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Abstract 

During the last few decades, satellite remote sensing has proven to be an important non-

invasive method for archaeological research in order to detect ancient sites and manage 

exposed architectural remains. Furthermore, multi-spectral satellite images, by offering 

bands that cover a wide range in the electromagnetic spectrum, can also help 

archaeologists to identify potential sub-surface remains, at depths from few centimeters 

to up a meter. However, their implementation usually takes place in a rural setting while 

there are often difficulties in validating the results. The site of Ancient Corinth and its 

rich archaeological record gives us the opportunity to apply some established image 

processing techniques, like vegetation indices and classification, in a semi-rural 

environment and compare them with known excavated features. This can help us test 

and evaluate the application of established image processing techniques for this purpose 

and potentially add more information to the archaeological background of the region.  
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1. INTRODUCTION 

 

Archaeology is the discipline that helps us understand past cultures through the study 

of the physical remains of the human past, ranging from small objects to large buildings 

(Gamble, 2004). The main approach for collecting data in archaeological research is 

through excavation, a process that has been largely considered as intrusive and 

unrepeatable but also as the only source of actual evidence (Barker, 1993; Champion, 

1980). During this process, large quantities of soil are removed while unearthed data 

(objects, structures, strata) can only be properly recorded once. Even though excavation 

still is the primary investigation tool, archaeologists have tried in the recent past to 

embed other methods and tools in their research, such as Geographic Information 

Systems (GIS), image processing techniques and geophysical methods, as non-

destructive approaches that can allow a wider perception of archaeological landscapes, 

predict past behaviors as well as limit the need for excavations (Chapman, 2006).  

During the last few decades, satellite remote sensing has been increasingly used in 

archaeology as a major, non-invasive method for not only detecting but also managing 

archaeological sites (Agapiou & Lysandrou, 2015). Adding to traditional means of 

visually identifying archaeological features from satellite and aerial imagery, like the 

detection of soil and crop marks, multi-spectral satellite images offer bands that cover 

a wide range of the electromagnetic spectrum and can help archaeologists identify 

potential sites at depths of few centimeters to up a meter (Lasaponara & Masini, 2011). 

Through the application of vegetation indices, archaeologists are using differentiations 

in spectral signatures, usually described as “anomalies” (Grøn et al., 2011), in order to 

find if there are any man-made structures beneath soil and vegetation that cannot 

otherwise be seen with the naked eye (Luo et al., 2019; Pan et al., 2017). Furthermore, 

classification techniques have been employed, to a lesser extent, for the study of above 

ground features. Supervised and unsupervised classifications have been used for the 

mapping and monitoring of exposed archaeological remains and excavation areas 

(Agapiou, 2020; Lasaponara & Masini, 2012b; Laet et al., 2009) and less for the 

detection of buried features (Ciminale et al., 2009). In Greece, satellite images and the 

application of the above methods have helped before to detect exposed and sub-surface 

remains (Rowland & Sarris 2007)), to analyze ancient urban development (Donati & 

Sarris 2016) and to manage archaeological sites (Liu et al 2003). However, all the 
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aforementioned methods seem to have two characteristics in common. Firstly, their 

implementation, usually, takes place in a rural setting and secondly there are often 

difficulties in validating the results. 

The modern village of Ancient Corinth, in southern Greece, has been almost 

continuously inhabited since antiquity and is a product of constant development and 

changes in the surrounding landscape. At the same time, it has captured the attention of 

archaeologists from early on, resulting in an archaeological record that has been 

continuously expanding for more than a century. However, until today, no analysis of 

multispectral satellite imagery has been conducted in this region in order to identify or 

map either buried or exposed archaeological features. Furthermore, any aerial 

reconnaissance of possible features that has been conducted in the past, for the study of 

the ancient urban planning, has been based solely on the visual examination of satellite 

and aerial imagery, and no further image processing (Romano & Shoenbrun, 1993).  As 

a result, this thesis aims at bridging this gap in the digital survey of the area and try to 

detect both visible and invisible parts of the ancient city. There will be an examination 

of the effectiveness of different satellite remote sensing techniques in the archaeological 

survey of this semi-rural region, including the detection of buried features through 

vegetation indices and unsupervised classification as well as the mapping of existing 

remains through different classification methods. It is anticipated that through this study 

we will not only be able to confirm the results of previous research but will also 

investigate new areas and possibly add new information about the archaeological 

background of the region. The archaeological record of Corinth gives us the opportunity 

to apply the aforementioned techniques and compare them with known features that 

have been excavated and investigated in the last decades. This can potentially help us 

understand better how these techniques work and possibly the extent to which they can 

be trusted.  

Consequently, the overall aim of this thesis is to use satellite imagery as an 

archaeological tool for the detection and mapping of buried and exposed archaeological 

features while at the same time to test and evaluate the application of established image 

processing techniques for this purpose, in a semi-rural environment. 

The main research questions of this thesis are: 
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• How can multispectral imagery contribute to the identification of past human-

made structures in a semi-rural environment?  

• How can different processing techniques and classification methods be used in 

an archaeological research context? 

 

More specifically: 

• Which vegetation indices seem to be more useful in the investigation of buried 

archaeological features? 

• How may unsupervised classification be useful for the investigation of buried 

archaeological features? 

• Are unsupervised or supervised classification techniques more useful when 

mapping exposed archaeological remains? 
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2. THEORETICAL BACKGROUND 

 

2.1 Basic Principles in Remote Sensing 

In a broader sense, remote sensing (RS) is the science of obtaining information about 

an object, area or a phenomenon by analyzing data that was acquired through a sensor 

and without coming into direct contact with the object under investigation (Lillesand et 

al., 2015). This can include the use of sensors, radars, lasers or scanners mounted on 

devices and measuring different physical aspects of an object or area (measuring the 

magnetic field, electric resistivity, electromagnetic energy etc.). Aerial photography or 

geophysics can be also be considered as a form of remote sensing. Usually, the data 

acquired from these sensors, is translated to images, which can afterwards be processed 

and analyzed.  

Some scholars give a more specific definition of remote sensing, as the measuring, 

analysis and interpretation of electromagnetic radiation that is reflected or emitted from 

the Earth’s surface and the atmosphere (Campbell & Wynne, 2011). This is related to 

Earth observation and is achieved via the use of satellite- or air-borne sensors (Mather 

& Koch, 1999). Today, this is the most common definition when we discuss remote 

sensing and this method is the one associated with this thesis. 

The main principle behind remote sensing is that different objects on the Earth’s surface 

reflect electromagnetic energy at varying wavelengths of the electromagnetic spectrum, 

thus creating a distinctive spectral signature. Consequently, these differences may allow 

us to identify different objects. 

The complete range of electromagnetic waves with different wavelengths constitutes 

the electromagnetic spectrum (ITC, 2001). This spectrum extends from below 1nm 

wavelengths (gamma rays) up to several hundred meters (radio waves). As an example, 

the visible spectrum is approximately between 0.4-0.7μm, the near infrared (NIR) can 

be found at 0.7-1.2μm and the ultraviolet at 0.01-0.4μm. Two different materials may 

have similar spectral signatures in one wavelength and differ greatly in other areas of 

the spectrum (Lillesand et al., 2015). All objects or material on Earth’s surface reflect 

or emit energy differently at different wavelengths, thus defining its characteristic 

spectral signature. Radiance is a measurable unit, expressed in W/m2 and it is the 

variable that is measured by remote sensing sensors. Reflectance is a property, 
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described as the ratio of the reflected radiance from the target to the incoming radiance 

reaching the target (Lillesand et al., 2015). As an example, healthy vegetation has high 

reflectance in the near IR part of the spectrum while water reflects mostly in the blue 

wavelengths (0.4-0.5μm) (ITC, 2001). Healthy leaves strongly reflect energy in the near 

infrared and more moderately in the green portion of the spectrum but since green is in 

the visible spectrum, we see vegetation as green (Limp, 1993). However, even in the 

same material class, the spectral reflectance may still vary considerably (Campbell & 

Wynne, 2011) (Figure 1). 

 
Figure 1: Reflectance of different types of green vegetation (Smith, 2001). 

 

2.2 Sensors and Image Processing 

The measurement of radiance by sensors can be conducted either passively or actively. 

Passive sensors depend on the reflected solar radiation or the emitted terrestrial 

radiation (e.g., multispectral scanner, thermal scanner) while active sensors generate 

their own source of electromagnetic radiation (e.g., laser scanner) (Barnsley, 1999). 

Here, we are concerned with the former category of sensors and more specifically with 

those mounted on satellites, thus constituting what is called satellite or space-borne 

remote sensing. 

The part of the electromagnetic spectrum that is most commonly used in remote sensing 

is between the ultraviolet (UV) and micro and radio waves (Lillesand et al., 2015), 

which can help researchers retrieve information otherwise not perceptible to the human 
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eye. In remote sensing imagery, several types of resolution are critical in order to assess 

the usefulness of an image for a specific purpose or project. Resolution is defined as 

“the ability of the system to render the information at the smallest discretely separable 

quantity in terms of distance (spatial), wavelength band of electromagnetic radiation 

(spectral), time (temporal) and/or radiation quantity (radiometric)” (Aggarwal 2004b). 

Spatial resolution indicates the smallest unit area that can be measured (ITC 2001). It 

defines, in practical terms, how big a pixel is sized and how much detail you can get on 

ground level. The finer the spatial resolution is the higher the ability to recognize 

different features on the Earth’s surface. Nowadays, sensors can be differentiated, based 

on spatial resolution, in low resolutions systems (approx. >1km, e.g., NOAA-AVHRR), 

medium resolution systems (approx. 100m – 1km, e.g., Terra-MODIS), high resolution 

systems (approx. 5 – 100m, e.g., Landsat TM/ETM+) and very-high resolution systems 

(approx. <5m, e.g., GeoEye, WorldView) (Liew, 2001). 

Spectral resolution describes the range of the electromagnetic spectrum measured by a 

sensor (ITC 2001), meaning how many bands or channels a sensor has and how broad 

those are (Limp 1993). Based on the number of spectral bands, optical imaging systems 

can be further categorized to monospectral (a single wavelength band), multispectral 

(several broad spectral bands, normally ≥10nm wide) and hyperspectral (spectral bands, 

normally defined as ≤10nm wide) (Giardino & Haley, 2006; Liew, 2001). 

Temporal resolution describes the ability of a sensor to take images of the same area 

and at the same viewing angle, at different moments in time (Aggarwal 2004b). For 

example, Landsat-7 has a temporal resolution (or return period) of 16 days and 

IKONOS 14 days. Finally, radiometric resolution measures the levels of energy that 

can be observed by a sensor (ITC 2001) and its ability to distinguish between values of 

an acquired image. The finer the radiometric resolution the better the sensor is to detect 

small differences in reflected energy.  

Multispectral sensors store electromagnetic radiance measurements as digital number 

(DN) values (ITC 2001). In a multispectral image, each pixel includes multiple DN 

values, each one corresponding to a different spectral band. The characteristics of an 

image define the quality of a captured scene, as related to the different kinds of 

resolution described above. Furthermore, different methods and techniques can be 

employed to improve image quality for further analysis and interpretation. These 
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methods are applied on pixel level, using predefined equations and usually resulting in 

a new raster image that can be further manipulated. Band combinations are probably 

the most basic form of spectral enhancement and refers to the assignment of different 

colors in order to represent brightness in different regions of the spectrum (Campbell 

& Wynne, 2011).  

 

2.3 Remote Sensing methods in archaeological research 

Pan sharpening 

Pan-sharpening or image fusion is a technique used to combine the high spatial 

resolution of a panchromatic band (a single-band grayscale image) with the spectral 

information of other multispectral bands, which usually have a lower spatial resolution. 

The result can be a composite multispectral image with very high spatial resolution, 

which can be very helpful in the investigation of sub-meter archaeological marks. For 

this to be achieved, usually, the set of multispectral and panchromatic images to be 

fused should not have discrete differences in ground cover, sun illumination or viewing 

angle. This means that most commonly they should be acquired by the same sensor 

even though there can be cases that images from different sensors can be combined 

(Agapiou, 2020). Over the years, a number of algorithms have been developed and 

evaluated for pan-sharpening, such as the Intensity-Hue-Saturation sharpening (HIS), 

Brovey transformation, Gram-Schmidt (GS) and Principal Component Analysis (PCA) 

(Sarp, 2014; Lasaponara & Masini, 2012c).  

The Gram-Schmidt (GS) method is based on an orthogonalization process. Initially, a 

panchromatic simulation takes place by computing a weighted average of the 

multispectral bands. Next, a GS transformation is performed for the simulated higher-

resolution band and the multispectral bands, where the panchromatic is employed as 

the first band. Finally, the panchromatic band is replaced with the first GS component 

and an inverse GS transform is applied to create the higher resolution multispectral 

image (Sarp, 2014; Laben & Brower, 2000). 

Vegetation Indices 

Vegetation indices are well-established in archaeological research and have been 

widely used for the observation of changes in vegetation growth and the possible 

existence of underlying archaeological features (Kalayci et al., 2019; Donati & Sarris, 
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2016; Agapiou et al., 2014; Sarris et al., 2013; Lasaponara & Masini, 2012a). By using 

equations that combine two or more bands, we can differentiate green vegetation as 

compared to brown and other materials. Even though most of the indices used are 

closely correlated, usually they are all included as different indices are more sensitive 

in different ranges of biomass and groundcover (Prabhakara & Hively, 2015). The most 

common indices used in archaeology are the following: 

DVI (Difference Vegetation Index) 

This index follows a simple equation for distinguishing vegetation and soil (Naji, 2018). 

