of the nearest data records will be located in other zones for these 

edge records, the accuracy could be worse. The more dynamic approach comes with a more 

intense computing cost, due to the vast number of models that potentially must be 

established. In this case, it becomes even more important to consider the choice of ML 

model. As reported in Cracknell & Reading (2014) using multiple training samples to account 

for spatial variation in a study area can result in a large increase in SVM processing times. 
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Most of the geographically weighted ML studies have understandably used RF (Georganos et 

al., 2021; Quiñones et al., 2021; Santos et al., 2019). 

In the aforementioned spatial ML studies, the data mainly consisted of polygons, for instance 

counties in the US (Quiñones et al., 2021). The point data in this study with a high number of 

records, even after balancing the dataset, would be a big problem computation-wise if 

dynamic, local modelling should be employed. The data could have been generalized from 

point to polygon, for instance by finding the proportion of bark beetle presence inside 

polygons. But in the end, the more static approach was chosen since the urge was to use the 

point data, and not lose information by generalizing the points into polygons. Another point 

was that most of these earlier spatial ML studies were based on a continuous dependent 

variable (opposite this study that had a binary dependent variable), and therefore local 

regressions were performed. Georganos et al. (2021) developed and used SpatialML, a R-

package that performs local RF regressions. Writing an own program to perform a local 

classification was deemed out of the scope of the project, due to time constraints. That being 

said, performing some dynamic, local modelling, in different zones in Random 15 normal and 

GWR 15 drought could have been implemented to see whether performance would improve 

inside these zones. The computation costs would not be that high in this case due to the lower 

number of records inside the zones compared to the global dataset. This can be employed in 

future bark beetle studies. Once again, since the performance was indeed quite good, the 

potential for improvement was minor.   

The overall, local model performances were more similar in the normal and drought period, 

when dividing the area into more zones (Table 4 and Table 5), which indicated that the 

drought model would generally benefit more from zooming in than the normal model. When 

the study area was divided into more zones, very well-performing zones were found for both 

the normal and drought period and generally most local models performed better than their 

global counterparts. Generally, the best-performing zones had a different feature importance 

compared to the worst-performing ones that had a feature importance that more resembled 

the global models with tree characteristic features being the most important. Elevation and 

distPrevDmg (see Table 1) were important in the best-performing zones in the normal period 

and forest type was important in the best-performing zones in the drought period.  

As noted in Quiñones et al. (2021) being able to map out model performance spatially makes 

it possible to find areas with worse performances and where additional features could be 

needed to increase prediction accuracy (Georganos et al., 2021). What characterizes good and 

bad zones was therefore an important assessment in this study and this included feature 

importance.  

 

4.3 Limitations and uncertainties  

Different uncertainties surrounded the data, modelling, and choice of features in this study. 

One of the big insecurities with the data was the establishment of healthy records. Infested 

trees were collected through harvester data, whereas a proxy for healthy trees was made – 

defined as pixels not characterized as infested and located in estates that had harvested trees 
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in other pixels. This is indeed only a proxy and could hide the fact that many of these areas 

had infested trees. In the end this was deemed the best option, and since the performance was 

high, this approach could be said to be acceptable. 

Other studies have compared different ML models, for instance Koreň et al. (2021) who 

assessed the spatial distribution of bark beetle presence in Czech Republic. In the current 

study, fewer models were compared. Initially, other complex models, such as neural networks 

were considered. In the end, fewer models were included, due to time constraints and the fact 

that the aim was more focused on comparing global and local models. A more thorough 

comparison of global and local models would have included using more ML algorithms for 

the local models and not just RF. SVM and RF performed almost equally good on the global 

dataset. Making local models with SVM would have been a great addition since many of the 

earlier geographically weighted ML studies are based on RF (Georganos et al., 2021; 

Quiñones et al., 2021; Santos et al., 2019). This should be implemented in future studies 

where time and computational constraints are less of an issue. 

The model hyperparameters were tuned using grid search. The linear models and RF did not 

improve to a high degree. RF often performs well even without much hyperparameter tuning 

and this can also be considered one of the strengths of the model. The non-linear version of 

SVM improved more markedly due to hyperparameter tuning. Only the RBF-kernel was 

assessed and including other kernels such as polynomial in the assessment could have further 

improved model performance (Géron, 2019). Even though there are many reasons to prefer 

RF, a more intense and broader grid search could potentially have improved model 

performance and given the edge to other models. A trade-off between computation time and 

broadness of grid search must of course be considered (Cracknell & Reading, 2014). Another 

limitation concerning hyperparameters was the fact that the tuned global hyperparameters 

were also used in the local models. This was also chosen due to computation and time 

constraints. Making local hyperparameter tuning in each zone could have resulted in higher 

local model performance. This improvement would likely have been higher if SVM had been 

used for the local performance due to the lower effect of hyperparameter tuning for RF.  

Following the choice of the more static approach used in this study, one thing that had to be 

considered was how to divide the study area into different zones. A random procedure, that 

kept the number of data records in each zone fairly constant as well as a GWR-based 

approach based on the spatial autocorrelation in each area were implemented. When creating 

zones, it must be decided what should be considered. The proportion of bark beetle presence 

(trying to balance the proportion between infested and healthy records inside each zone) was 

not considered to a high degree since this would make it difficult to make spatially 

contiguous zones. The number of records in each zone was the most important factor in the 

random approach, and the local deviance score was the most important in the GWR-based 

approach. Using a more dynamic procedure would have avoided many of these choices, as a 

constant number of input points could have been used, but for the reasons already mentioned, 

this method was not implemented.  

