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Abstract

The  genome  of  the  Belinda  variety  of  the  hexaploid  oat  (Avena

sativa) has recently been sequenced and assembled.  This project

aims  to  improve  the  assembly  by  clustering  the  thousands  of

scaffolds  into  their  three  ancestral  subgenomes  using  Principle

Component Analysis (PCA) of kmer and repeat-element frequencies.

The method was developed using a chromosome level assembly of

hexaploid  Wheat  (Tritium  aestivum),  which  formed  highly

distinguishable subgenome true clusters in their PCA graph, which

indicates that the method has merit.  The longest scaffolds of oats

that formed 90% of the genome (N90) were processed in the same

manner, and which resulted in 2 clusters, one with about one third

of  the  3-copy  BUSCOs  (Benchmarking  Universal  Single-Copy

Orthologs),  and another with two thirds.  The latter cluster could
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then be subdivided into two clusters, with about half of the 2-copy

BUSCOs in each cluster.  A one:one:one ratio of BUSCOs in each

cluster would indicate that the subgenomes are dividing into their

respective clusters. The clustering is not neat or as clear as in the

wheat example, but the length of the scaffolds or the state of the

assembly may have a very large effect on the efficacy of the method.

It is hoped that this method, with additional improvements, could be

used to assess the assemblies of other large polyploid genomes and

be  part  of  a  larger  pipeline  for  understanding  crop  genome

evolution.

Introduction

Like most crops,  A. sativa  has a large, complex genome which has

resisted thorough sequencing and assembly. The difficulties are 3-

fold:  (I).  It  is  filled  with  repeats,  from  many  sources,  including

coding regions, like rRNA, and noncoding, like long tandem repeat

(LTR)  retrotransposons  or  mini/micro-satellites;  (II).  Gene

duplication and deletion; and (III). Allopolyploidy  (1). All together,

this results in very large genomes with very low gene density and

large regions of heterochromatin. The consequence of which is the

C-value paradox. The C-value is the amount of DNA in a haploid

genome  measured  in  picograms.  It  is  a  paradox  because  one

expects the C-value to scale linearly with gene content, as seen in

prokaryotes and ‘simple’ eukaryotes (2). But when repeat elements
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make up the majority (90-95%) of most plant genomes (3), we can

see why this expectation breaks down. 

Repeat elements complicate assembly

The most commonly used, cheapest sequencing technology used for

sequencing whole genomes today is Illumina. It produces reads of

150-300 base-pairs (bp) long. A study on Triticum aestivum (bread

wheat)  found  the  average  length  of  the  longest  retroelements,

which make up 50% of the chromosomes in question, to be 571bp

(4). This number can be much longer or shorter. Because even the

longest illumina reads can not span that repeat, the placement of

that read to form a scaffold would be not much more than a guess.

This is because the repeat, by it’s very nature, will occur multiple

places in the genome, so the assembler will not know if this is a

duplicate read, or a duplicate repeat. To get around this problem,

mate-pair libraries are used, whereby the sequencing primers are

separated  by  long  fragments  (3  kbs,  as  a  typical  example)  that

aren’t sequenced, but the regions downstream of the primers are, at

150 bps long. These mate-pairs can span repeat-rich regions and

allow the assembler to allocate reads more accurately (5). However,

repeats can repeat on themselves, and far exceed the 3kbp of the

mate-pair.  Another solution is to use linked-read technology.  One

such technology,  10X Chromium,  is  a  library  preparation  system

that uses unique barcodes added to short reads that originated from
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one long DNA fragment.  These can then be linked in silico post

sequencing, constructed into their original fragments, and used to

span the long repetitive regions (6). This is analogous to using the

much more expensive BAC cloning and genetic mapping methods,

which was used to sequence the wheat genome that has the same

challenges as oats (7). However, 10X Chromium requires very high

quality, high molecular weight DNA during the barcoding process,

and it is still sensitive to all the weaknesses of Illumina sequencing,

as that is how the barcoded fragments are sequenced. 