However, it is sensitive to the amount of vegetation and it cannot handle differences 

between reflectance and radiance caused by atmospheric effects.  

1.       DVI = PNIR – PRED 

 

NDVI (Normalized Difference Vegetation Index) 

This is the most typical vegetation index, useful for distinguishing vegetation from soil 

and indicating the amount of vegetation (Tucker, 1979). When executed, resulting 

values range from -1 (unhealthy/no vegetation) to 1 (healthy). Through NDVI, we can 

monitor the greenness in plants. However, it can be sensitive to atmospheric effects and 

soil brightness, and saturates at high biomass levels (Mutanga & Skidmore, 2004): 

2.    NDVI = (PNIR – PRED) / (PNIR + PRED) 

 

EVI (Enhanced Vegetation Index) 

The EVI index was conceived to avoid the issue of saturation of the NDVI at high 

biomass loads and was originally developed for MODIS data (Matsushita et al., 2007). 

Hence, it can be useful for areas with dense vegetation and high amount of chlorophyll. 

In EVI, coefficients C1 and C2 have been added, for the correction of aerosol scattering 

in the atmosphere, and L to adjust soil noises. Usually, this corresponds to C1=6, 

C2=7.5 and L=1. Resulting values should range between -1 to 1. 

      EVI = 2.5 * ((PNIR – PRED) / ((PNIR) + (C1 * PRED) – (C2 * PBLUE) + L)) 
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ARVI (Atmospherically Resistant Vegetation Index) 

The ARVI index can be relatively insensitive to atmospheric effects and it can be useful 

for regions with high atmospheric aerosol concentrations, high amount of rain, fog or 

air pollution (Kaufman & Tanre, 1992). It follows the structure of the NDVI index with 

the addition of the blue wavelength in the equation: 

4.  ARVI = (PNIR – (2 [PRED – PBLUE])) / (PNIR + (2 [PRED – PBLUE])) 

 

SAVI (Soil Adjusted Vegetation Index) 

The SAVI index is useful for mitigating the impact of soil brightness (Huete, 1988). It 

is based on NDVI, with the addition of a soil adjustment factor L in order to correct soil 

noises (like soil moisture and color). Resulted values can range from -1 to 1. The L 

factor equals 0 for areas with high green vegetation and 1 for those with low vegetation.  

5.  SAVI = ((PNIR – PRED) / (PNIR + PRED + L)) * (1 + L) 

 

MSAVI (Modified Adjusted Vegetation Index) 

The MSAVI index follows the SAVI index, using the L factor. It can be useful in areas 

with low vegetation, minimizing the effect of bare soil. 

6.   SAVI = ((PNIR – PRED) / (PNIR + PRED - L)) * (1 + L) 

 

SR (Simple Ratio) 

Also known as Ratio Vegetation Index (RVI), it appears with high reflection for 

vegetation and low for soil and other materials, indicating the amount of vegetation 

(Jordan, 1969). As the amount of green vegetation increases in a pixel, the SR increases: 

7.     SR = PNIR / PRED 

 

SQRT SR (Squared-root Simple Ratio) 

This index follows the SR logic but it helps in decreasing the saturation issue at high 

biomass levels (Mutanga & Skidmore, 2004).  

8.          SQRT SR = SQRT (PNIR / PRED) 
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MSR (Modified Simple Ratio) 

The Modified Simple Ratio is a modification of SR and NDVI and it is considered to 

be more sensitive to biophysical parameters of vegetation (Chen, 1996).   

9.   MSR = (PNIR/PRED – 1)/((PNIR/PRED)1/2 + 1 

 

Land cover classification 

The overall objective through classification is to, automatically or semi-automatically, 

categorize all pixels into land cover classes or themes. This can take place through a 

spectral pattern (pixel spectral information) or a spatial pattern recognition (pixel spatial 

relationship) (Lillesand, 2015).  

Through supervised classification, a stronger user interaction is expected and a relevant 

knowledge of the study area and the possible classes under investigation is required. 

The two basic steps are a) the training session, in which we identify representative areas 

that share similar spectral characteristics and may belong to the same land cover type 

and b) the classification stage, in which the image pixels are categorized into classes, 

by comparing their spectral signatures. When creating the training samples, the 

intention is to “teach” the computer to recognize pixels of same value. The spectral 

signatures of these samples are used to classify the image (Lillesand, 2015). 

In unsupervised classification, the process is fully automated and all pixels are 

categorized in a pre-defined number of classes, based on their reflectance values 

(Lillesand, 2015). User interaction is more limited, compared with the supervised 

method, and a prior knowledge of the area and of potential classes is not really required, 

since the identity of spectral classes is not really known. Based on the pixel values of 

the available bands, the computer is trying to statistically generate clusters and create 

groups of land cover classes.  

Accuracy assessment constitutes an integral part of land cover classification, in order 

to determine how accurate, the information depicted in the derived maps is. During this 

process, data from the remote sensing-based classes is compared with data 

corresponding to the actual land cover. This validation data is usually gathered in the 

field, through different sampling methods, such as random or systematic sampling and 

is often called “ground-truth” data. However, it is not uncommon that this data can be 

collected through the use of satellite imagery; this is more often the case when 
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inaccessible landscapes are involved (Kumar, 2019; Ramzi, 2015). After the validation 

and map data are co-registered, they are compared on a class-by-class basis, by creating 

an “error” or “confusion matrix”, which results into measuring different accuracy 

levels, like overall, “producer” or “user” accuracy (Lillesand et al. 2015; Campbell & 

Wynne, 2011). A further statistic that is usually calculated following the accuracy 

assessment is the kappa (κ) coefficient. This indicates the extent to which the 

percentage correct values of an error matrix are due to “true” agreement versus 

“chance” agreement. Kappa ranges from -1, meaning the mapped classes do not 

correspond to validation data at all, to 1, meaning there is absolute agreement. A kappa 

of 0 suggests that a given classification is no better than a random assignment of pixels 

(Lillesand et al., 2015). 

 

2.4 Remote Sensing in Archaeology and Cultural Resources Management   

Compared to other remote sensing and image analysis techniques (geophysics, aerial 

imagery, GIS analysis), satellite remote sensing offers the extra advantage to 

archaeologists of being able to see an entire landscape at different resolutions and scales 

as well as covering unreachable areas or areas of great extent (Parcak, 2009). Through 

remote sensing, researchers can detect new sites and observe features that would 

otherwise be difficult to see at ground level as well as establish spatial relationships and 

connections with neighboring sites and areas of archaeological interest (Giardino & 

Haley, 2006; Agapiou et al., 2013; Lasaponara & Mansini, 2007). At the same time, 

satellite images constitute a major non-invasive method not only for mapping but also 

for managing archaeological sites, monitoring changes through long periods of time 

and preventing destruction from urbanization, looting and environmental changes 

(Parcak et al., 2017; Agapiou et al., 2015; Hadjimitsis et al., 2013; Parcak, 2007). 

The use of remote sensing in archaeology for the detection of sites of archeological 

interest started as early as in the 1920s, after WWI, with the use of aerial photography. 

The first satellite images to be used by archaeologists were those taken by the 

CORONA spy satellites (Casana, 2020). After their declassification, US (CORONA – 

Key Hole program) and former Soviet Union (KV-1000) spy satellite photography were 

used due to their high spatial resolution, of up to 2m and their broad time span (1959-

1972); thus, allowing the monitoring of gradual changes in land use and land cover over 

the past century (Luo et al., 2019).  
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The earliest multispectral satellite system that was used for archaeological research was 

Landsat, providing long time series of multispectral data, at moderate to high spatial 

resolution (Luo et al., 2019; Dorsett et al., 1984), followed by SPOT in the 1980’s. 

Since 1972, Landsat has been used in various projects across Europe (Hadjimitsis et al., 

2013). In 1999, the launch of IKONOS, the first commercial, very high-resolution 

satellite, was a major improvement for archaeological research applications, rendering 

remote sensing technologies as pivotal in archaeological research and initiating a 

significant rise in related studies (Agapiou & Lysandrou, 2015).  

Today a wide range of high and very high-resolution (VHR) images is used from 

different satellites, such as IKONOS, SPOT, Quickbird, WorldView and GeoEye. 

These commercial satellites even though they may be lacking in the range of spectral 

information compared to Landsat (for example) are preferred due to the higher spatial 

resolution they can offer (Gennaro et al. 2019; Zanni & De Rosa, 2019; Donati & Sarris, 

2016; Morehart & Millhauser, 2016; Ross et al. 2009; Garrison et al. 2008) (Table 1). 

Even though very-high spatial resolution multispectral imagery has been considered as 

the most appropriate for detecting submeter land cover changes, open access and high-

resolution imagery, like Google Earth applications, Landsat and Sentinel-2, either 

combined with each other or standalone, has also been proved useful for archaeological 

survey and heritage management (Luo et al., 2018, Agapiou et al., 2014).  

 

Satellite Launch Date Channels Spatial Resolution 

SPOT 6/7 2012/2014 5 (PAN, VIS, NIR) 1.5m (PAN) 

Ikonos 2 1999 5 (PAN, VIS, NIR) 1.0m (PAN) 

Quickbird 2 2001 5 (PAN, VIS, NIR) 0.61m (PAN) 

Worldview 2 2009 9 (PAN, VIS, NIR) 0.46m (PAN) 

Geoeye 1 2008 5 (PAN, VIS, NIR) 0.41m (PAN) 

Worldview 3 2014 29 (PAN, VIS, NIR, MIR) 0.31m (PAN) 

Worldview 4 2016 5 (PAN, VIS, NIR) 0.31m (PAN) 
Table 2: Selected satellites ordered by spatial resolution (after Lambers, 2018). 

 

Traditional ways for visually identifying archaeological features from remote sensing 

imagery include the detection of variations in shadowing, soil color, crop marks, 

moisture patterning and thermal differences (Lasaponara & Masini, 2011; Giardino & 

Haley, 2006). Multi-spectral satellite images, by offering bands that cover a wide range 

of the electromagnetic spectrum (beyond visible bands and to the thermal infrared and 

radio microwaves), can further help archaeologists in this respect. Buried 
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archaeological remains are expected to alter the chemical, physical and biological 

properties of the soil, which in turn can be expressed by the phenological differences in 

the spectral reflectance of vegetation (Luo et al., 2019). Additionally, buried structures 

may produce an inhomogeneous distribution of humidity in the soil, which in turn can 

affect parameters, such as the density of the vegetation as well as the color and thermal 

properties of the soil (Orlando & Villa, 2011).  

The detection of buried archaeological remains is usually performed by the application 

of different vegetation indices, such as the NDVI, in an effort to enhance possible crop 

marks while NIR to IR (Agapiou et al., 2012) and False Color Composites (FCC) have 

also been employed for the discovery of archaeological marks (Alexakis et al., 2009). 

The application of these indices is mostly based on visual interpretation and association 

with other known features and data in order to determine whether they could indicate 

buried archaeological remains while the validation of results is usually absent (Gennaro 

et al., 2019; Pan et al., 2017; Donati & Sarris, 2016). As it happens with other earth 

observation and cartography related disciplines, the processing of remotely sensed data 

in archaeology follows a somewhat standard procedure, encompassing image 

correction, radiometric and spectral enhancements, transformation and registration 

while analysis often entails classification methods, which can further assist to feature 

interpretation (Lambers, 2018; Lasaponara & Masini, 2012a). 

Classification techniques, have been mainly used for the monitoring of known and 

above ground archaeological remains and a bit less for the detection of unknown 

features (Lasaponara & Masini, 2012b). Supervised pixel classification has been used 

to classify land cover of archaeological interest (Siart et al., 2008) and a combination 

of unsupervised and object-based classification in order to classify known remains and 

excavated areas (Laet et al., 2009). Unsupervised pixel classification has been applied 

for the detection of buried features through the spectral differences apparent in crop- 

and soil marks but with validation of results being again a limitation (Ciminale et al., 

2009).  
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3. STUDY AREA AND PREVIOUS RESEARCH 

 

The ancient city of Corinth was located where the modern village of Ancient Corinth 

stands today, about 80km southwest of Athens and at a distance of approximately 3km 

from the Corinthian Gulf, at a mean elevation of 76m above sea level. Corinth has 

always been a center for commercial activity, from early antiquity through medieval 

times. Its place on the north coast of the Peloponnesus peninsula, at a point that allowed 

the control of maritime routes from east to west and the main land traffic from mainland 

Greece toward south, rendered Corinth a center of communications and travels (Figure 

2). 

 
Figure 2: Greece and location of Corinth. 

 

The local geology of Corinth consists mostly of marine sediments, marl clay, overlaid 

by layers of porous sandy or pebbly limestone (Sanders et al., 2018). The region has a 

complex geological history, comprising of several uplifts and changes in relative sea 

level, which have occurred during the last 300 000 years. This activity has resulted in 

the creation of a series of prominent flat terraces that run approximately parallel to the 
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coast of the Corinthian Gulf. They present steplike topographic features and scarps of 

various heights at their northern edges. (Hayworth, 2003). The core of the ancient city 

seems to have been extended on two of those terraces, one at approximately 90m and 

the other at about 60m above sea level. To the south of the city, the massive limestone 

rock of Acrocorinth rises at a maximum elevation of 579m above sea level. 