The results indicate that it was better to divide the area into a higher number of zones, and 

therefore it would be central to ask, whether overall performance could be improved by 
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dividing the study area into an even higher number of zones – for instance 20 or even 30 

zones. This could make sense if the random procedure is followed. But if the GWR method is 

used with different zone sizes, this would increase the chance of having very small zones 

where an unbalanced data distribution and low number of records could result in bad 

performances. Already at 15 zones, some of the zones get so small that performance is 

severely affected. Unbalanced data can decrease model performance – Hernandez et al. 

(2012) for instance used unbalanced data to model bark beetle attacks and acknowledged that 

the relatively low accuracy could be improved with more balanced data. Another problem 

using GWR is the fact that it is based on local linear regression models and therefore not 

really suitable for complex, non-linear problems like bark beetle presence (Luo et al., 2022). 

Still, it was clear that high local deviance scores found in the GWR-output was associated 

with better local model performance, and the GWR-approach had its merit. 

Deciding which features to include and omit is always one of the most important aspects and 

considerations of a ML study. Features that could potentially have increased performance in 

this study were coordinates and meteorological. The coordinate features were left out of the 

final models, although other similar studies have included these. (Georganos et al., 2021) 

argued that including coordinates as input features is good practice when working with 

spatial data. If training data is of high quality, using only coordinates as explaining features 

can be sufficient to achieve an acceptable model performance (Cracknell & Reading, 2014). 

That being said, using coordinates can be problematic. Training a ML model in a restricted 

study area using coordinates, can make the model less able to generalize outside of the study 

area. In studies, like this one, where data is partly based on field collection, spatial clustering 

of input data due to time constraints and accessibility is often the case, and this can lead to 

poor generalization outside of these clusters (Cracknell & Reading, 2014). Since the aim was 

to assess spatial autocorrelation and the use of more local models, it was decided not to use 

coordinates in the modelling. Instead, the spatial dimension was included in the GWR models 

that were used to create the local division. Geographical coordinates were thus omitted in 

both the global and local models.  

Another group of explaining features that were not directly considered in this study were 

meteorological features. Other bark beetle studies have included solar radiation, temperature 

and precipitation in their models (Hernandez et al., 2012; Koreň et al., 2021; Lausch et al., 

2011). Whereas Lausch et al. (2011) did not find solar radiation to contribute to higher model 

performance, solar radiation was one of the features that were included in the best performing 

model in Koreň et al. (2021). A big insecurity regarding these meteorological features, and 

the features in general, is their temporal importance during a bark beetle outbreak. Lausch et 

al. (2011) found that bark beetle preferred different temperatures at different times in the 

outbreak, making the relationship even more complex. Looking at the spatial importance of 

meteorological features such as air temperature and precipitation can be problematic and 

unreliable on a high spatial resolution as the data in this study (M. Müller et al., 2022). Due to 

these spatial and temporal uncertainties, these features were not included directly. Comparing 

data from a drought and normal period, was a way to include these features indirectly and in a 

more reliable way. 



 

46 
 

The most important features were assessed for both the global and local models, but a more 

sophisticated feature selection was not implemented. The full set of features were included in 

all the models, but the feature importance was often low for several of these. Koreň et al. 

(2021) reported that the number of features could be reduced without a significant reduction 

in model performance. Fewer features even improved prediction accuracy of diabetes 

prevalence in Quiñones et al. (2021). Using a smaller number of features could be beneficial 

if for instance the more dynamic, local modelling approach was implemented, as computation 

time would be lower – something that would especially be beneficial with SVM. Fewer input 

features would also make the model more interpretable (Quiñones et al., 2021) and make it 

easier to make an in-depth survey of the relationship between the dependent variable and the 

independent variables, for instance through the use of partial dependence plots. In M. Müller 

et al. (2022) the focus was on feature importance and bark beetle presence and a pruning of 

the included features in the models was performed to decrease collinearity between these. 

This pruning led to higher model performances, indicating the potential for even increasing 

model performance in the current study. Local feature selection is another topic where more 

research could be implemented. Using the same features for each local model is a simplistic 

approach and could be made more sophisticated by selecting different features in each 

locality (Georganos et al., 2021). Adding features in localities with a relatively low prediction 

accuracy could potentially result in better model performance in these zones (Quiñones et al., 

2021). 

As a final note on limitations, it could be argued that the spatial non-stationarity between 

independent and dependent variables where not really considered, as one could argue that the 

local models are still global in nature, as we do not use a dynamic approach. Even though this 

spatial non-stationarity is not considered directly, by using GWR in the zone creation and 

comparing results and feature importance between the global and local models, it is included 

at least indirectly.  

 

4.4 Implications of the results  

We must differ between overall local model performance (weighted mean of the performance 

inside each zone) and performance inside each zone. One of the clear advantages of using a 

GWR-approach is that it shows in which areas it might be beneficial to zone in on a smaller 

scale and perform local modelling. If a forest entity wants to assess the risk of bark beetle 

presence in an area and make a feature analysis, it could be beneficial to zoom in and use 

more local data as this could be helpful in understanding the features that are most important 

inside this zone and which should be considered in future management schemes. 

It is important to consider the underlying data, and make sure that the number of records in 

the local model is still relatively high and the distribution of infested and healthy records not 

too unbalanced. If one must use unbalanced data, a higher number of infested trees in the 

input data would generally be preferred as this could mean, the model would at least not be 

worse at predicting infested trees compared to healthy ones. Generally the true positive rate 

(sensitivity) would be satisfactory in that case (Koreň et al., 2021). An infested tree can lead 

to infestations on nearby trees and detection of these is therefore more important than 
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detection and prediction of healthy trees. Harvesting a healthy tree is better than not 

harvesting an infested one, and this is a trade-off that must be considered when establishing 

local models. It is still important to acknowledge that reliable ML models must be 

characterized by both high sensitivity and specificity (Koreň et al., 2021) – something that 

can be an issue depending on the local model creation and the number of zones assessed.   