Polyploidy

A.  sativa has  3  subgenomes  designated  A,  C,  and  D.  Each

subgenome has 14 diploid chromosomes, which means a total count

of 42 chromosomes. The allohexaploid we have today was formed by

2 distinct steps. An ancient diploid progenitor genome designated

A’, underwent hybridisation with with another diploid C-genome, to

form a tetraploid CA’.  This is now known as CD, because the A’

progenitor is unrecognisable relative to all known accessions, or the

A’-genome progenitor is extinct. CD experienced a hexaploidy event

with a more contemporary A genome, to form the ACD (AACCDD)

genome we have today (8) (See example of wheat genome evolution

in Discussion, Fig. 17). Not only did this process triple the size of a

“conventional”  diploid  genome,  which  increases  the  cost  of

sequencing  it,  but  it  also  complicates  the  assembly  process.

Assemblers  require  uniqueness  in  their  reads,  but  6  similar

4

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95



chromosomes will provide 6 similar reads, assuming coverage of 1x.

This  complication  can  result  in  the  construction  of  chimeric

chromosomes,  with  a  mixture  of  different  subgenomes  in  one

scaffold.  Scaffolds  are  assembled  by  connecting  contigs  -  short

spans created by overlapping reads. Contigs are stitched together

using  mate-pair  libraries  or/and  long-read  technologies  like  10X

Chromium to form scaffolds. Due to increased complexity, scaffolds

become short, to avoid chimeracy in low confidence predictions (9).

Misassembly can also make downstream analysis difficult.  This is

exemplified in the allohexaploid  A. sativa,  which was sequenced

recently. The quality of the  assembly was good, given the low costs

involved,  as  all  sequencing  used  standard  Illumina  short-read

sequencing in addition to 10X Chromium library preparation. The

N90 (represents the length of the smallest scaffold which is part of

the largest 90% by length)  is 2.8 Mbp, and includes 693 scaffolds.

The longest is 113.8 Mbp. While this is a great step forward, there

is  much  potential  for  improvement.  But  this  process  could  be

simplified  if  the  scaffolds  could  be  assigned  (binned)  to  their

respective subgenomes. 

Kmer analysis

Polyploidy  is  not  the  only  source  of  complexity  for  assemblers.

Metagenomic sequences may contain DNA from hundreds of taxa in

a  single  sample.  Assemblers  designed  for  this  data  use  a

combination  of  GC content  and  kmer  frequency  analysis,  among
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other  things,  to  bin  the  reads  and  contigs  into  their  respective

species  (10).  It  was  suggested  that  perhaps  a  similar  approach

could be applied to the 523,398 oats scaffolds. The subgenomes may

be different enough so that the kmer profile would be unique for

each subgenome, and  provide 3 bins -  one for each subgenome.

Alternatively, it is possible that the similarity is along homeologous

chromosomes - 7 bins (one for each chromosome number, 1-7) to

which  we  can  assign  each  scaffold.  Kmers  are  any  sequence  of

length k. So the arbitrary ACCTTGA is a kmer of length 7 - a 7mer,

and ACGGTACCATA designated Ɲ is a 11mer.  Ɲ has ACGG, CGGT,

GGTA, GTAC, TACC, ACCA, CCAT, and, CATA as 4mers (known as

tetramers), for example. Since DNA is double stranded, one can also

search for kmers in the reverse strand, but only the forward strand

was used in this project.  If certain kmers are more populous on one

subgenome, thanks to retrotransposon activity or contributions from

the parent genome, that may make that subgenome distinct enough

to differentiate those scaffolds from the mass of others. This pattern

could be revealed by statistical analysis. One typical method is to

use  Principal  Component  Analysis  (PCA)  which  ‘summarises’  the

effects of multiple variables and reveals them on a coordinate plane,

in at least 2 dimensions. 

BUSCO Analysis

The  Benchmarking  Universal  Single-Copy  Orthologs  (BUSCO)

(11) is  a  method  to  evaluate  the  completeness  of  a  genome.  A
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BUSCO is a sequence, usually a gene, that is expected to be present

once in a haploid genome. One can then define a set (database) of

BUSCOs  for  a  species  or  taxa.  If  one  were  to  do  a  denovo

sequencing  of  a  species,  then  the  BUSCO  analysis  of  the  new

assembly can be analysed using a BUSCO database from a closely

related  species.  Then  one  can  compare  the  commonality  if  the

BUSCO sets between the reference taxa and the new genome. If

they are close to identical,  then one can assume that the denove

assembly was reasonably successful.