There are traces of constant occupation in Corinth since the Neolithic times, ca. 6500 

B.C. However, the city reached its acme from mid-8th to late 6th century B.C. During 

that time, temples and roadways were built while the city was enclosed with a ca. 10km 

long wall, having the top of Acrocorinth as its citadel. In the next years, from 5th to 2nd 

century B.C., a more thorough urban planning of the city was developed (Sanders et 

al., 2018). The Greek city was sacked by the Romans in 146 B.C. and Julius Caesar re-

founded Corinth as a new colony, in 44 B.C., under the name of Colonia Laus Ioulia 

Corinthiensis, establishing a new urban plan. In the next five centuries, Corinth 

acquired organized public spaces, with a forum and public buildings, such as baths, 

temples and shops (Sanders et al., 2018; Romano, 1993). In the 6th century, the 

decreased population relocated into a smaller walled area (Late Roman wall), east of 

the Roman Forum (Gregory, 1979). Corinth survived in the medieval times as a small 

lively town, but ended up as a small village. 

In 1858, after a major earthquake, the new city of Corinth was created a few kilometers 

to the north and the village of Ancient Corinth was inhabited by migrants from other 

nearby mountainous areas. During the 1950s and 1960s, the village’s-built area 

expanded greatly and the cultivation of the area was intensified. Today, Ancient Corinth 

is a large sized village, having a population of ca. 3000 people. It is surrounded by 

fields, consisting mostly of olive groves and citrus fruits and secondarily of vineyards 

and other orchards. From the ancient Greek and Roman cities, the main areas that can 

be observed today are those of the forum, about the center of the village and the castle 

of Acrocorinth to the south. 

Since 1896, the American School of Classical Studies at Athens (ASCSA) has been 

excavating at Corinth and they are responsible for the large volume of the recorded and 

published monuments of the region. The Greek Archaeological Service has also been 

conducting fieldwork and studying the area since the first decades of the 20th century. 

In 1987, the so called “Corinth Computer Project” was launched, having as its main 
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target the study of the city during the Roman period as well as the production of digital 

maps. During this project all excavated roads in the region were digitally recorded and 

incorporated with previous excavation state plans, while aerial photographs, coming 

from an early 1960s survey, conducted by the Hellenic Air Force, were used to identify 

“shadow lines” or crop marks, covering an area of more than 40km2 (Romano & Tolba, 

1995; Romano & Shoenbrun, 1993). 

In the end, a suggested grid plan of the Roman city was produced, which followed the 

general rule of ancient urban planning, based on a grid-like system of roads with a 

central square (forum). The proposed plan covered an area of approximately 

2265x1062m., with a primary roadway, the cardo maximus, running N-S and dividing 

the city in two nearly equal east-west segments and a major E-W road, the decumanus 

maximus, dividing the city in two also nearly equal north-south segments. Several other 

streets would run parallel to these N-S (cardi) and E-W (decumani) axes. This 

arrangement would have created buildings blocks (insulae) of varying lengths but of a 

steadier width of about 35.5m (1 roman actus) (Romano, 2003). 

In 2001, an extended geophysical survey was conducted by the ASCSA, using electric 

resistivity. During this survey, large areas at the east and north of the village were 

covered, and the results, part of which will be used later, provided some further 

evidence for the potential course of the Late Roman wall. 

In this project, research was limited in the region inside the ancient Greek circuit wall 

and the immediate outside environment, covering an approximate area of 6.5km2 

(Figure 3). This is a diverse area including the modern village of Ancient Corinth with 

the uncovered antiquities and archaeological sites, modern roads, cultivated fields and 

trees of different kinds. The features that are expected to be traced may belong to walls, 

which size usually varies between 0.50m and a couple of meters and streets, which 

originally could have a width of up to 3-4m but today would appear more reduced due 

to destructions and later alterations. 
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Figure 3: Study area. 
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4. MATERIALS AND METHODS 

 

4.1 Data 

Satellite data 

In archaeological satellite remote sensing, VHR imagery seems to be the most 

appropriate as it proves to be more helpful in identifying subtle differences on the 

ground, compared with other, high to medium resolution imagery, such as that from 

Landsat or Sentinel. Since most of the features that we seek to find as anomalies in 

vegetation indices and map in classification can be from about 1-2m down to 0.50m 

wide, this project required data of very high spatial resolution. The spectral 

characteristics should cover the visible and infrared spectrum and have minimum cloud 

cover and a close-to-nadir angle in order to avoid shadows casted from other features, 

like modern buildings, as much as possible.  

Two GeoEye-1 images, acquired on April 19, 2012, form the basis for the processing 

in this project. A panchromatic image, which comes at a resolution of 0.50m and a 

multispectral one (visible, NIR), which comes at a spatial resolution of 1.87m. GeoEye-

1 was launched on September 2008, at an orbit height of 681km. The satellite follows 

a sun-synchronous orbit having a swath width of 15.2km with a revisit time at 1.7 days 

and descending node at 10.30am. The spectral bands of GeoEye-1 are limited to the 

visible and near infrared wavelengths (Hadjimitsis et al., 2013; 

https://earth.esa.int/eogateway/ missions/geoeye-1). The image was downloaded from 

DigitalGlobe.com and had already been geometrically and radiometrically corrected. 

Archaeological features 

Shapefiles of the uncovered archaeological features in the study area were used in order 

to compare and associate anomalies from the satellite imagery processing with known 

archaeological features (Figure 4). These shapefiles represent not only the visible 

remains but also their potential continuation in the landscape. The shapefiles were 

acquired by the American School of Classical Studies – Corinth Excavations and can 

also be viewed at ASCSA’s webpage, at GIS section (ASCSA, 2022). 
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Figure 4: Detail of shapefile of known archaeological remains from the center of the archaeological 
site. 

 

Validation data 

Finally, further data sets were used at the accuracy assessment stage of this study. This 

included GPS points, which were taken in the field with a handheld Garmin Montana 

650 device and where later extracted in a CSV file. A total of 63 points was collected 

along walls that were discovered in an area excavated in 2020 by the Greek 

Archaeological Service and which were used in this research in order to validate some 

vegetation indices anomalies that were observed in the 2012 Geoeye-1 image. For 

simplicity, we shall call this area here as “west of soccer field”. In order to visualize 

these points and current state of the area, an image (screen dump) was downloaded by 

using Google Earth Pro, at 1m resolution, in JPEG format. This image was taken on 

June 6, 2021 (Figure 5). 

Additionally, part of the geophysical data, from the 2001 survey, was used to validate 

anomalies that were observed during this study and which could be associated with part 

of the Late Roman wall. For that survey, electric resistivity was conducted, at 0.50 

intervals sampling. This data was acquired as simple TIFF images, at a 0.20m spatial 

resolution. 
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Figure 5: Google Earth image with GPS points along the walls. 

 

The Geoeye-1 image was delivered in the geographic coordinate system WGS84. The 

GPS points were collected in the same reference system. The shapefiles of the known 

archaeological features and excavated areas of the study area as well as the geophysics 

data follow a local grid system that has been created by ASCSA for the needs of the 

excavations. Lastly, the Google Earth image was missing spatial reference information 

(Table 2). 

 

Data Type Details Source 

GeoEye-1 raster Panchromatic: 0.50m resolution 

GSD. Spectral range: 0.45-0.9μm 

Multispectral: 1.87m resolution 

GSD. Spectral range: [blue] 0.45-

0.51μm, [green] 0.52-0.58μm, [red] 

0.65-0.69μm, [NIR] 0.78-0.92μm 

Format: GeoTIFF, 16-bit.  

Angle: 9.1o off-nadir angle. 

CRS: WGS84. 

Extracted 19 April, 2012. 

Digitalglobe.com /  

Provided by Prof. Apostolos 

Sarris (University of 

Cyprus) 

“West of 

soccer field” 

GPS points 

table Format: CSV. 

CRS: WGS84. 

Collected 10 September, 2022. 

Field survey 

Google Earth 

image 

raster CRS: - 

Format: JPEG, 8-bit. 

Taken on June 6, 2021. 

Google Earth Pro 
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Geophysics 

data 

raster CRS: Local Corinth Grid. 

Format: TIFF, 8-bit. 

Collected in 2001. 

American School of 

Classical Studies – Corinth 

Excavations 

Known 

archaeological 

features  

vector Data for walls, temples, excavation 

sites, graves etc. 

Format: ESRI shapefile 

CRS: Local Corinth Grid 

American School of 

Classical Studies – Corinth 

Excavations 

Table 2: Summary of data used in the study. 

 

4.2 Methodology 

The general methodology to identify and classify possible and visible archaeological 

features, consisted of the pre-processing and processing procedures, followed by the 

identification of anomalies, the validation of results and the production of land cover 

maps (Figure 6). All processing steps took place in ESRI’s ArcGIS environment, using 

ArcMap 10.3 and the available tools for geoprocessing, spatial analysis and raster 

calculations. 

 

 

Figure 6: Methodology outline, showing the different processing stages. 
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4.2.1 Pre-processing 

Pre-processing was focused mostly on the geometric correction and reprojection of 

raster and vector datasets as well as the pan-sharpening of the satellite panchromatic 

and multispectral images.  

Georeferencing 

As all datasets had a different origin, the first step was to reproject and georeference 

them in order to achieve an accurate overlap and measures. All data, rasters and 

shapefiles, were reprojected to the Universal Transverse Mercator (UTM) projected 

coordinate system zone 34N using a bilinear transformation method, and pixel values 

were resampled using Nearest Neighbor, as this option does not affect cell values. The 

CSV file of GPS points was imported as X, Y data and then saved as shapefile and 

reprojected in UTM 34N. 

The Google Earth screen dump was georeferenced, using the reprojected GeoEye-1 

image as reference. Known features in the landscape, such as the soccer field, buildings 

and roads were used as Ground Control Points. In total, 10 Ground Control Points were 

used, with a total Root Mean Square error of 0.97m. The image was then rectified and 

pixel values were resampled using the Nearest Neighbor option. 

Pan-sharpening 

Transformations were executed by using the available ArcGIS tool, Create Pan-

sharpened Raster. The goal was to use the GeoEye panchromatic image in order to 

improve spatial resolution of the four GeoEye multispectral band images. The result is 

four multispectral images that retain their spectral information and acquire the spatial 

resolution of the panchromatic one, combined in a composite image. In this project, the 

Gram-Schmidt transformation was chosen as the preferred method in similar studies, 

when compared and evaluated with other pan-sharpening techniques (Agapiou, 2020; 

Sarp, 2014; Lasaponara & Masini 2012c). For the transformation, the weights 

suggested by ESRI for the GeoEye sensor were used (R, G, B, NIR: 0.6, 0.85, 0.75, 

0.3). New images were exported as geoTIFFs. The Gram-Schmidt transformation did 

not show any significant distortions while the observation of known archaeological 

features was distinctive. 
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4.2.2 Processing procedures 

Main processing consisted of the image enhancement techniques and the different 

classification methods. Image enhancement included the creation of a False Color 

Composite and the calculation of several vegetation indices and was focused on the 

investigation of possible buried archaeological features. The shapefiles of known 

archaeological features were examined along with the identified anomalies for further 

interpretation and cross-examination of results. Classification methods included 

supervised and unsupervised classification, in order to map exposed archaeological 

features and test their potential for further mapping/identifying possible buried remains 

and validating vegetation indices results.  

Image enhancement 

The first enhancement technique included the creation of a False Color Composite 

(FCC) in order to emphasize specific attributes of the pan-sharpened, multispectral 

image. A False Color Composite, which is commonly used for the evaluation of 

vegetation health and density, follows the combination NIR-R-G (4-3-2). With this 

combination, vegetation appears in different hues of red, water as black and soil and 

built areas in different hues of grey or tan/brown (Lillesand et al., 2015).  

The second enhancement technique was to calculate the vegetation indices. More 

specifically, the following indices were calculated: NDVI, DVI, SAVI, MSAVI, SR, 

SQRT SR, MSR, ARVI and EVI (see theoretical background for further information). 

For estimating SAVI, L was set to 0.5 since the study area contains a mixture of 

vegetation and bare soil. 

Classification 

Both supervised and unsupervised classifications were employed so as to examine their 

potential for mapping visible archaeological features. Unsupervised classification was 

further used for detecting anomalies in vegetation that could indicate buried features. 

For the buried features, it was decided to only use unsupervised classification as a 

further automated method since the spectral characteristics of these archaeological 

features cannot be known a priori as we did not have enough reliable training samples. 
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Supervised classification for excavated features 

For the supervised classification process, the Image Classification toolbar was used. 

With the aid of the Training Sample Manager, the training samples were created, based 

on visual interpretation (Figure 7). 

 

 
Figure 7: Example of training samples (green: vegetation, yellow: soil, purple: archaeology) . 

 

After taking a look at the dendrogram and scatterplots (see results, p. 28) it was decided 

to create five classes (Table 3): 

 

ID Class name 

1 Vegetation 

2 Soil / Sparse vegetation 

3 Tile roofs 

4 Impervious surfaces / Roads 

5 Archaeology / Stone features 
Table 3: List of supervised classification classes. 

 

Since land cover classification, at this stage, was focused on exposed architectural 

remains, further classification details of vegetation, were not needed. Thus training 

samples covered all vegetation areas without distinguishing, for example, between 

types of trees. After the training samples were defined, signature files were created, 

based on the pan-sharpened, composite Geoeye image, the pan-sharpened NIR, blue 
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and red bands and the NDVI. The blue band was included because it was observed as 

having higher reflectance for rock features in the composite image. The NDVI was 

included for detecting the vegetation. These signatures files were used in the final 

classification step. For this, the Maximum Likelihood Classification tool was used. 