Global warming and climate change is expected to lead to larger bark beetle habitats and also 

making the risk of a second beetle generation in one season higher (in areas where this 

typically has not been possible) (M. Müller et al., 2022). Higher temperatures and resulting 

drought can decrease tree defence and leave more trees weakened and increase their 

sensitivity to bark beetle attacks (Koreň et al., 2021). Another possible consequence is that 

longer frost-free periods under climate change might result in less stable trees that are more 

sensitive to wind damage (M. Müller et al., 2022) – one of the predispositions of bark beetle 

attacks, for instance in Sweden. Generally model performance was worse under drought than 

normal but could, as already mentioned, be explained by the extra features included in the 

normal dataset. To assess complex spatial phenomena such as forest damage from insects, 

advanced methods are needed, and our results indicate, that zooming in and performing more 

local modelling had more potential in the drought period with almost all zones performing 

better than the global model. In the future under climate change, there will be an increased 

focus on prediction and detection of areas sensitive to bark beetle attacks. This will help to 

effectively select areas where protective measures should be taken, such as increasing tree 

drought resistance (M. Müller et al., 2022). Zooming in on a finer scale, and even using a 

more dynamic approach in the creation of local models could be highly beneficial to increase 

model performance and help with more effective local management, if the crucial features 

differ between areas, as the results of this study indicated. Other advanced techniques that can 

be used together with ML in the future is remote sensing data that can help to more easily 

identify past and current infestations (Koreň et al., 2021) and make the input data more 

reliable than in this study.  

There are still many unknowns when it comes to the spatial and temporal dimensions of bark 

beetle outbreaks due to the high complexity. As already mentioned, predicting future 

outbreaks can be almost impossible due to these complexities and as reported in Lausch et al. 

(2011), only a combination of factors could determine the spread of bark beetle. As said in 

M. Müller et al. (2022), since features are, in most circumstances, not expected to be 

independent in natural and complex matters such as bark beetle outbreaks, methods assessing 

partial importance should be implemented.  

The temporal and spatial dimensions are important to consider in bark beetle studies and have 

often been rather limited in earlier studies, focusing on relatively small study areas and a 

limited time period (Lausch et al., 2011; M. Müller et al., 2022). One aspect that should be 

examined in future studies is the use of ML on longer time scales – to assess how the 

predictive and exploratory dimensions of the model changes during an outbreak and also look 

at the spatial dimension of these. A longer time scale than 3 years, as in the current study, 

should be assessed. Ramazi et al. (2021) made a temporal split of the data into different years 

and thereby could assess how different ML algorithms could predict mountain pine beetle 



 

48 
 

attacks both short- and long-term. Defining in what year a bark beetle attack occurred can be 

complex, as seen in the current study. But considering the temporal dimension and 

continuously looking at different features and feature combinations will be important to 

improve our understanding of the dynamics of bark beetle attacks.  

In the end, using ML in combination with remote sensing and other advanced techniques to 

detect infested spots and using this in different areas, can give us important insights of the 

spatial dimension of bark beetle attacks, and at the same time be a valuable tool in future 

forest management under climate change. This can result in a higher potential for detecting 

sensitive areas before infestation occurs, thereby decrease the dependency on expensive and 

substantial ad-hoc measures in the forest industry. Instead of control actions, focus should be 

on cheaper and effective prevention measures such as removing infested trees and laying out 

pheromone traps (Rammer & Seidl, 2019; Valdez Vasquez et al., 2020). 
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5. Conclusion 
The ML model that most accurately predicted bark beetle presence in this study, based on the 

whole dataset (global model) was RF, followed by non-linear SVM. Both models performed 

very well on the data, with the chosen features. They performed almost identically due to a 

higher model improvement from hyperparameter tuning for SVM, but RF ultimately 

performed marginally better. In a real-world complex problem, not having to do intensive 

hyperparameter tuning and grid search could be preferred to keep computation costs down – a 

reason for choosing RF, based on the results of this study.   

Splitting the study area into smaller entities (local modelling) resulted in generally higher 

prediction accuracy, especially when a higher number of local zones were considered. The 

highest number of assessed zones, 15, led to the best overall performance. The models in the 

local zones generally performed better than the global ones, especially in zones with a 

balanced distribution of healthy and infested records, not too few records, and a high local 

deviance score for the GWR-based local zones. Generally, feature importance was different 

in the best performing zones compared to the zones that performed worse. The worst-

performing zones resembled the global ones, with many tree-characteristic features being the 

most important. Other features, such as forest type in the drought period, and distPrevDmg 

(see Table 1) in the normal period, were important in many well-performing zones, indicating 

that these zones could perform well because other features, than the globally most important, 

were important inside these. By only using local datapoints, the model was better able to 

include this information.  