Methods

Illustration 1 succinctly describes SubKluster, the pipeline designed

to  place  (bin)  scaffolds  into  subgenome  clusters  using  kmer

frequency analysis. The process involves counting kmers, tabulating

the counts, and performing a PCA on that table. The results from a

BUSCO  (Ver  3.0.1)  (11) analysis  show  which  complete  BUSCOs

from the Zea mayz (Maize) database can be found in each scaffold.

This list is imported into the R script, and is used to assess whether

the clusters represent single subgenomes, since a large set of single

copy BUSCOs in each cluster would indicate that the scaffolds were

binned correctly. Bash scripts turned the various  programs into a

pipeline. 

At the time of writing, neither the wheat nor oats genomes used in

this  paper  have  been  published,  but  both  were  used  with

permission.  The  wheat  reference  is  the  IWGSC  RefSeq  v1.0
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assembly,  kindly  provided  by  the  International  Wheat  Genome

Sequencing  Consortium,  and  the  oats  genome  identifier  is  NRQ-

11003, kindly provided by SCANOATS (Industrial Research Centre).

An alternate source of  data to kmer frequency are the biological

repeats themselves. The Poaceae repeat database was downloaded

from  http://pgsb.helmholtz-muenchen.de (12),  and  used  as  the

8

Count kmers 
using KmerKingfasta files of scaffolds

.count files
Custom Python script 

tabulates most abundant kmers 
and their counts

CSV file 
kmers as rows 

scaffolds as columns
kmerViz R Script

PCA Graphs
Graph of 

significant 
kmers

BUSCO 
'Verification'

BUSCO

BUSCO results

Bash script collates results

Text file with each 
busco and the 

scaffolds it was 
found in

Illustration 1 : Bioinformatic pipeline of SubKluster. Fasta files that contain one 
scaffold each are processed by KmerKing (Canbäck, unpublished), which produces 
one count file for each scaffold. The count files are tab delimited: first column has 
the kmer, and the second has that kmer’s count in that scaffold. These count files 
are imported into a custom python script that collects the most abundant kmers 
given a threshold, and produces a table in text format of the kmers, and their counts 
for each scaffold. In parallel, BUSCO analysis is performed on the same fasta files. 
These results are collated, selecting only complete BUSCOs. The text file contains a 
list of BUSCOs and the scaffolds in which they were found.
The table and list are imported into the kmerViz R script which produces PCA 
graphs that show clusters of scaffolds, and graphs indicating the most influential 
kmers. A cluster of scaffolds that contains a large set of complete BUSCOs was 
interpreted as a subgenome.
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source  for  the  Blast  Like  Alignment  Tool  (BLAT)  (13),  which

searched for the repeats in the fasta files.  Each hit  was counted

using a bash script that produced the same .count files that were

imported into the Python script.  This proceeded exactly the same

way as data obtained from kmer counts.

Software Details

KmerKing (unpublished) was used to count the kmers in each fasta

file. For k>12, it only reported kmers that occurred at least 4 times

in that file. This reduced the size of the count files for the next step.

The  Python  script  requires  version  3.6  and  up,  but  only  uses

standard modules. It includes optimisations to shorten run-time if it

needs to run again on the same data with a different threshold, by

storing a compressed version of an intermediate step. After multiple

iterations of development, it only reads and writes to the hard drive 

twice and once respectively, but it can be sped up by using faster

storage,  like  a  Solid  State  Drive  (SSD).  The  script  provides

information  to  the  user  about  current  progress,  and  also  makes

some very loose estimations for how long the current step in the

process will take. When generating the PCA, a 1.9 GB table used up

to 46.6 GB of RAM, but the generation of the table used 8.5 GB.

These values are completely  dependant  on k  and the  number of

scaffolds being analysed. The R (ver 3.4.4) Script used ggplot2 (ver

2.2.1),  ggthemes  (3.5.0),  ggrepel  (ver  0.8.0),  plot3D  (ver  1.1.1),
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plot3Drgl  (ver  1.0.1),  gridExtra  (  ver  2.3),  and  grid  (ver  3.4.4)

packages , all for plotting.