Maximum Likelihood Classifier (MLC) is one of the most commonly used 

classification algorithms. It is based on the evaluation of variance and co-variance for 

each class in order to assign a pixel to one of them, according to highest probability 

(Lasaponara & Masini, 2012b). It calculates the probability of a pixel belonging to a 

class of those created, based on its spectral attributes, and the cell is assigned to that 

class that is most likely to belong to. 

Unsupervised classification for excavated features 

For unsupervised classification, the Iso Cluster Unsupervised Classification tool was 

used, again on the composite image, the blue, red and NIR bands and NDVI. The 

ISODATA (Iterative Self-Organizing Data Analysis Technique) algorithm is trying to 

create meaningful groups from computer-generated spectrally similar clusters. It 

merges or splits clusters if their centers are within a certain threshold or if a number of 

pixels are less or more of a certain threshold. In order to map exposed archaeological 

features, when running the tool, a different combination of number of defined classes, 

class size (number of cells in the class) and sample intervals (interval used for sampling) 

was used. It was observed that more accurate results were presented with the definition 

of 7 classes, an 18 pixels minimum class size and a 10-pixel sampling interval. The 

more the number of classes the more accurate the unsupervised classification gets but 

also more detailed. To further examine the results, and since the three classes were 

related to vegetation, results were reclassified, using the Reclassify tool, to four new 

classes (Table 4): 

 

ID Class name 

1 Vegetation 

2 Soil / Sparse vegetation 

3 Archaeology /Rock  

4 Impervious surface / Roads 
Table 4: List of unsupervised classification classes. 
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Unsupervised classification for possible buried features 

For testing the potential of unsupervised classification for investigating possible buried 

features, a different approach was followed. For this classification, the ISODATA 

algorithm was used again and the resulted vegetation indices were used as input data, 

namely NDVI, DVI, SAVI, MSAVI, SR, SQRT SR, MSR, ARVI and EVI. The 

classification of the vegetation indices results was executed entirely on vegetation fields 

so as to minimize variability of the clustered material. In order to achieve this, polygons 

were created from the vegetation classes from the previous supervised classification. 

Then, the resulted shapefile was used as a mask to extract the necessary areas from the 

different vegetation indices images. 

The extracted fields were finally classified, using 2 classes, with an 18 pixels minimum 

class size and a 10-pixel sampling interval. The reason behind this experimentation was 

that by using two classes it would be easier to track changes in vegetation, since 

healthier areas would appear in one class and more apparent, unhealthy areas, as 

“anomalies” in the other class. The two classes were called “vegetation” and 

“anomalies”. 

4.2.3 Interpretation and validation 

After the processing stage was completed, the interpretation and validation of the 

processed images followed.  

Anomaly assessment  

Following the most common method of interpretation in similar studies (e.g., Gennaro 

et al., 2019; Donati & Sarris, 2016), the derived vegetation indices were visually 

examined for the detection of linear or rectangular anomalies that could suggest the 

possible existence of archaeological features. These anomalies are expressed as 

differences in the general surrounding. For example, indications of stressed vegetation 

in a field with generally green plants. Possible anomalies were digitized as polylines 

and saved as new shapefiles, with an id number assigned and information added, 

regarding the indices where those features were more evident. After cross-examination 

with the existing dataset of known archaeological features in the area and modern fields, 

more information was added with regard to the potential nature of these anomalies, 

resulting to a narrower number of anomalies of possible archaeological nature. 
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Accuracy assessment 

This process can be largely divided into three parts and entailed the creation of 

confusion matrices (see Appendices I-V). 

For the mapping of exposed archaeological remains, an accuracy assessment was 

conducted for the supervised and the unsupervised classifications of the pansharpened 

composite image, the blue, red and NIR bands and the NDVI. As mentioned earlier, the 

Geoeye image, on which all processing was based, was acquired in 2012, which comes 

with the inability to be evaluated on the basis of up-to-date ground truth data collected 

in the field. For this reason, validation points were created on the same Geoeye image, 

based on visual interpretation, the cross-examination with the archaeological features 

shapefile and personal knowledge of the area. In total, 50 validation points for each 

class were randomly created. During the accuracy assessment, overall, producer and 

user accuracies were calculated. The validation points that were created had a class and 

land cover type assigned. Then values from the classified images were extracted to 

points and overlapped with the validation point shapefiles. Overall accuracy was 

calculated by dividing the sum of the correctly mapped points with the total number of 

validation points. Producer accuracy was calculated by dividing the sum of correctly 

mapped points with the total number of validation points. User accuracy was calculated 

by dividing the sum of correctly mapped points with the sum of map data points. For 

all the above accuracy assessments, the kappa coefficient was also calculated, using the 

following equation: 

κ = Nd – q / N2 – q 

where N is the total number of validation points, d is the sum of correctly mapped points 

and q is the sum of products between the number of validation points and the number 

of map data points for each class. 

The unsupervised classification of the vegetation fields, for tracking possible buried 

remains, was initially evaluated in accordance with the possible archaeological 

anomalies’ shapefile, derived during the anomalies assessment. The possible 

archaeological anomalies polylines were turned into points and used as validation data. 

This resulted in 397 points that were used in the accuracy assessment of the two classes. 

Even though overall, user and producer accuracies were to be calculated, only overall 

accuracy can be taken into account because we have only two classes and points 
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concern only the “anomalies” class, user accuracy is always the same as overall and 

producer is always one. Through this approach, it was anticipated to observe not only 

the potential of unsupervised classification for monitoring possible buried features but 

also at what extent the visual interpretation process can be trusted, for the same purpose. 

In two areas from those examined in the previous steps, there was the option to conduct 

an accuracy assessment of the unsupervised classification for possible buried features, 

by using more trustworthy reference data. One case was the “west of soccer field” area, 

for which the 63 GPS points that were collected along recently excavated walls were 

used as validation data. In the other case, for the Late Roman wall area, 53 validation 

points were created on the map, based on the georeferenced data from the 2001 

geophysical survey. As was the case in the previous part of the analysis, only the overall 

accuracy was taken into account.  
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5. RESULTS 

 

Classification for exposed features 

Supervised and unsupervised classification were used for mapping exposed 

archaeological remains. Additionally, supervised classification was used as the basis 

for separating vegetation-only fields that were used later in the unsupervised 

classification of vegetation indices. Generally, both classification methods seem to 

provide fairly good results, regarding the production of land classes that involve 

exposed archaeological features, even if in many instances the spectral signatures are 

not very distinct. 

Supervised classification  

During supervised classification, spectral differences between remains of 

archaeological interest and other classes, apart from vegetation, prove to be very small. 

As mentioned earlier, five classes were created at this stage. The classification of the 

composite image, provided the best results (Figure 9). Usually, we can get the general 

outline of archaeological features but in many cases, these are confused with other 

classes. A look at the dendrogram and the spectral signatures (Figs. 8,10), shows that 

apart from vegetation, which is well separated, all other classes have quite short spectral 

distances. 

 
Figure 8: Dendrogram of classes created showing distance among values (1: vegetation, 2: soil/sparse 
vegetation, 3: tile roofs, 4: impervious surfaces, 5: archaeology/rock). 
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Figure 9: Supervised classification of composite image. 
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Figure 10: Spectral signatures of classes. 

 

This is more apparent differences in the spectral signature between soil and tiled roofs 

and impervious surfaces, like concrete. Archaeological features, can be confused with 

soil and impervious surfaces and that can be normal since the material used and exposed 

is, almost always, stone or bricks. Through the confusion matrix, it can be observed that 

overall accuracy was very high at 92.4%, with vegetation being the most accurate class 

mapped with user accuracy at 100% and producer at 98.04%. Also, the kappa was at 

0.9. Archaeology or rock features mapping provided also good results with user 

accuracy at 98% and producer at 76.56%. The rest of the classifications did not provide 

very good results, with only the blue band being comparatively better, with overall 

accuracy 58.8% and archaeology features user and producer accuracies at 62% and 

42.47% respectively (Appendix IV). 

Unsupervised classification 

Unsupervised classification was used by defining 7 classes, which were later 

reclassified in four classes (see p.25). In many cases, this type of classification was 

successful in two ways: a) separating archaeological remains from other surrounding 

classes, which may cause confusion and b) in mapping with better detail at wall width. 

As in the supervised classification, the composite image yielded the best results (Figure 

12). At one instance, it was possible to identify remains of some walls that were proved 

to belong to an excavation, taking place back in 2012, and which was not noticed before, 



34 
 

when examining the RGB image (Figure 11). After examining the error matrix, there 

was a 54.4% overall accuracy with vegetation being again the most accurately mapped 

class with 100% user accuracy and 98.04% producer. The rest of the classes were less 

accurately mapped, compared with supervised classification while the kappa was at 

0.43. Archaeology and rock features provided 64% user accuracy and 39.51% producer. 

This class was quite mixed with the impervious surfaces and soil classes while the most 

distinct difference was the inability to map roof tiles separately as they were mixed with 

impervious and rock surfaces (Figure 13). 

 

 
Figure 11: Detail of unsupervised classification, showing how the walls from excavation 
trenches were classified. Note also more south the detail of the classification of a Late 
Antique church in contrast with the surrounding vegetation. 
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Figure 12: Unsupervised classification of composite image.  
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Figure 13: Dendrogram of classes created showing distance among values (1,3,5,6: vegetation, 2: 
soil/sparse vegetation, 4: archaeology/rock, 7: impervious surfaces). 

 

The classification of the blue band provided a better overall accuracy of 55.6% but a 

less good user and producer accuracy of the archaeology features at 44% and 0.14%, 

respectively. The least good results were provided by NDVI, with overall accuracy 

31.2% and archaeology features user and producer accuracies at 34% and 25.76% 

respectively (Appendix V). 

 

Vegetation Indices 

The photointerpretation, which followed the calculation of vegetation indices, was 

focused on the visual identification of anomalies that could indicate possible unknown, 

buried archaeological features. In an effort for an interpretation as unbiased as possible, 

those anomalies were firstly identified through close inspection of the enhanced images 

and were later examined in relation with the surrounding environment and juxtaposed 

with the shapefile of archaeological remains. Initially, there were 60 anomalies 

identified (Figure 16). 

As all indices provide different results, not all of the anomalies were visible in every 

index. Most of the anomalies were able to be detected in a certain number of indices or 

through a combination. In general, NDVI seemed to be the most useful index during 

the interpretation process, providing help in observing 78% of the identified anomalies. 
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SAVI, DVI and MSAVI were also helpful in 45%, 45% and 42% of the detected 

anomalies respectfully. At the other end, ARVI and SQRT SR had the least satisfactory 

results, contributing to the detection of just 2% and 8% of the anomalies, respectively 

(Figure 14). 

From all the anomalies detected, 11 could be more securely associated with features of 

archaeological interest, which may indicate buried walls or roads, based on the 

interpretation along with the archaeological features shapefile. At this stage, NDVI was 

proved to be the most useful index, contributing to the identification of ten of these 11 

anomalies. These usually appear in linear or rectangular shapes and in some cases, they 

could be related to known archaeological remains or their potential extension in the 

landscape, as observed in the archaeological record (Figure 15). 

 

 
Figure 14: Number of anomalies identified per vegetation index. 
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Figure 15: Number of possible archaeology anomalies identified per vegetation index.
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Figure 16: Detected anomalies.
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More specifically, some anomalies (ID: 10, 50 and 51) are suspiciously aligning with 

the projected extension of an E-W road (decumanus). A closer look around anomalies 

50 and 51 reveals a larger area of stressed vegetation, which could possibly lead to a 

more extended area of archaeological interest (Figure 17). West of the soccer field, 

anomaly 3 was identified, as a combination of linear and orthogonal lines. It was later 

noticed, that this anomaly appears in a field excavated in 2018 and so this area, after it 

was classified, was further evaluated with the GPS points gathered along the today 

exposed walls.  

 

 
Figure 17: DVI index with Anomalies 3, 10, 50 and 51. 

 

Another good candidate for a road feature could be anomaly 60, located south of the 

forum, extending 100m with a N-S direction (cardo) and almost parallel to another 

verified N-S road to its west. One of the more secure archaeological remains detected 

was anomaly 56, a long, zig-zag feature, extending for 386m, with a N-S direction. This 

anomaly falls directly on the supposed course of the Late Roman wall and part of it was 

also detected during the geophysical survey of 2001. For this reason, it was further 

evaluated with the geophysics data (Figure 18). Finally, anomaly 57, also had a very 

high probability of belonging to a building complex due to its location, directly among 

other known remains, comprised of a temple and a stoa (a covered walkway). 

Additionally, it seems to follow the orientation of the stoa, with a total length of 

approximately 61m (Figure 19). 
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           Figure 18: NDVI index with Anomaly 56. 

 
Figure 19: NDVI index with Anomaly 57 and archaeological features (purple). 