Increasing temperatures and drought instances under climate change is expected to lead to a 

higher risk of bark beetle attacks in many areas. The models generally performed better on 

the data from the normal period compared to the drought period, indicating a more complex 

relationship between the independent and dependent features under drought and climate 

change. The additional number of features in the normal models could also explain this 

difference. The local zones improved model performance in the drought period more than in 

normal period, indicating that the local models were better able to explain the potentially 

more complex feature relationship. Using more local and potentially more dynamic (and 

computationally intensive) models could improve prediction accuracy of bark beetle 

presence, and at the same time give valuable insights to local feature importance. This could 

guide future forest management on a local scale – something that will be crucial under 

climate change due to the spatial dimension and expected increase in insect damage in 

Sweden and other forest-rich countries.  
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Appendix 
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Figure 17. Proportion of infested trees from bark beetle (based on the balanced dataset) for the normal and drought period. Classification based on Natural Breaks (Jenks) on the data distribution 

in the normal period. 
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Figure 18. ArcGIS output from Moran's I test on the global dataset from the normal period. 
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Figure 19. ArcGIS output from Moran's I test on the global dataset from the drought period. 
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Table 4. Results from the RF modelling in the local zones in Random 15 normal. Canopy = canopy height. Other feature 

explanations in Table 1. 

Results from local models 

(based on random) 

Zone Number 

of 

records 

CV 

mean 

score, 

accuracy 

f1-score, 

healthy 

(number of 

points) 

f1-score, 

infested 

(number of 

points) 

Correlations Feature importance 

1 5756 0.92 0.93 (2822) 0.93 (2934) canopy           0.583597 
biomass         0.504479 

spruce vol      0.496253 

basal area      0.458528 
forest type     -0.397257 

canopy            0.1783 
biomass          0.0878 

basal area       0.0873 

elevation         0.0855 
distprevdmg   0.0849 

2 4947 0.91 0.87 (1729) 0.93 (3218) canopy           0.549142 

biomass         0.453942 
spruce vol      0.433183 

basal area      0.410896 

soil wetness  -0.399094 

canopy            0.1603 

soil wetness   0.0984 
spruce vol       0.0946 

distprevdmg   0.0884 

distToCC5        0.0781 

3 6224 0.9 0.91 (4303) 0.85 (1921) spruce vol      0.460787 

biomass         0.399738 

basal area      0.398165 
canopy           0.394555 

soil wetness  -0.288430 

spruce vol        0.1145 

canopy             0.1083 

soil wetness    0.1081 
distprevdmg   0.1072 

soilType           0.0754 

4 5611 0.90 0.93 (3384) 0.91 (2227) spruce vol       0.397342 

soil wetness   -0.348596 

basal area       0.319154 
biomass           0.318797 

canopy             0.278216 

spruce vol       0.1054 

soilType           0.1024 

soil wetness    0.0981 
distprevdmg   0.0960 

elevation         0.0804 

5 4877 0.95 0.95 (2542) 0.95 (2335) spruce vol        0.543003 
biomass            0.521588 

basal area        0.501124 

canopy             0.492405 
elevation         -0.271071 

distprevdmg   0.1688 
spruce vol       0.1320 

elevation        0.1059 

biomass          0.0887 
basal area       0.0831 

6 5767 0.89 0.89 (3324) 0.88 (2443) biomass           0.475540 

canopy             0.473179 
basal area        0.444799 

spruce vol        0.435291 

elevation          -
0.289420 

canopy            0.1322 

elevation         0.1154 
distprevdmg   0.1142 

soil wetness   0.0950 

biomass          0.0860 

7 5231 0.93 0.96 (3567) 0.92 (1664) canopy              0.482379 

elevation          -
0.459498 

biomass            0.455405 

spruce vol        0.419550 
basal area        0.417332 

elevation        0.1668 

distprevdmg  0.1600 
canopy            0.1394 

biomass          0.0772 

distToCC10     0.0707 

8 4856 0.89 0.91 (3486) 0.82 (1370) canopy             0.426670 

biomass           0.392014 
basal area       0.355379 

spruce vol        0.332656 

landforms        0.197715 

canopy            0.1548 

biomass          0.1030 
basal area       0.0950 

distprevdmg   0.0890 

elevation         0.0860 

9 4815 0.92 0.93 (2387) 0.93 (2428) canopy            0.438828 

biomass          0.407843 
elevation        -0.390659 

basal area      0.357678 

spruce vol      0.266670 

elevation         0.1978 

distprevdmg   0.1400 
canopy            0.1122 

distToCC5       0.0823 

biomass          0.0692 

10 4751 0.87 0.57 (432) 0.92 (4319) canopy            0.301523 

biomass          0.293823 
basal area       0.280703 

spruce vol       0.269991 

soil wetness   -0.143569 

spruce vol       0.1111 

canopy            0.1005 
distprevdmg  0.0976 

soil wetness   0.0961 

elevation        0.0952 
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11 4801 0.95 0.92 (1665) 0.95 (3136) spruce vol    0.472286 

forest type   -0.410608 

canopy         0.400753 

biomass       0.396443 
basal area    0.384877 

distprevdmg  0.2626 

spruce vol      0.1209 

soil type         0.0792 

canopy           0.0777 
forest type    0.0705 

12 4855 0.94  0.93 (1845) 0.95 (3010) forest type   -0.517837 

spruce vol    0.514797 

canopy          0.475814 
elevation      -0.466554 

biomass        0.450284 

elevation        0.1464 

spruce vol      0.1457 

distprevdmg  0.1178 
forest type     0.0906 

disttoCC10     0.0896 

13 4691 0.94 0.90 (1018) 0.97 (3673) disttoCC10   -0.575986 
elevation      -0.438623 

canopy          0.419563 

disttoCC5      -0.416691 
forest type    -0.405900 

disttoCC10     0.2315 
elevation        0.1398 

distprevdmg  0.1131 

canopy           0.0978 
forest type    0.0648 

14 4909 0.91 0.94 (3482) 0.87 (1427) spruce vol     0.467468 

basal area     0.432490 

biomass         0.426014 
canopy           0.390151 

soil type         0.273944 

distprevdmg 0.1492 

spruce vol     0.1133 

biomass         0.0947 
basal area      0.0851 

soil type         0.0825 

15 3355 0.92 0.91 (1737) 0.91 (1618) spruce vol     0.556518 
biomass         0.520893 

basal area     0.511248 

forest type    -0.454068 
canopy           0.453409 

distprevdmg  0.1500 
spruce vol     0.1232 

elevation       0.1115 

forest type    0.1060 
biomass         0.0738 

Overall assessment:  

Weighted accuracy (cross-validated): 0.915 
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Table 5. Results from the RF modelling in the local zones in GWR 15 drought. Canopy = canopy height. Other feature 

explanations in Table 1. 