10

Figure  1 The first 5 principals of a PCA of 7mer counts of  the wheat pseudomolecule
assembly.  Each new component reveals new clusters of chromosomes. The labels indicate
what the chromosome is, and the last letter (a, b or d) indicates the subgenome. The ‘chrun’
scaffold is the collection of unknown sequences found during the assembly. It is  responsible for
most of  the variation for the PC1, PC2, and PC3. However,  in PC2 and PC3, we see the
chromosomes  dividing  into  2  groups  (not  including  the  unknown  ‘chromosome’),  with
subgenomes A and B in one group, and subgenome D in the other. PC3 and PC4 is the most
illustrative,  separating out  all  the subgenomes clearly.  PC4 and PC5 also reveals 3 looser
clusters, but it’s pointing to similarities in chr4 between the subgenomes.
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Results

The effort began by using 7mers from wheat (Fig. 1). Later, when

analysing  much  greater  numbers  of  scaffolds,  the  default  PCA

plotting packages did not work, so the ‘% of variability’ one expects

to see in PCA plots was not generated. For the sake of consistency,

it is omitted in the wheat genome plots. Figure 1 plots the first 4

components  of  the  7mer  counts.  The  scaffold  (chrun)  containing

sequences unplaceable by the assembler is responsible for most of

the variation for the first 3 components. When this ‘chromosome’ is

removed prior to PCA generation, the clusters form perfectly in the

first  two  components  (data  not  shown).  There  are  hints  of

homeology  in  the  relative  positioning  of  a  few  of  the  other

chromosomes  seen  in  PC4  and  PC5.  The  chromosome  4  (chr4)

scaffolds are the highest on the PC5 scale

for  their  representative  subgenomes,  and

though less  obvious,  the  same is  true  for

chromosome 6, after chromosome 4. Using

a larger k also improves the resolution of

clusters  (Fig.  3,  11mers  are  used),  but  it

also  increases  the  number  of  kmers

searched by a very large factor. Assuming a

search space of at least 2 x k, the number of

kmers (n) is given by n = zk, where z is the

size  of  the  alphabet,  therefore  n  scales

exponentially with k. So for  standard DNA,

11

Figure 2: A generic example of the
right  side  of  a  normal  density
distribution  graph. Y-axis  is  the
denisty of any particular value found
on  the  x-axis.  The  top  left  part  is
known as the bell, and the lower right
part is the tail.
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n = 4k. For k=7, we get 16348

kmers.  In  Figure  2,  k=11,

resulting  in   4.194304  x106

11mers.  This  can  still  be

analysed  on  a  desktop

workstation,  given  22

chromosomes, but we will see

later,  each kmer count has to

be  represented  for  693

scaffolds.  This  requires  RAM

available only to large servers

with  RAM in  the  hundreds  of

gigabytes, and analyses taking

over  36  hours.  Therefore  we

attempted  to  reduce  the

number  of  kmers  required  to

generate distinct clusters.

Data  reduction  through

filtering

The  distribution  of  kmer

counts looks like  the right half

of  a  binomial  distribution  (Fig.

2),  but  the  middle,  “bell”  is

thinner,  and the  “tail”  is  much

12

Figure  3: PCA graphs of 11mer counts. At the
top PCA, all  of  the kmers  were included,  in  the
middle, the kmers with lowest 90% by abundance,
found in the bell of the distribution curve, and at
the bottom, the 10% most abundant kmers found
in the tail of the distribution curve. It looks like one
only needs 10% of the data to reproduce a very
similar graph.
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13

Figure 4: The influential observations of 11mers used to construct the all
inclusive  and  tail  PCAs  measured  by  Cook’s  Distance  for  the  wheat
genome.  The y-axis describes how much of an outlier a particular kmer is,
and the x-axis is their position on a list, in alphabetical order. As you can see,
the graphs are nearly identical. The outlying kmers are all repetitive dimers.
But not all the possible dimers are represented (GT, GC, AC).



longer. If the x-axis is the count for a particular kmer, and the y-axis

is the number of kmers with that count, then there are many kmers

that occur very infrequently, and a few that are abundant. In Figure

3, a 10% cut-off was used to separate the bell from the tail, and the

11mer counts were used to construct PCA graphs. By selecting only

the  most  abundant  kmers,  one  can  reproduce  almost  the  same

graph,  using  all  the  kmers  available.  This  greatly  reduces  the

system requirements and time required to perform the analysis. 