 

Considering the rest of the anomalies, one could be associated with a hydrological 

feature, based on its shape and length. As Corinth was known for its dense hydrological 

network, comprising of rivers, streams and springs, this might be part of a paleochannel, 

meaning an old, now nonexistent river, which was filled with sedimentary deposits after 

it dried up (Upadhyay et al., 2021). Another 13 anomalies could be related to 

agricultural activity. This can include paths between fields, plough lines or former field 

borders. Anomaly 5 is a very conspicuous one but could not be inferred with certainty 

if it belongs to a possible wall complex or to paths being created in this particular field. 
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The remaining 35 anomalies are of unknown nature but without excluding the 

possibility of belonging to archaeological remains as well, even if they are not 

immediately related to known archaeological features. This is because some of these 

linear, unknown anomalies, as well as some of the agricultural ones, seem to follow a 

pattern that could indicate some relation to past activity. A short study of their 

alignment shows that many of them follow a W-E or N-S orientation (85o-95o and 175o-

185o angle respectively), corresponding to the ancient urban planning of the city, which 

was dictated by the cardinal points. Moreover, some of those anomalies run parallel to 

others nearby, in some places at equal intervals, indicating possible traces of buried 

streets or other remnants of the ancient grid system. 

 

Unsupervised classification for possible buried features 

In order to examine the potential of automated classification techniques for the 

identification of possible buried features, unsupervised classification was conducted for 

the eight vegetation indices. After the classification was finished, two classes were 

created, one indicating healthy vegetation and one changes in vegetation (anomalies), 

which, in some cases, could be related with possible, buried archaeological remains. 

During the accuracy assessment, the classification was used in conjunction with the 11 

possible archaeological anomalies identified in the previous step. Even though overall, 

user and producer accuracies were to be calculated, only overall accuracy can be taken 

into account. Because we have only two classes and the validation points extracted from 

the 11 anomalies concern only the “anomalies” class, user accuracy is always the same 

as overall and producer is always one (Appendix I). According to the error matrix, the 

classified changes in vegetation cannot be securely associated with the anomalies, 

visually identified from the vegetation indices.  The best association between them and 

the classification, was when using NDVI (Figure 21), with an overall accuracy of 

41.06% and MSAVI, with 38.29%.  On the opposite end, MSR provided the poorest 

accuracy, with 7.05% (Figure 20). 
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Figure 20: Overall accuracy per vegetation index for unsupervised classification of general study area.
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Figure 21: Unsupervised classification of NDVI.
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As mentioned earlier, in two cases, there was the opportunity to test the classification 

results with more up to date ground truth data from two areas. In both those areas, 

possible archaeological anomalies had been visually identified from the vegetation 

indices. In the first case, the accuracy assessment was conducted for the area west of 

the soccer field, where anomaly 3 was identified (Appendix II). The confusion matrix 

showed a very low overall accuracy for all classified images. Most of the classified 

maps showed a 12.7% overall accuracy, with only DVI providing better results, with 

23.81% accuracy (Figure 22).  

 
Figure 22: Overall accuracy per vegetation index for “west of soccer field” area. 

 

In the second case, the accuracy assessment was conducted at the possible course of the 

Late Roman wall, which was also identified as anomaly 56. In this case, the accuracy 

results were slightly more promising (Appendix III). Overall accuracy was improved 

for all classified indices, with NDVI and MSAVI providing the best accuracy with 

47.17%. The poorest overall accuracy was provided by MSR, with 15.09% (Figures 

23,24). 
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    Figure 23: Overall accuracy per vegetation index for the Late Roman wall area. 

 

 

     
   Figure 24: Late Roman wall area, NDVI classification with validation points. 
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6. DISCUSSION AND FUTURE RESEARCH 

 

Visual image interpretation has long been a common method within archeology for 

retrieving information from remotely sensed imagery (Lasaponara & Masini, 2012d). 

Based on the subjective perspective of the interpreter, which can be shaped by their 

training, experience and knowledge of an area, a number of on-surface features or 

phenomena can be recognized, at the time of data acquisition. Subsequently, 

characteristics, such as size, shape, pattern or texture, can indicate the presence of 

certain features. However, most of the times, and in particular when investigating 

targets of archaeological interest, interpretation results cannot be fully evaluated.  

The site of Ancient Corinth, has been under investigation and excavation for over a 

century now, and this gives us the opportunity to exploit an established archaeological 

record in order to evaluate techniques that have been widely used in archaeological 

remote sensing. The photointerpretation results, based on vegetation indices and the 

classification methods, were thereby possible to be compared with the already existing 

archaeological record in order to test their validity.  

It is shown through the results that, to some extent, this was possible. In many similar 

studies, the observation of anomalies in spectral signatures, in relation with the 

surrounding areas, cannot be evaluated (e.g., Gennaro et al., 2019; Donati & Sarris, 

2016). The manipulation of vegetation indices may reveal some discrepancies in 

spectral signatures, which can only be inferred to belong to archaeological features 

through the examination of their characteristics, as mentioned above, and the 

archaeological history of the region. However, in the case of Ancient Corinth, the 

juxtaposition of the detected anomalies with known features helped in narrowing down 

potential archaeology candidates and the use of unsupervised classification provided a 

way to evaluate them, regarding at least a number of them. As a result, some of the 

anomalies did correspond to archaeological features, known and in some cases attested 

through excavations and surveys. 

During the visual interpretation process, some indices appeared to provide more 

promising results compared to others, making the identification of anomalies easier. 

NDVI was particularly helpful for discerning subtle details in vegetation and in some 

cases, it was enough by itself for the recognition of those anomalies. Nevertheless, the 
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observation of two or more indices, usually including MSAVI, SAVI and DVI, was 

helpful in identifying features that were either partly or not visible in other indices and 

cross-checking those, which could be observed in more than one index. This could be 

potentially caused by the fact that some indices, like EVI, perform better in regions with 

higher biomass (Luz et al., 2022) while Ancient Corinth is more scarcely vegetated. 

The identification of anomalies though does not come without drawbacks and 

limitations. 

Firstly, the varied vegetation and density of trees renders difficult to discern differences 

at ground level. During the last 60 years, the intensification of agriculture has led to the 

planting of different kinds of trees, which cover much of the unexplored areas and share 

different phenological cycles. Signs of stress caused by buried features are prone to be 

more apparent in the examination of low and more uniform vegetation, such as wheat 

fields or natural weeds, rather than in tree canopies. In this respect, it is worth 

mentioning that all of the anomalies detected during this study were placed in fields 

with low vegetation. Furthermore, the cultivation practice of planting trees at regular 

intervals may create a false “grid” effect, between green vegetation and exposed soil, 

which can be amplified by tracks for modern transport between the trees and give the 

impression of anomalies (Figure 25). 

 
Figure 25: Example of "grid effect" between vegetation and exposed soil, due to trees arrangement. 

 



49 
 

Secondly, the site of Ancient Corinth has been continuously inhabited for many 

centuries and grown into a semi-urban area, leading to disruption of archaeological 

evidence. Buildings and roads have been altered before getting destroyed and the grid 

plan of the city has been modified and possibly, in certain places, being in use until 

today. This situation seems to be particularly present in some of the field boundaries 

observed, which may cause a confusion in the identification of anomalies. As a result, 

this further limits our ability to associate anomalies in vegetation signatures with 

archaeological features. In contrast with sites that may have not experienced continuous 

occupation and where a clear assumption on the nature of the possible archaeological 

features could be made, in Corinth, it proves more difficult to identify if the anomalies 

may belong, for example, to a road or wall, let alone to determine their chronological 

phase.  

Unsupervised classification, due to its ability to automatically distinguish spectral 

differences, can be used in a complementary way in order to cross check visually 

interpreted anomalies from vegetation indices and to track changes in vegetation, which 

could be promising for future archaeological research. However, this process should 

not be followed without caution. In some cases, there was an overlap of the identified 

anomalies with classified areas of “stressed” vegetation but according to the accuracy 

assessment results, not at an extent that can be fully trusted, meaning an accuracy of at 

least 70%-80%. When assessing the classification results with data collected from 

known features again the accuracy was at low level (Appendices II, III) However, in 

both cases, there was indication of stress in the vegetation that was captured during the 

unsupervised classification process. More interestingly, the results were better 

regarding the Late Roman wall. That may happen since in this case the wall width is 

expected to be larger (approx. 1-3m), compared with the walls that were excavated west 

of the soccer field (approx. 0.7-1m.). A larger wall width should cause bigger stress on 

the vegetation above and also less detail is needed when mapped, because of its extent. 

Comparatively, the NDVI and MSAVI seemed to be the more promising indices for 

similar, future studies. 

In general, supervised and unsupervised classifications proved helpful in mapping 

exposed architectural remains. However, only the composite images, in both cases, 

provided satisfactory results. The single bands (blue, red, NIR) did not prove very 

useful while the experimentation with the NDVI showed that probably vegetation 
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indices are also not suitable for exposed built features. Supervised classification offered 

very high overall accuracy and at the archaeology class. Unsupervised classification 

was less accurate but at an acceptable level to be advised. On one hand, supervised 

classification offers the ability to differentiate between classes that share similar 

characteristics in order to create more accurate clusters. This, for example, was the case 

of the differentiation between soil and tiled roofs. The control in defining classes 

through training samples can, in some cases, guarantee the correct assignment of a class 

on certain features but not throughout the whole mapped area. On the other hand, 

unsupervised classification seems to have an advantage in revealing discriminable 

objects even at smaller sizes. As a result, walls and archaeological features were 

differentiated in a more satisfactory way. This advantage helped in the identification of 

exposed features that had not been earlier observed, thus, rendering unsupervised 

classification, a promising technique for the detection of unknown aboveground 

features that are difficult to notice in the first place, especially when there is a sharp 

difference in spectral signatures (e.g., a wall among wild vegetation).  

Classification methods and pattern recognition, using satellite data, for archaeology and 

cultural heritage is a quite recent research topic and the available classification 

techniques, offered in a GIS environment, may not be fully adequate for the 

classification of very-high resolution images. Our goal was to map not general areas of 

archaeological interest, where standing features are present but specific remains that 

can have sub- or around-meter width. These usually blend with surrounding features 

that could be grown vegetation, soil or rocks. Even more, the material, which 

archaeological structures are made of or that is used for their restoration, is almost 

always rock or bricks. This condition causes a blend that appears as an overlap of 

spectral signatures, which in turn can impose an extra difficulty level in the 

classification process. During supervised classification, MLC depends on the 

assumption that pixels are “pure”, meaning representing only one class but this is not 

always the case, depended on spatial resolution. Similarly, in unsupervised 

classification, some spectral clusters may be related to mixed classes of material and 

therefore being physically meaningless in research that demands a high spatial 

resolution.  

During this thesis, a number of limitations were present since the beginning and 

mistakes were noticed while progressing. These can fuel further discussion related to 
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the future of research and pertaining to not only the methods used but also the study 

approach to Corinth and areas with similar physical characteristics.  

The use of very-high resolution satellite imagery for the detection of subtle anomalies 

in vegetation indices and classification is indispensable. However, the high cost of their 

acquisition can be restrictive for small scale studies, such as this current one. This was 

the reason only one such imagery set was used here. For a more complete study of the 

phenological cycles, imagery with a higher temporal resolution is needed in order to 

cover more seasons. Moreover, depending on the climatic conditions of each year, some 

features may be better discernible on one year but not the other. A complete record of 

available archaeological and other ancillary data (DEMs, soil maps, contours, previous 

surveys etc.) will always be useful to in order to validate results, monitor changes or, in 

case of predictions, to narrow down the possibilities. In order for this study to be more 

complete and to fully evaluate the potential of these processes for identifying buried 

features, a more complete record of excavated and investigated remains should be 

available so that is employed in an accuracy assessment.  

Next to this, we need to consider the extensive tree coverage of the unexplored areas 

and the utilization of other methods and techniques. Synthetic Aperture Radar (SAR) 

has been used before in cases where the vegetation canopy is denser, since microwave 

wavelengths can allow deeper penetration and be more sensitive to surface morphology 

(Lasaponara & Masini, 2013). Light Detection and Radar (LiDAR) is another popular 

method, which can be used for mapping vegetation height and surface morphology for 

the detection of subsurface features, through the transmission of laser light at varied 

wavelengths (Raun et al., 2018; AOC, 2015).  

The need for more recent very-high resolution imagery is also imperative for the 

classification process of exposed archaeological remains. When using classification for 

buried features, time acquisition of the image may be not that important. In some cases, 

it can even prove to be beneficial. However, for the classification of exposed remains, 

this can create difficulties during the validation process and the creation of an error 

matrix, based on up-to-date ground truth data. Since the imagery used here was 

extracted in 2012, an actual accuracy assessment, including sample points in the field, 

was not possible. In the last decade, land cover has changed, more areas have been 

excavated and architectural remains exposed while excavated areas, which appear 
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cleaned in the 2012 image, they have been now covered with vegetation or backfilled. 

So, even though an earlier image can be an advantage for the validation of results, 

regarding buried features, it also constitutes a major drawback for the accuracy 

assessment of classification of exposed remains. The alternative, which was followed 

here, is to create validation points, based on the 2012, Geoeye image but in this case 

validation and study data are the same. So, even though this is a method that has been 

used before (Ramzi, 2015), it is generally not suggested. Another alternative could be 

the use of other, more recent satellite imagery, which can be acquired free of charge. 

However, available, freely-distributed satellite images do not comply with the spatial 

resolution needed for classification at wall level (e.g., Landsat can offer a maximum 

15m resolution and Sentinel 10m resolution). Consequently, only the purchase of a 

recent VHR image would be an appropriate solution. 