Results from local 

models (based on GWR) 

     

Zone Local 

Deviance 

(GWR 

score) 

Number 

of 

records 

CV mean 

score, 

accuracy 

f1-score, 

healthy 

(number of 

points) 

f1-score, 

infested 

(number of 

points) 

Correlations Feature importance 

1 0.38 806 0.97 0.98 (514) 0.96 (292) forest type          -0.653165 
spruce vol           0.490541 

soil wetness       -0.452312 

landforms           0.301733 
canopy                0.291320 

forest type       0.2040 
elevation          0.1351 

soil wetness    0.1342 

spruce vol        0.1197 
disttoCC10       0.0790 

2 0.55 711 0.93 0.95 (353) 0.94 (358) spruce vol           0.597040 

biomass              0.591876 
basal area          0.568361 

forest type         -0.544246 

canopy                0.525821 

forest type       0.1732 

spruce vol        0.1238 
biomass            0.1158 

basal area        0.1060 

canopy             0.0796 

3 0.55 284 0.89 0.46 (28) 0.93 (256) soil type              0.353618 

basal area           0.297425 

soil wetness       -0.295767 
biomass              0.282939 

disttoCC5           0.233201 

basal area        0.2014 

soil type           0.1630 

disttoCC5         0.1455 
biomass            0.0983 

spruce vol        0.0892 

4 0.41 4342 0.93 0.94 (2381) 0.93 

(1961) 

spruce vol          0.525608 

canopy               0.517333 

forest type        -0.484912 
biomass             0.464548 

basal area         0.431727 

elevation          0.1284 

canopy              0.1236 

spruce vol         0.1019 
disttoCC10        0.0952 

forest type        0.0920 

5 0.34 3195 0.88 0.89 (1495) 0.90 

(1700) 

biomass            0.411299 
canopy              0.408229 

basal area         0.404059 

spruce vol         0.400820 
soil wetness     -0.308871 

elevation           0.1238 
soil wetness      0.1025 

basal area          0.0988 

spruce vol          0.0984 
disttoCC5           0.0893 

6 0.79 276 0.95 1 (58) 1 (218) forest type       -0.602606 

biomass            0.569137 
spruce vol        0.563673 

basal area        0.547598 

canopy             0.524032 

forest type        0.3351 

basal area         0.1388 
spruce vol         0.1123 

disttoCC10        0.0748 

biomass             0.0706 

7 0.21 1503 0.87 0.86 (695) 0.88 (808) forest type      0.347213 

canopy             0.299949 
biomass           0.279729 

basal area        0.262846 

spruce vol        0.255361 

forest type        0.1271 

disttoCC5          0.0986 
elevation           0.0947 

soil wetness      0.0930 

disttoCC10        0.0909 

8 0.24 1433 0.88 0.92 (821) 0.88 (612) biomass            0.424999 

canopy              0.420471 
elevation          -0.382045 

basal area        0.381743 

spruce vol        0.349669 

elevation           0.2274 

canopy               0.0924 
disttoCC5           0.0887 

basal area          0.0855 

biomass             0.0834 

9 0.26 2557 0.84 0.91 (1840) 0.77 (717) soil type           0.276547 

spruce vol        0.267380 
landforms        0.262529 

biomass            0.248889 

basal area        0.246669 

soil type             0.1054 

elevation           0.1029 
soil wetness      0.0977 

spruce vol         0.0869 

disttoCC10        0.0854 

10 0.76 74 0.93 0.91 (28) 0.95 (46) forest type       0.467625 
canopy              0.411538 

distforestedge 0.397547 

slope                 -0.380454 
biomass            0.357218 

distforestedge  0.1891 
slope                  0.1354 

forest type        0.1253 

disttoCC5          0.0977 
canopy               0.0729 
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11 0.28 4065 0.89 0.86 (1614) 0.9 (2451) canopy           0.390827 

biomass         0.372103 

basal area      0.347565 

spruce vol      0.319847 
soil wetness  -0.304831 

elevation         0.1710 

soil wetness    0.0986 

canopy             0.0950 

forest type      0.0806 
disttoCC5         0.0800 

12 0.38 598 0.88 0.88 (313) 0.85 (285) canopy           0.541835 

biomass         0.484620 

basal area      0.436271 
spruce vol      0.384780 

soil type         0.288572 

canopy             0.1762 

biomass           0.1053 

disttoCC5         0.0879 
basal area        0.0858 

elevation          0.0760 

13 0.42 1183 0.93 0.94 (469) 0.96 (714) forest type     -0.754661 
spruce vol      0.513449 

canopy           0.397888 

soil wetness  -0.369100 
biomass         0.350702 

forest type       0.4396 
spruce vol        0.1108 

soil wetness    0.0565 

basal area        0.0470 
biomass           0.0464 

14 0.34 522 0.89 0.88 (242) 0.89 (280) spruce vol      0.515619 

biomass         0.512159 

elevation       -0.511675 
canopy           0.501779 

basal area      0.477932 

canopy             0.1347 

soil wetness    0.1259 

disttoCC10      0.1159 
biomass           0.0937 

spruce vol        0.0886 

15 0.31 2891 0.88 0.88 (1369) 0.89 

(1522) 

canopy           0.461871 
biomass         0.430926 

basal area      0.397680 

spruce vol      0.382887 
disttoCC5       -0.250006 

canopy           0.1312 
disttoCC5       0.1011 

biomass         0.0982 

basal area      0.0919 
elevation        0.0869 

Overall assessment:  

Weighted accuracy (cross-validated): 0.894 
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Scotland (2008). 