To understand why this may be, the loadings of each kmer in the

PCA was extracted and compared. The most influential kmers were

14

Figure  5: The influential  observations of  11mers used to construct the
Bell PCA measured by Cook’s Distance for the wheat genome. The y-axis
describes how much of an outlier a particular kmer is, and the x-axis is their
position on a list, in alphabetical order. This graph is completely different from
those in Fig. 4. These resulted in only two out of three possible clusters, as
seen in Fig. 3. And these kmers are all close to zero in their cooksD value. 

250

251

252

253

254

255

256

257

258

259



identified by looking for  outliers  in a linear regression using the

Cook’s Distance (cooksD) test (14). This is not a typical use for that

test, but the underlying principal seems to work for this application.

In Figures 4 and 5, one can perhaps see why the ‘all kmers’ and ‘tail

kmers’ PCA graphs are so similar, while the ‘bell kmers’ PCA is so

different. Those kmers in Fig. 4 which have cooksD values above 1

aren’t present in the Bell kmer set, and this appears to have a very

large effect. However, despite that lack, the Bell PCA still correctly

divided subgenome D from A and B. 

The  nature  of  the  influential  kmers  indicates  that  they  are  both

abundant and are of low complexity. This provided another avenue

of enquiry. 
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Figure 6: The first 3 components of a PCA of repeat element counts in the wheat genome.
This shows how well the repeat profile differentiates subgenomes.
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Transposable  Elements:  The  Problem  and  the

Solution?

Araceli  et al  performed fluorescent in situ hybridisation (FISH) using

the (AC)10 microsatellite on various hexaploid, tetraploid, and diploid

oats  species.  They  identified  unique  physical  maps  using  the  (AC)10

microsatellite,  which  was  used  to  identify  translocations  and

preferential  distribution  patterns  unique  to  each  chromosome  or

subgenome (15). We had kmers that resembled this microsatellite, so if

the authors were able to use a single 20mer (AC x 10 = 20), a much

16

Figure  7: The influential  observations of repeat elements used to construct
the wheat genome repeat PCA measured by Cook’s Distance. While most of the
repeats weren’t as influential, the maximum Cook’s Distance is very small, when
compared to the that of the kmers. The IDs are defined by the Plant Genome and
Systems Biology institute (12).
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larger set of transposable elements may reveal new information that

the kmers are only just touching on. This way we may use the cause of

our difficulties, large repetitive regions of DNA, as a tool for solving

the problem.

The very first attempt was successful in binning the scaffolds. Using

counts  of  only  9871  repeats  elements,  a  very  clear  picture  was

formed, with 3 distinct clusters (Fig. 6). Components 4 and 5 aren’t

shown, as they didn’t have any particular pattern or clustering of

note.  When  analysing  which  repeats  in  particular  might  be

influential  (Fig.  7),  it  was  found  that  that  there  wasn’t  much

difference.  The outliers  were not that far from the mean. Though

perhaps  DXX_158286  and  RLG_160440,  as  well  as  other  repeats

elements with the highest Cook’s distance, may be of interest for

further  work,  as  they  my  be  important  for  the  evolution  of  the

subgenomes.

Application in Oats

In  parallel  to  the  work  on  wheat,  the  analysis  on  the  693  oat

scaffolds (N90 scaffolds) was performed. It started with 7mers (Fig.

8). There is no useful clustering present. The 12mer attempt went

better, with PC1 and PC2 revealing two distinct clusters separated

by a  smear of  scaffolds.  Certain  vague shapes seen in  the  7mer

PCAs  (Fig.  9)  resolve  themselves  into  more  defined  forms  using

12mers. The 7mer graph was formed by using all 16 384 kmers, but

the 16 777 216 12mers was too large a dataset, creating a 23GB
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table.  After  the  filtering  method  was  developed,  all  kmer  based

PCAs were limited  to  the  13  million  most  abundant  kmers.  This

made  it  possible  to  use  much  longer  kmers,  with  the  hope  of

increasing the resolution of clusters into subgenomes, which was

seen in wheat.