The use of GIS for the collection, analysis and interpretation of spatial digital data is a 

growing trend in archaeological practices. The accessibility to a wide selection of GIS 

and image processing software (e.g., ArcGIS, ERDAS Imagine, ENVI) has given 

archaeologists the ability to integrate diverse data in order to predict locations of 

archaeological interest, manage existing excavations, monuments and future 

development works and monitor changes in the landscape. For all these purposes, 

satellite remote sensing is becoming more and more useful as a non-destructive, 

research tool.  
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7. CONCLUSION 

In this study, there was an effort to evaluate different processing methods of VHR 

multispectral imagery for archaeology and cultural resources management and at the 

same time to contribute to the archaeological research of Ancient Corinth. It was shown 

that established techniques and processes can enhance the investigation and mapping 

of undiscovered, buried and exposed archaeological remains. However, results should 

always be treated with caution and further validation is always necessary, when 

possible.  

Through the manipulation of different vegetation indices, based on the visible and NIR 

spectra, it was possible to detect subtle changes on the vegetation cover of the study 

area. Regarding which indices can be more helpful in this respect, even though a 

combination of indices was preferred, acting complementary to each other, NDVI was 

the most consistent one for detecting these anomalies. However, to what extent 

someone can be certain about their nature and whether they belong to buried 

archaeological features, it depends on further validation of data and association with 

other known features. For this purpose, unsupervised classification, could provide some 

further guidance, through accuracy assessment, but results should always be validated 

in order to reach concrete conclusions. 

In the case of Ancient Corinth, it was possible to associate some of these anomalies 

with known remains and archaeological data in order to increase the possibility of 

identifying some of them as of archaeological nature. Most of these anomalies seem to 

belong to roads, with a few of them being part of a major E-W road, while others were 

identified as parts of a Late Roman wall. Nevertheless, it should be noted that no matter 

how detailed a validation can be, the only way to actually verify these sorts of results 

would be through further archaeological investigation, meaning excavations or 

geophysical surveys (Gron et. Al, 2011). At the very least, here, we get a good 

impression of the density and location of possible archaeological features. 

Regarding their effectiveness in mapping features, supervised and unsupervised 

classifications, proved effective for mapping exposed archaeological features with 

certain limitations. These lie with the material of the features itself and the inability to 

differentiate from surrounding material that shares similar spectral properties, such as 

rocks and soils. However, archaeology related clusters may be more distinctive when 
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surrounded by vegetation, where spectral overlap can be smaller and, in these cases, we 

can map archaeological remains even at wall width. In particular, unsupervised 

classification, when setting appropriate parameters (number of bands, pixel size), can 

be a promising technique for identifying remains that would probably not be noticed in 

a regular RGB image. Moreover, through the juxtaposition with the anomalies 

discovered in vegetation indices, unsupervised techniques showed promising potential 

for the use of mapping buried features as well. 

All in all, when using the methods and techniques presented in this study, one has to 

bear in mind the challenges related to the study of regions like Ancient Corinth, 

stemming from their diverse environment, product of continuous occupation and in 

relation with the nature of archaeological material. A lot depends on the visual ability, 

training and knowledge of the interpreter while any remote sensing technique should 

always be supplemented by field observations and adequate field surveys and ground 

truth data. 
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Appendix I 

Error matrix for vegetation indices unsupervised classification. General study area. 

 

 

 

 

 

DVI

Class Anomalies Vegetation Total

Anomalies 67 330 397 Overall accuracy 16.88%

Vegetation 0 0 0

Total 67 330 397

EVI

Class Anomalies Vegetation Total

Anomalies 41 356 397 Overall accuracy 10.33%

Vegetation 0 0 0

Total 41 356 397

NDVI

Class Anomalies Vegetation Total

Anomalies 163 234 397 Overall accuracy 41.06%

Vegetation 0 0 0

Total 163 234 397

SAVI

Class Anomalies Vegetation Total

Anomalies 146 251 397 Overall accuracy 36.78%

Vegetation 0 0 0

Total 146 251 397

SQRT/SR

Class Anomalies Vegetation Total

Anomalies 148 249 397 Overall accuarcy 37.28%

Vegetation 0 0 0

Total 148 249 397

SR

Class Anomalies Vegetation Total

Anomalies 148 249 397 Overall accuarcy 37.28%

Vegetation 0 0 0

Total 148 249 397

MSR

Class Anomalies Vegetation Total

Anomalies 28 369 397 Overall accuracy 7.05%

Vegetation 0 0 0

Total 28 369 397

MSAVI

Class Anomalies Vegetation Total

Anomalies 152 245 397 Overall accuracy 38.29%

Vegetation 0 0 0

Total 152 245 397
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Appendix II 

Error matrix for vegetation indices unsupervised classification. West of soccer field area. 

 

 

 

 

 

DVI

Class Anomalies Vegetation Total

Anomalies 5 58 63 Overall accuracy 7.94%

Vegetation 0 0 0

Total 5 58 63

EVI

Class Anomalies Vegetation Total

Anomalies 15 48 63 Overall accuracy 23.81%

Vegetation 0 0 0

Total 15 48 63

NDVI

Class Anomalies Vegetation Total

Anomalies 8 55 63 Overall accuracy 12.7%

Vegetation 0 0 0

Total 8 55 63

SAVI

Class Anomalies Vegetation Total

Anomalies 8 55 63 Overall accuracy 12.7%

Vegetation 0 0 0

Total 8 55 63

SQRT/SR

Class Anomalies Vegetation Total

Anomalies 8 55 63 Overall accuracy 12.7%

Vegetation 0 0 0

Total 8 55 63

SR

Class Anomalies Vegetation Total

Anomalies 8 55 63 Overall accuracy 12.7%

Vegetation 0 0 0

Total 8 55 63

MSR

Class Anomalies Vegetation Total

Anomalies 5 58 63 Overall accuracy 7.94%

Vegetation 0 0 0

Total 5 58 63

MSAVI

Class Anomalies Vegetation Total

Anomalies 8 55 63 Overall accuracy 12.7%

Vegetation 0 0 0

Total 8 55 63
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Appendix III 

Error matrix for vegetation indices unsupervised classification. Late Roman wall area. 

 

 

 

 

 

DVI

Class Anomalies Vegetation Total

Anomalies 14 39 53 Overall accuracy 26.42%

Vegetation 0 0 0

Total 14 39 53

EVI

Class Anomalies Vegetation Total

Anomalies 8 45 53 Overall accuracy 15.09%

Vegetation 0 0 0

Total 8 45 53

NDVI

Class Anomalies Vegetation Total

Anomalies 25 28 53 Overall accuarcy 47.17%

Vegetation 0 0 0

Total 25 28 53

SAVI

Class Anomalies Vegetation Total

Anomalies 23 30 53 Overall accuracy 43.4%

Vegetation 0 0 0

Total 23 30 53

SQRT/SR

Class Anomalies Vegetation Total

Anomalies 24 29 53 Overall accuracy 45.28%

Vegetation 0 0 0

Total 24 29 53

SR

Class Anomalies Vegetation Total

Anomalies 24 29 53 Overall accuracy 45.28%

Vegetation 0 0 0

Total 24 29 53

MSR

Class Anomalies Vegetation Total

Anomalies 8 45 53 Overall accuracy 15.09%

Vegetation 0 0 0

Total 8 45 53

MSAVI

Class Anomalies Vegetation Total

Anomalies 25 28 53 Overall accuracy 47.17%

Vegetation 0 0 0

Total 25 28 53
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Appendix IV 

Error matrix for supervised classification of study area. 

 

 

Composite Image

Class Vegetation Soil/Sparse vegetation Tile roofs Roads/Impervious Archaeology/Rocks Total

Vegetation 50 0 0 0 0 50

Soil/Sparse vegetation 0 41 2 0 7 50

Tile roofs 0 1 49 0 0 50

Roads/Impervious 0 0 0 42 8 50

Archaeology/Rocks 1 0 0 0 49 50

Total 51 42 51 42 64 250

Overall accuracy 92.4%    κ =0.9

Vegetation:  User Accuracy 100% / Producer Accuracy 98.04%

Soil/Sparse vegetation:  User accuracy 82% / Producer accuracy 97.62%

Tile roofs:  User accuracy 98% / Producer accuracy 96.08%

Roads/Impervious:  User accuracy 84% / Producer accuracy 100%

Archaeology/Rocks:  User accuracy 98% Producer accuracy 76.56%

Blue band

Class Vegetation Soil/Sparse vegetation Tile roofs Roads/Impervious Archaeology/Rocks Total

Vegetation 48 2 0 0 0 50

Soil/Sparse vegetation 1 20 23 0 6 50

Tile roofs 3 13 26 0 8 50

Roads/Impervious 0 0 0 22 28 50

Archaeology/Rocks 0 2 13 4 31 50

Total 52 37 62 26 73 250

Overall accuracy 58.8%   κ =0.49

Vegetation:  User Accuracy 96% / Producer Accuracy 92.31%

Soil/Sparse vegetation:  User accuracy 40% / Producer accuracy 54.05%

Tile roofs:  User accuracy 52% / Producer accuracy 41.94%

Roads/Impervious:  User accuracy 44% / Producer accuracy 84.62%

Archaeology/Rocks:  User accuracy 62% Producer accuracy 42.47%

Red band

Class Vegetation Soil/Sparse vegetation Tile roofs Roads/Impervious Archaeology/Rocks Total

Vegetation 50 0 0 0 0 50

Soil/Sparse vegetation 0 34 5 3 8 50

Tile roofs 0 5 39 3 3 50

Roads/Impervious 0 5 26 4 15 50

Archaeology/Rocks 0 25 13 1 11 50

Total 50 69 83 11 37 250

Overall accuracy 55.2%   κ =0.44

Vegetation:  User Accuracy 100% / Producer Accuracy 100%

Soil/Sparse vegetation:  User accuracy 68% / Producer accuracy 49.28%

Tile roofs:  User accuracy 78% / Producer accuracy 46.99%

Roads/Impervious:  User accuracy 8% / Producer accuracy 36.36%

Archaeology/Rocks:  User accuracy 22% Producer accuracy 29.73%
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NIR band

Class Vegetation Soil/Sparse vegetation Tile roofs Roads/Impervious Archaeology/Rocks Total

Vegetation 33 2 6 0 9 50

Soil/Sparse vegetation 1 28 3 3 15 50

Tile roofs 15 5 13 2 15 50

Roads/Impervious 10 12 9 4 15 50

Archaeology/Rocks 6 17 8 0 19 50

Total 65 64 39 9 73 250

Overall accuracy 38.8%   κ =0.23

Vegetation:  User Accuracy 66% / Producer Accuracy 50.77%

Soil/Sparse vegetation:  User accuracy 56% / Producer accuracy 43.75%

Tile roofs:  User accuracy 26% / Producer accuracy 33.33%

Roads/Impervious:  User accuracy 8% / Producer accuracy 44.44%

Archaeology/Rocks:  User accuracy 38% Producer accuracy 26.03%

NDVI

Class Vegetation Soil/Sparse vegetation Tile roofs Roads/Impervious Archaeology/Rocks Total

Vegetation 50 0 0 0 0 50

Soil/Sparse vegetation 0 10 15 4 21 50

Tile roofs 0 0 43 3 4 50

Roads/Impervious 0 0 45 4 1 50

Archaeology/Rocks 0 7 19 7 17 50

Total 50 17 122 18 43 250

Overall accuracy 49.6%   κ =0.37

Vegetation:  User Accuracy 100% / Producer Accuracy 100%

Soil/Sparse vegetation:  User accuracy 20% / Producer accuracy 58.82%

Tile roofs:  User accuracy 86% / Producer accuracy 35.25%

Roads/Impervious:  User accuracy 8% / Producer accuracy 22.22%

Archaeology/Rocks:  User accuracy 34% Producer accuracy 39.53%
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Appendix V 

Error matrix for unsupervised classification of study area. 