2. Rickard Hansen: Daily mobility in Grenoble Metropolitan Region, France. 

Applied GIS methods in time geographical research (2008). 

3. Emil Bayramov: Environmental monitoring of bio-restoration activities using 

GIS and Remote Sensing (2009). 

4. Rafael Villarreal Pacheco: Applications of Geographic Information Systems 

as an analytical and visualization tool for mass real estate valuation: a case 

study of Fontibon District, Bogota, Columbia (2009). 

5. Siri Oestreich Waage: a case study of route solving for oversized transport: 

The use of GIS functionalities in transport of transformers, as part of 

maintaining a reliable power infrastructure (2010). 

6. Edgar Pimiento: Shallow landslide susceptibility – Modelling and validation 

(2010). 

7. Martina Schäfer: Near real-time mapping of floodwater mosquito breeding 

sites using aerial photographs (2010). 

8. August Pieter van Waarden-Nagel: Land use evaluation to assess the outcome 

of the programme of rehabilitation measures for the river Rhine in the 

Netherlands (2010). 

9. Samira Muhammad: Development and implementation of air quality data mart 

for Ontario, Canada: A case study of air quality in Ontario using OLAP tool. 

(2010). 

10. Fredros Oketch Okumu: Using remotely sensed data to explore spatial and 

temporal relationships between photosynthetic productivity of vegetation and 

malaria transmission intensities in selected parts of Africa (2011). 

11. Svajunas Plunge: Advanced decision support methods for solving diffuse 
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12. Jonathan Higgins: Monitoring urban growth in greater Lagos: A case study 

using GIS to monitor the urban growth of Lagos 1990 - 2008 and produce 

future growth prospects for the city (2011). 

13. Mårten Karlberg: Mobile Map Client API: Design and Implementation for 

Android (2011). 

14. Jeanette McBride: Mapping Chicago area urban tree canopy using color 

infrared imagery (2011). 

15. Andrew Farina: Exploring the relationship between land surface temperature 

and vegetation abundance for urban heat island mitigation in Seville, Spain 

(2011). 

16. David Kanyari: Nairobi City Journey Planner:  An online and a Mobile 

Application (2011). 

17. Laura V. Drews:  Multi-criteria GIS analysis for siting of small wind power 

plants - A case study from Berlin (2012). 

18. Qaisar Nadeem: Best living neighborhood in the city - A GIS based multi 

criteria evaluation of ArRiyadh City (2012). 

19. Ahmed Mohamed El Saeid Mustafa: Development of a photo voltaic building 

rooftop integration analysis tool for GIS for Dokki District, Cairo, Egypt 

(2012). 

20. Daniel Patrick Taylor: Eastern Oyster Aquaculture: Estuarine Remediation via 

Site Suitability and Spatially Explicit Carrying Capacity Modeling in 

Virginia’s Chesapeake Bay (2013). 

21. Angeleta Oveta Wilson: A Participatory GIS approach to unearthing 

Manchester’s Cultural Heritage ‘gold mine’ (2013). 

22. Ola Svensson: Visibility and Tholos Tombs in the Messenian Landscape: A 

Comparative Case Study of the Pylian Hinterlands and the Soulima Valley 

(2013). 

23. Monika Ogden: Land use impact on water quality in two river systems in 

South Africa (2013). 

24. Stefan Rova: A GIS based approach assessing phosphorus load impact on Lake 

Flaten in Salem, Sweden (2013). 

25. Yann Buhot: Analysis of the history of landscape changes over a period of 200 

years. How can we predict past landscape pattern scenario and the impact on 

habitat diversity? (2013). 
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26. Christina Fotiou: Evaluating habitat suitability and spectral heterogeneity 

models to predict weed species presence (2014). 

27. Inese Linuza: Accuracy Assessment in Glacier Change Analysis (2014). 

28. Agnieszka Griffin: Domestic energy consumption and social living standards: a 

GIS analysis within the Greater London Authority area (2014). 

29. Brynja Guðmundsdóttir: Detection of potential arable land with remote sensing 

and GIS - A Case Study for Kjósarhreppur (2014). 

30. Oleksandr Nekrasov: Processing of MODIS Vegetation Indices for analysis of 

agricultural droughts in the southern Ukraine between the years 2000-2012 

(2014). 

31. Sarah Tressel: Recommendations for a polar Earth science portal in the 

context of Arctic Spatial Data Infrastructure (2014). 

32. Caroline Gevaert: Combining Hyperspectral UAV and Multispectral 

Formosat-2 Imagery for Precision Agriculture Applications (2014). 

33. Salem Jamal-Uddeen:  Using GeoTools to implement the multi-criteria 

evaluation analysis - weighted linear combination model (2014). 

34. Samanah Seyedi-Shandiz: Schematic representation of geographical railway 

network at the Swedish Transport Administration (2014). 

35. Kazi Masel Ullah: Urban Land-use planning using Geographical Information 

System and analytical hierarchy process: case study Dhaka City (2014). 