18

Figure 8: PCA of 7mer counts in the 693 largest scaffolds from oats. There is no
distinct clustering in any of the first five components.
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The 35mer PCA (Fig.  10)  did indeed increase the  density  of  the

clusters,  but  the  signal  to  noise  ratio  is  still  quite  high.

Furthermore, the three clusters one would expect are not present.

But it was possible that perhaps one of the clusters represented two

subgenomes. To identify if this was the case, all the 3-copy BUSCOs

(one for each subgenome) were identified.  The the clusters were

19

Figure  9:  PCA  of  12mer  counts  in  the  693  longest  scaffolds  from  oats.  There
appears to be some separation, especially using PC1 and PC2. The cross shape that
emerges in the graphs using PC3, 4 and 5 can also be seen in figure 6, in PC4 and PC5. 
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divided along the x-axis, which also happened to divide the graph in

half. The top cluster is designated cluster 1, and the bottom cluster

2 (Fig 11). As shown in Fig. 12, cluster 2 has two copies of most of

the 3-copy BUSCOs. This would imply that cluster 2 has scaffolds

originating from two subgenomes, as we are using a complete set of

BUSCOs as a representative for a subgenome. 

The scaffolds from cluster 2 were used for a new analysis.  Their

count numbers were subjected to a separate PCA, and new clusters

were designated cluster 2A and cluster 2B for the top and bottom

20

Figure  10: PCA of 35mer counts in the 693 largest scaffolds from oats.
Once again PC1 and PC2 show 2 dense clusters,  though in perpendicular
dimensions. The other 3 graphs look similar to the last 3 in the 12mer graph
(Fig. 9) and the cross motif is present, though morphed. 
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clusters respectively. In this case, since we know cluster 2 has two

copies  of  the  BUSCOs,  only  the  2-copy  BUSCOs were  identified.

There is nearly a perfect division of BUSCOs between cluster 2A

and 2B (Fig. 14) . And thus, with a fair bit of uncertainty and error,

we have divided the scaffolds into 3 clusters. However, there are

shortcomings.  Many  BUSCOs  aren’t  evenly  divided  between

clusters.  And  an  automatic  method  that  did  not  require  manual

21

Figure 11: PCA showing how cluster 1 and cluster 2 are divided in the 35mer
counts in the oats genome.  The fact  that  the line divides the graph in  perfect
halves is a coincidence. 
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22

Figure 12: Comparing number of 3-copy BUSCOs in clusters 1 and 2. Of all
the 3-copy BUSCOs (859), cluster 2 has two copies of nearly all of them (752).

Figure 13: PCA of 35mer counts only including scaffolds
part of cluster 2 in Fig. 11.  The line dividing the clusters
was drawn by eye, and creates clusters 2A and 2B, top and
bottom, respectively. 



inspection should create the clusters,  perhaps k-means clustering

(16). This would reduce user bias, and can be applied at scale.

23

Figure 14: Comparing number of 2-copy BUSCOs in clusters 2A and 2B.
Each cluster has 1 copy of nearly all of the BUSCOs (854 total)

Figure 15: PCA of repeat element counts in the N90 scaffolds of oats. There
appears to be some separation if one were to draw a solid line along PC2 = 0 for
the first 2 components, though the clusters are very loose. For PC2 and PC3,
the dotted line may be drawn at PC2 = -0.024. But once again, not ideal clusters.
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A Refrain on Repeats

Just as in wheat, the repeats were used to analyse Oats (Fig. 15).

However, the results were not promising. The 4820 repeat counts is

half of the 9871 repeats found in wheat. Perhaps this is responsible

for performance even worse than the 35mer PCA. Next, a hybrid

approach was used. All of the 20mers from from the Poaceae repeat

database were extracted, and then only these kmers were counted

in the N90 fasta files. The PCA (Fig. 16) is superior to all previous

attempts, in terms of density of clusters, and reduced scatter of non-

clustered scaffolds. But it still  only results in 2 clusters. Only the

first 3 components were used here, as components 4 and 5 did not

improve cluster separation or reveal any interesting patterns, and

looked nothing like those of the 35mer PCA or the full repeat PCA.