 

 

Composite image

Class Vegetation Soil/Sparse vegetation Tile roofs Roads/Impervious Archaeology/Rocks Total

Vegetation 50 0 0 0 0 50

Soil/Sparse vegetation 0 8 0 4 38 50

Tile roofs 0 1 0 42 7 50

Roads/Impervious 0 0 0 46 4 50

Archaeology/Rocks 1 1 0 16 32 50

Total 51 10 0 108 81 250

Overall accuracy 54.4%   κ=0.43

Vegetation:  User Accuracy 100% / Producer Accuracy 98.04%

Soil/Sparse vegetation:  User accuracy 16% / Producer accuracy 80%

Tile roofs:  User accuracy 0 / Producer accuracy 0

Roads/Impervious:  User accuracy 92% / Producer accuracy 42.59%

Archaeology/Rocks:  User accuracy 64% Producer accuracy 39.51%

Blue band

Class Vegetation Soil/Sparse vegetation Tile roofs Roads/Impervious Archaeology/Rocks Total

Vegetation 50 0 0 0 0 50

Soil/Sparse vegetation 6 18 0 3 23 50

Tile roofs 4 16 0 3 27 50

Roads/Impervious 0 0 0 49 1 50

Archaeology/Rocks 0 2 0 26 22 50

Total 60 36 0 81 73 250

Overall accuracy 55.6%   κ =0.45

Vegetation:  User Accuracy 100% / Producer Accuracy 83.33%

Soil/Sparse vegetation:  User accuracy 36% / Producer accuracy 50%

Tile roofs:  User accuracy 0 / Producer accuracy 0

Roads/Impervious:  User accuracy 98% / Producer accuracy 60.49%

Archaeology/Rocks:  User accuracy 44% Producer accuracy 30.14%

Red band

Class Vegetation Soil/Sparse vegetation Tile roofs Roads/Impervious Archaeology/Rocks Total

Vegetation 50 0 0 0 0 50

Soil/Sparse vegetation 1 8 0 28 13 50

Tile roofs 0 2 0 29 19 50

Roads/Impervious 0 0 0 24 26 50

Archaeology/Rocks 0 5 0 24 21 50

Total 51 15 0 105 79 250

Overall accuracy 41.2%   κ =0.27

Vegetation:  User Accuracy 100% / Producer Accuracy 98.04%

Soil/Sparse vegetation:  User accuracy 16% / Producer accuracy 53.33%

Tile roofs:  User accuracy 0 / Producer accuracy 0

Roads/Impervious:  User accuracy 48% / Producer accuracy 22.86%

Archaeology/Rocks:  User accuracy 42% Producer accuracy 26.58%
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NIR band

Class Vegetation Soil/Sparse vegetation Tile roofs Roads/Impervious Archaeology/Rocks Total

Vegetation 50 0 0 0 0 50

Soil/Sparse vegetation 0 20 0 29 1 50

Tile roofs 0 3 0 47 0 50

Roads/Impervious 0 0 0 50 0 50

Archaeology/Rocks 0 17 0 27 6 50

Total 50 40 0 153 7 250

Overall accuracy 50.4%   κ =0.38

Vegetation:  User Accuracy 100% / Producer Accuracy 100%

Soil/Sparse vegetation:  User accuracy 40% / Producer accuracy 50%

Tile roofs:  User accuracy 0 / Producer accuracy 0

Roads/Impervious:  User accuracy 100% / Producer accuracy 32.68%

Archaeology/Rocks:  User accuracy 12% Producer accuracy 85.71%

NDVI

Class Vegetation Soil/Sparse vegetation Tile roofs Roads/Impervious Archaeology/Rocks Total

Vegetation 35 6 0 0 9 50

Soil/Sparse vegetation 3 16 0 26 5 50

Tile roofs 18 6 0 4 22 50

Roads/Impervious 14 13 0 10 13 50

Archaeology/Rocks 7 16 0 10 17 50

Total 77 57 0 50 66 250

Overall accuracy 31.2%   κ =0.14

Vegetation:  User Accuracy 70% / Producer Accuracy 46.45%

Soil/Sparse vegetation:  User accuracy 32% / Producer accuracy 28.07%

Tile roofs:  User accuracy 0 / Producer accuracy 0

Roads/Impervious:  User accuracy 20% / Producer accuracy 20%

Archaeology/Rocks:  User accuracy 34% Producer accuracy 25.76%



73 
 

Series from Lund University 

Department of Physical Geography and Ecosystem Science 
 

Master Thesis in Geographical Information Science 

 

1. Anthony Lawther: The application of GIS-based binary logistic regression for slope 

failure susceptibility mapping in the Western Grampian Mountains, Scotland 

(2008). 

2. Rickard Hansen: Daily mobility in Grenoble Metropolitan Region, France. Applied 

GIS methods in time geographical research (2008). 

3. Emil Bayramov: Environmental monitoring of bio-restoration activities using GIS 

and Remote Sensing (2009). 

4. Rafael Villarreal Pacheco: Applications of Geographic Information Systems as an 

analytical and visualization tool for mass real estate valuation: a case study of 

Fontibon District, Bogota, Columbia (2009). 

5. Siri Oestreich Waage: a case study of route solving for oversized transport: The use 

of GIS functionalities in transport of transformers, as part of maintaining a reliable 

power infrastructure (2010). 

6. Edgar Pimiento: Shallow landslide susceptibility – Modelling and validation 

(2010). 

7. Martina Schäfer: Near real-time mapping of floodwater mosquito breeding sites 

using aerial photographs (2010). 

8. August Pieter van Waarden-Nagel: Land use evaluation to assess the outcome of 

the programme of rehabilitation measures for the river Rhine in the Netherlands 

(2010). 

9. Samira Muhammad: Development and implementation of air quality data mart for 

Ontario, Canada: A case study of air quality in Ontario using OLAP tool. (2010). 

10. Fredros Oketch Okumu: Using remotely sensed data to explore spatial and 

temporal relationships between photosynthetic productivity of vegetation and 

malaria transmission intensities in selected parts of Africa (2011). 

11. Svajunas Plunge: Advanced decision support methods for solving diffuse water 

pollution problems (2011). 

12. Jonathan Higgins: Monitoring urban growth in greater Lagos: A case study using 

GIS to monitor the urban growth of Lagos 1990 - 2008 and produce future growth 

prospects for the city (2011). 

13. Mårten Karlberg: Mobile Map Client API: Design and Implementation for Android 

(2011). 

14. Jeanette McBride: Mapping Chicago area urban tree canopy using color infrared 

imagery (2011). 



74 
 

15. Andrew Farina: Exploring the relationship between land surface temperature and 

vegetation abundance for urban heat island mitigation in Seville, Spain (2011). 

16. David Kanyari: Nairobi City Journey Planner:  An online and a Mobile Application 

(2011). 

17. Laura V. Drews:  Multi-criteria GIS analysis for siting of small wind power plants - A 

case study from Berlin (2012). 

18. Qaisar Nadeem: Best living neighborhood in the city - A GIS based multi criteria 

evaluation of ArRiyadh City (2012). 

19. Ahmed Mohamed El Saeid Mustafa: Development of a photo voltaic building 

rooftop integration analysis tool for GIS for Dokki District, Cairo, Egypt (2012). 

20. Daniel Patrick Taylor: Eastern Oyster Aquaculture: Estuarine Remediation via Site 

Suitability and Spatially Explicit Carrying Capacity Modeling in Virginia’s 

Chesapeake Bay (2013). 

21. Angeleta Oveta Wilson: A Participatory GIS approach to unearthing Manchester’s 

Cultural Heritage ‘gold mine’ (2013). 

22. Ola Svensson: Visibility and Tholos Tombs in the Messenian Landscape: A 

Comparative Case Study of the Pylian Hinterlands and the Soulima Valley (2013). 

23. Monika Ogden: Land use impact on water quality in two river systems in South 

Africa (2013). 

24. Stefan Rova: A GIS based approach assessing phosphorus load impact on Lake 

Flaten in Salem, Sweden (2013). 

25. Yann Buhot: Analysis of the history of landscape changes over a period of 200 

years. How can we predict past landscape pattern scenario and the impact on 

habitat diversity? (2013). 

26. Christina Fotiou: Evaluating habitat suitability and spectral heterogeneity models 

to predict weed species presence (2014). 

27. Inese Linuza: Accuracy Assessment in Glacier Change Analysis (2014). 

28. Agnieszka Griffin: Domestic energy consumption and social living standards: a GIS 

analysis within the Greater London Authority area (2014). 

29. Brynja Guðmundsdóttir: Detection of potential arable land with remote sensing 

and GIS - A Case Study for Kjósarhreppur (2014). 

30. Oleksandr Nekrasov: Processing of MODIS Vegetation Indices for analysis of 

agricultural droughts in the southern Ukraine between the years 2000-2012 

(2014). 

31. Sarah Tressel: Recommendations for a polar Earth science portal in the context of 

Arctic Spatial Data Infrastructure (2014). 

32. Caroline Gevaert: Combining Hyperspectral UAV and Multispectral Formosat-2 

Imagery for Precision Agriculture Applications (2014). 



75 
 

33. Salem Jamal-Uddeen:  Using GeoTools to implement the multi-criteria evaluation 

analysis - weighted linear combination model (2014). 

34. Samanah Seyedi-Shandiz: Schematic representation of geographical railway 

network at the Swedish Transport Administration (2014). 

35. Kazi Masel Ullah: Urban Land-use planning using Geographical Information System 

and analytical hierarchy process: case study Dhaka City (2014). 

36. Alexia Chang-Wailing Spitteler: Development of a web application based on MCDA 

and GIS for the decision support of river and floodplain rehabilitation projects 

(2014). 

37. Alessandro De Martino: Geographic accessibility analysis and evaluation of 

potential changes to the public transportation system in the City of Milan (2014). 

38. Alireza Mollasalehi: GIS Based Modelling for Fuel Reduction Using Controlled Burn 

in Australia. Case Study: Logan City, QLD (2015). 

39. Negin A. Sanati: Chronic Kidney Disease Mortality in Costa Rica; Geographical 

Distribution, Spatial Analysis and Non-traditional Risk Factors (2015). 

40. Karen McIntyre: Benthic mapping of the Bluefields Bay fish sanctuary, Jamaica 

(2015). 

41. Kees van Duijvendijk: Feasibility of a low-cost weather sensor network for 

agricultural purposes: A preliminary assessment (2015). 

42. Sebastian Andersson Hylander: Evaluation of cultural ecosystem services using GIS 

(2015). 

43. Deborah Bowyer: Measuring Urban Growth, Urban Form and Accessibility as 

Indicators of Urban Sprawl in Hamilton, New Zealand (2015). 

44. Stefan Arvidsson: Relationship between tree species composition and phenology 

extracted from satellite data in Swedish forests (2015). 

45. Damián Giménez Cruz: GIS-based optimal localisation of beekeeping in rural Kenya 

(2016). 

46. Alejandra Narváez Vallejo: Can the introduction of the topographic indices in LPJ-

GUESS improve the spatial representation of environmental variables? (2016). 

47. Anna Lundgren: Development of a method for mapping the highest coastline in 

Sweden using breaklines extracted from high resolution digital elevation models 

(2016). 

48. Oluwatomi Esther Adejoro: Does location also matter?  A spatial analysis of social 

achievements of young South Australians (2016). 

49. Hristo Dobrev Tomov: Automated temporal NDVI analysis over the Middle East for 

the period 1982 - 2010 (2016). 

50. Vincent Muller: Impact of Security Context on Mobile Clinic Activities A GIS Multi 

Criteria Evaluation based on an MSF Humanitarian Mission in Cameroon (2016). 



76 
 

51. Gezahagn Negash Seboka: Spatial Assessment of NDVI as an Indicator of 

Desertification in Ethiopia using Remote Sensing and GIS (2016). 

52. Holly Buhler: Evaluation of Interfacility Medical Transport Journey Times in 

Southeastern British Columbia. (2016). 

53. Lars Ole Grottenberg:  Assessing the ability to share spatial data between 

emergency management organisations in the High North (2016). 

54. Sean Grant: The Right Tree in the Right Place: Using GIS to Maximize the Net 

Benefits from Urban Forests (2016). 

55. Irshad Jamal: Multi-Criteria GIS Analysis for School Site Selection in Gorno-

Badakhshan Autonomous Oblast, Tajikistan (2016). 

56. Fulgencio Sanmartín: Wisdom-volkano: A novel tool based on open GIS and time-

series visualization to analyse and share volcanic data (2016). 

57. Nezha Acil: Remote sensing-based monitoring of snow cover dynamics and its 

influence on vegetation growth in the Middle Atlas Mountains (2016). 

58. Julia Hjalmarsson: A Weighty Issue:  Estimation of Fire Size with Geographically 

Weighted Logistic Regression (2016). 

59. Mathewos Tamiru Amato: Using multi-criteria evaluation and GIS for chronic food 

and nutrition insecurity indicators analysis in Ethiopia (2016). 

60. Karim Alaa El Din Mohamed Soliman El Attar: Bicycling Suitability in Downtown, 

Cairo, Egypt (2016). 

61. Gilbert Akol Echelai: Asset Management: Integrating GIS as a Decision Support Tool 

in Meter Management in National Water and Sewerage Corporation (2016). 

62. Terje Slinning: Analytic comparison of multibeam echo soundings (2016). 

63. Gréta Hlín Sveinsdóttir: GIS-based MCDA for decision support: A framework for 

wind farm siting in Iceland (2017). 

64. Jonas Sjögren: Consequences of a flood in Kristianstad, Sweden: A GIS-based 

analysis of impacts on important societal functions (2017). 

65. Nadine Raska: 3D geologic subsurface modelling within the Mackenzie Plain, 

Northwest Territories, Canada (2017). 

66. Panagiotis Symeonidis: Study of spatial and temporal variation of atmospheric 

optical parameters and their relation with PM 2.5 concentration over Europe using 

GIS technologies (2017). 

67. Michaela Bobeck: A GIS-based Multi-Criteria Decision Analysis of Wind Farm Site 

Suitability in New South Wales, Australia, from a Sustainable Development 

Perspective (2017). 

68. Raghdaa Eissa: Developing a GIS Model for the Assessment of Outdoor 

Recreational Facilities in New Cities Case Study: Tenth of Ramadan City, Egypt 

(2017). 



77 
 

69. Zahra Khais Shahid: Biofuel plantations and isoprene emissions in Svea and 

Götaland (2017). 

70. Mirza Amir Liaquat Baig: Using geographical information systems in epidemiology: 

Mapping and analyzing occurrence of diarrhea in urban - residential area of 

Islamabad, Pakistan (2017). 

71. Joakim Jörwall: Quantitative model of Present and Future well-being in the EU-28: 

A spatial Multi-Criteria Evaluation of socioeconomic and climatic comfort factors 

(2017). 