36. Alexia Chang-Wailing Spitteler: Development of a web application based on 

MCDA and GIS for the decision support of river and floodplain rehabilitation 

projects (2014). 

37. Alessandro De Martino: Geographic accessibility analysis and evaluation of 

potential changes to the public transportation system in the City of Milan 

(2014). 

38. Alireza Mollasalehi: GIS Based Modelling for Fuel Reduction Using 

Controlled Burn in Australia. Case Study: Logan City, QLD (2015). 

39. Negin A. Sanati: Chronic Kidney Disease Mortality in Costa Rica; 

Geographical Distribution, Spatial Analysis and Non-traditional Risk Factors 

(2015). 

40. Karen McIntyre: Benthic mapping of the Bluefields Bay fish sanctuary, 

Jamaica (2015). 
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41. Kees van Duijvendijk: Feasibility of a low-cost weather sensor network for 

agricultural purposes: A preliminary assessment (2015). 

42. Sebastian Andersson Hylander: Evaluation of cultural ecosystem services 

using GIS (2015). 

43. Deborah Bowyer: Measuring Urban Growth, Urban Form and Accessibility as 

Indicators of Urban Sprawl in Hamilton, New Zealand (2015). 

44. Stefan Arvidsson: Relationship between tree species composition and 

phenology extracted from satellite data in Swedish forests (2015). 

45. Damián Giménez Cruz: GIS-based optimal localisation of beekeeping in rural 

Kenya (2016). 

46. Alejandra Narváez Vallejo: Can the introduction of the topographic indices in 

LPJ-GUESS improve the spatial representation of environmental variables? 
(2016). 

47. Anna Lundgren: Development of a method for mapping the highest coastline 

in Sweden using breaklines extracted from high resolution digital elevation 

models (2016). 

48. Oluwatomi Esther Adejoro: Does location also matter?  A spatial analysis of 

social achievements of young South Australians (2016). 

49. Hristo Dobrev Tomov: Automated temporal NDVI analysis over the Middle 

East for the period 1982 - 2010 (2016). 

50. Vincent Muller: Impact of Security Context on Mobile Clinic Activities A GIS 

Multi Criteria Evaluation based on an MSF Humanitarian Mission in 

Cameroon (2016). 

51. Gezahagn Negash Seboka: Spatial Assessment of NDVI as an Indicator of 

Desertification in Ethiopia using Remote Sensing and GIS (2016). 

52. Holly Buhler: Evaluation of Interfacility Medical Transport Journey Times in 

Southeastern British Columbia. (2016). 

53. Lars Ole Grottenberg:  Assessing the ability to share spatial data between 

emergency management organisations in the High North (2016). 

54. Sean Grant: The Right Tree in the Right Place: Using GIS to Maximize the 

Net Benefits from Urban Forests (2016). 

55. Irshad Jamal: Multi-Criteria GIS Analysis for School Site Selection in Gorno-

Badakhshan Autonomous Oblast, Tajikistan (2016). 
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56. Fulgencio Sanmartín: Wisdom-volkano: A novel tool based on open GIS and 

time-series visualization to analyse and share volcanic data (2016). 

57. Nezha Acil: Remote sensing-based monitoring of snow cover dynamics and its 

influence on vegetation growth in the Middle Atlas Mountains (2016). 

58. Julia Hjalmarsson: A Weighty Issue:  Estimation of Fire Size with 

Geographically Weighted Logistic Regression (2016). 

59. Mathewos Tamiru Amato: Using multi-criteria evaluation and GIS for chronic 

food and nutrition insecurity indicators analysis in Ethiopia (2016). 

60. Karim Alaa El Din Mohamed Soliman El Attar: Bicycling Suitability in 

Downtown, Cairo, Egypt (2016). 

61. Gilbert Akol Echelai: Asset Management: Integrating GIS as a Decision 

Support Tool in Meter Management in National Water and Sewerage 

Corporation (2016). 

62. Terje Slinning: Analytic comparison of multibeam echo soundings (2016). 

63. Gréta Hlín Sveinsdóttir: GIS-based MCDA for decision support: A framework 

for wind farm siting in Iceland (2017). 

64. Jonas Sjögren: Consequences of a flood in Kristianstad, Sweden: A GIS-based 

analysis of impacts on important societal functions (2017). 

65. Nadine Raska: 3D geologic subsurface modelling within the Mackenzie Plain, 

Northwest Territories, Canada (2017). 

66. Panagiotis Symeonidis: Study of spatial and temporal variation of atmospheric 

optical parameters and their relation with PM 2.5 concentration over Europe 

using GIS technologies (2017). 

67. Michaela Bobeck: A GIS-based Multi-Criteria Decision Analysis of Wind 

Farm Site Suitability in New South Wales, Australia, from a Sustainable 

Development Perspective (2017). 

68. Raghdaa Eissa: Developing a GIS Model for the Assessment of Outdoor 

Recreational Facilities in New Cities Case Study: Tenth of Ramadan City, 

Egypt (2017). 

69. Zahra Khais Shahid: Biofuel plantations and isoprene emissions in Svea and 

Götaland (2017). 

70. Mirza Amir Liaquat Baig: Using geographical information systems in 

epidemiology: Mapping and analyzing occurrence of diarrhea in urban - 

residential area of Islamabad, Pakistan (2017). 
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71. Joakim Jörwall: Quantitative model of Present and Future well-being in the 

EU-28: A spatial Multi-Criteria Evaluation of socioeconomic and climatic 

comfort factors (2017). 

72. Elin Haettner: Energy Poverty in the Dublin Region: Modelling Geographies 

of Risk (2017). 