But,  after  the  same  BUSCO  analysis,  it  was  found  that  the  top

cluster (cluster 1) contains 2 copies of the 3-copy BUSCOs, and the

bottom cluster (cluster 2) only has 1 copy of that same set.  This

would imply  that  cluster 1 contains  two of  the subgenomes, and

cluster 2 represents the third.

Cluster 1 was subjected to the same analysis as described above,

but this is where the analysis ends, for there was no clustering at

all. Cluster 1 did not divide into 2 subgenomes.
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Figure 16:  PCA and cluster analysis of 20mers counts derived from a
repeat database using BUSCO copy number to represent completeness
of  subgenomes.  Of all  the  3-copy BUSCOs,  cluster  1  has two copies  of
nearly all of them (772). This implies that cluster 1 represents 2 subgenomes.
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Discussion

When  comparing  Figures  3  and  6,  one  can  see  a  slight

contradiction. In figure 3, subgenomes A and B are closer together,

and even cluster together when looking at the bell PCA. This would

indicate greater homology  and a closer evolutionary  relationship,

since they have more similar kmer profiles.  However,  the repeat

element profile in Fig. 6 indicates that subgenomes A and D are are

more homologous. Literature (17,18) supports the theory that A and

B are more closely related (Fig. 17) . The difference may be due to

retrotransposon  activity  that  occurred  after  the  hexaploid  was

formed, but was only suppressed in the B subgenome, which would

bring  A  and  D  closer  together,  from  a  repeat-element  profile

perspective.

In tests  where the wheat chromosomes were broken into 60mbp

fragments, the clustering got extremely loose. The 14mbs fragments

didn’t cluster at all, but formed a smear on the graph. So it would

seem that the longer the scaffolds are, the more easily they can be

accurately binned. This is problematic when draft assemblies often

26

Figure  17:  A  theory  on  the  evolution  of  the  genome architecture  of
modern bread wheat. (Adapted from Levy and Feldman, 2004)
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result in thousands of scaffolds in the kilo-base pair range. But after

re-examining the 41mbp fragmented wheat scaffolds, we found that

there was still some useful clustering (Fig. 18, 19). But it appears

that any less resolution of the clusters would completely obscure

them.

However,  it  may  be  interesting  if  a  similar  kmer  based  method

could  detect  inter-chromosomal  translocations.  If  fragments

associate (cluster) with fragments from a different chromosome, it

may  indicate  just  such  a  translocation.  Cross-subgenome

27

Figure  18:  PCA of  10mer  counts  from 41mbp fragmented wheat.  The
subgenome clustering reveal themselves in PC2 and onwards. 
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translocations may be responsible for the lack of resolution in the

oat clusters. If the assembler created chimeric scaffolds at a large

scale, the chances for success using this method would be low.

28

Figure  19:  Components  2  and  3  of  PCA  10mer  counts  from  41mbp
fragmented wheat, with labels.  The labels reveal that the clusters formed
true  subgenomes,  though  the  chrun  chromosome fragments  got  mixed  in
predominantly with the chrB (subgenome B) cluster.
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Conclusion

Using substrings like kmers and repeat elements to bin scaffolds

into subgenomes was validated with wheat. SubKluster works. But

it is highly dependant the quality of the draft genome, particularly

the length of the scaffolds. We hope to present confirmation that the

method will work on other plant draft genomes soon.

Further Work

As of now, the pipeline requires about 45 GB of RAM to perform the

PCA on 1.8 GB of data (about 13 million rows with 693 columns).

But if the flat CSV could be placed in a database, then a slower but

more memory efficient PCA could be performed. This could also be

spread over a computing cluster and calculated in parallel.

With further development of SubKluster, it is hoped that multiple

sources of  substrings  could  be used in  one PCA.  Clustering may

improve when mixing the most influential kmers and repeats in the

same  PCA.  It  should  also  be  investigated  if  the  length  of  the

scaffolds  influenced where they clustered,  as the length may not

have been accounted for completely as part of the scaling function

in the PCA function.
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Appendix

Table comparing wheat and oats assembly stats

Wheat Oats
Subgenomes AABBDD AACCDD
Genome size ~15 Gbp ~12 Gbp
N50 709.8 Mbp 17.7 Mbp
N90 509.9 Mbp 2.8 Mbp
Complete BUSCOs 1409
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