72. Elin Haettner: Energy Poverty in the Dublin Region: Modelling Geographies of Risk 

(2017). 

73. Harry Eriksson: Geochemistry of stream plants and its statistical relations to soil- 

and bedrock geology, slope directions and till geochemistry. A GIS-analysis of small 

catchments in northern Sweden (2017). 

74. Daniel Gardevärn: PPGIS and Public meetings – An evaluation of public 

participation methods for urban planning (2017). 

75. Kim Friberg: Sensitivity Analysis and Calibration of Multi Energy Balance Land 

Surface Model Parameters (2017). 

76. Viktor Svanerud: Taking the bus to the park? A study of accessibility to green areas 

in Gothenburg through different modes of transport (2017).  

77. Lisa-Gaye Greene: Deadly Designs: The Impact of Road Design on Road Crash 

Patterns along Jamaica’s North Coast Highway (2017).  

78. Katarina Jemec Parker: Spatial and temporal analysis of fecal indicator bacteria 

concentrations in beach water in San Diego, California (2017).  

79. Angela Kabiru: An Exploratory Study of Middle Stone Age and Later Stone Age Site 

Locations in Kenya’s Central Rift Valley Using Landscape Analysis: A GIS Approach 

(2017).  

80. Kristean Björkmann: Subjective Well-Being and Environment: A GIS-Based Analysis 

(2018).  

81. Williams Erhunmonmen Ojo: Measuring spatial accessibility to healthcare for 

people living with HIV-AIDS in southern Nigeria (2018).  

82. Daniel Assefa: Developing Data Extraction and Dynamic Data Visualization (Styling) 

Modules for Web GIS Risk Assessment System (WGRAS). (2018).  

83. Adela Nistora: Inundation scenarios in a changing climate: assessing potential 

impacts of sea-level rise on the coast of South-East England (2018).  

84. Marc Seliger: Thirsty landscapes - Investigating growing irrigation water 

consumption and potential conservation measures within Utah’s largest master-

planned community: Daybreak (2018).  



78 
 

85. Luka Jovičić: Spatial Data Harmonisation in Regional Context in Accordance with 

INSPIRE Implementing Rules (2018).  

86. Christina Kourdounouli: Analysis of Urban Ecosystem Condition Indicators for the 

Large Urban Zones and City Cores in EU (2018).  

87. Jeremy Azzopardi: Effect of distance measures and feature representations on 

distance-based accessibility measures (2018).  

88. Patrick Kabatha: An open source web GIS tool for analysis and visualization of 

elephant GPS telemetry data, alongside environmental and anthropogenic 

variables (2018).  

89. Richard Alphonce Giliba: Effects of Climate Change on Potential Geographical 

Distribution of Prunus africana (African cherry) in the Eastern Arc Mountain Forests 

of Tanzania (2018).  

90. Eiður Kristinn Eiðsson: Transformation and linking of authoritative multi-scale 

geodata for the Semantic Web: A case study of Swedish national building data sets 

(2018).  

91. Niamh Harty: HOP!: a PGIS and citizen science approach to monitoring the 

condition of upland paths (2018).  

92. José Estuardo Jara Alvear: Solar photovoltaic potential to complement hydropower 

in Ecuador: A GIS-based framework of analysis (2018). 

93. Brendan O’Neill: Multicriteria Site Suitability for Algal Biofuel Production Facilities 

(2018). 

94. Roman Spataru: Spatial-temporal GIS analysis in public health – a case study of 

polio disease (2018). 

95. Alicja Miodońska: Assessing evolution of ice caps in Suðurland, Iceland, in years 

1986 - 2014, using multispectral satellite imagery (2019). 

96. Dennis Lindell Schettini: A Spatial Analysis of Homicide Crime’s Distribution and 

Association with Deprivation in Stockholm Between 2010-2017 (2019). 

97. Damiano Vesentini: The Po Delta Biosphere Reserve: Management challenges and 

priorities deriving from anthropogenic pressure and sea level rise (2019). 

98. Emilie Arnesten: Impacts of future sea level rise and high water on roads, railways 

and environmental objects: a GIS analysis of the potential effects of increasing sea 

levels and highest projected high water in Scania, Sweden (2019). 

99. Syed Muhammad Amir Raza: Comparison of geospatial support in RDF stores: 

Evaluation for ICOS Carbon Portal metadata (2019). 

100. Hemin Tofiq: Investigating the accuracy of Digital Elevation Models from UAV 

images in areas with low contrast: A sandy beach as a case study (2019). 



79 
 

101. Evangelos Vafeiadis: Exploring the distribution of accessibility by public transport 

using spatial analysis. A case study for retail concentrations and public hospitals in 

Athens (2019). 

102. Milan Sekulic: Multi-Criteria GIS modelling for optimal alignment of roadway by-

passes in the Tlokweng Planning Area, Botswana (2019). 

103. Ingrid Piirisaar: A multi-criteria GIS analysis for siting of utility-scale photovoltaic 

solar plants in county Kilkenny, Ireland (2019). 

104. Nigel Fox: Plant phenology and climate change: possible effect on the onset of 

various wild plant species’ first flowering day in the UK (2019). 

105. Gunnar Hesch: Linking conflict events and cropland development in Afghanistan, 

2001 to 2011, using MODIS land cover data and Uppsala Conflict Data Programme 

(2019). 

106. Elijah Njoku: Analysis of spatial-temporal pattern of Land Surface Temperature 

(LST) due to NDVI and elevation in Ilorin, Nigeria (2019). 

107. Katalin Bunyevácz: Development of a GIS methodology to evaluate informal urban 

green areas for inclusion in a community governance program (2019). 

108. Paul dos Santos: Automating synthetic trip data generation for an agent-based 

simulation of urban mobility (2019). 

109. Robert O’ Dwyer: Land cover changes in Southern Sweden from the mid-Holocene 

to present day:  Insights for ecosystem service assessments (2019). 

110. Daniel Klingmyr: Global scale patterns and trends in tropospheric NO2 

concentrations (2019). 

111. Marwa Farouk Elkabbany: Sea Level Rise Vulnerability Assessment for Abu Dhabi, 

United Arab Emirates (2019). 

112. Jip Jan van Zoonen: Aspects of Error Quantification and Evaluation in Digital 

Elevation Models for Glacier Surfaces (2020). 

113. Georgios Efthymiou: The use of bicycles in a mid-sized city – benefits and obstacles 

identified using a questionnaire and GIS (2020). 

114. Haruna Olayiwola Jimoh: Assessment of Urban Sprawl in MOWE/IBAFO Axis of 

Ogun State using GIS Capabilities (2020). 

115. Nikolaos Barmpas Zachariadis: Development of an iOS, Augmented Reality for 

disaster management (2020). 

116. Ida Storm: ICOS Atmospheric Stations: Spatial Characterization of CO2 Footprint 

Areas and Evaluating the Uncertainties of Modelled CO2 Concentrations (2020). 

117. Alon Zuta: Evaluation of water stress mapping methods in vineyards using airborne 

thermal imaging (2020). 

118. Marcus Eriksson: Evaluating structural landscape development in the municipality 

Upplands-Bro, using landscape metrics indices (2020). 



80 
 

119. Ane Rahbek Vierø: Connectivity for Cyclists? A Network Analysis of Copenhagen’s 

Bike Lanes (2020). 

120. Cecilia Baggini: Changes in habitat suitability for three declining Anatidae species 

in saltmarshes on the Mersey estuary, North-West England (2020). 

121. Bakrad Balabanian: Transportation and Its Effect on Student Performance (2020). 

122. Ali Al Farid: Knowledge and Data Driven Approaches for Hydrocarbon 

Microseepage Characterizations: An Application of Satellite Remote Sensing 

(2020). 

123. Bartlomiej Kolodziejczyk: Distribution Modelling of Gene Drive-Modified 

Mosquitoes and Their Effects on Wild Populations (2020). 

124. Alexis Cazorla: Decreasing organic nitrogen concentrations in European water 

bodies - links to organic carbon trends and land cover (2020). 

125. Kharid Mwakoba: Remote sensing analysis of land cover/use conditions of 

community-based wildlife conservation areas in Tanzania (2021). 

126. Chinatsu Endo: Remote Sensing Based Pre-Season Yellow Rust Early Warning in 

Oromia, Ethiopia (2021). 

127. Berit Mohr: Using remote sensing and land abandonment as a proxy for long-term 

human out-migration. A Case Study: Al-Hassakeh Governorate, Syria (2021). 

128. Kanchana Nirmali Bandaranayake: Considering future precipitation in delineation 

locations for water storage systems - Case study Sri Lanka (2021). 

129. Emma Bylund: Dynamics of net primary production and food availability in the 

aftermath of the 2004 and 2007 desert locust outbreaks in Niger and Yemen 

(2021). 

130. Shawn Pace: Urban infrastructure inundation risk from permanent sea-level rise 

scenarios in London (UK), Bangkok (Thailand) and Mumbai (India): A comparative 

analysis (2021). 

131. Oskar Evert Johansson: The hydrodynamic impacts of Estuarine Oyster reefs, and 

the application of drone technology to this study (2021). 

132. Pritam Kumarsingh: A Case Study to develop and test GIS/SDSS methods to assess 

the production capacity of a Cocoa Site in Trinidad and Tobago (2021). 

133. Muhammad Imran Khan: Property Tax Mapping and Assessment using GIS (2021). 

134. Domna Kanari: Mining geosocial data from Flickr to explore tourism patterns: The 

case study of Athens (2021). 

135. Mona Tykesson Klubien: Livestock-MRSA in Danish pig farms (2021). 

136. Ove Njøten: Comparing radar satellites. Use of Sentinel-1 leads to an increase in oil 

spill alerts in Norwegian waters (2021). 



81 
 

137. Panagiotis Patrinos: Change of heating fuel consumption patterns produced by the 

economic crisis in Greece (2021). 

138. Lukasz Langowski: Assessing the suitability of using Sentinel-1A SAR multi-

temporal imagery to detect fallow periods between rice crops (2021). 

139. Jonas Tillman: Perception accuracy and user acceptance of legend designs for 

opacity data mapping in GIS (2022). 

140. Gabriela Olekszyk: ALS (Airborne LIDAR) accuracy: Can potential low data quality of 

ground points be modelled/detected? Case study of 2016 LIDAR capture over 

Auckland, New Zealand (2022). 

141. Luke Aspland: Weights of Evidence Predictive Modelling in Archaeology (2022). 

142. Luís Fareleira Gomes: The influence of climate, population density, tree species 

and land cover on fire pattern in mainland Portugal (2022). 

143. Andreas Eriksson: Mapping Fire Salamander (Salamandra salamandra) Habitat 

Suitability in Baden-Württemberg with Multi-Temporal Sentinel-1 and Sentinel-2 

Imagery (2022). 

144. Lisbet Hougaard Baklid: Geographical expansion rate of a brown bear population 

in Fennoscandia and the factors explaining the directional variations (2022). 

145. Victoria Persson: Mussels in deep water with climate change:  Spatial distribution 

of mussel (Mytilus galloprovincialis) growth offshore in the French Mediterranean 

with respect to climate change scenario RCP 8.5 Long Term and Integrated Multi-

Trophic Aquaculture (IMTA) using Dynamic Energy Budget (DEB) modelling (2022). 

146. Benjamin Bernard Fabien Gérard Borgeais: Implementing a multi-criteria GIS 

analysis and predictive modelling to locate Upper Palaeolithic decorated caves in 

the Périgord noir, France (2022). 

147. Bernat Dorado-Guerrero: Assessing the impact of post-fire restoration 

interventions using spectral vegetation indices: A case study in El Bruc, Spain 

(2022). 

148. Ignatius Gabriel Aloysius Maria Perera: The Influence of Natural Radon Occurrence 

on the Severity of the COVID-19 Pandemic in Germany: A Spatial Analysis (2022). 

149. Mark Overton: An Analysis of Spatially-enabled Mobile Decision Support Systems 

in a Collaborative Decision-Making Environment (2022). 

150. Viggo Lunde: Analysing methods for visualizing time-series datasets in open-source 

web mapping (2022). 

151. Johan Viscarra Hansson: Distribution Analysis of Impatiens glandulifera in 

Kronoberg County and a Pest Risk Map for Alvesta Municipality (2022). 

152. Vincenzo Poppiti: GIS and Tourism: Developing strategies for new touristic flows 

after the Covid-19 pandemic (2022). 



82 
 

153. Henrik Hagelin: Wildfire growth modelling in Sweden - A suitability assessment of 

available data (2023). 

154. Gabriel Romeo Ferriols Pavico: Where there is road, there is fire (influence): An 

exploratory study on the influence of roads in the spatial patterns of Swedish 

wildfires of 2018 (2023). 

155. Colin Robert Potter: Using a GIS to enable an economic, land use and energy 

output comparison between small wind powered turbines and large-scale wind 

farms: the case of Oslo, Norway (2023). 

156. Krystyna Muszel: Impact of Sea Surface Temperature and Salinity on 

Phytoplankton blooms phenology in the North Sea (2023). 

157. Tobias Rydlinge: Urban tree canopy mapping - an open source deep learning 

approach (2023). 

158. Albert Wellendorf: Multi-scale Bark Beetle Predictions Using Machine Learning 

(2023). 

159. Manolis Papadakis: Use of Satellite Remote Sensing for Detecting Archaeological 

Features:  An Example from Ancient Corinth, Greece (2023). 

 