73. Harry Eriksson: Geochemistry of stream plants and its statistical relations to 

soil- and bedrock geology, slope directions and till geochemistry. A GIS-

analysis of small catchments in northern Sweden (2017). 

74. Daniel Gardevärn: PPGIS and Public meetings – An evaluation of public 

participation methods for urban planning (2017). 

75. Kim Friberg: Sensitivity Analysis and Calibration of Multi Energy Balance 

Land Surface Model Parameters (2017). 

76. Viktor Svanerud: Taking the bus to the park? A study of accessibility to green 

areas in Gothenburg through different modes of transport (2017).  

77. Lisa-Gaye Greene: Deadly Designs: The Impact of Road Design on Road 

Crash Patterns along Jamaica’s North Coast Highway (2017).  

78. Katarina Jemec Parker: Spatial and temporal analysis of fecal indicator 

bacteria concentrations in beach water in San Diego, California (2017).  

79. Angela Kabiru: An Exploratory Study of Middle Stone Age and Later Stone 

Age Site Locations in Kenya’s Central Rift Valley Using Landscape Analysis: 

A GIS Approach (2017).  

80. Kristean Björkmann: Subjective Well-Being and Environment: A GIS-Based 

Analysis (2018).  

81. Williams Erhunmonmen Ojo: Measuring spatial accessibility to healthcare for 

people living with HIV-AIDS in southern Nigeria (2018).  

82. Daniel Assefa: Developing Data Extraction and Dynamic Data Visualization 

(Styling) Modules for Web GIS Risk Assessment System (WGRAS). (2018).  

83. Adela Nistora: Inundation scenarios in a changing climate: assessing potential 

impacts of sea-level rise on the coast of South-East England (2018).  

84. Marc Seliger: Thirsty landscapes - Investigating growing irrigation water 

consumption and potential conservation measures within Utah’s largest 

master-planned community: Daybreak (2018).  

85. Luka Jovičić: Spatial Data Harmonisation in Regional Context in Accordance 

with INSPIRE Implementing Rules (2018).  
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86. Christina Kourdounouli: Analysis of Urban Ecosystem Condition Indicators 

for the Large Urban Zones and City Cores in EU (2018).  

87. Jeremy Azzopardi: Effect of distance measures and feature representations on 

distance-based accessibility measures (2018).  

88. Patrick Kabatha: An open source web GIS tool for analysis and visualization 

of elephant GPS telemetry data, alongside environmental and anthropogenic 

variables (2018).  

89. Richard Alphonce Giliba: Effects of Climate Change on Potential 

Geographical Distribution of Prunus africana (African cherry) in the Eastern 

Arc Mountain Forests of Tanzania (2018).  

90. Eiður Kristinn Eiðsson: Transformation and linking of authoritative multi-

scale geodata for the Semantic Web: A case study of Swedish national building 

data sets (2018).  

91. Niamh Harty: HOP!: a PGIS and citizen science approach to monitoring the 

condition of upland paths (2018).  

92. José Estuardo Jara Alvear: Solar photovoltaic potential to complement 

hydropower in Ecuador: A GIS-based framework of analysis (2018). 

93. Brendan O’Neill: Multicriteria Site Suitability for Algal Biofuel Production 

Facilities (2018). 

94. Roman Spataru: Spatial-temporal GIS analysis in public health – a case study 

of polio disease (2018). 

95. Alicja Miodońska: Assessing evolution of ice caps in Suðurland, Iceland, in 

years 1986 - 2014, using multispectral satellite imagery (2019). 

96. Dennis Lindell Schettini: A Spatial Analysis of Homicide Crime’s Distribution 

and Association with Deprivation in Stockholm Between 2010-2017 (2019). 

97. Damiano Vesentini: The Po Delta Biosphere Reserve: Management challenges 

and priorities deriving from anthropogenic pressure and sea level rise (2019). 

98. Emilie Arnesten: Impacts of future sea level rise and high water on roads, 

railways and environmental objects: a GIS analysis of the potential effects of 

increasing sea levels and highest projected high water in Scania, Sweden 

(2019). 

99. Syed Muhammad Amir Raza: Comparison of geospatial support in RDF stores: 

Evaluation for ICOS Carbon Portal metadata (2019). 
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100. Hemin Tofiq: Investigating the accuracy of Digital Elevation Models from 

UAV images in areas with low contrast: A sandy beach as a case study (2019). 

101. Evangelos Vafeiadis: Exploring the distribution of accessibility by public 

transport using spatial analysis. A case study for retail concentrations and 

public hospitals in Athens (2019). 

102. Milan Sekulic: Multi-Criteria GIS modelling for optimal alignment of roadway 

by-passes in the Tlokweng Planning Area, Botswana (2019). 

103. Ingrid Piirisaar: A multi-criteria GIS analysis for siting of utility-scale 

photovoltaic solar plants in county Kilkenny, Ireland (2019). 

104. Nigel Fox: Plant phenology and climate change: possible effect on the onset of 

various wild plant species’ first flowering day in the UK (2019). 

105. Gunnar Hesch: Linking conflict events and cropland development in 

Afghanistan, 2001 to 2011, using MODIS land cover data and Uppsala 

Conflict Data Programme (2019). 

106. Elijah Njoku: Analysis of spatial-temporal pattern of Land Surface 

Temperature (LST) due to NDVI and elevation in Ilorin, Nigeria (2019). 

107. Katalin Bunyevácz: Development of a GIS methodology to evaluate informal 

urban green areas for inclusion in a community governance program (2019). 

108. Paul dos Santos: Automating synthetic trip data generation for an agent-based 
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species in saltmarshes on the Mersey estuary, North-West England (2020). 
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